cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

clk-kona.c (33992B)


      1/*
      2 * Copyright (C) 2013 Broadcom Corporation
      3 * Copyright 2013 Linaro Limited
      4 *
      5 * This program is free software; you can redistribute it and/or
      6 * modify it under the terms of the GNU General Public License as
      7 * published by the Free Software Foundation version 2.
      8 *
      9 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
     10 * kind, whether express or implied; without even the implied warranty
     11 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     12 * GNU General Public License for more details.
     13 */
     14
     15#include "clk-kona.h"
     16
     17#include <linux/delay.h>
     18#include <linux/io.h>
     19#include <linux/kernel.h>
     20#include <linux/clk-provider.h>
     21
     22/*
     23 * "Policies" affect the frequencies of bus clocks provided by a
     24 * CCU.  (I believe these polices are named "Deep Sleep", "Economy",
     25 * "Normal", and "Turbo".)  A lower policy number has lower power
     26 * consumption, and policy 2 is the default.
     27 */
     28#define CCU_POLICY_COUNT	4
     29
     30#define CCU_ACCESS_PASSWORD      0xA5A500
     31#define CLK_GATE_DELAY_LOOP      2000
     32
     33/* Bitfield operations */
     34
     35/* Produces a mask of set bits covering a range of a 32-bit value */
     36static inline u32 bitfield_mask(u32 shift, u32 width)
     37{
     38	return ((1 << width) - 1) << shift;
     39}
     40
     41/* Extract the value of a bitfield found within a given register value */
     42static inline u32 bitfield_extract(u32 reg_val, u32 shift, u32 width)
     43{
     44	return (reg_val & bitfield_mask(shift, width)) >> shift;
     45}
     46
     47/* Replace the value of a bitfield found within a given register value */
     48static inline u32 bitfield_replace(u32 reg_val, u32 shift, u32 width, u32 val)
     49{
     50	u32 mask = bitfield_mask(shift, width);
     51
     52	return (reg_val & ~mask) | (val << shift);
     53}
     54
     55/* Divider and scaling helpers */
     56
     57/* Convert a divider into the scaled divisor value it represents. */
     58static inline u64 scaled_div_value(struct bcm_clk_div *div, u32 reg_div)
     59{
     60	return (u64)reg_div + ((u64)1 << div->u.s.frac_width);
     61}
     62
     63/*
     64 * Build a scaled divider value as close as possible to the
     65 * given whole part (div_value) and fractional part (expressed
     66 * in billionths).
     67 */
     68u64 scaled_div_build(struct bcm_clk_div *div, u32 div_value, u32 billionths)
     69{
     70	u64 combined;
     71
     72	BUG_ON(!div_value);
     73	BUG_ON(billionths >= BILLION);
     74
     75	combined = (u64)div_value * BILLION + billionths;
     76	combined <<= div->u.s.frac_width;
     77
     78	return DIV_ROUND_CLOSEST_ULL(combined, BILLION);
     79}
     80
     81/* The scaled minimum divisor representable by a divider */
     82static inline u64
     83scaled_div_min(struct bcm_clk_div *div)
     84{
     85	if (divider_is_fixed(div))
     86		return (u64)div->u.fixed;
     87
     88	return scaled_div_value(div, 0);
     89}
     90
     91/* The scaled maximum divisor representable by a divider */
     92u64 scaled_div_max(struct bcm_clk_div *div)
     93{
     94	u32 reg_div;
     95
     96	if (divider_is_fixed(div))
     97		return (u64)div->u.fixed;
     98
     99	reg_div = ((u32)1 << div->u.s.width) - 1;
    100
    101	return scaled_div_value(div, reg_div);
    102}
    103
    104/*
    105 * Convert a scaled divisor into its divider representation as
    106 * stored in a divider register field.
    107 */
    108static inline u32
    109divider(struct bcm_clk_div *div, u64 scaled_div)
    110{
    111	BUG_ON(scaled_div < scaled_div_min(div));
    112	BUG_ON(scaled_div > scaled_div_max(div));
    113
    114	return (u32)(scaled_div - ((u64)1 << div->u.s.frac_width));
    115}
    116
    117/* Return a rate scaled for use when dividing by a scaled divisor. */
    118static inline u64
    119scale_rate(struct bcm_clk_div *div, u32 rate)
    120{
    121	if (divider_is_fixed(div))
    122		return (u64)rate;
    123
    124	return (u64)rate << div->u.s.frac_width;
    125}
    126
    127/* CCU access */
    128
    129/* Read a 32-bit register value from a CCU's address space. */
    130static inline u32 __ccu_read(struct ccu_data *ccu, u32 reg_offset)
    131{
    132	return readl(ccu->base + reg_offset);
    133}
    134
    135/* Write a 32-bit register value into a CCU's address space. */
    136static inline void
    137__ccu_write(struct ccu_data *ccu, u32 reg_offset, u32 reg_val)
    138{
    139	writel(reg_val, ccu->base + reg_offset);
    140}
    141
    142static inline unsigned long ccu_lock(struct ccu_data *ccu)
    143{
    144	unsigned long flags;
    145
    146	spin_lock_irqsave(&ccu->lock, flags);
    147
    148	return flags;
    149}
    150static inline void ccu_unlock(struct ccu_data *ccu, unsigned long flags)
    151{
    152	spin_unlock_irqrestore(&ccu->lock, flags);
    153}
    154
    155/*
    156 * Enable/disable write access to CCU protected registers.  The
    157 * WR_ACCESS register for all CCUs is at offset 0.
