clk.c (134111B)
1// SPDX-License-Identifier: GPL-2.0 2/* 3 * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com> 4 * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org> 5 * 6 * Standard functionality for the common clock API. See Documentation/driver-api/clk.rst 7 */ 8 9#include <linux/clk.h> 10#include <linux/clk-provider.h> 11#include <linux/clk/clk-conf.h> 12#include <linux/module.h> 13#include <linux/mutex.h> 14#include <linux/spinlock.h> 15#include <linux/err.h> 16#include <linux/list.h> 17#include <linux/slab.h> 18#include <linux/of.h> 19#include <linux/device.h> 20#include <linux/init.h> 21#include <linux/pm_runtime.h> 22#include <linux/sched.h> 23#include <linux/clkdev.h> 24 25#include "clk.h" 26 27static DEFINE_SPINLOCK(enable_lock); 28static DEFINE_MUTEX(prepare_lock); 29 30static struct task_struct *prepare_owner; 31static struct task_struct *enable_owner; 32 33static int prepare_refcnt; 34static int enable_refcnt; 35 36static HLIST_HEAD(clk_root_list); 37static HLIST_HEAD(clk_orphan_list); 38static LIST_HEAD(clk_notifier_list); 39 40static const struct hlist_head *all_lists[] = { 41 &clk_root_list, 42 &clk_orphan_list, 43 NULL, 44}; 45 46/*** private data structures ***/ 47 48struct clk_parent_map { 49 const struct clk_hw *hw; 50 struct clk_core *core; 51 const char *fw_name; 52 const char *name; 53 int index; 54}; 55 56struct clk_core { 57 const char *name; 58 const struct clk_ops *ops; 59 struct clk_hw *hw; 60 struct module *owner; 61 struct device *dev; 62 struct device_node *of_node; 63 struct clk_core *parent; 64 struct clk_parent_map *parents; 65 u8 num_parents; 66 u8 new_parent_index; 67 unsigned long rate; 68 unsigned long req_rate; 69 unsigned long new_rate; 70 struct clk_core *new_parent; 71 struct clk_core *new_child; 72 unsigned long flags; 73 bool orphan; 74 bool rpm_enabled; 75 unsigned int enable_count; 76 unsigned int prepare_count; 77 unsigned int protect_count; 78 unsigned long min_rate; 79 unsigned long max_rate; 80 unsigned long accuracy; 81 int phase; 82 struct clk_duty duty; 83 struct hlist_head children; 84 struct hlist_node child_node; 85 struct hlist_head clks; 86 unsigned int notifier_count; 87#ifdef CONFIG_DEBUG_FS 88 struct dentry *dentry; 89 struct hlist_node debug_node; 90#endif 91 struct kref ref; 92}; 93 94#define CREATE_TRACE_POINTS 95#include <trace/events/clk.h> 96 97struct clk { 98 struct clk_core *core; 99 struct device *dev; 100 const char *dev_id; 101 const char *con_id; 102 unsigned long min_rate; 103 unsigned long max_rate; 104 unsigned int exclusive_count; 105 struct hlist_node clks_node; 106}; 107 108/*** runtime pm ***/ 109static int clk_pm_runtime_get(struct clk_core *core) 110{ 111 if (!core->rpm_enabled) 112 return 0; 113 114 return pm_runtime_resume_and_get(core->dev); 115} 116 117static void clk_pm_runtime_put(struct clk_core *core) 118{ 119 if (!core->rpm_enabled) 120 return; 121 122 pm_runtime_put_sync(core->dev); 123} 124 125/*** locking ***/ 126static void clk_prepare_lock(void) 127{ 128 if (!mutex_trylock(&prepare_lock)) { 129 if (prepare_owner == current) { 130 prepare_refcnt++; 131 return; 132 } 133 mutex_lock(&prepare_lock); 134 } 135 WARN_ON_ONCE(prepare_owner != NULL); 136 WARN_ON_ONCE(prepare_refcnt != 0); 137 prepare_owner = current; 138 prepare_refcnt = 1; 139} 140 141static void clk_prepare_unlock(void) 142{ 143 WARN_ON_ONCE(prepare_owner != current); 144 WARN_ON_ONCE(prepare_refcnt == 0); 145 146 if (--prepare_refcnt) 147 return; 148 prepare_owner = NULL; 149 mutex_unlock(&prepare_lock); 150} 151 152static unsigned long clk_enable_lock(void) 153 __acquires(enable_lock) 154{ 155 unsigned long flags; 156 157 /* 158 * On UP systems, spin_trylock_irqsave() always returns true, even if 159 * we already hold the lock. So, in that case, we rely only on 160 * reference counting. 161 */ 162 if (!IS_ENABLED(CONFIG_SMP) || 163 !spin_trylock_irqsave(&enable_lock, flags)) { 164 if (enable_owner == current) { 165 enable_refcnt++; 166 __acquire(enable_lock); 167 if (!IS_ENABLED(CONFIG_SMP)) 168 local_save_flags(flags); 169 return flags; 170 } 171 spin_lock_irqsave(&enable_lock, flags); 172 } 173 WARN_ON_ONCE(enable_owner != NULL); 174 WARN_ON_ONCE(enable_refcnt != 0); 175 enable_owner = current; 176 enable_refcnt = 1; 177 return flags; 178} 179 180static void clk_enable_unlock(unsigned long flags) 181 __releases(enable_lock) 182{ 183 WARN_ON_ONCE(enable_owner != current); 184 WARN_ON_ONCE(enable_refcnt == 0); 185 186 if (--enable_refcnt) { 187 __release(enable_lock); 188 return; 