cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

clk-kona-setup.c (21883B)


      1/*
      2 * Copyright (C) 2013 Broadcom Corporation
      3 * Copyright 2013 Linaro Limited
      4 *
      5 * This program is free software; you can redistribute it and/or
      6 * modify it under the terms of the GNU General Public License as
      7 * published by the Free Software Foundation version 2.
      8 *
      9 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
     10 * kind, whether express or implied; without even the implied warranty
     11 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     12 * GNU General Public License for more details.
     13 */
     14
     15#include <linux/io.h>
     16#include <linux/of_address.h>
     17
     18#include "clk-kona.h"
     19
     20/* These are used when a selector or trigger is found to be unneeded */
     21#define selector_clear_exists(sel)	((sel)->width = 0)
     22#define trigger_clear_exists(trig)	FLAG_CLEAR(trig, TRIG, EXISTS)
     23
     24/* Validity checking */
     25
     26static bool ccu_data_offsets_valid(struct ccu_data *ccu)
     27{
     28	struct ccu_policy *ccu_policy = &ccu->policy;
     29	u32 limit;
     30
     31	limit = ccu->range - sizeof(u32);
     32	limit = round_down(limit, sizeof(u32));
     33	if (ccu_policy_exists(ccu_policy)) {
     34		if (ccu_policy->enable.offset > limit) {
     35			pr_err("%s: bad policy enable offset for %s "
     36					"(%u > %u)\n", __func__,
     37				ccu->name, ccu_policy->enable.offset, limit);
     38			return false;
     39		}
     40		if (ccu_policy->control.offset > limit) {
     41			pr_err("%s: bad policy control offset for %s "
     42					"(%u > %u)\n", __func__,
     43				ccu->name, ccu_policy->control.offset, limit);
     44			return false;
     45		}
     46	}
     47
     48	return true;
     49}
     50
     51static bool clk_requires_trigger(struct kona_clk *bcm_clk)
     52{
     53	struct peri_clk_data *peri = bcm_clk->u.peri;
     54	struct bcm_clk_sel *sel;
     55	struct bcm_clk_div *div;
     56
     57	if (bcm_clk->type != bcm_clk_peri)
     58		return false;
     59
     60	sel = &peri->sel;
     61	if (sel->parent_count && selector_exists(sel))
     62		return true;
     63
     64	div = &peri->div;
     65	if (!divider_exists(div))
     66		return false;
     67
     68	/* Fixed dividers don't need triggers */
     69	if (!divider_is_fixed(div))
     70		return true;
     71
     72	div = &peri->pre_div;
     73
     74	return divider_exists(div) && !divider_is_fixed(div);
     75}
     76
     77static bool peri_clk_data_offsets_valid(struct kona_clk *bcm_clk)
     78{
     79	struct peri_clk_data *peri;
     80	struct bcm_clk_policy *policy;
     81	struct bcm_clk_gate *gate;
     82	struct bcm_clk_hyst *hyst;
     83	struct bcm_clk_div *div;
     84	struct bcm_clk_sel *sel;
     85	struct bcm_clk_trig *trig;
     86	const char *name;
     87	u32 range;
     88	u32 limit;
     89
     90	BUG_ON(bcm_clk->type != bcm_clk_peri);
     91	peri = bcm_clk->u.peri;
     92	name = bcm_clk->init_data.name;
     93	range = bcm_clk->ccu->range;
     94
     95	limit = range - sizeof(u32);
     96	limit = round_down(limit, sizeof(u32));
     97
     98	policy = &peri->policy;
     99	if (policy_exists(policy)) {
    100		if (policy->offset > limit) {
    101			pr_err("%s: bad policy offset for %s (%u > %u)\n",
    102				__func__, name, policy->offset, limit);
    103			return false;
    104		}
    105	}
    106
    107	gate = &peri->gate;
    108	hyst = &peri->hyst;
    109	if (gate_exists(gate)) {
    110		if (gate->offset > limit) {
    111			pr_err("%s: bad gate offset for %s (%u > %u)\n",
    112				__func__, name, gate->offset, limit);
    113			return false;
    114		}
    115
    116		if (hyst_exists(hyst)) {
    117			if (hyst->offset > limit) {
    118				pr_err("%s: bad hysteresis offset for %s "
    119					"(%u > %u)\n", __func__,
    120					name, hyst->offset, limit);
    121				return false;
    122			}
    123		}
    124	} else if (hyst_exists(hyst)) {
