cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

clk-cdce925.c (21584B)


      1/*
      2 * Driver for TI Multi PLL CDCE913/925/937/949 clock synthesizer
      3 *
      4 * This driver always connects the Y1 to the input clock, Y2/Y3 to PLL1,
      5 * Y4/Y5 to PLL2, and so on. PLL frequency is set on a first-come-first-serve
      6 * basis. Clients can directly request any frequency that the chip can
      7 * deliver using the standard clk framework. In addition, the device can
      8 * be configured and activated via the devicetree.
      9 *
     10 * Copyright (C) 2014, Topic Embedded Products
     11 * Licenced under GPL
     12 */
     13#include <linux/clk.h>
     14#include <linux/clk-provider.h>
     15#include <linux/delay.h>
     16#include <linux/module.h>
     17#include <linux/i2c.h>
     18#include <linux/regmap.h>
     19#include <linux/regulator/consumer.h>
     20#include <linux/slab.h>
     21#include <linux/gcd.h>
     22
     23/* Each chip has different number of PLLs and outputs, for example:
     24 * The CECE925 has 2 PLLs which can be routed through dividers to 5 outputs.
     25 * Model this as 2 PLL clocks which are parents to the outputs.
     26 */
     27
     28enum {
     29	CDCE913,
     30	CDCE925,
     31	CDCE937,
     32	CDCE949,
     33};
     34
     35struct clk_cdce925_chip_info {
     36	int num_plls;
     37	int num_outputs;
     38};
     39
     40static const struct clk_cdce925_chip_info clk_cdce925_chip_info_tbl[] = {
     41	[CDCE913] = { .num_plls = 1, .num_outputs = 3 },
     42	[CDCE925] = { .num_plls = 2, .num_outputs = 5 },
     43	[CDCE937] = { .num_plls = 3, .num_outputs = 7 },
     44	[CDCE949] = { .num_plls = 4, .num_outputs = 9 },
     45};
     46
     47#define MAX_NUMBER_OF_PLLS	4
     48#define MAX_NUMBER_OF_OUTPUTS	9
     49
     50#define CDCE925_REG_GLOBAL1	0x01
     51#define CDCE925_REG_Y1SPIPDIVH	0x02
     52#define CDCE925_REG_PDIVL	0x03
     53#define CDCE925_REG_XCSEL	0x05
     54/* PLL parameters start at 0x10, steps of 0x10 */
     55#define CDCE925_OFFSET_PLL	0x10
     56/* Add CDCE925_OFFSET_PLL * (pll) to these registers before sending */
     57#define CDCE925_PLL_MUX_OUTPUTS	0x14
     58#define CDCE925_PLL_MULDIV	0x18
     59
     60#define CDCE925_PLL_FREQUENCY_MIN	 80000000ul
     61#define CDCE925_PLL_FREQUENCY_MAX	230000000ul
     62struct clk_cdce925_chip;
     63
     64struct clk_cdce925_output {
     65	struct clk_hw hw;
     66	struct clk_cdce925_chip *chip;
     67	u8 index;
     68	u16 pdiv; /* 1..127 for Y2-Y9; 1..1023 for Y1 */
     69};
     70#define to_clk_cdce925_output(_hw) \
     71	container_of(_hw, struct clk_cdce925_output, hw)
     72
     73struct clk_cdce925_pll {
     74	struct clk_hw hw;
     75	struct clk_cdce925_chip *chip;
     76	u8 index;
     77	u16 m;   /* 1..511 */
     78	u16 n;   /* 1..4095 */
     79};
     80#define to_clk_cdce925_pll(_hw)	container_of(_hw, struct clk_cdce925_pll, hw)
     81
     82struct clk_cdce925_chip {
     83	struct regmap *regmap;
     84	struct i2c_client *i2c_client;
     85	const struct clk_cdce925_chip_info *chip_info;
     86	struct clk_cdce925_pll pll[MAX_NUMBER_OF_PLLS];
     87	struct clk_cdce925_output clk[MAX_NUMBER_OF_OUTPUTS];
     88};
     89
     90/* ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** */
     91
     92static unsigned long cdce925_pll_calculate_rate(unsigned long parent_rate,
     93	u16 n, u16 m)