189 } 190 enable_owner = NULL; 191 spin_unlock_irqrestore(&enable_lock, flags); 192} 193 194static bool clk_core_rate_is_protected(struct clk_core *core) 195{ 196 return core->protect_count; 197} 198 199static bool clk_core_is_prepared(struct clk_core *core) 200{ 201 bool ret = false; 202 203 /* 204 * .is_prepared is optional for clocks that can prepare 205 * fall back to software usage counter if it is missing 206 */ 207 if (!core->ops->is_prepared) 208 return core->prepare_count; 209 210 if (!clk_pm_runtime_get(core)) { 211 ret = core->ops->is_prepared(core->hw); 212 clk_pm_runtime_put(core); 213 } 214 215 return ret; 216} 217 218static bool clk_core_is_enabled(struct clk_core *core) 219{ 220 bool ret = false; 221 222 /* 223 * .is_enabled is only mandatory for clocks that gate 224 * fall back to software usage counter if .is_enabled is missing 225 */ 226 if (!core->ops->is_enabled) 227 return core->enable_count; 228 229 /* 230 * Check if clock controller's device is runtime active before 231 * calling .is_enabled callback. If not, assume that clock is 232 * disabled, because we might be called from atomic context, from 233 * which pm_runtime_get() is not allowed. 234 * This function is called mainly from clk_disable_unused_subtree, 235 * which ensures proper runtime pm activation of controller before 236 * taking enable spinlock, but the below check is needed if one tries 237 * to call it from other places. 238 */ 239 if (core->rpm_enabled) { 240 pm_runtime_get_noresume(core->dev); 241 if (!pm_runtime_active(core->dev)) { 242 ret = false; 243 goto done; 244 } 245 } 246 247 ret = core->ops->is_enabled(core->hw); 248done: 249 if (core->rpm_enabled) 250 pm_runtime_put(core->dev); 251 252 return ret; 253} 254 255/*** helper functions ***/ 256 257const char *__clk_get_name(const struct clk *clk) 258{ 259 return !clk ? NULL : clk->core->name; 260} 261EXPORT_SYMBOL_GPL(__clk_get_name); 262 263const char *clk_hw_get_name(const struct clk_hw *hw) 264{ 265 return hw->core->name; 266} 267EXPORT_SYMBOL_GPL(clk_hw_get_name); 268 269struct clk_hw *__clk_get_hw(struct clk *clk) 270{ 271 return !clk ? NULL : clk->core->hw; 272} 273EXPORT_SYMBOL_GPL(__clk_get_hw); 274 275unsigned int clk_hw_get_num_parents(const struct clk_hw *hw) 276{ 277 return hw->core->num_parents; 278} 279EXPORT_SYMBOL_GPL(clk_hw_get_num_parents); 280 281struct clk_hw *clk_hw_get_parent(const struct clk_hw *hw) 282{ 283 return hw->core->parent ? hw->core->parent->hw : NULL; 284} 285EXPORT_SYMBOL_GPL(clk_hw_get_parent); 286 287static struct clk_core *__clk_lookup_subtree(const char *name, 288 struct clk_core *core) 289{ 290 struct clk_core *child; 291 struct clk_core *ret; 292 293 if (!strcmp(core->name, name)) 294 return core; 295 296 hlist_for_each_entry(child, &core->children, child_node) { 297 ret = __clk_lookup_subtree(name, child); 298 if (ret) 299 return ret; 300 } 301 302 return NULL; 303} 304 305static struct clk_core *clk_core_lookup(const char *name) 306{ 307 struct clk_core *root_clk; 308 struct clk_core *ret; 309 310 if (!name) 311 return NULL; 312 313 /* search the 'proper' clk tree first */ 314 hlist_for_each_entry(root_clk, &clk_root_list, child_node) { 315 ret = __clk_lookup_subtree(name, root_clk); 316 if (ret) 317 return ret; 318 } 319 320 /* if not found, then search the orphan tree */ 321 hlist_for_each_entry(root_clk, &clk_orphan_list, child_node) { 322 ret = __clk_lookup_subtree(name, root_clk); 323 if (ret) 324 return ret; 325 } 326 327 return NULL; 328} 329 330#ifdef CONFIG_OF 331static int of_parse_clkspec(const struct device_node *np, int index, 332 const char *name, struct of_phandle_args *out_args); 333static struct clk_hw * 334of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec); 335#else 336static inline int of_parse_clkspec(const struct device_node *np, int index, 337 const char *name, 338 struct of_phandle_args *out_args) 339{ 340 return -ENOENT; 341} 342static inline struct clk_hw * 343of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec) 344{ 345 return ERR_PTR(-ENOENT); 346} 347#endif 348 349/** 350 * clk_core_get - Find the clk_core parent of a clk 351 * @core: clk to find parent of 352 * @p_index: parent index to search for 353 * 354 * This is the preferred method for clk providers to find the parent of a 355 * clk when that parent is external to the clk controller. The parent_names 356 * array is indexed and treated as a local name matching a string in the device 357 * node's 'clock-names' property or as the 'con_id' matching the device's 358 * dev_name() in a clk_lookup. This allows clk providers to use their own 359 * namespace instead of looking for a globally unique parent string. 