    158 */
    159static inline void __ccu_write_enable(struct ccu_data *ccu)
    160{
    161	if (ccu->write_enabled) {
    162		pr_err("%s: access already enabled for %s\n", __func__,
    163			ccu->name);
    164		return;
    165	}
    166	ccu->write_enabled = true;
    167	__ccu_write(ccu, 0, CCU_ACCESS_PASSWORD | 1);
    168}
    169
    170static inline void __ccu_write_disable(struct ccu_data *ccu)
    171{
    172	if (!ccu->write_enabled) {
    173		pr_err("%s: access wasn't enabled for %s\n", __func__,
    174			ccu->name);
    175		return;
    176	}
    177
    178	__ccu_write(ccu, 0, CCU_ACCESS_PASSWORD);
    179	ccu->write_enabled = false;
    180}
    181
    182/*
    183 * Poll a register in a CCU's address space, returning when the
    184 * specified bit in that register's value is set (or clear).  Delay
    185 * a microsecond after each read of the register.  Returns true if
    186 * successful, or false if we gave up trying.
    187 *
    188 * Caller must ensure the CCU lock is held.
    189 */
    190static inline bool
    191__ccu_wait_bit(struct ccu_data *ccu, u32 reg_offset, u32 bit, bool want)
    192{
    193	unsigned int tries;
    194	u32 bit_mask = 1 << bit;
    195
    196	for (tries = 0; tries < CLK_GATE_DELAY_LOOP; tries++) {
    197		u32 val;
    198		bool bit_val;
    199
    200		val = __ccu_read(ccu, reg_offset);
    201		bit_val = (val & bit_mask) != 0;
    202		if (bit_val == want)
    203			return true;
    204		udelay(1);
    205	}
    206	pr_warn("%s: %s/0x%04x bit %u was never %s\n", __func__,
    207		ccu->name, reg_offset, bit, want ? "set" : "clear");
    208
    209	return false;
    210}
    211
    212/* Policy operations */
    213
    214static bool __ccu_policy_engine_start(struct ccu_data *ccu, bool sync)
    215{
    216	struct bcm_policy_ctl *control = &ccu->policy.control;
    217	u32 offset;
    218	u32 go_bit;
    219	u32 mask;
    220	bool ret;
    221
    222	/* If we don't need to control policy for this CCU, we're done. */
    223	if (!policy_ctl_exists(control))
    224		return true;
    225
    226	offset = control->offset;
    227	go_bit = control->go_bit;
    228
    229	/* Ensure we're not busy before we start */
    230	ret = __ccu_wait_bit(ccu, offset, go_bit, false);
    231	if (!ret) {
    232		pr_err("%s: ccu %s policy engine wouldn't go idle\n",
    233			__func__, ccu->name);
    234		return false;
    235	}
    236
    237	/*
    238	 * If it's a synchronous request, we'll wait for the voltage
    239	 * and frequency of the active load to stabilize before
    240	 * returning.  To do this we select the active load by
    241	 * setting the ATL bit.
    242	 *
    243	 * An asynchronous request instead ramps the voltage in the
    244	 * background, and when that process stabilizes, the target
    245	 * load is copied to the active load and the CCU frequency
    246	 * is switched.  We do this by selecting the target load
    247	 * (ATL bit clear) and setting the request auto-copy (AC bit
    248	 * set).
    249	 *
    250	 * Note, we do NOT read-modify-write this register.
    251	 */
    252	mask = (u32)1 << go_bit;
    253	if (sync)
    254		mask |= 1 << control->atl_bit;
    255	else
    256		mask |= 1 << control->ac_bit;
    257	__ccu_write(ccu, offset, mask);
    258
    259	/* Wait for indication that operation is complete. */
    260	ret = __ccu_wait_bit(ccu, offset, go_bit, false);
    261	if (!ret)
    262		pr_err("%s: ccu %s policy engine never started\n",
    263			__func__, ccu->name);
    264
    265	return ret;
    266}
    267
    268static bool __ccu_policy_engine_stop(struct ccu_data *ccu)
    269{
    270	struct bcm_lvm_en *enable = &ccu->policy.enable;
    271	u32 offset;
    272	u32 enable_bit;
    273	bool ret;
    274
    275	/* If we don't need to control policy for this CCU, we're done. */
    276	if (!policy_lvm_en_exists(enable))
    277		return true;
    278
    279	/* Ensure we're not busy before we start */
    280	offset = enable->offset;
    281	enable_bit = enable->bit;
    282	ret = __ccu_wait_bit(ccu, offset, enable_bit, false);
    283	if (!ret) {
    284		pr_err("%s: ccu %s policy engine already stopped\n",
    285			__func__, ccu->name);
    286		return false;
    287	}
    288
    289	/* Now set the bit to stop the engine (NO read-modify-write) */
    290	__ccu_write(ccu, offset, (u32)1 << enable_bit);
    291
    292	/* Wait for indication that it has stopped. */
    293	ret = __ccu_wait_bit(ccu, offset, enable_bit, false);
    294	if (!ret)
    295		pr_err("%s: ccu %s policy engine never stopped\n",
    296			__func__, ccu->name);
    297
    298	return ret;
    299}
    300
    301/*
    302 * A CCU has four operating conditions ("policies"), and some clocks
    303 * can be disabled or enabled based on which policy is currently in
    304 * effect.  Such clocks have a bit in a "policy mask" register for
    305 * each policy indicating whether the clock is enabled for that
    306 * policy or not.  The bit position for a clock is the same for all
    307 * four registers, and the 32-bit registers are at consecutive
    308 * addresses.
    309 */
    310static bool policy_init(struct ccu_data *ccu, struct bcm_clk_policy *policy)
    311{
    312	u32 offset;
    313	u32 mask;
    314	int i;
    315	bool ret;
    316
    317	if (!policy_exists(policy))
    318		return true;
    319
    320	/*
    321	 * We need to stop the CCU policy engine to allow update
    322	 * of our policy bits.
    323	 */
    324	if (!__ccu_policy_engine_stop(ccu)) {
    325		pr_err("%s: unable to stop CCU %s policy engine\n",
    326			__func__, ccu->name);
    327		return false;
    328	}
    329
    330	/*
    331	 * For now, if a clock defines its policy bit we just mark
    332	 * it "enabled" for all four policies.
