berlin2-avpll.c (10786B)
1// SPDX-License-Identifier: GPL-2.0 2/* 3 * Copyright (c) 2014 Marvell Technology Group Ltd. 4 * 5 * Sebastian Hesselbarth <sebastian.hesselbarth@gmail.com> 6 * Alexandre Belloni <alexandre.belloni@free-electrons.com> 7 */ 8#include <linux/clk-provider.h> 9#include <linux/io.h> 10#include <linux/kernel.h> 11#include <linux/of.h> 12#include <linux/of_address.h> 13#include <linux/slab.h> 14 15#include "berlin2-avpll.h" 16 17/* 18 * Berlin2 SoCs comprise up to two PLLs called AVPLL built upon a 19 * VCO with 8 channels each, channel 8 is the odd-one-out and does 20 * not provide mul/div. 21 * 22 * Unfortunately, its registers are not named but just numbered. To 23 * get in at least some kind of structure, we split each AVPLL into 24 * the VCOs and each channel into separate clock drivers. 25 * 26 * Also, here and there the VCO registers are a bit different with 27 * respect to bit shifts. Make sure to add a comment for those. 28 */ 29#define NUM_CHANNELS 8 30 31#define AVPLL_CTRL(x) ((x) * 0x4) 32 33#define VCO_CTRL0 AVPLL_CTRL(0) 34/* BG2/BG2CDs VCO_B has an additional shift of 4 for its VCO_CTRL0 reg */ 35#define VCO_RESET BIT(0) 36#define VCO_POWERUP BIT(1) 37#define VCO_INTERPOL_SHIFT 2 38#define VCO_INTERPOL_MASK (0xf << VCO_INTERPOL_SHIFT) 39#define VCO_REG1V45_SEL_SHIFT 6 40#define VCO_REG1V45_SEL(x) ((x) << VCO_REG1V45_SEL_SHIFT) 41#define VCO_REG1V45_SEL_1V40 VCO_REG1V45_SEL(0) 42#define VCO_REG1V45_SEL_1V45 VCO_REG1V45_SEL(1) 43#define VCO_REG1V45_SEL_1V50 VCO_REG1V45_SEL(2) 44#define VCO_REG1V45_SEL_1V55 VCO_REG1V45_SEL(3) 45#define VCO_REG1V45_SEL_MASK VCO_REG1V45_SEL(3) 46#define VCO_REG0V9_SEL_SHIFT 8 47#define VCO_REG0V9_SEL_MASK (0xf << VCO_REG0V9_SEL_SHIFT) 48#define VCO_VTHCAL_SHIFT 12 49#define VCO_VTHCAL(x) ((x) << VCO_VTHCAL_SHIFT) 50#define VCO_VTHCAL_0V90 VCO_VTHCAL(0) 51#define VCO_VTHCAL_0V95 VCO_VTHCAL(1) 52#define VCO_VTHCAL_1V00 VCO_VTHCAL(2) 53#define VCO_VTHCAL_1V05 VCO_VTHCAL(3) 54#define VCO_VTHCAL_MASK VCO_VTHCAL(3) 55#define VCO_KVCOEXT_SHIFT 14 56#define VCO_KVCOEXT_MASK (0x3 << VCO_KVCOEXT_SHIFT) 57#define VCO_KVCOEXT_ENABLE BIT(17) 58#define VCO_V2IEXT_SHIFT 18 59#define VCO_V2IEXT_MASK (0xf << VCO_V2IEXT_SHIFT) 60#define VCO_V2IEXT_ENABLE BIT(22) 61#define VCO_SPEED_SHIFT 23 62#define VCO_SPEED(x) ((x) << VCO_SPEED_SHIFT) 63#define VCO_SPEED_1G08_1G21 VCO_SPEED(0) 64#define VCO_SPEED_1G21_1G40 VCO_SPEED(1) 65#define VCO_SPEED_1G40_1G61 VCO_SPEED(2) 66#define VCO_SPEED_1G61_1G86 VCO_SPEED(3) 67#define VCO_SPEED_1G86_2G00 VCO_SPEED(4) 68#define VCO_SPEED_2G00_2G22 VCO_SPEED(5) 69#define VCO_SPEED_2G22 VCO_SPEED(6) 70#define VCO_SPEED_MASK VCO_SPEED(0x7) 71#define VCO_CLKDET_ENABLE BIT(26) 72#define VCO_CTRL1 AVPLL_CTRL(1) 73#define VCO_REFDIV_SHIFT 0 74#define VCO_REFDIV(x) ((x) << VCO_REFDIV_SHIFT) 75#define VCO_REFDIV_1 VCO_REFDIV(0) 76#define VCO_REFDIV_2 VCO_REFDIV(1) 77#define VCO_REFDIV_4 VCO_REFDIV(2) 