360 * 361 * For example the following DT snippet would allow a clock registered by the 362 * clock-controller@c001 that has a clk_init_data::parent_data array 363 * with 'xtal' in the 'name' member to find the clock provided by the 364 * clock-controller@f00abcd without needing to get the globally unique name of 365 * the xtal clk. 366 * 367 * parent: clock-controller@f00abcd { 368 * reg = <0xf00abcd 0xabcd>; 369 * #clock-cells = <0>; 370 * }; 371 * 372 * clock-controller@c001 { 373 * reg = <0xc001 0xf00d>; 374 * clocks = <&parent>; 375 * clock-names = "xtal"; 376 * #clock-cells = <1>; 377 * }; 378 * 379 * Returns: -ENOENT when the provider can't be found or the clk doesn't 380 * exist in the provider or the name can't be found in the DT node or 381 * in a clkdev lookup. NULL when the provider knows about the clk but it 382 * isn't provided on this system. 383 * A valid clk_core pointer when the clk can be found in the provider. 384 */ 385static struct clk_core *clk_core_get(struct clk_core *core, u8 p_index) 386{ 387 const char *name = core->parents[p_index].fw_name; 388 int index = core->parents[p_index].index; 389 struct clk_hw *hw = ERR_PTR(-ENOENT); 390 struct device *dev = core->dev; 391 const char *dev_id = dev ? dev_name(dev) : NULL; 392 struct device_node *np = core->of_node; 393 struct of_phandle_args clkspec; 394 395 if (np && (name || index >= 0) && 396 !of_parse_clkspec(np, index, name, &clkspec)) { 397 hw = of_clk_get_hw_from_clkspec(&clkspec); 398 of_node_put(clkspec.np); 399 } else if (name) { 400 /* 401 * If the DT search above couldn't find the provider fallback to 402 * looking up via clkdev based clk_lookups. 403 */ 404 hw = clk_find_hw(dev_id, name); 405 } 406 407 if (IS_ERR(hw)) 408 return ERR_CAST(hw); 409 410 return hw->core; 411} 412 413static void clk_core_fill_parent_index(struct clk_core *core, u8 index) 414{ 415 struct clk_parent_map *entry = &core->parents[index]; 416 struct clk_core *parent; 417 418 if (entry->hw) { 419 parent = entry->hw->core; 420 } else { 421 parent = clk_core_get(core, index); 422 if (PTR_ERR(parent) == -ENOENT && entry->name) 423 parent = clk_core_lookup(entry->name); 424 } 425 426 /* 427 * We have a direct reference but it isn't registered yet? 428 * Orphan it and let clk_reparent() update the orphan status 429 * when the parent is registered. 430 */ 431 if (!parent) 432 parent = ERR_PTR(-EPROBE_DEFER); 433 434 /* Only cache it if it's not an error */ 435 if (!IS_ERR(parent)) 436 entry->core = parent; 437} 438 439static struct clk_core *clk_core_get_parent_by_index(struct clk_core *core, 440 u8 index) 441{ 442 if (!core || index >= core->num_parents || !core->parents) 443 return NULL; 444 445 if (!core->parents[index].core) 446 clk_core_fill_parent_index(core, index); 447 448 return core->parents[index].core; 449} 450 451struct clk_hw * 452clk_hw_get_parent_by_index(const struct clk_hw *hw, unsigned int index) 453{ 454 struct clk_core *parent; 455 456 parent = clk_core_get_parent_by_index(hw->core, index); 457 458 return !parent ? NULL : parent->hw; 459} 460EXPORT_SYMBOL_GPL(clk_hw_get_parent_by_index); 461 462unsigned int __clk_get_enable_count(struct clk *clk) 463{ 464 return !clk ? 0 : clk->core->enable_count; 465} 466 467static unsigned long clk_core_get_rate_nolock(struct clk_core *core) 468{ 469 if (!core) 470 return 0; 471 472 if (!core->num_parents || core->parent) 473 return core->rate; 474 475 /* 476 * Clk must have a parent because num_parents > 0 but the parent isn't 477 * known yet. Best to return 0 as the rate of this clk until we can 478 * properly recalc the rate based on the parent's rate. 479 */ 480 return 0; 481} 482 483unsigned long clk_hw_get_rate(const struct clk_hw *hw) 484{ 485 return clk_core_get_rate_nolock(hw->core); 486} 487EXPORT_SYMBOL_GPL(clk_hw_get_rate); 488 489static unsigned long clk_core_get_accuracy_no_lock(struct clk_core *core) 490{ 491 if (!core) 492 return 0; 493 494 return core->accuracy; 495} 496 497unsigned long clk_hw_get_flags(const struct clk_hw *hw) 498{ 499 return hw->core->flags; 500} 501EXPORT_SYMBOL_GPL(clk_hw_get_flags); 502 503bool clk_hw_is_prepared(const struct clk_hw *hw) 504{ 505 return clk_core_is_prepared(hw->core); 506} 507EXPORT_SYMBOL_GPL(clk_hw_is_prepared); 508 509bool clk_hw_rate_is_protected(const struct clk_hw *hw) 510{ 511 return clk_core_rate_is_protected(hw->core); 512} 