    125		pr_err("%s: hysteresis but no gate for %s\n", __func__, name);
    126		return false;
    127	}
    128
    129	div = &peri->div;
    130	if (divider_exists(div)) {
    131		if (div->u.s.offset > limit) {
    132			pr_err("%s: bad divider offset for %s (%u > %u)\n",
    133				__func__, name, div->u.s.offset, limit);
    134			return false;
    135		}
    136	}
    137
    138	div = &peri->pre_div;
    139	if (divider_exists(div)) {
    140		if (div->u.s.offset > limit) {
    141			pr_err("%s: bad pre-divider offset for %s "
    142					"(%u > %u)\n",
    143				__func__, name, div->u.s.offset, limit);
    144			return false;
    145		}
    146	}
    147
    148	sel = &peri->sel;
    149	if (selector_exists(sel)) {
    150		if (sel->offset > limit) {
    151			pr_err("%s: bad selector offset for %s (%u > %u)\n",
    152				__func__, name, sel->offset, limit);
    153			return false;
    154		}
    155	}
    156
    157	trig = &peri->trig;
    158	if (trigger_exists(trig)) {
    159		if (trig->offset > limit) {
    160			pr_err("%s: bad trigger offset for %s (%u > %u)\n",
    161				__func__, name, trig->offset, limit);
    162			return false;
    163		}
    164	}
    165
    166	trig = &peri->pre_trig;
    167	if (trigger_exists(trig)) {
    168		if (trig->offset > limit) {
    169			pr_err("%s: bad pre-trigger offset for %s (%u > %u)\n",
    170				__func__, name, trig->offset, limit);
    171			return false;
    172		}
    173	}
    174
    175	return true;
    176}
    177
    178/* A bit position must be less than the number of bits in a 32-bit register. */
    179static bool bit_posn_valid(u32 bit_posn, const char *field_name,
    180			const char *clock_name)
    181{
    182	u32 limit = BITS_PER_BYTE * sizeof(u32) - 1;
    183
    184	if (bit_posn > limit) {
    185		pr_err("%s: bad %s bit for %s (%u > %u)\n", __func__,
    186			field_name, clock_name, bit_posn, limit);
    187		return false;
    188	}
    189	return true;
    190}
    191
    192/*
    193 * A bitfield must be at least 1 bit wide.  Both the low-order and
    194 * high-order bits must lie within a 32-bit register.  We require
    195 * fields to be less than 32 bits wide, mainly because we use
    196 * shifting to produce field masks, and shifting a full word width
    197 * is not well-defined by the C standard.
    198 */
    199static bool bitfield_valid(u32 shift, u32 width, const char *field_name,
    200			const char *clock_name)
    201{
    202	u32 limit = BITS_PER_BYTE * sizeof(u32);
    203
    204	if (!width) {
    205		pr_err("%s: bad %s field width 0 for %s\n", __func__,
    206			field_name, clock_name);
    207		return false;
    208	}
    209	if (shift + width > limit) {
    210		pr_err("%s: bad %s for %s (%u + %u > %u)\n", __func__,
    211			field_name, clock_name, shift, width, limit);
    212		return false;
    213	}
    214	return true;
    215}
    216
    217static bool
    218ccu_policy_valid(struct ccu_policy *ccu_policy, const char *ccu_name)
    219{
    220	struct bcm_lvm_en *enable = &ccu_policy->enable;
    221	struct bcm_policy_ctl *control;
    222
    223	if (!bit_posn_valid(enable->bit, "policy enable", ccu_name))
    224		return false;
    225
    226	control = &ccu_policy->control;
    227	if (!bit_posn_valid(control->go_bit, "policy control GO", ccu_name))
    228		return false;
    229
    230	if (!bit_posn_valid(control->atl_bit, "policy control ATL", ccu_name))
    231		return false;
    232
    233	if (!bit_posn_valid(control->ac_bit, "policy control AC", ccu_name))
    234		return false;
    235
    236	return true;
    237}
    238
    239static bool policy_valid(struct bcm_clk_policy *policy, const char *clock_name)
    240{
    241	if (!bit_posn_valid(policy->bit, "policy", clock_name))
    242		return false;
    243
    244	return true;
    245}
    246
    247/*
    248 * All gates, if defined, have a status bit, and for hardware-only
    249 * gates, that's it.  Gates that can be software controlled also
    250 * have an enable bit.  And a gate that can be hardware or software
    251 * controlled will have a hardware/software select bit.