     94{
     95	if ((!m || !n) || (m == n))
     96		return parent_rate; /* In bypass mode runs at same frequency */
     97	return mult_frac(parent_rate, (unsigned long)n, (unsigned long)m);
     98}
     99
    100static unsigned long cdce925_pll_recalc_rate(struct clk_hw *hw,
    101		unsigned long parent_rate)
    102{
    103	/* Output frequency of PLL is Fout = (Fin/Pdiv)*(N/M) */
    104	struct clk_cdce925_pll *data = to_clk_cdce925_pll(hw);
    105
    106	return cdce925_pll_calculate_rate(parent_rate, data->n, data->m);
    107}
    108
    109static void cdce925_pll_find_rate(unsigned long rate,
    110		unsigned long parent_rate, u16 *n, u16 *m)
    111{
    112	unsigned long un;
    113	unsigned long um;
    114	unsigned long g;
    115
    116	if (rate <= parent_rate) {
    117		/* Can always deliver parent_rate in bypass mode */
    118		rate = parent_rate;
    119		*n = 0;
    120		*m = 0;
    121	} else {
    122		/* In PLL mode, need to apply min/max range */
    123		if (rate < CDCE925_PLL_FREQUENCY_MIN)
    124			rate = CDCE925_PLL_FREQUENCY_MIN;
    125		else if (rate > CDCE925_PLL_FREQUENCY_MAX)
    126			rate = CDCE925_PLL_FREQUENCY_MAX;
    127
    128		g = gcd(rate, parent_rate);
    129		um = parent_rate / g;
    130		un = rate / g;
    131		/* When outside hw range, reduce to fit (rounding errors) */
    132		while ((un > 4095) || (um > 511)) {
    133			un >>= 1;
    134			um >>= 1;
    135		}
    136		if (un == 0)
    137			un = 1;
    138		if (um == 0)
    139			um = 1;
    140
    141		*n = un;
    142		*m = um;
    143	}
    144}
    145
    146static long cdce925_pll_round_rate(struct clk_hw *hw, unsigned long rate,
    147		unsigned long *parent_rate)
    148{
    149	u16 n, m;
    150
    151	cdce925_pll_find_rate(rate, *parent_rate, &n, &m);
    152	return (long)cdce925_pll_calculate_rate(*parent_rate, n, m);
    153}
    154
    155static int cdce925_pll_set_rate(struct clk_hw *hw, unsigned long rate,
    156		unsigned long parent_rate)
    157{
    158	struct clk_cdce925_pll *data = to_clk_cdce925_pll(hw);
    159
    160	if (!rate || (rate == parent_rate)) {
    161		data->m = 0; /* Bypass mode */
    162		data->n = 0;
    163		return 0;
    164	}
    165
    166	if ((rate < CDCE925_PLL_FREQUENCY_MIN) ||
    167		(rate > CDCE925_PLL_FREQUENCY_MAX)) {
    168		pr_debug("%s: rate %lu outside PLL range.\n", __func__, rate);
    169		return -EINVAL;
    170	}
    171
    172	if (rate < parent_rate) {
    173		pr_debug("%s: rate %lu less than parent rate %lu.\n", __func__,
    174			rate, parent_rate);
    175		return -EINVAL;
    176	}
    177
    178	cdce925_pll_find_rate(rate, parent_rate, &data->n, &data->m);
    179	return 0;
    180}
    181
    182
    183/* calculate p = max(0, 4 - int(log2 (n/m))) */
    184static u8 cdce925_pll_calc_p(u16 n, u16 m)
    185{
    186	u8 p;
    187	u16 r = n / m;
    188
    189	if (r >= 16)
    190		return 0;
    191	p = 4;
    192	while (r > 1) {
    193		r >>= 1;
    194		--p;
    195	}
    196	return p;
    197}
    198
    199/* Returns VCO range bits for VCO1_0_RANGE */
    200static u8 cdce925_pll_calc_range_bits(struct clk_hw *hw, u16 n, u16 m)
    201{
    202	struct clk *parent = clk_get_parent(hw->clk);
    203	unsigned long rate = clk_get_rate(parent);
    204
    205	rate = mult_frac(rate, (unsigned long)n, (unsigned long)m);
    206	if (rate >= 175000000)
    207		return 0x3;
    208	if (rate >= 150000000)