513EXPORT_SYMBOL_GPL(clk_hw_rate_is_protected); 514 515bool clk_hw_is_enabled(const struct clk_hw *hw) 516{ 517 return clk_core_is_enabled(hw->core); 518} 519EXPORT_SYMBOL_GPL(clk_hw_is_enabled); 520 521bool __clk_is_enabled(struct clk *clk) 522{ 523 if (!clk) 524 return false; 525 526 return clk_core_is_enabled(clk->core); 527} 528EXPORT_SYMBOL_GPL(__clk_is_enabled); 529 530static bool mux_is_better_rate(unsigned long rate, unsigned long now, 531 unsigned long best, unsigned long flags) 532{ 533 if (flags & CLK_MUX_ROUND_CLOSEST) 534 return abs(now - rate) < abs(best - rate); 535 536 return now <= rate && now > best; 537} 538 539int clk_mux_determine_rate_flags(struct clk_hw *hw, 540 struct clk_rate_request *req, 541 unsigned long flags) 542{ 543 struct clk_core *core = hw->core, *parent, *best_parent = NULL; 544 int i, num_parents, ret; 545 unsigned long best = 0; 546 struct clk_rate_request parent_req = *req; 547 548 /* if NO_REPARENT flag set, pass through to current parent */ 549 if (core->flags & CLK_SET_RATE_NO_REPARENT) { 550 parent = core->parent; 551 if (core->flags & CLK_SET_RATE_PARENT) { 552 ret = __clk_determine_rate(parent ? parent->hw : NULL, 553 &parent_req); 554 if (ret) 555 return ret; 556 557 best = parent_req.rate; 558 } else if (parent) { 559 best = clk_core_get_rate_nolock(parent); 560 } else { 561 best = clk_core_get_rate_nolock(core); 562 } 563 564 goto out; 565 } 566 567 /* find the parent that can provide the fastest rate <= rate */ 568 num_parents = core->num_parents; 569 for (i = 0; i < num_parents; i++) { 570 parent = clk_core_get_parent_by_index(core, i); 571 if (!parent) 572 continue; 573 574 if (core->flags & CLK_SET_RATE_PARENT) { 575 parent_req = *req; 576 ret = __clk_determine_rate(parent->hw, &parent_req); 577 if (ret) 578 continue; 579 } else { 580 parent_req.rate = clk_core_get_rate_nolock(parent); 581 } 582 583 if (mux_is_better_rate(req->rate, parent_req.rate, 584 best, flags)) { 585 best_parent = parent; 586 best = parent_req.rate; 587 } 588 } 589 590 if (!best_parent) 591 return -EINVAL; 592 593out: 594 if (best_parent) 595 req->best_parent_hw = best_parent->hw; 596 req->best_parent_rate = best; 597 req->rate = best; 598 599 return 0; 600} 601EXPORT_SYMBOL_GPL(clk_mux_determine_rate_flags); 602 603struct clk *__clk_lookup(const char *name) 604{ 605 struct clk_core *core = clk_core_lookup(name); 606 607 return !core ? NULL : core->hw->clk; 608} 609 610static void clk_core_get_boundaries(struct clk_core *core, 611 unsigned long *min_rate, 612 unsigned long *max_rate) 613{ 614 struct clk *clk_user; 615 616 lockdep_assert_held(&prepare_lock); 617 618 *min_rate = core->min_rate; 619 *max_rate = core->max_rate; 620 621 hlist_for_each_entry(clk_user, &core->clks, clks_node) 622 *min_rate = max(*min_rate, clk_user->min_rate); 623 624 hlist_for_each_entry(clk_user, &core->clks, clks_node) 625 *max_rate = min(*max_rate, clk_user->max_rate); 626} 627 628static bool clk_core_check_boundaries(struct clk_core *core, 629 unsigned long min_rate, 630 unsigned long max_rate) 631{ 632 struct clk *user; 633 634 lockdep_assert_held(&prepare_lock); 635 636 if (min_rate > core->max_rate || max_rate < core->min_rate) 637 return false; 638 639 hlist_for_each_entry(user, &core->clks, clks_node) 640 if (min_rate > user->max_rate || max_rate < user->min_rate) 641 return false; 642 643 return true; 644} 645 646void clk_hw_set_rate_range(struct clk_hw *hw, unsigned long min_rate, 647 unsigned long max_rate) 648{ 649 hw->core->min_rate = min_rate; 650 hw->core->max_rate = max_rate; 651} 652EXPORT_SYMBOL_GPL(clk_hw_set_rate_range); 653 654/* 655 * __clk_mux_determine_rate - clk_ops::determine_rate implementation for a mux type clk 656 * @hw: mux type clk to determine rate on 657 * @req: rate request, also used to return preferred parent and frequencies 658 * 659 * Helper for finding best parent to provide a given frequency. This can be used 660 * directly as a determine_rate callback (e.g. for a mux), or from a more 661 * complex clock that may combine a mux with other operations. 