78#define VCO_REFDIV_3 VCO_REFDIV(3) 79#define VCO_REFDIV_MASK VCO_REFDIV(0x3f) 80#define VCO_FBDIV_SHIFT 6 81#define VCO_FBDIV(x) ((x) << VCO_FBDIV_SHIFT) 82#define VCO_FBDIV_MASK VCO_FBDIV(0xff) 83#define VCO_ICP_SHIFT 14 84/* PLL Charge Pump Current = 10uA * (x + 1) */ 85#define VCO_ICP(x) ((x) << VCO_ICP_SHIFT) 86#define VCO_ICP_MASK VCO_ICP(0xf) 87#define VCO_LOAD_CAP BIT(18) 88#define VCO_CALIBRATION_START BIT(19) 89#define VCO_FREQOFFSETn(x) AVPLL_CTRL(3 + (x)) 90#define VCO_FREQOFFSET_MASK 0x7ffff 91#define VCO_CTRL10 AVPLL_CTRL(10) 92#define VCO_POWERUP_CH1 BIT(20) 93#define VCO_CTRL11 AVPLL_CTRL(11) 94#define VCO_CTRL12 AVPLL_CTRL(12) 95#define VCO_CTRL13 AVPLL_CTRL(13) 96#define VCO_CTRL14 AVPLL_CTRL(14) 97#define VCO_CTRL15 AVPLL_CTRL(15) 98#define VCO_SYNC1n(x) AVPLL_CTRL(15 + (x)) 99#define VCO_SYNC1_MASK 0x1ffff 100#define VCO_SYNC2n(x) AVPLL_CTRL(23 + (x)) 101#define VCO_SYNC2_MASK 0x1ffff 102#define VCO_CTRL30 AVPLL_CTRL(30) 103#define VCO_DPLL_CH1_ENABLE BIT(17) 104 105struct berlin2_avpll_vco { 106 struct clk_hw hw; 107 void __iomem *base; 108 u8 flags; 109}; 110 111#define to_avpll_vco(hw) container_of(hw, struct berlin2_avpll_vco, hw) 112 113static int berlin2_avpll_vco_is_enabled(struct clk_hw *hw) 114{ 115 struct berlin2_avpll_vco *vco = to_avpll_vco(hw); 116 u32 reg; 117 118 reg = readl_relaxed(vco->base + VCO_CTRL0); 119 if (vco->flags & BERLIN2_AVPLL_BIT_QUIRK) 120 reg >>= 4; 121 122 return !!(reg & VCO_POWERUP); 123} 124 125static int berlin2_avpll_vco_enable(struct clk_hw *hw) 126{ 127 struct berlin2_avpll_vco *vco = to_avpll_vco(hw); 128 u32 reg; 129 130 reg = readl_relaxed(vco->base + VCO_CTRL0); 131 if (vco->flags & BERLIN2_AVPLL_BIT_QUIRK) 132 reg |= VCO_POWERUP << 4; 133 else 134 reg |= VCO_POWERUP; 135 writel_relaxed(reg, vco->base + VCO_CTRL0); 136 137 return 0; 138} 139 140static void berlin2_avpll_vco_disable(struct clk_hw *hw) 141{ 142 struct berlin2_avpll_vco *vco = to_avpll_vco(hw); 143 u32 reg; 144 145 reg = readl_relaxed(vco->base + VCO_CTRL0); 146 if (vco->flags & BERLIN2_AVPLL_BIT_QUIRK) 147 reg &= ~(VCO_POWERUP << 4); 148 else 149 reg &= ~VCO_POWERUP; 150 writel_relaxed(reg, vco->base + VCO_CTRL0); 151} 152 153static u8 vco_refdiv[] = { 1, 2, 4, 3 }; 154 155static unsigned long 156berlin2_avpll_vco_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) 157{ 158 struct berlin2_avpll_vco *vco = to_avpll_vco(hw); 159 u32 reg, refdiv, fbdiv; 160 u64 freq = parent_rate; 161 162 /* AVPLL VCO frequency: Fvco = (Fref / refdiv) * fbdiv */ 163 reg = readl_relaxed(vco->base + VCO_CTRL1); 164 refdiv = (reg & VCO_REFDIV_MASK) >> VCO_REFDIV_SHIFT; 165 refdiv = vco_refdiv[refdiv]; 166 fbdiv = (reg & VCO_FBDIV_MASK) >> VCO_FBDIV_SHIFT; 167 freq *= fbdiv; 168 do_div(freq, refdiv); 169 170 return (unsigned long)freq; 171} 172 173static const struct clk_ops berlin2_avpll_vco_ops = { 174 .is_enabled = berlin2_avpll_vco_is_enabled, 175 .enable = berlin2_avpll_vco_enable, 176 .disable = berlin2_avpll_vco_disable, 177 .recalc_rate = berlin2_avpll_vco_recalc_rate, 178}; 179 180int __init berlin2_avpll_vco_register(void __iomem *base, 181 const char *name, const char *parent_name, 182 u8 vco_flags, unsigned long flags) 183{ 184 struct berlin2_avpll_vco *vco; 185 struct clk_init_data init; 186 187 vco = kzalloc(sizeof(*vco), GFP_KERNEL); 188 if (!vco) 189 return -ENOMEM; 190 191 vco->base = base; 192 vco->flags = vco_flags; 193 vco->hw.init = &init; 194 init.name = name; 195 init.ops = &berlin2_avpll_vco_ops; 196 init.parent_names = &parent_name; 197 init.num_parents = 1; 198 init.flags = flags; 199 200 return clk_hw_register(NULL, &vco->hw); 201} 202 203struct berlin2_avpll_channel { 204 struct clk_hw hw; 205 void __iomem *base; 206 u8 flags; 207 u8 index; 208}; 209 210#define to_avpll_channel(hw) container_of(hw, struct berlin2_avpll_channel, hw) 211 212static int berlin2_avpll_channel_is_enabled(struct clk_hw *hw) 213{ 214 struct berlin2_avpll_channel *ch = to_avpll_channel(hw); 215 u32 reg; 216 217 if (ch->index == 7) 218 return 1; 219 220 reg = readl_relaxed(ch->base + VCO_CTRL10); 221 reg &= VCO_POWERUP_CH1 << ch->index; 222 223 return !!reg; 224} 225 226static int berlin2_avpll_channel_enable(struct clk_hw *hw) 227{ 228 struct berlin2_avpll_channel *ch = to_avpll_channel(hw); 229 u32 reg; 230 231 reg = readl_relaxed(ch->base + VCO_CTRL10); 232 reg |= VCO_POWERUP_CH1 << ch->index; 233 writel_relaxed(reg, ch->base + VCO_CTRL10); 234 235 return 0; 236} 237 238static void berlin2_avpll_channel_disable(struct clk_hw *hw) 239{ 240 struct berlin2_avpll_channel *ch = to_avpll_channel(hw); 241 u32 reg; 242 243 reg = readl_relaxed(ch->base + VCO_CTRL10); 244 reg &= ~(VCO_POWERUP_CH1 << ch->index); 245 writel_relaxed(reg, ch->base + VCO_CTRL10); 246} 247 248static const u8 div_hdmi[] = { 1, 2, 4, 6 }; 249static const u8 div_av1[] = { 1, 2, 5, 5 }; 250 251static unsigned long 252berlin2_avpll_channel_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) 253{ 254 struct berlin2_avpll_channel *ch = to_avpll_channel(hw); 255 u32 reg, div_av2, div_av3, divider = 1; 256 u64 freq = parent_rate; 257 258 reg = readl_relaxed(ch->base + VCO_CTRL30); 259 if ((reg & (VCO_DPLL_CH1_ENABLE << ch->index)) == 0) 260 goto skip_div; 261 262 /* 263 * Fch = (Fref * sync2) / 264 * (sync1 * div_hdmi * div_av1 * div_av2 * div_av3) 265 */ 266 267 reg = readl_relaxed(ch->base + VCO_SYNC1n(ch->index)); 268 /* BG2/BG2CDs SYNC1 reg on AVPLL_B channel 1 is shifted by 4 */ 269 if (ch->flags & BERLIN2_AVPLL_BIT_QUIRK && ch->index == 0) 270 reg >>= 4; 271 divider = reg & VCO_SYNC1_MASK; 272 273 reg = readl_relaxed(ch->base + VCO_SYNC2n(ch->index)); 274 freq *= reg & VCO_SYNC2_MASK; 275 276 /* Channel 8 has no dividers */ 277 if (ch->index == 7) 278 goto skip_div; 279 280 /* 281 * HDMI divider start at VCO_CTRL11, bit 7; MSB is enable, lower 2 bit 282 * determine divider. 