    209		return 0x02;
    210	if (rate >= 125000000)
    211		return 0x01;
    212	return 0x00;
    213}
    214
    215/* I2C clock, hence everything must happen in (un)prepare because this
    216 * may sleep */
    217static int cdce925_pll_prepare(struct clk_hw *hw)
    218{
    219	struct clk_cdce925_pll *data = to_clk_cdce925_pll(hw);
    220	u16 n = data->n;
    221	u16 m = data->m;
    222	u16 r;
    223	u8 q;
    224	u8 p;
    225	u16 nn;
    226	u8 pll[4]; /* Bits are spread out over 4 byte registers */
    227	u8 reg_ofs = data->index * CDCE925_OFFSET_PLL;
    228	unsigned i;
    229
    230	if ((!m || !n) || (m == n)) {
    231		/* Set PLL mux to bypass mode, leave the rest as is */
    232		regmap_update_bits(data->chip->regmap,
    233			reg_ofs + CDCE925_PLL_MUX_OUTPUTS, 0x80, 0x80);
    234	} else {
    235		/* According to data sheet: */
    236		/* p = max(0, 4 - int(log2 (n/m))) */
    237		p = cdce925_pll_calc_p(n, m);
    238		/* nn = n * 2^p */
    239		nn = n * BIT(p);
    240		/* q = int(nn/m) */
    241		q = nn / m;
    242		if ((q < 16) || (q > 63)) {
    243			pr_debug("%s invalid q=%d\n", __func__, q);
    244			return -EINVAL;
    245		}
    246		r = nn - (m*q);
    247		if (r > 511) {
    248			pr_debug("%s invalid r=%d\n", __func__, r);
    249			return -EINVAL;
    250		}
    251		pr_debug("%s n=%d m=%d p=%d q=%d r=%d\n", __func__,
    252			n, m, p, q, r);
    253		/* encode into register bits */
    254		pll[0] = n >> 4;
    255		pll[1] = ((n & 0x0F) << 4) | ((r >> 5) & 0x0F);
    256		pll[2] = ((r & 0x1F) << 3) | ((q >> 3) & 0x07);
    257		pll[3] = ((q & 0x07) << 5) | (p << 2) |
    258				cdce925_pll_calc_range_bits(hw, n, m);
    259		/* Write to registers */
    260		for (i = 0; i < ARRAY_SIZE(pll); ++i)
    261			regmap_write(data->chip->regmap,
    262				reg_ofs + CDCE925_PLL_MULDIV + i, pll[i]);
    263		/* Enable PLL */
    264		regmap_update_bits(data->chip->regmap,
    265			reg_ofs + CDCE925_PLL_MUX_OUTPUTS, 0x80, 0x00);
    266	}
    267
    268	return 0;
    269}
    270
    271static void cdce925_pll_unprepare(struct clk_hw *hw)
    272{
    273	struct clk_cdce925_pll *data = to_clk_cdce925_pll(hw);
    274	u8 reg_ofs = data->index * CDCE925_OFFSET_PLL;
    275
    276	regmap_update_bits(data->chip->regmap,
    277			reg_ofs + CDCE925_PLL_MUX_OUTPUTS, 0x80, 0x80);
    278}
    279
    280static const struct clk_ops cdce925_pll_ops = {
    281	.prepare = cdce925_pll_prepare,
    282	.unprepare = cdce925_pll_unprepare,
    283	.recalc_rate = cdce925_pll_recalc_rate,
    284	.round_rate = cdce925_pll_round_rate,
    285	.set_rate = cdce925_pll_set_rate,
    286};
    287
    288
    289static void cdce925_clk_set_pdiv(struct clk_cdce925_output *data, u16 pdiv)
    290{
    291	switch (data->index) {
    292	case 0:
    293		regmap_update_bits(data->chip->regmap,
    294			CDCE925_REG_Y1SPIPDIVH,
    295			0x03, (pdiv >> 8) & 0x03);
    296		regmap_write(data->chip->regmap, 0x03, pdiv & 0xFF);
    297		break;
    298	case 1:
    299		regmap_update_bits(data->chip->regmap, 0x16, 0x7F, pdiv);
    300		break;
    301	case 2:
    302		regmap_update_bits(data->chip->regmap, 0x17, 0x7F, pdiv);
    303		break;
    304	case 3:
    305		regmap_update_bits(data->chip->regmap, 0x26, 0x7F, pdiv);
    306		break;
    307	case 4:
    308		regmap_update_bits(data->chip->regmap, 0x27, 0x7F, pdiv);
    309		break;
    310	case 5:
    311		regmap_update_bits(data->chip->regmap, 0x36, 0x7F, pdiv);
    312		break;
    313	case 6:
    314		regmap_update_bits(data->chip->regmap, 0x37, 0x7F, pdiv);
    315		break;
    316	case 7:
    317		regmap_update_bits(data->chip->regmap, 0x46, 0x7F, pdiv);
    318		break;
    319	case 8:
    320		regmap_update_bits(data->chip->regmap, 0x47, 0x7F, pdiv);
    321		break;
    322	}
    323}
    324
    325static void cdce925_clk_activate(struct clk_cdce925_output *data)
    326{
    327	switch (data->index) {
    328	case 0:
    329		regmap_update_bits(data->chip->regmap,
    330			CDCE925_REG_Y1SPIPDIVH, 0x0c, 0x0c);
    331		break;
    332	case 1:
    333	case 2:
    334		regmap_update_bits(data->chip->regmap, 0x14, 0x03, 0x03);
    335		break;
    336	case 3:
    337	case 4:
    338		regmap_update_bits(data->chip->regmap, 0x24, 0x03, 0x03);
    339		break;
    340	case 5:
    341	case 6:
    342		regmap_update_bits(data->chip->regmap, 0x34, 0x03, 0x03);
    343		break;
    344	case 7:
    345	case 8:
    346		regmap_update_bits(data->chip->regmap, 0x44, 0x03, 0x03);
    347		break;
    348	}
    349}
    350
    351static int cdce925_clk_prepare(struct clk_hw *hw)
    352{
    353	struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
    354
    355	cdce925_clk_set_pdiv(data, data->pdiv);
    356	cdce925_clk_activate(data);
    357	return 0;
    358}
    359
    360static void cdce925_clk_unprepare(struct clk_hw *hw)
    361{
    362	struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
    363
    364	/* Disable clock by setting divider to "0" */
    365	cdce925_clk_set_pdiv(data, 0);
    366}
    367
    368static unsigned long cdce925_clk_recalc_rate(struct clk_hw *hw,
    369		unsigned long parent_rate)
    370{
    371	struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
    372
    373	if (data->pdiv)
    374		return parent_rate / data->pdiv;
    375	return 0;
    376}
    377
    378static u16 cdce925_calc_divider(unsigned long rate,
    379		unsigned long parent_rate)
    380{
    381	unsigned long divider;
    382
    383	if (!rate)
    384		return 0;
    385	if (rate >= parent_rate)
    386		return 1;
    387
    388	divider = DIV_ROUND_CLOSEST(parent_rate, rate);
    389	if (divider > 0x7F)
    390		divider = 0x7F;
    391
    392	return (u16)divider;
    393}
    394
    395static unsigned long cdce925_clk_best_parent_rate(
    396	struct clk_hw *hw, unsigned long rate)
    397{
    398	struct clk *pll = clk_get_parent(hw->clk);
    399	struct clk *root = clk_get_parent(pll);
    400	unsigned long root_rate = clk_get_rate(root);
    401	unsigned long best_rate_error = rate;
    402	u16 pdiv_min;
    403	u16 pdiv_max;
    404	u16 pdiv_best;
    405	u16 pdiv_now;
    406
    407	if (root_rate % rate == 0)
    408		return root_rate; /* Don't need the PLL, use bypass */
    409
    410	pdiv_min = (u16)max(1ul, DIV_ROUND_UP(CDCE925_PLL_FREQUENCY_MIN, rate));
    411	pdiv_max = (u16)min(127ul, CDCE925_PLL_FREQUENCY_MAX / rate);
    412
    413	if (pdiv_min > pdiv_max)
    414		return 0; /* No can do? */
    415
    416	pdiv_best = pdiv_min;
    417	for (pdiv_now = pdiv_min; pdiv_now < pdiv_max; ++pdiv_now) {
    418		unsigned long target_rate = rate * pdiv_now;
    419		long pll_rate = clk_round_rate(pll, target_rate);
    420		unsigned long actual_rate;
    421		unsigned long rate_error;
    422
    423		if (pll_rate <= 0)
    424			continue;
    425		actual_rate = pll_rate / pdiv_now;