    252 */
    253static bool gate_valid(struct bcm_clk_gate *gate, const char *field_name,
    254			const char *clock_name)
    255{
    256	if (!bit_posn_valid(gate->status_bit, "gate status", clock_name))
    257		return false;
    258
    259	if (gate_is_sw_controllable(gate)) {
    260		if (!bit_posn_valid(gate->en_bit, "gate enable", clock_name))
    261			return false;
    262
    263		if (gate_is_hw_controllable(gate)) {
    264			if (!bit_posn_valid(gate->hw_sw_sel_bit,
    265						"gate hw/sw select",
    266						clock_name))
    267				return false;
    268		}
    269	} else {
    270		BUG_ON(!gate_is_hw_controllable(gate));
    271	}
    272
    273	return true;
    274}
    275
    276static bool hyst_valid(struct bcm_clk_hyst *hyst, const char *clock_name)
    277{
    278	if (!bit_posn_valid(hyst->en_bit, "hysteresis enable", clock_name))
    279		return false;
    280
    281	if (!bit_posn_valid(hyst->val_bit, "hysteresis value", clock_name))
    282		return false;
    283
    284	return true;
    285}
    286
    287/*
    288 * A selector bitfield must be valid.  Its parent_sel array must
    289 * also be reasonable for the field.
    290 */
    291static bool sel_valid(struct bcm_clk_sel *sel, const char *field_name,
    292			const char *clock_name)
    293{
    294	if (!bitfield_valid(sel->shift, sel->width, field_name, clock_name))
    295		return false;
    296
    297	if (sel->parent_count) {
    298		u32 max_sel;
    299		u32 limit;
    300
    301		/*
    302		 * Make sure the selector field can hold all the
    303		 * selector values we expect to be able to use.  A
    304		 * clock only needs to have a selector defined if it
    305		 * has more than one parent.  And in that case the
    306		 * highest selector value will be in the last entry
    307		 * in the array.
    308		 */
    309		max_sel = sel->parent_sel[sel->parent_count - 1];
    310		limit = (1 << sel->width) - 1;
    311		if (max_sel > limit) {
    312			pr_err("%s: bad selector for %s "
    313					"(%u needs > %u bits)\n",
    314				__func__, clock_name, max_sel,
    315				sel->width);
    316			return false;
    317		}
    318	} else {
    319		pr_warn("%s: ignoring selector for %s (no parents)\n",
    320			__func__, clock_name);
    321		selector_clear_exists(sel);
    322		kfree(sel->parent_sel);
    323		sel->parent_sel = NULL;
    324	}
    325
    326	return true;
    327}
    328
    329/*
    330 * A fixed divider just needs to be non-zero.  A variable divider
    331 * has to have a valid divider bitfield, and if it has a fraction,
    332 * the width of the fraction must not be no more than the width of
    333 * the divider as a whole.
    334 */
    335static bool div_valid(struct bcm_clk_div *div, const char *field_name,
    336			const char *clock_name)
    337{
    338	if (divider_is_fixed(div)) {
    339		/* Any fixed divider value but 0 is OK */
    340		if (div->u.fixed == 0) {
    341			pr_err("%s: bad %s fixed value 0 for %s\n", __func__,
    342				field_name, clock_name);
    343			return false;
    344		}
    345		return true;
    346	}
    347	if (!bitfield_valid(div->u.s.shift, div->u.s.width,
    348				field_name, clock_name))
    349		return false;
    350
    351	if (divider_has_fraction(div))
    352		if (div->u.s.frac_width > div->u.s.width) {
    353			pr_warn("%s: bad %s fraction width for %s (%u > %u)\n",
    354				__func__, field_name, clock_name,
    355				div->u.s.frac_width, div->u.s.width);
    356			return false;
    357		}
    358
    359	return true;
    360}
    361
    362/*
    363 * If a clock has two dividers, the combined number of fractional
    364 * bits must be representable in a 32-bit unsigned value.  This
    365 * is because we scale up a dividend using both dividers before
    366 * dividing to improve accuracy, and we need to avoid overflow.