    333	 */
    334	offset = policy->offset;
    335	mask = (u32)1 << policy->bit;
    336	for (i = 0; i < CCU_POLICY_COUNT; i++) {
    337		u32 reg_val;
    338
    339		reg_val = __ccu_read(ccu, offset);
    340		reg_val |= mask;
    341		__ccu_write(ccu, offset, reg_val);
    342		offset += sizeof(u32);
    343	}
    344
    345	/* We're done updating; fire up the policy engine again. */
    346	ret = __ccu_policy_engine_start(ccu, true);
    347	if (!ret)
    348		pr_err("%s: unable to restart CCU %s policy engine\n",
    349			__func__, ccu->name);
    350
    351	return ret;
    352}
    353
    354/* Gate operations */
    355
    356/* Determine whether a clock is gated.  CCU lock must be held.  */
    357static bool
    358__is_clk_gate_enabled(struct ccu_data *ccu, struct bcm_clk_gate *gate)
    359{
    360	u32 bit_mask;
    361	u32 reg_val;
    362
    363	/* If there is no gate we can assume it's enabled. */
    364	if (!gate_exists(gate))
    365		return true;
    366
    367	bit_mask = 1 << gate->status_bit;
    368	reg_val = __ccu_read(ccu, gate->offset);
    369
    370	return (reg_val & bit_mask) != 0;
    371}
    372
    373/* Determine whether a clock is gated. */
    374static bool
    375is_clk_gate_enabled(struct ccu_data *ccu, struct bcm_clk_gate *gate)
    376{
    377	long flags;
    378	bool ret;
    379
    380	/* Avoid taking the lock if we can */
    381	if (!gate_exists(gate))
    382		return true;
    383
    384	flags = ccu_lock(ccu);
    385	ret = __is_clk_gate_enabled(ccu, gate);
    386	ccu_unlock(ccu, flags);
    387
    388	return ret;
    389}
    390
    391/*
    392 * Commit our desired gate state to the hardware.
    393 * Returns true if successful, false otherwise.
    394 */
    395static bool
    396__gate_commit(struct ccu_data *ccu, struct bcm_clk_gate *gate)
    397{
    398	u32 reg_val;
    399	u32 mask;
    400	bool enabled = false;
    401
    402	BUG_ON(!gate_exists(gate));
    403	if (!gate_is_sw_controllable(gate))
    404		return true;		/* Nothing we can change */
    405
    406	reg_val = __ccu_read(ccu, gate->offset);
    407
    408	/* For a hardware/software gate, set which is in control */
    409	if (gate_is_hw_controllable(gate)) {
    410		mask = (u32)1 << gate->hw_sw_sel_bit;
    411		if (gate_is_sw_managed(gate))
    412			reg_val |= mask;
    413		else
    414			reg_val &= ~mask;
    415	}
    416
    417	/*
    418	 * If software is in control, enable or disable the gate.
    419	 * If hardware is, clear the enabled bit for good measure.
    420	 * If a software controlled gate can't be disabled, we're
    421	 * required to write a 0 into the enable bit (but the gate
    422	 * will be enabled).
    423	 */
    424	mask = (u32)1 << gate->en_bit;
    425	if (gate_is_sw_managed(gate) && (enabled = gate_is_enabled(gate)) &&
    426			!gate_is_no_disable(gate))
    427		reg_val |= mask;
    428	else
    429		reg_val &= ~mask;
    430
    431	__ccu_write(ccu, gate->offset, reg_val);
    432
    433	/* For a hardware controlled gate, we're done */
    434	if (!gate_is_sw_managed(gate))
    435		return true;
    436
    437	/* Otherwise wait for the gate to be in desired state */
    438	return __ccu_wait_bit(ccu, gate->offset, gate->status_bit, enabled);
    439}
    440
    441/*
    442 * Initialize a gate.  Our desired state (hardware/software select,
    443 * and if software, its enable state) is committed to hardware
    444 * without the usual checks to see if it's already set up that way.
    445 * Returns true if successful, false otherwise.
    446 */
    447static bool gate_init(struct ccu_data *ccu, struct bcm_clk_gate *gate)
    448{
    449	if (!gate_exists(gate))
    450		return true;
    451	return __gate_commit(ccu, gate);
    452}
    453
    454/*
    455 * Set a gate to enabled or disabled state.  Does nothing if the
    456 * gate is not currently under software control, or if it is already
    457 * in the requested state.  Returns true if successful, false
    458 * otherwise.  CCU lock must be held.
    459 */
    460static bool
    461__clk_gate(struct ccu_data *ccu, struct bcm_clk_gate *gate, bool enable)
    462{
    463	bool ret;
    464
    465	if (!gate_exists(gate) || !gate_is_sw_managed(gate))
    466		return true;	/* Nothing to do */
    467
    468	if (!enable && gate_is_no_disable(gate)) {
    469		pr_warn("%s: invalid gate disable request (ignoring)\n",
    470			__func__);
    471		return true;
    472	}
    473
    474	if (enable == gate_is_enabled(gate))
    475		return true;	/* No change */
    476
    477	gate_flip_enabled(gate);
    478	ret = __gate_commit(ccu, gate);
    479	if (!ret)
    480		gate_flip_enabled(gate);	/* Revert the change */
    481
    482	return ret;
    483}
    484
    485/* Enable or disable a gate.  Returns 0 if successful, -EIO otherwise */
    486static int clk_gate(struct ccu_data *ccu, const char *name,
    487			struct bcm_clk_gate *gate, bool enable)
    488{
    489	unsigned long flags;
    490	bool success;
    491
    492	/*
    493	 * Avoid taking the lock if we can.  We quietly ignore
    494	 * requests to change state that don't make sense.
    495	 */
    496	if (!gate_exists(gate) || !gate_is_sw_managed(gate))
    497		return 0;
    498	if (!enable && gate_is_no_disable(gate))
    499		return 0;
    500
    501	flags = ccu_lock(ccu);
    502	__ccu_write_enable(ccu);
    503
    504	success = __clk_gate(ccu, gate, enable);
    505
    506	__ccu_write_disable(ccu);
    507	ccu_unlock(ccu, flags);
    508
    509	if (success)
    510		return 0;
    511
    512	pr_err("%s: failed to %s gate for %s\n", __func__,
    513		enable ? "enable" : "disable", name);
    514
    515	return -EIO;
    516}
    517
    518/* Hysteresis operations */
    519
    520/*
    521 * If a clock gate requires a turn-off delay it will have
    522 * "hysteresis" register bits defined.  The first, if set, enables
    523 * the delay; and if enabled, the second bit determines whether the
    524 * delay is "low" or "high" (1 means high).  For now, if it's
    525 * defined for a clock, we set it.