662 * 663 * Returns: 0 on success, -EERROR value on error 664 */ 665int __clk_mux_determine_rate(struct clk_hw *hw, 666 struct clk_rate_request *req) 667{ 668 return clk_mux_determine_rate_flags(hw, req, 0); 669} 670EXPORT_SYMBOL_GPL(__clk_mux_determine_rate); 671 672int __clk_mux_determine_rate_closest(struct clk_hw *hw, 673 struct clk_rate_request *req) 674{ 675 return clk_mux_determine_rate_flags(hw, req, CLK_MUX_ROUND_CLOSEST); 676} 677EXPORT_SYMBOL_GPL(__clk_mux_determine_rate_closest); 678 679/*** clk api ***/ 680 681static void clk_core_rate_unprotect(struct clk_core *core) 682{ 683 lockdep_assert_held(&prepare_lock); 684 685 if (!core) 686 return; 687 688 if (WARN(core->protect_count == 0, 689 "%s already unprotected\n", core->name)) 690 return; 691 692 if (--core->protect_count > 0) 693 return; 694 695 clk_core_rate_unprotect(core->parent); 696} 697 698static int clk_core_rate_nuke_protect(struct clk_core *core) 699{ 700 int ret; 701 702 lockdep_assert_held(&prepare_lock); 703 704 if (!core) 705 return -EINVAL; 706 707 if (core->protect_count == 0) 708 return 0; 709 710 ret = core->protect_count; 711 core->protect_count = 1; 712 clk_core_rate_unprotect(core); 713 714 return ret; 715} 716 717/** 718 * clk_rate_exclusive_put - release exclusivity over clock rate control 719 * @clk: the clk over which the exclusivity is released 720 * 721 * clk_rate_exclusive_put() completes a critical section during which a clock 722 * consumer cannot tolerate any other consumer making any operation on the 723 * clock which could result in a rate change or rate glitch. Exclusive clocks 724 * cannot have their rate changed, either directly or indirectly due to changes 725 * further up the parent chain of clocks. As a result, clocks up parent chain 726 * also get under exclusive control of the calling consumer. 727 * 728 * If exlusivity is claimed more than once on clock, even by the same consumer, 729 * the rate effectively gets locked as exclusivity can't be preempted. 730 * 731 * Calls to clk_rate_exclusive_put() must be balanced with calls to 732 * clk_rate_exclusive_get(). Calls to this function may sleep, and do not return 733 * error status. 734 */ 735void clk_rate_exclusive_put(struct clk *clk) 736{ 737 if (!clk) 738 return; 739 740 clk_prepare_lock(); 741 742 /* 743 * if there is something wrong with this consumer protect count, stop 744 * here before messing with the provider 745 */ 746 if (WARN_ON(clk->exclusive_count <= 0)) 747 goto out; 748 749 clk_core_rate_unprotect(clk->core); 750 clk->exclusive_count--; 751out: 752 clk_prepare_unlock(); 753} 754EXPORT_SYMBOL_GPL(clk_rate_exclusive_put); 755 756static void clk_core_rate_protect(struct clk_core *core) 757{ 758 lockdep_assert_held(&prepare_lock); 759 760 if (!core) 761 return; 762 763 if (core->protect_count == 0) 764 clk_core_rate_protect(core->parent); 765 766 core->protect_count++; 767} 768 769static void clk_core_rate_restore_protect(struct clk_core *core, int count) 770{ 771 lockdep_assert_held(&prepare_lock); 772 773 if (!core) 774 return; 775 776 if (count == 0) 777 return; 778 779 clk_core_rate_protect(core); 780 core->protect_count = count; 781} 782 783/** 784 * clk_rate_exclusive_get - get exclusivity over the clk rate control 785 * @clk: the clk over which the exclusity of rate control is requested 786 * 787 * clk_rate_exclusive_get() begins a critical section during which a clock 788 * consumer cannot tolerate any other consumer making any operation on the 789 * clock which could result in a rate change or rate glitch. Exclusive clocks 790 * cannot have their rate changed, either directly or indirectly due to changes 791 * further up the parent chain of clocks. As a result, clocks up parent chain 792 * also get under exclusive control of the calling consumer. 793 * 794 * If exlusivity is claimed more than once on clock, even by the same consumer, 795 * the rate effectively gets locked as exclusivity can't be preempted. 796 * 797 * Calls to clk_rate_exclusive_get() should be balanced with calls to 798 * clk_rate_exclusive_put(). Calls to this function may sleep. 799 * Returns 0 on success, -EERROR otherwise 800 */ 801int clk_rate_exclusive_get(struct clk *clk) 802{ 803 if (!clk) 804 return 0; 805 806 clk_prepare_lock(); 807 clk_core_rate_protect(clk->core); 808 clk->exclusive_count++; 809 clk_prepare_unlock(); 810 811 return 0; 812} 813EXPORT_SYMBOL_GPL(clk_rate_exclusive_get); 814 815static void clk_core_unprepare(struct clk_core *core) 816{ 817 lockdep_assert_held(&prepare_lock); 818 819 if (!core) 820 return; 821 822 if (WARN(core->prepare_count == 0, 823 "%s already unprepared\n", core->name)) 824 return; 825 826 if (WARN(core->prepare_count == 1 && core->flags & CLK_IS_CRITICAL, 827 "Unpreparing critical %s\n", core->name)) 828 return; 829 830 if (core->flags & CLK_SET_RATE_GATE) 831 clk_core_rate_unprotect(core); 832 833 if (--core->prepare_count > 0) 834 return; 835 836 WARN(core->enable_count > 0, "Unpreparing enabled %s\n", core->name); 837 838 