    367 */
    368static bool kona_dividers_valid(struct kona_clk *bcm_clk)
    369{
    370	struct peri_clk_data *peri = bcm_clk->u.peri;
    371	struct bcm_clk_div *div;
    372	struct bcm_clk_div *pre_div;
    373	u32 limit;
    374
    375	BUG_ON(bcm_clk->type != bcm_clk_peri);
    376
    377	if (!divider_exists(&peri->div) || !divider_exists(&peri->pre_div))
    378		return true;
    379
    380	div = &peri->div;
    381	pre_div = &peri->pre_div;
    382	if (divider_is_fixed(div) || divider_is_fixed(pre_div))
    383		return true;
    384
    385	limit = BITS_PER_BYTE * sizeof(u32);
    386
    387	return div->u.s.frac_width + pre_div->u.s.frac_width <= limit;
    388}
    389
    390
    391/* A trigger just needs to represent a valid bit position */
    392static bool trig_valid(struct bcm_clk_trig *trig, const char *field_name,
    393			const char *clock_name)
    394{
    395	return bit_posn_valid(trig->bit, field_name, clock_name);
    396}
    397
    398/* Determine whether the set of peripheral clock registers are valid. */
    399static bool
    400peri_clk_data_valid(struct kona_clk *bcm_clk)
    401{
    402	struct peri_clk_data *peri;
    403	struct bcm_clk_policy *policy;
    404	struct bcm_clk_gate *gate;
    405	struct bcm_clk_hyst *hyst;
    406	struct bcm_clk_sel *sel;
    407	struct bcm_clk_div *div;
    408	struct bcm_clk_div *pre_div;
    409	struct bcm_clk_trig *trig;
    410	const char *name;
    411
    412	BUG_ON(bcm_clk->type != bcm_clk_peri);
    413
    414	/*
    415	 * First validate register offsets.  This is the only place
    416	 * where we need something from the ccu, so we do these
    417	 * together.
    418	 */
    419	if (!peri_clk_data_offsets_valid(bcm_clk))
    420		return false;
    421
    422	peri = bcm_clk->u.peri;
    423	name = bcm_clk->init_data.name;
    424
    425	policy = &peri->policy;
    426	if (policy_exists(policy) && !policy_valid(policy, name))
    427		return false;
    428
    429	gate = &peri->gate;
    430	if (gate_exists(gate) && !gate_valid(gate, "gate", name))
    431		return false;
    432
    433	hyst = &peri->hyst;
    434	if (hyst_exists(hyst) && !hyst_valid(hyst, name))
    435		return false;
    436
    437	sel = &peri->sel;
    438	if (selector_exists(sel)) {
    439		if (!sel_valid(sel, "selector", name))
    440			return false;
    441
    442	} else if (sel->parent_count > 1) {
    443		pr_err("%s: multiple parents but no selector for %s\n",
    444			__func__, name);
    445
    446		return false;
    447	}
    448
    449	div = &peri->div;
    450	pre_div = &peri->pre_div;
    451	if (divider_exists(div)) {
    452		if (!div_valid(div, "divider", name))
    453			return false;
    454
    455		if (divider_exists(pre_div))
    456			if (!div_valid(pre_div, "pre-divider", name))
    457				return false;
    458	} else if (divider_exists(pre_div)) {
    459		pr_err("%s: pre-divider but no divider for %s\n", __func__,
    460			name);
    461		return false;
    462	}
    463
    464	trig = &peri->trig;
    465	if (trigger_exists(trig)) {
    466		if (!trig_valid(trig, "trigger", name))
    467			return false;
    468
    469		if (trigger_exists(&peri->pre_trig)) {
    470			if (!trig_valid(trig, "pre-trigger", name)) {
    471				return false;
    472			}
    473		}
    474		if (!clk_requires_trigger(bcm_clk)) {
    475			pr_warn("%s: ignoring trigger for %s (not needed)\n",
    476				__func__, name);
    477			trigger_clear_exists(trig);
    478		}
    479	} else if (trigger_exists(&peri->pre_trig)) {
    480		pr_err("%s: pre-trigger but no trigger for %s\n", __func__,
    481			name);
    482		return false;
    483	} else if (clk_requires_trigger(bcm_clk)) {
    484		pr_err("%s: required trigger missing for %s\n", __func__,
    485			name);
    486		return false;
    487	}
    488
    489	return kona_dividers_valid(bcm_clk);
    490}
    491
    492static bool kona_clk_valid(struct kona_clk *bcm_clk)
    493{
    494	switch (bcm_clk->type) {
    495	case bcm_clk_peri:
    496		if (!peri_clk_data_valid(bcm_clk))
    497			return false;
    498		break;
    499	default:
    500		pr_err("%s: unrecognized clock type (%d)\n", __func__,
    501			(int)bcm_clk->type);
    502		return false;
    503	}
    504	return true;
    505}
    506
    507/*
    508 * Scan an array of parent clock names to determine whether there
    509 * are any entries containing BAD_CLK_NAME.  Such entries are
    510 * placeholders for non-supported clocks.  Keep track of the
    511 * position of each clock name in the original array.