    426		rate_error = abs((long)actual_rate - (long)rate);
    427		if (rate_error < best_rate_error) {
    428			pdiv_best = pdiv_now;
    429			best_rate_error = rate_error;
    430		}
    431		/* TODO: Consider PLL frequency based on smaller n/m values
    432		 * and pick the better one if the error is equal */
    433	}
    434
    435	return rate * pdiv_best;
    436}
    437
    438static long cdce925_clk_round_rate(struct clk_hw *hw, unsigned long rate,
    439		unsigned long *parent_rate)
    440{
    441	unsigned long l_parent_rate = *parent_rate;
    442	u16 divider = cdce925_calc_divider(rate, l_parent_rate);
    443
    444	if (l_parent_rate / divider != rate) {
    445		l_parent_rate = cdce925_clk_best_parent_rate(hw, rate);
    446		divider = cdce925_calc_divider(rate, l_parent_rate);
    447		*parent_rate = l_parent_rate;
    448	}
    449
    450	if (divider)
    451		return (long)(l_parent_rate / divider);
    452	return 0;
    453}
    454
    455static int cdce925_clk_set_rate(struct clk_hw *hw, unsigned long rate,
    456		unsigned long parent_rate)
    457{
    458	struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
    459
    460	data->pdiv = cdce925_calc_divider(rate, parent_rate);
    461
    462	return 0;
    463}
    464
    465static const struct clk_ops cdce925_clk_ops = {
    466	.prepare = cdce925_clk_prepare,
    467	.unprepare = cdce925_clk_unprepare,
    468	.recalc_rate = cdce925_clk_recalc_rate,
    469	.round_rate = cdce925_clk_round_rate,
    470	.set_rate = cdce925_clk_set_rate,
    471};
    472
    473
    474static u16 cdce925_y1_calc_divider(unsigned long rate,
    475		unsigned long parent_rate)
    476{
    477	unsigned long divider;
    478
    479	if (!rate)
    480		return 0;
    481	if (rate >= parent_rate)
    482		return 1;
    483
    484	divider = DIV_ROUND_CLOSEST(parent_rate, rate);
    485	if (divider > 0x3FF) /* Y1 has 10-bit divider */
    486		divider = 0x3FF;
    487
    488	return (u16)divider;
    489}
    490
    491static long cdce925_clk_y1_round_rate(struct clk_hw *hw, unsigned long rate,
    492		unsigned long *parent_rate)
    493{
    494	unsigned long l_parent_rate = *parent_rate;
    495	u16 divider = cdce925_y1_calc_divider(rate, l_parent_rate);
    496
    497	if (divider)
    498		return (long)(l_parent_rate / divider);
    499	return 0;
    500}
    501
    502static int cdce925_clk_y1_set_rate(struct clk_hw *hw, unsigned long rate,
    503		unsigned long parent_rate)
    504{
    505	struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
    506
    507	data->pdiv = cdce925_y1_calc_divider(rate, parent_rate);
    508
    509	return 0;
    510}
    511
    512static const struct clk_ops cdce925_clk_y1_ops = {
    513	.prepare = cdce925_clk_prepare,
    514	.unprepare = cdce925_clk_unprepare,
    515	.recalc_rate = cdce925_clk_recalc_rate,
    516	.round_rate = cdce925_clk_y1_round_rate,
    517	.set_rate = cdce925_clk_y1_set_rate,
    518};
    519
    520#define CDCE925_I2C_COMMAND_BLOCK_TRANSFER	0x00
    521#define CDCE925_I2C_COMMAND_BYTE_TRANSFER	0x80
    522
    523static int cdce925_regmap_i2c_write(
    524	void *context, const void *data, size_t count)
    525{
    526	struct device *dev = context;
    527	struct i2c_client *i2c = to_i2c_client(dev);
    528	int ret;
    529	u8 reg_data[2];
    530
    531	if (count != 2)
    532		return -ENOTSUPP;
    533