    526 */
    527static bool hyst_init(struct ccu_data *ccu, struct bcm_clk_hyst *hyst)
    528{
    529	u32 offset;
    530	u32 reg_val;
    531	u32 mask;
    532
    533	if (!hyst_exists(hyst))
    534		return true;
    535
    536	offset = hyst->offset;
    537	mask = (u32)1 << hyst->en_bit;
    538	mask |= (u32)1 << hyst->val_bit;
    539
    540	reg_val = __ccu_read(ccu, offset);
    541	reg_val |= mask;
    542	__ccu_write(ccu, offset, reg_val);
    543
    544	return true;
    545}
    546
    547/* Trigger operations */
    548
    549/*
    550 * Caller must ensure CCU lock is held and access is enabled.
    551 * Returns true if successful, false otherwise.
    552 */
    553static bool __clk_trigger(struct ccu_data *ccu, struct bcm_clk_trig *trig)
    554{
    555	/* Trigger the clock and wait for it to finish */
    556	__ccu_write(ccu, trig->offset, 1 << trig->bit);
    557
    558	return __ccu_wait_bit(ccu, trig->offset, trig->bit, false);
    559}
    560
    561/* Divider operations */
    562
    563/* Read a divider value and return the scaled divisor it represents. */
    564static u64 divider_read_scaled(struct ccu_data *ccu, struct bcm_clk_div *div)
    565{
    566	unsigned long flags;
    567	u32 reg_val;
    568	u32 reg_div;
    569
    570	if (divider_is_fixed(div))
    571		return (u64)div->u.fixed;
    572
    573	flags = ccu_lock(ccu);
    574	reg_val = __ccu_read(ccu, div->u.s.offset);
    575	ccu_unlock(ccu, flags);
    576
    577	/* Extract the full divider field from the register value */
    578	reg_div = bitfield_extract(reg_val, div->u.s.shift, div->u.s.width);
    579
    580	/* Return the scaled divisor value it represents */
    581	return scaled_div_value(div, reg_div);
    582}
    583
    584/*
    585 * Convert a divider's scaled divisor value into its recorded form
    586 * and commit it into the hardware divider register.
    587 *
    588 * Returns 0 on success.  Returns -EINVAL for invalid arguments.
    589 * Returns -ENXIO if gating failed, and -EIO if a trigger failed.
    590 */
    591static int __div_commit(struct ccu_data *ccu, struct bcm_clk_gate *gate,
    592			struct bcm_clk_div *div, struct bcm_clk_trig *trig)
    593{
    594	bool enabled;
    595	u32 reg_div;
    596	u32 reg_val;
    597	int ret = 0;
    598
    599	BUG_ON(divider_is_fixed(div));
    600
    601	/*
    602	 * If we're just initializing the divider, and no initial
    603	 * state was defined in the device tree, we just find out
    604	 * what its current value is rather than updating it.
    605	 */
    606	if (div->u.s.scaled_div == BAD_SCALED_DIV_VALUE) {
    607		reg_val = __ccu_read(ccu, div->u.s.offset);
    608		reg_div = bitfield_extract(reg_val, div->u.s.shift,
    609						div->u.s.width);
    610		div->u.s.scaled_div = scaled_div_value(div, reg_div);
    611
    612		return 0;
    613	}
    614
    615	/* Convert the scaled divisor to the value we need to record */
    616	reg_div = divider(div, div->u.s.scaled_div);
    617
    618	/* Clock needs to be enabled before changing the rate */
    619	enabled = __is_clk_gate_enabled(ccu, gate);
    620	if (!enabled && !__clk_gate(ccu, gate, true)) {
    621		ret = -ENXIO;
    622		goto out;
    623	}
    624
    625	/* Replace the divider value and record the result */
    626	reg_val = __ccu_read(ccu, div->u.s.offset);
    627	reg_val = bitfield_replace(reg_val, div->u.s.shift, div->u.s.width,
    628					reg_div);
    629	__ccu_write(ccu, div->u.s.offset, reg_val);
    630
    631	/* If the trigger fails we still want to disable the gate */
    632	if (!__clk_trigger(ccu, trig))
    633		ret = -EIO;
    634
    635	/* Disable the clock again if it was disabled to begin with */
    636	if (!enabled && !__clk_gate(ccu, gate, false))
    637		ret = ret ? ret : -ENXIO;	/* return first error */
    638out:
    639	return ret;
    640}
    641
    642/*
    643 * Initialize a divider by committing our desired state to hardware
    644 * without the usual checks to see if it's already set up that way.
    645 * Returns true if successful, false otherwise.
    646 */
    647static bool div_init(struct ccu_data *ccu, struct bcm_clk_gate *gate,
    648			struct bcm_clk_div *div, struct bcm_clk_trig *trig)
    649{
    650	if (!divider_exists(div) || divider_is_fixed(div))
    651		return true;
    652	return !__div_commit(ccu, gate, div, trig);
    653}
    654
    655static int divider_write(struct ccu_data *ccu, struct bcm_clk_gate *gate,
    656			struct bcm_clk_div *div, struct bcm_clk_trig *trig,
    657			u64 scaled_div)
    658{
    659	unsigned long flags;
    660	u64 previous;
    661	int ret;
    662
    663	BUG_ON(divider_is_fixed(div));
    664
    665	previous = div->u.s.scaled_div;
    666	if (previous == scaled_div)
    667		return 0;	/* No change */
    668
    669	div->u.s.scaled_div = scaled_div;
    670
    671	flags = ccu_lock(ccu);
    672	__ccu_write_enable(ccu);
    673
    674	ret = __div_commit(ccu, gate, div, trig);
    675
    676	__ccu_write_disable(ccu);
    677	ccu_unlock(ccu, flags);
    678
    679	if (ret)
    680		div->u.s.scaled_div = previous;		/* Revert the change */
    681
    682	return ret;
    683
    684}
    685
    686/* Common clock rate helpers */
    687
    688/*
    689 * Implement the common clock framework recalc_rate method, taking
    690 * into account a divider and an optional pre-divider.  The
    691 * pre-divider register pointer may be NULL.