    512 *
    513 * Allocates an array of pointers to hold the names of all
    514 * non-null entries in the original array, and returns a pointer to
    515 * that array in *names.  This will be used for registering the
    516 * clock with the common clock code.  On successful return,
    517 * *count indicates how many entries are in that names array.
    518 *
    519 * If there is more than one entry in the resulting names array,
    520 * another array is allocated to record the parent selector value
    521 * for each (defined) parent clock.  This is the value that
    522 * represents this parent clock in the clock's source selector
    523 * register.  The position of the clock in the original parent array
    524 * defines that selector value.  The number of entries in this array
    525 * is the same as the number of entries in the parent names array.
    526 *
    527 * The array of selector values is returned.  If the clock has no
    528 * parents, no selector is required and a null pointer is returned.
    529 *
    530 * Returns a null pointer if the clock names array supplied was
    531 * null.  (This is not an error.)
    532 *
    533 * Returns a pointer-coded error if an error occurs.
    534 */
    535static u32 *parent_process(const char *clocks[],
    536			u32 *count, const char ***names)
    537{
    538	static const char **parent_names;
    539	static u32 *parent_sel;
    540	const char **clock;
    541	u32 parent_count;
    542	u32 bad_count = 0;
    543	u32 orig_count;
    544	u32 i;
    545	u32 j;
    546
    547	*count = 0;	/* In case of early return */
    548	*names = NULL;
    549	if (!clocks)
    550		return NULL;
    551
    552	/*
    553	 * Count the number of names in the null-terminated array,
    554	 * and find out how many of those are actually clock names.
    555	 */
    556	for (clock = clocks; *clock; clock++)
    557		if (*clock == BAD_CLK_NAME)
    558			bad_count++;
    559	orig_count = (u32)(clock - clocks);
    560	parent_count = orig_count - bad_count;
    561
    562	/* If all clocks are unsupported, we treat it as no clock */
    563	if (!parent_count)
    564		return NULL;
    565
    566	/* Avoid exceeding our parent clock limit */
    567	if (parent_count > PARENT_COUNT_MAX) {
    568		pr_err("%s: too many parents (%u > %u)\n", __func__,
    569			parent_count, PARENT_COUNT_MAX);
    570		return ERR_PTR(-EINVAL);
    571	}
    572
    573	/*
    574	 * There is one parent name for each defined parent clock.
    575	 * We also maintain an array containing the selector value
    576	 * for each defined clock.  If there's only one clock, the
    577	 * selector is not required, but we allocate space for the
    578	 * array anyway to keep things simple.
    579	 */
    580	parent_names = kmalloc_array(parent_count, sizeof(*parent_names),
    581			       GFP_KERNEL);
    582	if (!parent_names)
    583		return ERR_PTR(-ENOMEM);
    584
    585	/* There is at least one parent, so allocate a selector array */
    586	parent_sel = kmalloc_array(parent_count, sizeof(*parent_sel),
    587				   GFP_KERNEL);
    588	if (!parent_sel) {
    589		kfree(parent_names);
    590
    591		return ERR_PTR(-ENOMEM);
    592	}
    593
    594	/* Now fill in the parent names and selector arrays */
    595	for (i = 0, j = 0; i < orig_count; i++) {
    596		if (clocks[i] != BAD_CLK_NAME) {
    597			parent_names[j] = clocks[i];
    598			parent_sel[j] = i;
    599			j++;
    600		}
    601	}
    602	*names = parent_names;
    603	*count = parent_count;
    604
    605	return parent_sel;
    606}
    607
    608static int
    609clk_sel_setup(const char **clocks, struct bcm_clk_sel *sel,
    610		struct clk_init_data *init_data)
    611{
    612	const char **parent_names = NULL;
    613	u32 parent_count = 0;
    614	u32 *parent_sel;
    615
    616	/*
    617	 * If a peripheral clock has multiple parents, the value
    618	 * used by the hardware to select that parent is represented
    619	 * by the parent clock's position in the "clocks" list.  Some
    620	 * values don't have defined or supported clocks; these will
    621	 * have BAD_CLK_NAME entries in the parents[] array.  The
    622	 * list is terminated by a NULL entry.