    534	/* First byte is command code */
    535	reg_data[0] = CDCE925_I2C_COMMAND_BYTE_TRANSFER | ((u8 *)data)[0];
    536	reg_data[1] = ((u8 *)data)[1];
    537
    538	dev_dbg(&i2c->dev, "%s(%zu) %#x %#x\n", __func__, count,
    539			reg_data[0], reg_data[1]);
    540
    541	ret = i2c_master_send(i2c, reg_data, count);
    542	if (likely(ret == count))
    543		return 0;
    544	else if (ret < 0)
    545		return ret;
    546	else
    547		return -EIO;
    548}
    549
    550static int cdce925_regmap_i2c_read(void *context,
    551	   const void *reg, size_t reg_size, void *val, size_t val_size)
    552{
    553	struct device *dev = context;
    554	struct i2c_client *i2c = to_i2c_client(dev);
    555	struct i2c_msg xfer[2];
    556	int ret;
    557	u8 reg_data[2];
    558
    559	if (reg_size != 1)
    560		return -ENOTSUPP;
    561
    562	xfer[0].addr = i2c->addr;
    563	xfer[0].flags = 0;
    564	xfer[0].buf = reg_data;
    565	if (val_size == 1) {
    566		reg_data[0] =
    567			CDCE925_I2C_COMMAND_BYTE_TRANSFER | ((u8 *)reg)[0];
    568		xfer[0].len = 1;
    569	} else {
    570		reg_data[0] =
    571			CDCE925_I2C_COMMAND_BLOCK_TRANSFER | ((u8 *)reg)[0];
    572		reg_data[1] = val_size;
    573		xfer[0].len = 2;
    574	}
    575
    576	xfer[1].addr = i2c->addr;
    577	xfer[1].flags = I2C_M_RD;
    578	xfer[1].len = val_size;
    579	xfer[1].buf = val;
    580
    581	ret = i2c_transfer(i2c->adapter, xfer, 2);
    582	if (likely(ret == 2)) {
    583		dev_dbg(&i2c->dev, "%s(%zu, %zu) %#x %#x\n", __func__,
    584				reg_size, val_size, reg_data[0], *((u8 *)val));
    585		return 0;
    586	} else if (ret < 0)
    587		return ret;
    588	else
    589		return -EIO;
    590}
    591
    592static struct clk_hw *
    593of_clk_cdce925_get(struct of_phandle_args *clkspec, void *_data)
    594{
    595	struct clk_cdce925_chip *data = _data;
    596	unsigned int idx = clkspec->args[0];
    597
    598	if (idx >= ARRAY_SIZE(data->clk)) {
    599		pr_err("%s: invalid index %u\n", __func__, idx);
    600		return ERR_PTR(-EINVAL);
    601	}
    602
    603	return &data->clk[idx].hw;
    604}
    605
    606static void cdce925_regulator_disable(void *regulator)
    607{
    608	regulator_disable(regulator);
    609}
    610
    611static int cdce925_regulator_enable(struct device *dev, const char *name)
    612{
    613	struct regulator *regulator;
    614	int err;
    615
    616	regulator = devm_regulator_get(dev, name);
    617	if (IS_ERR(regulator))
    618		return PTR_ERR(regulator);
    619
    620	err = regulator_enable(regulator);
    621	if (err) {
    622		dev_err(dev, "Failed to enable %s: %d\n", name, err);
    623		return err;
    624	}
    625
    626	return devm_add_action_or_reset(dev, cdce925_regulator_disable,
    627					regulator);
    628}
    629
    630/* The CDCE925 uses a funky way to read/write registers. Bulk mode is
    631 * just weird, so just use the single byte mode exclusively. */
    632static struct regmap_bus regmap_cdce925_bus = {
    633	.write = cdce925_regmap_i2c_write,
    634	.read = cdce925_regmap_i2c_read,
    635};
    636
    637static const struct i2c_device_id cdce925_id[] = {
    638	{ "cdce913", CDCE913 },
    639	{ "cdce925", CDCE925 },
    640	{ "cdce937", CDCE937 },
    641	{ "cdce949", CDCE949 },
    642	{ }
    643};
    644MODULE_DEVICE_TABLE(i2c, cdce925_id);
    645
    646static int cdce925_probe(struct i2c_client *client)
    647{