    692 */
    693static unsigned long clk_recalc_rate(struct ccu_data *ccu,
    694			struct bcm_clk_div *div, struct bcm_clk_div *pre_div,
    695			unsigned long parent_rate)
    696{
    697	u64 scaled_parent_rate;
    698	u64 scaled_div;
    699	u64 result;
    700
    701	if (!divider_exists(div))
    702		return parent_rate;
    703
    704	if (parent_rate > (unsigned long)LONG_MAX)
    705		return 0;	/* actually this would be a caller bug */
    706
    707	/*
    708	 * If there is a pre-divider, divide the scaled parent rate
    709	 * by the pre-divider value first.  In this case--to improve
    710	 * accuracy--scale the parent rate by *both* the pre-divider
    711	 * value and the divider before actually computing the
    712	 * result of the pre-divider.
    713	 *
    714	 * If there's only one divider, just scale the parent rate.
    715	 */
    716	if (pre_div && divider_exists(pre_div)) {
    717		u64 scaled_rate;
    718
    719		scaled_rate = scale_rate(pre_div, parent_rate);
    720		scaled_rate = scale_rate(div, scaled_rate);
    721		scaled_div = divider_read_scaled(ccu, pre_div);
    722		scaled_parent_rate = DIV_ROUND_CLOSEST_ULL(scaled_rate,
    723							scaled_div);
    724	} else  {
    725		scaled_parent_rate = scale_rate(div, parent_rate);
    726	}
    727
    728	/*
    729	 * Get the scaled divisor value, and divide the scaled
    730	 * parent rate by that to determine this clock's resulting
    731	 * rate.
    732	 */
    733	scaled_div = divider_read_scaled(ccu, div);
    734	result = DIV_ROUND_CLOSEST_ULL(scaled_parent_rate, scaled_div);
    735
    736	return (unsigned long)result;
    737}
    738
    739/*
    740 * Compute the output rate produced when a given parent rate is fed
    741 * into two dividers.  The pre-divider can be NULL, and even if it's
    742 * non-null it may be nonexistent.  It's also OK for the divider to
    743 * be nonexistent, and in that case the pre-divider is also ignored.
    744 *
    745 * If scaled_div is non-null, it is used to return the scaled divisor
    746 * value used by the (downstream) divider to produce that rate.
    747 */
    748static long round_rate(struct ccu_data *ccu, struct bcm_clk_div *div,
    749				struct bcm_clk_div *pre_div,
    750				unsigned long rate, unsigned long parent_rate,
    751				u64 *scaled_div)
    752{
    753	u64 scaled_parent_rate;
    754	u64 min_scaled_div;
    755	u64 max_scaled_div;
    756	u64 best_scaled_div;
    757	u64 result;
    758
    759	BUG_ON(!divider_exists(div));
    760	BUG_ON(!rate);
    761	BUG_ON(parent_rate > (u64)LONG_MAX);
    762
    763	/*
    764	 * If there is a pre-divider, divide the scaled parent rate
    765	 * by the pre-divider value first.  In this case--to improve
    766	 * accuracy--scale the parent rate by *both* the pre-divider
    767	 * value and the divider before actually computing the
    768	 * result of the pre-divider.
    769	 *
    770	 * If there's only one divider, just scale the parent rate.
    771	 *
    772	 * For simplicity we treat the pre-divider as fixed (for now).
    773	 */
    774	if (divider_exists(pre_div)) {
    775		u64 scaled_rate;
    776		u64 scaled_pre_div;
    777
    778		scaled_rate = scale_rate(pre_div, parent_rate);
    779		scaled_rate = scale_rate(div, scaled_rate);
    780		scaled_pre_div = divider_read_scaled(ccu, pre_div);
    781		scaled_parent_rate = DIV_ROUND_CLOSEST_ULL(scaled_rate,
    782							scaled_pre_div);
    783	} else {
    784		scaled_parent_rate = scale_rate(div, parent_rate);
    785	}
    786
    787	/*
    788	 * Compute the best possible divider and ensure it is in
    789	 * range.  A fixed divider can't be changed, so just report
    790	 * the best we can do.
    791	 */
    792	if (!divider_is_fixed(div)) {
    793		best_scaled_div = DIV_ROUND_CLOSEST_ULL(scaled_parent_rate,
    794							rate);
    795		min_scaled_div = scaled_div_min(div);
    796		max_scaled_div = scaled_div_max(div);
    797		if (best_scaled_div > max_scaled_div)
    798			best_scaled_div = max_scaled_div;
    799		else if (best_scaled_div < min_scaled_div)
    800			best_scaled_div = min_scaled_div;
    801	} else {
    802		best_scaled_div = divider_read_scaled(ccu, div);
    803	}
    804
    805	/* OK, figure out the resulting rate */
    806	result = DIV_ROUND_CLOSEST_ULL(scaled_parent_rate, best_scaled_div);
    807
    808	if (scaled_div)
    809		*scaled_div = best_scaled_div;
    810
    811	return (long)result;
    812}
    813
    814/* Common clock parent helpers */
    815
    816/*
    817 * For a given parent selector (register field) value, find the
    818 * index into a selector's parent_sel array that contains it.
    819 * Returns the index, or BAD_CLK_INDEX if it's not found.
    820 */
    821static u8 parent_index(struct bcm_clk_sel *sel, u8 parent_sel)
    822{
    823	u8 i;
    824
    825	BUG_ON(sel->parent_count > (u32)U8_MAX);
    826	for (i = 0; i < sel->parent_count; i++)
    827		if (sel->parent_sel[i] == parent_sel)
    828			return i;
    829	return BAD_CLK_INDEX;
    830}
    831
    832/*
    833 * Fetch the current value of the selector, and translate that into
    834 * its corresponding index in the parent array we registered with
    835 * the clock framework.