trace_clk_unprepare(core); 839 840 if (core->ops->unprepare) 841 core->ops->unprepare(core->hw); 842 843 clk_pm_runtime_put(core); 844 845 trace_clk_unprepare_complete(core); 846 clk_core_unprepare(core->parent); 847} 848 849static void clk_core_unprepare_lock(struct clk_core *core) 850{ 851 clk_prepare_lock(); 852 clk_core_unprepare(core); 853 clk_prepare_unlock(); 854} 855 856/** 857 * clk_unprepare - undo preparation of a clock source 858 * @clk: the clk being unprepared 859 * 860 * clk_unprepare may sleep, which differentiates it from clk_disable. In a 861 * simple case, clk_unprepare can be used instead of clk_disable to gate a clk 862 * if the operation may sleep. One example is a clk which is accessed over 863 * I2c. In the complex case a clk gate operation may require a fast and a slow 864 * part. It is this reason that clk_unprepare and clk_disable are not mutually 865 * exclusive. In fact clk_disable must be called before clk_unprepare. 866 */ 867void clk_unprepare(struct clk *clk) 868{ 869 if (IS_ERR_OR_NULL(clk)) 870 return; 871 872 clk_core_unprepare_lock(clk->core); 873} 874EXPORT_SYMBOL_GPL(clk_unprepare); 875 876static int clk_core_prepare(struct clk_core *core) 877{ 878 int ret = 0; 879 880 lockdep_assert_held(&prepare_lock); 881 882 if (!core) 883 return 0; 884 885 if (core->prepare_count == 0) { 886 ret = clk_pm_runtime_get(core); 887 if (ret) 888 return ret; 889 890 ret = clk_core_prepare(core->parent); 891 if (ret) 892 goto runtime_put; 893 894 trace_clk_prepare(core); 895 896 if (core->ops->prepare) 897 ret = core->ops->prepare(core->hw); 898 899 trace_clk_prepare_complete(core); 900 901 if (ret) 902 goto unprepare; 903 } 904 905 core->prepare_count++; 906 907 /* 908 * CLK_SET_RATE_GATE is a special case of clock protection 909 * Instead of a consumer claiming exclusive rate control, it is 910 * actually the provider which prevents any consumer from making any 911 * operation which could result in a rate change or rate glitch while 912 * the clock is prepared. 913 */ 914 if (core->flags & CLK_SET_RATE_GATE) 915 clk_core_rate_protect(core); 916 917 return 0; 918unprepare: 919 clk_core_unprepare(core->parent); 920runtime_put: 921 clk_pm_runtime_put(core); 922 return ret; 923} 924 925static int clk_core_prepare_lock(struct clk_core *core) 926{ 927 int ret; 928 929 clk_prepare_lock(); 930 ret = clk_core_prepare(core); 931 clk_prepare_unlock(); 932 933 return ret; 934} 935 936/** 937 * clk_prepare - prepare a clock source 938 * @clk: the clk being prepared 939 * 940 * clk_prepare may sleep, which differentiates it from clk_enable. In a simple 941 * case, clk_prepare can be used instead of clk_enable to ungate a clk if the 942 * operation may sleep. One example is a clk which is accessed over I2c. In 943 * the complex case a clk ungate operation may require a fast and a slow part. 944 * It is this reason that clk_prepare and clk_enable are not mutually 945 * exclusive. In fact clk_prepare must be called before clk_enable. 946 * Returns 0 on success, -EERROR otherwise. 947 */ 948int clk_prepare(struct clk *clk) 949{ 950 if (!clk) 951 return 0; 952 953 return clk_core_prepare_lock(clk->core); 954} 955EXPORT_SYMBOL_GPL(clk_prepare); 956 957static void clk_core_disable(struct clk_core *core) 958{ 959 lockdep_assert_held(&enable_lock); 960 961 if (!core) 962 return; 963 964 if (WARN(core->enable_count == 0, "%s already disabled\n", core->name)) 965 return; 966 967 if (WARN(core->enable_count == 1 && core->flags & CLK_IS_CRITICAL, 968 "Disabling critical %s\n", core->name)) 969 return; 970 971 if (--core->enable_count > 0) 972 return; 973 974 trace_clk_disable_rcuidle(core); 975 976 if (core->ops->disable) 977 core->ops->disable(core->hw); 978 979 trace_clk_disable_complete_rcuidle(core); 980 981 clk_core_disable(core->parent); 982} 983 984static void clk_core_disable_lock(struct clk_core *core) 985{ 986 unsigned long flags; 987 988 flags = clk_enable_lock(); 989 clk_core_disable(core); 990 clk_enable_unlock(flags); 991} 992 993/** 994 * clk_disable - gate a clock 995 * @clk: the clk being gated 996 * 997 * clk_disable must not sleep, which differentiates it from clk_unprepare. In 998 * a simple case, clk_disable can be used instead of clk_unprepare to gate a 999 * clk if the operation is fast and will never sleep. One example is a 1000 * SoC-internal clk which is controlled via simple register writes. In the 1001 * complex case a clk gate operation may require a fast and a slow part. It is 1002 * this reason that clk_unprepare and clk_disable are not mutually exclusive. 