    648	struct clk_cdce925_chip *data;
    649	struct device_node *node = client->dev.of_node;
    650	const struct i2c_device_id *id = i2c_match_id(cdce925_id, client);
    651	const char *parent_name;
    652	const char *pll_clk_name[MAX_NUMBER_OF_PLLS] = {NULL,};
    653	struct clk_init_data init;
    654	u32 value;
    655	int i;
    656	int err;
    657	struct device_node *np_output;
    658	char child_name[6];
    659	struct regmap_config config = {
    660		.name = "configuration0",
    661		.reg_bits = 8,
    662		.val_bits = 8,
    663		.cache_type = REGCACHE_RBTREE,
    664	};
    665
    666	dev_dbg(&client->dev, "%s\n", __func__);
    667
    668	err = cdce925_regulator_enable(&client->dev, "vdd");
    669	if (err)
    670		return err;
    671
    672	err = cdce925_regulator_enable(&client->dev, "vddout");
    673	if (err)
    674		return err;
    675
    676	data = devm_kzalloc(&client->dev, sizeof(*data), GFP_KERNEL);
    677	if (!data)
    678		return -ENOMEM;
    679
    680	data->i2c_client = client;
    681	data->chip_info = &clk_cdce925_chip_info_tbl[id->driver_data];
    682	config.max_register = CDCE925_OFFSET_PLL +
    683		data->chip_info->num_plls * 0x10 - 1;
    684	data->regmap = devm_regmap_init(&client->dev, &regmap_cdce925_bus,
    685			&client->dev, &config);
    686	if (IS_ERR(data->regmap)) {
    687		dev_err(&client->dev, "failed to allocate register map\n");
    688		return PTR_ERR(data->regmap);
    689	}
    690	i2c_set_clientdata(client, data);
    691
    692	parent_name = of_clk_get_parent_name(node, 0);
    693	if (!parent_name) {
    694		dev_err(&client->dev, "missing parent clock\n");
    695		return -ENODEV;
    696	}
    697	dev_dbg(&client->dev, "parent is: %s\n", parent_name);
    698
    699	if (of_property_read_u32(node, "xtal-load-pf", &value) == 0)
    700		regmap_write(data->regmap,
    701			CDCE925_REG_XCSEL, (value << 3) & 0xF8);
    702	/* PWDN bit */
    703	regmap_update_bits(data->regmap, CDCE925_REG_GLOBAL1, BIT(4), 0);
    704
    705	/* Set input source for Y1 to be the XTAL */
    706	regmap_update_bits(data->regmap, 0x02, BIT(7), 0);
    707
    708	init.ops = &cdce925_pll_ops;
    709	init.flags = 0;
    710	init.parent_names = &parent_name;
    711	init.num_parents = 1;
    712
    713	/* Register PLL clocks */
    714	for (i = 0; i < data->chip_info->num_plls; ++i) {
    715		pll_clk_name[i] = kasprintf(GFP_KERNEL, "%pOFn.pll%d",
    716			client->dev.of_node, i);
    717		init.name = pll_clk_name[i];
    718		data->pll[i].chip = data;
    719		data->pll[i].hw.init = &init;
    720		data->pll[i].index = i;
    721		err = devm_clk_hw_register(&client->dev, &data->pll[i].hw);
    722		if (err) {
    723			dev_err(&client->dev, "Failed register PLL %d\n", i);
    724			goto error;
    725		}
    726		sprintf(child_name, "PLL%d", i+1);
    727		np_output = of_get_child_by_name(node, child_name);
    728		if (!np_output)
    729			continue;
    730		if (!of_property_read_u32(np_output,
    731			"clock-frequency", &value)) {
    732			err = clk_set_rate(data->pll[i].hw.clk, value);
    733			if (err)
    734				dev_err(&client->dev,
    735					"unable to set PLL frequency %ud\n",
    736					value);
    737		}
    738		if (!of_property_read_u32(np_output,
    739			"spread-spectrum", &value)) {
    740			u8 flag = of_property_read_bool(np_output,
    741				"spread-spectrum-center") ? 0x80 : 0x00;
    742			regmap_update_bits(data->regmap,