    623	 *
    624	 * We need to supply (only) the names of defined parent
    625	 * clocks when registering a clock though, so we use an
    626	 * array of parent selector values to map between the
    627	 * indexes the common clock code uses and the selector
    628	 * values we need.
    629	 */
    630	parent_sel = parent_process(clocks, &parent_count, &parent_names);
    631	if (IS_ERR(parent_sel)) {
    632		int ret = PTR_ERR(parent_sel);
    633
    634		pr_err("%s: error processing parent clocks for %s (%d)\n",
    635			__func__, init_data->name, ret);
    636
    637		return ret;
    638	}
    639
    640	init_data->parent_names = parent_names;
    641	init_data->num_parents = parent_count;
    642
    643	sel->parent_count = parent_count;
    644	sel->parent_sel = parent_sel;
    645
    646	return 0;
    647}
    648
    649static void clk_sel_teardown(struct bcm_clk_sel *sel,
    650		struct clk_init_data *init_data)
    651{
    652	kfree(sel->parent_sel);
    653	sel->parent_sel = NULL;
    654	sel->parent_count = 0;
    655
    656	init_data->num_parents = 0;
    657	kfree(init_data->parent_names);
    658	init_data->parent_names = NULL;
    659}
    660
    661static void peri_clk_teardown(struct peri_clk_data *data,
    662				struct clk_init_data *init_data)
    663{
    664	clk_sel_teardown(&data->sel, init_data);
    665}
    666
    667/*
    668 * Caller is responsible for freeing the parent_names[] and
    669 * parent_sel[] arrays in the peripheral clock's "data" structure
    670 * that can be assigned if the clock has one or more parent clocks
    671 * associated with it.
    672 */
    673static int
    674peri_clk_setup(struct peri_clk_data *data, struct clk_init_data *init_data)
    675{
    676	init_data->flags = CLK_IGNORE_UNUSED;
    677
    678	return clk_sel_setup(data->clocks, &data->sel, init_data);
    679}
    680
    681static void bcm_clk_teardown(struct kona_clk *bcm_clk)
    682{
    683	switch (bcm_clk->type) {
    684	case bcm_clk_peri:
    685		peri_clk_teardown(bcm_clk->u.data, &bcm_clk->init_data);
    686		break;
    687	default:
    688		break;
    689	}
    690	bcm_clk->u.data = NULL;
    691	bcm_clk->type = bcm_clk_none;
    692}
    693
    694static void kona_clk_teardown(struct clk_hw *hw)
    695{
    696	struct kona_clk *bcm_clk;
    697
    698	if (!hw)
    699		return;
    700
    701	clk_hw_unregister(hw);
    702
    703	bcm_clk = to_kona_clk(hw);
    704	bcm_clk_teardown(bcm_clk);
    705}
    706
    707static int kona_clk_setup(struct kona_clk *bcm_clk)
    708{
    709	int ret;
    710	struct clk_init_data *init_data = &bcm_clk->init_data;
    711
    712	switch (bcm_clk->type) {
    713	case bcm_clk_peri:
    714		ret = peri_clk_setup(bcm_clk->u.data, init_data);
    715		if (ret)
    716			return ret;
    717		break;
    718	default:
    719		pr_err("%s: clock type %d invalid for %s\n", __func__,
    720			(int)bcm_clk->type, init_data->name);
    721		return -EINVAL;
    722	}
    723
    724	/* Make sure everything makes sense before we set it up */
    725	if (!kona_clk_valid(bcm_clk)) {
    726		pr_err("%s: clock data invalid for %s\n", __func__,
    727			init_data->name);
    728		ret = -EINVAL;
    729		goto out_teardown;
    730	}
    731
    732	bcm_clk->hw.init = init_data;
    733	ret = clk_hw_register(NULL, &bcm_clk->hw);
    734	if (ret) {
    735		pr_err("%s: error registering clock %s (%d)\n", __func__,
    736			init_data->name, ret);
    737		goto out_teardown;
    738	}
    739