1003 * In fact clk_disable must be called before clk_unprepare. 1004 */ 1005void clk_disable(struct clk *clk) 1006{ 1007 if (IS_ERR_OR_NULL(clk)) 1008 return; 1009 1010 clk_core_disable_lock(clk->core); 1011} 1012EXPORT_SYMBOL_GPL(clk_disable); 1013 1014static int clk_core_enable(struct clk_core *core) 1015{ 1016 int ret = 0; 1017 1018 lockdep_assert_held(&enable_lock); 1019 1020 if (!core) 1021 return 0; 1022 1023 if (WARN(core->prepare_count == 0, 1024 "Enabling unprepared %s\n", core->name)) 1025 return -ESHUTDOWN; 1026 1027 if (core->enable_count == 0) { 1028 ret = clk_core_enable(core->parent); 1029 1030 if (ret) 1031 return ret; 1032 1033 trace_clk_enable_rcuidle(core); 1034 1035 if (core->ops->enable) 1036 ret = core->ops->enable(core->hw); 1037 1038 trace_clk_enable_complete_rcuidle(core); 1039 1040 if (ret) { 1041 clk_core_disable(core->parent); 1042 return ret; 1043 } 1044 } 1045 1046 core->enable_count++; 1047 return 0; 1048} 1049 1050static int clk_core_enable_lock(struct clk_core *core) 1051{ 1052 unsigned long flags; 1053 int ret; 1054 1055 flags = clk_enable_lock(); 1056 ret = clk_core_enable(core); 1057 clk_enable_unlock(flags); 1058 1059 return ret; 1060} 1061 1062/** 1063 * clk_gate_restore_context - restore context for poweroff 1064 * @hw: the clk_hw pointer of clock whose state is to be restored 1065 * 1066 * The clock gate restore context function enables or disables 1067 * the gate clocks based on the enable_count. This is done in cases 1068 * where the clock context is lost and based on the enable_count 1069 * the clock either needs to be enabled/disabled. This 1070 * helps restore the state of gate clocks. 1071 */ 1072void clk_gate_restore_context(struct clk_hw *hw) 1073{ 1074 struct clk_core *core = hw->core; 1075 1076 if (core->enable_count) 1077 core->ops->enable(hw); 1078 else 1079 core->ops->disable(hw); 1080} 1081EXPORT_SYMBOL_GPL(clk_gate_restore_context); 1082 1083static int clk_core_save_context(struct clk_core *core) 1084{ 1085 struct clk_core *child; 1086 int ret = 0; 1087 1088 hlist_for_each_entry(child, &core->children, child_node) { 1089 ret = clk_core_save_context(child); 1090 if (ret < 0) 1091 return ret; 1092 } 1093 1094 if (core->ops && core->ops->save_context) 1095 ret = core->ops->save_context(core->hw); 1096 1097 return ret; 1098} 1099 1100static void clk_core_restore_context(struct clk_core *core) 1101{ 1102 struct clk_core *child; 1103 1104 if (core->ops && core->ops->restore_context) 1105 core->ops->restore_context(core->hw); 1106 1107 hlist_for_each_entry(child, &core->children, child_node) 1108 clk_core_restore_context(child); 1109} 1110 1111/** 1112 * clk_save_context - save clock context for poweroff 1113 * 1114 * Saves the context of the clock register for powerstates in which the 1115 * contents of the registers will be lost. Occurs deep within the suspend 1116 * code. Returns 0 on success. 1117 */ 1118int clk_save_context(void) 1119{ 1120 struct clk_core *clk; 1121 int ret; 1122 1123 hlist_for_each_entry(clk, &clk_root_list, child_node) { 1124 ret = clk_core_save_context(clk); 1125 if (ret < 0) 1126 return ret; 1127 } 1128 1129 hlist_for_each_entry(clk, &clk_orphan_list, child_node) { 1130 ret = clk_core_save_context(clk); 1131 if (ret < 0) 1132 return ret; 1133 } 1134 1135 return 0; 1136} 1137EXPORT_SYMBOL_GPL(clk_save_context); 1138 1139/** 1140 * clk_restore_context - restore clock context after poweroff 1141 * 1142 * Restore the saved clock context upon resume. 1143 * 1144 */ 1145void clk_restore_context(void) 1146{ 1147 struct clk_core *core; 1148 1149 hlist_for_each_entry(core, &clk_root_list, child_node) 1150 clk_core_restore_context(core); 1151 1152 hlist_for_each_entry(core, &clk_orphan_list, child_node) 1153 clk_core_restore_context(core); 1154} 1155EXPORT_SYMBOL_GPL(clk_restore_context); 1156 1157/** 1158 * clk_enable - ungate a clock 1159 * @clk: the clk being ungated 1160 * 1161 * clk_enable must not sleep, which differentiates it from clk_prepare. In a 1162 * simple case, clk_enable can be used instead of clk_prepare to ungate a clk 1163 * if the operation will never sleep. One example is a SoC-internal clk which 1164 * is controlled via simple register writes. In the complex case a clk ungate 1165 * operation may require a fast and a slow part. It is this reason that 1166 * clk_enable and clk_prepare are not mutually exclusive. In fact clk_prepare 1167 * must be called before clk_enable. Returns 0 on success, -EERROR 1168 * otherwise. 