283 */ 284 reg = readl_relaxed(ch->base + VCO_CTRL11) >> 7; 285 reg = (reg >> (ch->index * 3)); 286 if (reg & BIT(2)) 287 divider *= div_hdmi[reg & 0x3]; 288 289 /* 290 * AV1 divider start at VCO_CTRL11, bit 28; MSB is enable, lower 2 bit 291 * determine divider. 292 */ 293 if (ch->index == 0) { 294 reg = readl_relaxed(ch->base + VCO_CTRL11); 295 reg >>= 28; 296 } else { 297 reg = readl_relaxed(ch->base + VCO_CTRL12); 298 reg >>= (ch->index-1) * 3; 299 } 300 if (reg & BIT(2)) 301 divider *= div_av1[reg & 0x3]; 302 303 /* 304 * AV2 divider start at VCO_CTRL12, bit 18; each 7 bits wide, 305 * zero is not a valid value. 306 */ 307 if (ch->index < 2) { 308 reg = readl_relaxed(ch->base + VCO_CTRL12); 309 reg >>= 18 + (ch->index * 7); 310 } else if (ch->index < 7) { 311 reg = readl_relaxed(ch->base + VCO_CTRL13); 312 reg >>= (ch->index - 2) * 7; 313 } else { 314 reg = readl_relaxed(ch->base + VCO_CTRL14); 315 } 316 div_av2 = reg & 0x7f; 317 if (div_av2) 318 divider *= div_av2; 319 320 /* 321 * AV3 divider start at VCO_CTRL14, bit 7; each 4 bits wide. 322 * AV2/AV3 form a fractional divider, where only specfic values for AV3 323 * are allowed. AV3 != 0 divides by AV2/2, AV3=0 is bypass. 324 */ 325 if (ch->index < 6) { 326 reg = readl_relaxed(ch->base + VCO_CTRL14); 327 reg >>= 7 + (ch->index * 4); 328 } else { 329 reg = readl_relaxed(ch->base + VCO_CTRL15); 330 } 331 div_av3 = reg & 0xf; 332 if (div_av2 && div_av3) 333 freq *= 2; 334 335skip_div: 336 do_div(freq, divider); 337 return (unsigned long)freq; 338} 339 340static const struct clk_ops berlin2_avpll_channel_ops = { 341 .is_enabled = berlin2_avpll_channel_is_enabled, 342 .enable = berlin2_avpll_channel_enable, 343 .disable = berlin2_avpll_channel_disable, 344 .recalc_rate = berlin2_avpll_channel_recalc_rate, 345}; 346 347/* 348 * Another nice quirk: 349 * On some production SoCs, AVPLL channels are scrambled with respect 350 * to the channel numbering in the registers but still referenced by 351 * their original channel numbers. We deal with it by having a flag 352 * and a translation table for the index. 353 */ 354static const u8 quirk_index[] __initconst = { 0, 6, 5, 4, 3, 2, 1, 7 }; 355 356int __init berlin2_avpll_channel_register(void __iomem *base, 357 const char *name, u8 index, const char *parent_name, 358 u8 ch_flags, unsigned long flags) 359{ 360 struct berlin2_avpll_channel *ch; 361 struct clk_init_data init; 362 363 ch = kzalloc(sizeof(*ch), GFP_KERNEL); 364 if (!ch) 365 return -ENOMEM; 366 367 ch->base = base; 368 if (ch_flags & BERLIN2_AVPLL_SCRAMBLE_QUIRK) 369 ch->index = quirk_index[index]; 370 else 371 ch->index = index; 372 373 ch->flags = ch_flags; 374 ch->hw.init = &init; 375 init.name = name; 376 init.ops = &berlin2_avpll_channel_ops; 377 init.parent_names = &parent_name; 378 init.num_parents = 1; 379 init.flags = flags; 380 381 return clk_hw_register(NULL, &ch->hw); 382}