    740	return 0;
    741out_teardown:
    742	bcm_clk_teardown(bcm_clk);
    743
    744	return ret;
    745}
    746
    747static void ccu_clks_teardown(struct ccu_data *ccu)
    748{
    749	u32 i;
    750
    751	for (i = 0; i < ccu->clk_num; i++)
    752		kona_clk_teardown(&ccu->kona_clks[i].hw);
    753}
    754
    755static void kona_ccu_teardown(struct ccu_data *ccu)
    756{
    757	if (!ccu->base)
    758		return;
    759
    760	of_clk_del_provider(ccu->node);	/* safe if never added */
    761	ccu_clks_teardown(ccu);
    762	of_node_put(ccu->node);
    763	ccu->node = NULL;
    764	iounmap(ccu->base);
    765	ccu->base = NULL;
    766}
    767
    768static bool ccu_data_valid(struct ccu_data *ccu)
    769{
    770	struct ccu_policy *ccu_policy;
    771
    772	if (!ccu_data_offsets_valid(ccu))
    773		return false;
    774
    775	ccu_policy = &ccu->policy;
    776	if (ccu_policy_exists(ccu_policy))
    777		if (!ccu_policy_valid(ccu_policy, ccu->name))
    778			return false;
    779
    780	return true;
    781}
    782
    783static struct clk_hw *
    784of_clk_kona_onecell_get(struct of_phandle_args *clkspec, void *data)
    785{
    786	struct ccu_data *ccu = data;
    787	unsigned int idx = clkspec->args[0];
    788
    789	if (idx >= ccu->clk_num) {
    790		pr_err("%s: invalid index %u\n", __func__, idx);
    791		return ERR_PTR(-EINVAL);
    792	}
    793
    794	return &ccu->kona_clks[idx].hw;
    795}
    796
    797/*
    798 * Set up a CCU.  Call the provided ccu_clks_setup callback to
    799 * initialize the array of clocks provided by the CCU.
    800 */
    801void __init kona_dt_ccu_setup(struct ccu_data *ccu,
    802			struct device_node *node)
    803{
    804	struct resource res = { 0 };
    805	resource_size_t range;
    806	unsigned int i;
    807	int ret;
    808
    809	ret = of_address_to_resource(node, 0, &res);
    810	if (ret) {
    811		pr_err("%s: no valid CCU registers found for %pOFn\n", __func__,
    812			node);
    813		goto out_err;
    814	}
    815
    816	range = resource_size(&res);
    817	if (range > (resource_size_t)U32_MAX) {
    818		pr_err("%s: address range too large for %pOFn\n", __func__,
    819			node);
    820		goto out_err;
    821	}
    822
    823	ccu->range = (u32)range;
    824
    825	if (!ccu_data_valid(ccu)) {
    826		pr_err("%s: ccu data not valid for %pOFn\n", __func__, node);
    827		goto out_err;
    828	}
    829
    830	ccu->base = ioremap(res.start, ccu->range);
    831	if (!ccu->base) {
    832		pr_err("%s: unable to map CCU registers for %pOFn\n", __func__,
    833			node);
    834		goto out_err;
    835	}
    836	ccu->node = of_node_get(node);
    837
    838	/*
    839	 * Set up each defined kona clock and save the result in
    840	 * the clock framework clock array (in ccu->data).  Then
    841	 * register as a provider for these clocks.
    842	 */
    843	for (i = 0; i < ccu->clk_num; i++) {
    844		if (!ccu->kona_clks[i].ccu)
    845			continue;
    846		kona_clk_setup(&ccu->kona_clks[i]);
    847	}
    848
    849	ret = of_clk_add_hw_provider(node, of_clk_kona_onecell_get, ccu);
    850	if (ret) {
    851		pr_err("%s: error adding ccu %pOFn as provider (%d)\n", __func__,
    852				node, ret);
    853		goto out_err;
    854	}
    855
    856	if (!kona_ccu_init(ccu))
    857		pr_err("Broadcom %pOFn initialization had errors\n", node);
    858
    859	return;
    860out_err:
    861	kona_ccu_teardown(ccu);
    862	pr_err("Broadcom %pOFn setup aborted\n", node);
    863}