    836 *
    837 * Returns parent array index that corresponds with the value found,
    838 * or BAD_CLK_INDEX if the found value is out of range.
    839 */
    840static u8 selector_read_index(struct ccu_data *ccu, struct bcm_clk_sel *sel)
    841{
    842	unsigned long flags;
    843	u32 reg_val;
    844	u32 parent_sel;
    845	u8 index;
    846
    847	/* If there's no selector, there's only one parent */
    848	if (!selector_exists(sel))
    849		return 0;
    850
    851	/* Get the value in the selector register */
    852	flags = ccu_lock(ccu);
    853	reg_val = __ccu_read(ccu, sel->offset);
    854	ccu_unlock(ccu, flags);
    855
    856	parent_sel = bitfield_extract(reg_val, sel->shift, sel->width);
    857
    858	/* Look up that selector's parent array index and return it */
    859	index = parent_index(sel, parent_sel);
    860	if (index == BAD_CLK_INDEX)
    861		pr_err("%s: out-of-range parent selector %u (%s 0x%04x)\n",
    862			__func__, parent_sel, ccu->name, sel->offset);
    863
    864	return index;
    865}
    866
    867/*
    868 * Commit our desired selector value to the hardware.
    869 *
    870 * Returns 0 on success.  Returns -EINVAL for invalid arguments.
    871 * Returns -ENXIO if gating failed, and -EIO if a trigger failed.
    872 */
    873static int
    874__sel_commit(struct ccu_data *ccu, struct bcm_clk_gate *gate,
    875			struct bcm_clk_sel *sel, struct bcm_clk_trig *trig)
    876{
    877	u32 parent_sel;
    878	u32 reg_val;
    879	bool enabled;
    880	int ret = 0;
    881
    882	BUG_ON(!selector_exists(sel));
    883
    884	/*
    885	 * If we're just initializing the selector, and no initial
    886	 * state was defined in the device tree, we just find out
    887	 * what its current value is rather than updating it.
    888	 */
    889	if (sel->clk_index == BAD_CLK_INDEX) {
    890		u8 index;
    891
    892		reg_val = __ccu_read(ccu, sel->offset);
    893		parent_sel = bitfield_extract(reg_val, sel->shift, sel->width);
    894		index = parent_index(sel, parent_sel);
    895		if (index == BAD_CLK_INDEX)
    896			return -EINVAL;
    897		sel->clk_index = index;
    898
    899		return 0;
    900	}
    901
    902	BUG_ON((u32)sel->clk_index >= sel->parent_count);
    903	parent_sel = sel->parent_sel[sel->clk_index];
    904
    905	/* Clock needs to be enabled before changing the parent */
    906	enabled = __is_clk_gate_enabled(ccu, gate);
    907	if (!enabled && !__clk_gate(ccu, gate, true))
    908		return -ENXIO;
    909
    910	/* Replace the selector value and record the result */
    911	reg_val = __ccu_read(ccu, sel->offset);
    912	reg_val = bitfield_replace(reg_val, sel->shift, sel->width, parent_sel);
    913	__ccu_write(ccu, sel->offset, reg_val);
    914
    915	/* If the trigger fails we still want to disable the gate */
    916	if (!__clk_trigger(ccu, trig))
    917		ret = -EIO;
    918
    919	/* Disable the clock again if it was disabled to begin with */
    920	if (!enabled && !__clk_gate(ccu, gate, false))
    921		ret = ret ? ret : -ENXIO;	/* return first error */
    922
    923	return ret;
    924}
    925
    926/*
    927 * Initialize a selector by committing our desired state to hardware
    928 * without the usual checks to see if it's already set up that way.
    929 * Returns true if successful, false otherwise.
    930 */
    931static bool sel_init(struct ccu_data *ccu, struct bcm_clk_gate *gate,
    932			struct bcm_clk_sel *sel, struct bcm_clk_trig *trig)
    933{
    934	if (!selector_exists(sel))
    935		return true;
    936	return !__sel_commit(ccu, gate, sel, trig);
    937}
    938
    939/*
    940 * Write a new value into a selector register to switch to a
    941 * different parent clock.  Returns 0 on success, or an error code
    942 * (from __sel_commit()) otherwise.