    743				0x16 + (i*CDCE925_OFFSET_PLL),
    744				0x80, flag);
    745			regmap_update_bits(data->regmap,
    746				0x12 + (i*CDCE925_OFFSET_PLL),
    747				0x07, value & 0x07);
    748		}
    749		of_node_put(np_output);
    750	}
    751
    752	/* Register output clock Y1 */
    753	init.ops = &cdce925_clk_y1_ops;
    754	init.flags = 0;
    755	init.num_parents = 1;
    756	init.parent_names = &parent_name; /* Mux Y1 to input */
    757	init.name = kasprintf(GFP_KERNEL, "%pOFn.Y1", client->dev.of_node);
    758	data->clk[0].chip = data;
    759	data->clk[0].hw.init = &init;
    760	data->clk[0].index = 0;
    761	data->clk[0].pdiv = 1;
    762	err = devm_clk_hw_register(&client->dev, &data->clk[0].hw);
    763	kfree(init.name); /* clock framework made a copy of the name */
    764	if (err) {
    765		dev_err(&client->dev, "clock registration Y1 failed\n");
    766		goto error;
    767	}
    768
    769	/* Register output clocks Y2 .. Y5*/
    770	init.ops = &cdce925_clk_ops;
    771	init.flags = CLK_SET_RATE_PARENT;
    772	init.num_parents = 1;
    773	for (i = 1; i < data->chip_info->num_outputs; ++i) {
    774		init.name = kasprintf(GFP_KERNEL, "%pOFn.Y%d",
    775			client->dev.of_node, i+1);
    776		data->clk[i].chip = data;
    777		data->clk[i].hw.init = &init;
    778		data->clk[i].index = i;
    779		data->clk[i].pdiv = 1;
    780		switch (i) {
    781		case 1:
    782		case 2:
    783			/* Mux Y2/3 to PLL1 */
    784			init.parent_names = &pll_clk_name[0];
    785			break;
    786		case 3:
    787		case 4:
    788			/* Mux Y4/5 to PLL2 */
    789			init.parent_names = &pll_clk_name[1];
    790			break;
    791		case 5:
    792		case 6:
    793			/* Mux Y6/7 to PLL3 */
    794			init.parent_names = &pll_clk_name[2];
    795			break;
    796		case 7:
    797		case 8:
    798			/* Mux Y8/9 to PLL4 */
    799			init.parent_names = &pll_clk_name[3];
    800			break;
    801		}
    802		err = devm_clk_hw_register(&client->dev, &data->clk[i].hw);
    803		kfree(init.name); /* clock framework made a copy of the name */
    804		if (err) {
    805			dev_err(&client->dev, "clock registration failed\n");
    806			goto error;
    807		}
    808	}
    809
    810	/* Register the output clocks */
    811	err = of_clk_add_hw_provider(client->dev.of_node, of_clk_cdce925_get,
    812				  data);
    813	if (err)
    814		dev_err(&client->dev, "unable to add OF clock provider\n");
    815
    816	err = 0;
    817
    818error:
    819	for (i = 0; i < data->chip_info->num_plls; ++i)
    820		/* clock framework made a copy of the name */
    821		kfree(pll_clk_name[i]);
    822
    823	return err;
    824}
    825
    826static const struct of_device_id clk_cdce925_of_match[] = {
    827	{ .compatible = "ti,cdce913" },
    828	{ .compatible = "ti,cdce925" },
    829	{ .compatible = "ti,cdce937" },
    830	{ .compatible = "ti,cdce949" },
    831	{ },
    832};
    833MODULE_DEVICE_TABLE(of, clk_cdce925_of_match);
    834
    835static struct i2c_driver cdce925_driver = {
    836	.driver = {
    837		.name = "cdce925",
    838		.of_match_table = of_match_ptr(clk_cdce925_of_match),
    839	},
    840	.probe_new	= cdce925_probe,
    841	.id_table	= cdce925_id,
    842};
    843module_i2c_driver(cdce925_driver);
    844
    845MODULE_AUTHOR("Mike Looijmans <mike.looijmans@topic.nl>");
    846MODULE_DESCRIPTION("TI CDCE913/925/937/949 driver");
    847MODULE_LICENSE("GPL");