    943 */
    944static int selector_write(struct ccu_data *ccu, struct bcm_clk_gate *gate,
    945			struct bcm_clk_sel *sel, struct bcm_clk_trig *trig,
    946			u8 index)
    947{
    948	unsigned long flags;
    949	u8 previous;
    950	int ret;
    951
    952	previous = sel->clk_index;
    953	if (previous == index)
    954		return 0;	/* No change */
    955
    956	sel->clk_index = index;
    957
    958	flags = ccu_lock(ccu);
    959	__ccu_write_enable(ccu);
    960
    961	ret = __sel_commit(ccu, gate, sel, trig);
    962
    963	__ccu_write_disable(ccu);
    964	ccu_unlock(ccu, flags);
    965
    966	if (ret)
    967		sel->clk_index = previous;	/* Revert the change */
    968
    969	return ret;
    970}
    971
    972/* Clock operations */
    973
    974static int kona_peri_clk_enable(struct clk_hw *hw)
    975{
    976	struct kona_clk *bcm_clk = to_kona_clk(hw);
    977	struct bcm_clk_gate *gate = &bcm_clk->u.peri->gate;
    978
    979	return clk_gate(bcm_clk->ccu, bcm_clk->init_data.name, gate, true);
    980}
    981
    982static void kona_peri_clk_disable(struct clk_hw *hw)
    983{
    984	struct kona_clk *bcm_clk = to_kona_clk(hw);
    985	struct bcm_clk_gate *gate = &bcm_clk->u.peri->gate;
    986
    987	(void)clk_gate(bcm_clk->ccu, bcm_clk->init_data.name, gate, false);
    988}
    989
    990static int kona_peri_clk_is_enabled(struct clk_hw *hw)
    991{
    992	struct kona_clk *bcm_clk = to_kona_clk(hw);
    993	struct bcm_clk_gate *gate = &bcm_clk->u.peri->gate;
    994
    995	return is_clk_gate_enabled(bcm_clk->ccu, gate) ? 1 : 0;
    996}
    997
    998static unsigned long kona_peri_clk_recalc_rate(struct clk_hw *hw,
    999			unsigned long parent_rate)
   1000{
   1001	struct kona_clk *bcm_clk = to_kona_clk(hw);
   1002	struct peri_clk_data *data = bcm_clk->u.peri;
   1003
   1004	return clk_recalc_rate(bcm_clk->ccu, &data->div, &data->pre_div,
   1005				parent_rate);
   1006}
   1007
   1008static long kona_peri_clk_round_rate(struct clk_hw *hw, unsigned long rate,
   1009			unsigned long *parent_rate)
   1010{
   1011	struct kona_clk *bcm_clk = to_kona_clk(hw);
   1012	struct bcm_clk_div *div = &bcm_clk->u.peri->div;
   1013
   1014	if (!divider_exists(div))
   1015		return clk_hw_get_rate(hw);
   1016
   1017	/* Quietly avoid a zero rate */
   1018	return round_rate(bcm_clk->ccu, div, &bcm_clk->u.peri->pre_div,
   1019				rate ? rate : 1, *parent_rate, NULL);
   1020}
   1021
   1022static int kona_peri_clk_determine_rate(struct clk_hw *hw,
   1023					struct clk_rate_request *req)
   1024{
   1025	struct kona_clk *bcm_clk = to_kona_clk(hw);
   1026	struct clk_hw *current_parent;
   1027	unsigned long parent_rate;
   1028	unsigned long best_delta;
   1029	unsigned long best_rate;
   1030	u32 parent_count;
   1031	long rate;
   1032	u32 which;
   1033
   1034	/*
   1035	 * If there is no other parent to choose, use the current one.
   1036	 * Note:  We don't honor (or use) CLK_SET_RATE_NO_REPARENT.
   1037	 */
   1038	WARN_ON_ONCE(bcm_clk->init_data.flags & CLK_SET_RATE_NO_REPARENT);
   1039	parent_count = (u32)bcm_clk->init_data.num_parents;
   1040	if (parent_count < 2) {
   1041		rate = kona_peri_clk_round_rate(hw, req->rate,
   1042						&req->best_parent_rate);
   1043		if (rate < 0)
   1044			return rate;
   1045
   1046		req->rate = rate;
   1047		return 0;
   1048	}
   1049
   1050	/* Unless we can do better, stick with current parent */
   1051	current_parent = clk_hw_get_parent(hw);
   1052	parent_rate = clk_hw_get_rate(current_parent);
   1053	best_rate = kona_peri_clk_round_rate(hw, req->rate, &parent_rate);
   1054	best_delta = abs(best_rate - req->rate);
   1055
   1056	/* Check whether any other parent clock can produce a better result */
   1057	for (which = 0; which < parent_count; which++) {
   1058		struct clk_hw *parent = clk_hw_get_parent_by_index(hw, which);
   1059		unsigned long delta;
   1060		unsigned long other_rate;
   1061
   1062		BUG_ON(!parent);
   1063		if (parent == current_parent)
   1064			continue;
   1065
   1066		/* We don't support CLK_SET_RATE_PARENT */
   1067		parent_rate = clk_hw_get_rate(parent);
   1068		other_rate = kona_peri_clk_round_rate(hw, req->rate,
   1069						      &parent_rate);
   1070		delta = abs(other_rate - req->rate);
   1071		if (delta < best_delta) {
   1072			best_delta = delta;
   1073			best_rate = other_rate;
   1074			req->best_parent_hw = parent;
   1075			req->best_parent_rate = parent_rate;
   1076		}
   1077	}
   1078
   1079	req->rate = best_rate;
   1080	return 0;
   1081}
   1082
   1083static int kona_peri_clk_set_parent(struct clk_hw *hw, u8 index)
   1084{
   1085	struct kona_clk *bcm_clk = to_kona_clk(hw);
   1086	struct peri_clk_data *data = bcm_clk->u.peri;
   1087	struct bcm_clk_sel *sel = &data->sel;
   1088	struct bcm_clk_trig *trig;
   1089	int ret;
   1090
   1091	BUG_ON(index >= sel->parent_count);
   1092
   1093	/* If there's only one parent we don't require a selector */
   1094	if (!selector_exists(sel))
   1095		return 0;
   1096
   1097	/*
   1098	 * The regular trigger is used by default, but if there's a
   1099	 * pre-trigger we want to use that instead.
   1100	 */
   1101	trig = trigger_exists(&data->pre_trig) ? &data->pre_trig
   1102					       : &data->trig;
   1103
   1104	ret = selector_write(bcm_clk->ccu, &data->gate, sel, trig, index);
   1105	if (ret == -ENXIO) {
   1106		pr_err("%s: gating failure for %s\n", __func__,
   1107			bcm_clk->init_data.name);
   1108		ret = -EIO;	/* Don't proliferate weird errors */
   1109	} else if (ret == -EIO) {
   1110		pr_err("%s: %strigger failed for %s\n", __func__,
   1111			trig == &data->pre_trig ? "pre-" : "",
   1112			bcm_clk->init_data.name);
   1113	}
   1114
   1115	return ret;
   1116}
   1117
   1118static u8 kona_peri_clk_get_parent(struct clk_hw *hw)
   1119{
   1120	struct kona_clk *bcm_clk = to_kona_clk(hw);
   1121	struct peri_clk_data *data = bcm_clk->u.peri;
   1122	u8 index;
   1123
   1124	index = selector_read_index(bcm_clk->ccu, &data->sel);
   1125
   1126	/* Not all callers would handle an out-of-range value gracefully */
   1127	return index == BAD_CLK_INDEX ? 0 : index;
   1128}
   1129
   1130static int kona_peri_clk_set_rate(struct clk_hw *hw, unsigned long rate,
   1131			unsigned long parent_rate)
   1132{
   1133	struct kona_clk *bcm_clk = to_kona_clk(hw);
   1134	struct peri_clk_data *data = bcm_clk->u.peri;
   1135	struct bcm_clk_div *div = &data->div;
   1136	u64 scaled_div = 0;
   1137	int ret;
   1138
   1139	if (parent_rate > (unsigned long)LONG_MAX)
   1140		return -EINVAL;
   1141
   1142	if (rate == clk_hw_get_rate(hw))
   1143		return 0;
   1144
   1145	if (!divider_exists(div))
   1146		return rate == parent_rate ? 0 : -EINVAL;
   1147
   1148	/*
   1149	 * A fixed divider can't be changed.  (Nor can a fixed
   1150	 * pre-divider be, but for now we never actually try to
   1151	 * change that.)  Tolerate a request for a no-op change.
   1152	 */
   1153	if (divider_is_fixed(&data->div))
   1154		return rate == parent_rate ? 0 : -EINVAL;
   1155
   1156	/*
   1157	 * Get the scaled divisor value needed to achieve a clock
   1158	 * rate as close as possible to what was requested, given
   1159	 * the parent clock rate supplied.
   1160	 */
   1161	(void)round_rate(bcm_clk->ccu, div, &data->pre_div,
   1162				rate ? rate : 1, parent_rate, &scaled_div);
   1163
   1164	/*
   1165	 * We aren't updating any pre-divider at this point, so
   1166	 * we'll use the regular trigger.
   1167	 */
   1168	ret = divider_write(bcm_clk->ccu, &data->gate, &data->div,
   1169				&data->trig, scaled_div);
   1170	if (ret == -ENXIO) {
   1171		pr_err("%s: gating failure for %s\n", __func__,
   1172			bcm_clk->init_data.name);
   1173		ret = -EIO;	/* Don't proliferate weird errors */
   1174	} else if (ret == -EIO) {
   1175		pr_err("%s: trigger failed for %s\n", __func__,
   1176			bcm_clk->init_data.name);
   1177	}
   1178
   1179	return ret;
   1180}
   1181
   1182struct clk_ops kona_peri_clk_ops = {
   1183	.enable = kona_peri_clk_enable,
   1184	.disable = kona_peri_clk_disable,
   1185	.is_enabled = kona_peri_clk_is_enabled,
   1186	.recalc_rate = kona_peri_clk_recalc_rate,
   1187	.determine_rate = kona_peri_clk_determine_rate,
   1188	.set_parent = kona_peri_clk_set_parent,
   1189	.get_parent = kona_peri_clk_get_parent,
   1190	.set_rate = kona_peri_clk_set_rate,
   1191};
   1192
   1193/* Put a peripheral clock into its initial state */
   1194static bool __peri_clk_init(struct kona_clk *bcm_clk)
   1195{
   1196	struct ccu_data *ccu = bcm_clk->ccu;
   1197	struct peri_clk_data *peri = bcm_clk->u.peri;
   1198	const char *name = bcm_clk->init_data.name;
   1199	struct bcm_clk_trig *trig;
   1200
   1201	BUG_ON(bcm_clk->type != bcm_clk_peri);
   1202
   1203	if (!policy_init(ccu, &peri->policy)) {
   1204		pr_err("%s: error initializing policy for %s\n",
   1205			__func__, name);
   1206		return false;
   1207	}
   1208	if (!gate_init(ccu, &peri->gate)) {
   1209		pr_err("%s: error initializing gate for %s\n", __func__, name);
   1210		return false;
   1211	}
   1212	if (!hyst_init(ccu, &peri->hyst)) {
   1213		pr_err("%s: error initializing hyst for %s\n", __func__, name);
   1214		return false;
   1215	}
   1216	if (!div_init(ccu, &peri->gate, &peri->div, &peri->trig)) {
   1217		pr_err("%s: error initializing divider for %s\n", __func__,
   1218			name);
   1219		return false;
   1220	}
   1221
   1222	/*
   1223	 * For the pre-divider and selector, the pre-trigger is used
   1224	 * if it's present, otherwise we just use the regular trigger.
   1225	 */
   1226	trig = trigger_exists(&peri->pre_trig) ? &peri->pre_trig
   1227					       : &peri->trig;
   1228
   1229	if (!div_init(ccu, &peri->gate, &peri->pre_div, trig)) {
   1230		pr_err("%s: error initializing pre-divider for %s\n", __func__,
   1231			name);
   1232		return false;
   1233	}
   1234
   1235	if (!sel_init(ccu, &peri->gate, &peri->sel, trig)) {
   1236		pr_err("%s: error initializing selector for %s\n", __func__,
   1237			name);
   1238		return false;
   1239	}
   1240
   1241	return true;
   1242}
   1243
   1244static bool __kona_clk_init(struct kona_clk *bcm_clk)
   1245{
   1246	switch (bcm_clk->type) {
   1247	case bcm_clk_peri:
   1248		return __peri_clk_init(bcm_clk);
   1249	default:
   1250		BUG();
   1251	}
   1252	return false;
   1253}
   1254
   1255/* Set a CCU and all its clocks into their desired initial state */
   1256bool __init kona_ccu_init(struct ccu_data *ccu)
   1257{
   1258	unsigned long flags;
   1259	unsigned int which;
   1260	struct kona_clk *kona_clks = ccu->kona_clks;
   1261	bool success = true;
   1262
   1263	flags = ccu_lock(ccu);
   1264	__ccu_write_enable(ccu);
   1265
   1266	for (which = 0; which < ccu->clk_num; which++) {
   1267		struct kona_clk *bcm_clk = &kona_clks[which];
   1268
   1269		if (!bcm_clk->ccu)
   1270			continue;
   1271
   1272		success &= __kona_clk_init(bcm_clk);
   1273	}
   1274
   1275	__ccu_write_disable(ccu);
   1276	ccu_unlock(ccu, flags);
   1277	return success;
   1278}