1169 */ 1170int clk_enable(struct clk *clk) 1171{ 1172 if (!clk) 1173 return 0; 1174 1175 return clk_core_enable_lock(clk->core); 1176} 1177EXPORT_SYMBOL_GPL(clk_enable); 1178 1179/** 1180 * clk_is_enabled_when_prepared - indicate if preparing a clock also enables it. 1181 * @clk: clock source 1182 * 1183 * Returns true if clk_prepare() implicitly enables the clock, effectively 1184 * making clk_enable()/clk_disable() no-ops, false otherwise. 1185 * 1186 * This is of interest mainly to power management code where actually 1187 * disabling the clock also requires unpreparing it to have any material 1188 * effect. 1189 * 1190 * Regardless of the value returned here, the caller must always invoke 1191 * clk_enable() or clk_prepare_enable() and counterparts for usage counts 1192 * to be right. 1193 */ 1194bool clk_is_enabled_when_prepared(struct clk *clk) 1195{ 1196 return clk && !(clk->core->ops->enable && clk->core->ops->disable); 1197} 1198EXPORT_SYMBOL_GPL(clk_is_enabled_when_prepared); 1199 1200static int clk_core_prepare_enable(struct clk_core *core) 1201{ 1202 int ret; 1203 1204 ret = clk_core_prepare_lock(core); 1205 if (ret) 1206 return ret; 1207 1208 ret = clk_core_enable_lock(core); 1209 if (ret) 1210 clk_core_unprepare_lock(core); 1211 1212 return ret; 1213} 1214 1215static void clk_core_disable_unprepare(struct clk_core *core) 1216{ 1217 clk_core_disable_lock(core); 1218 clk_core_unprepare_lock(core); 1219} 1220 1221static void __init clk_unprepare_unused_subtree(struct clk_core *core) 1222{ 1223 struct clk_core *child; 1224 1225 lockdep_assert_held(&prepare_lock); 1226 1227 hlist_for_each_entry(child, &core->children, child_node) 1228 clk_unprepare_unused_subtree(child); 1229 1230 if (core->prepare_count) 1231 return; 1232 1233 if (core->flags & CLK_IGNORE_UNUSED) 1234 return; 1235 1236 if (clk_pm_runtime_get(core)) 1237 return; 1238 1239 if (clk_core_is_prepared(core)) { 1240 trace_clk_unprepare(core); 1241 if (core->ops->unprepare_unused) 1242 core->ops->unprepare_unused(core->hw); 1243 else if (core->ops->unprepare) 1244 core->ops->unprepare(core->hw); 1245 trace_clk_unprepare_complete(core); 1246 } 1247 1248 clk_pm_runtime_put(core); 1249} 1250 1251static void __init clk_disable_unused_subtree(struct clk_core *core) 1252{ 1253 struct clk_core *child; 1254 unsigned long flags; 1255 1256 lockdep_assert_held(&prepare_lock); 1257 1258 hlist_for_each_entry(child, &core->children, child_node) 1259 clk_disable_unused_subtree(child); 1260 1261 if (core->flags & CLK_OPS_PARENT_ENABLE) 1262 clk_core_prepare_enable(core->parent); 1263 1264 if (clk_pm_runtime_get(core)) 1265 goto unprepare_out; 1266 1267 flags = clk_enable_lock(); 1268 1269 if (core->enable_count) 1270 goto unlock_out; 1271 1272 if (core->flags & CLK_IGNORE_UNUSED) 1273 goto unlock_out; 1274 1275 /* 1276 * some gate clocks have special needs during the disable-unused 1277 * sequence. call .disable_unused if available, otherwise fall 1278 * back to .disable 1279 */ 1280 if (clk_core_is_enabled(core)) { 1281 trace_clk_disable(core); 1282 if (core->ops->disable_unused) 1283 core->ops->disable_unused(core->hw); 1284 else if (core->ops->disable) 1285 core->ops->disable(core->hw); 1286 trace_clk_disable_complete(core); 1287 } 1288 1289unlock_out: 1290 clk_enable_unlock(flags); 1291 clk_pm_runtime_put(core); 1292unprepare_out: 1293 if (core->flags & CLK_OPS_PARENT_ENABLE) 1294 clk_core_disable_unprepare(core->parent); 1295} 1296 1297static bool clk_ignore_unused __initdata; 1298static int __init clk_ignore_unused_setup(char *__unused) 1299{ 1300 clk_ignore_unused = true; 1301 return 1; 1302} 1303__setup("clk_ignore_unused", clk_ignore_unused_setup); 1304 1305static int __init clk_disable_unused(void) 1306{ 1307 struct clk_core *core; 1308 1309 if (clk_ignore_unused) { 1310 pr_warn("clk: Not disabling unused clocks\n"); 1311 return 0; 1312 } 1313 1314 clk_prepare_lock(); 1315 1316 hlist_for_each_entry(core, &clk_root_list, child_node) 1317 clk_disable_unused_subtree(core); 1318 1319 hlist_for_each_entry(core, &clk_orphan_list, child_node) 1320 clk_disable_unused_subtree(core); 1321 1322 hlist_for_each_entry(core, &clk_root_list, child_node) 1323 clk_unprepare_unused_subtree(core); 1324 1325 hlist_for_each_entry(core, &clk_orphan_list, child_node) 1326 clk_unprepare_unused_subtree(core); 1327 1328 clk_prepare_unlock(); 1329 1330 return 0; 1331} 1332late_initcall_sync(clk_disable_unused); 1333 1334static int clk_core_determine_round_nolock(struct clk_core *core, 1335 struct clk_rate_request *req) 1336{ 1337 long rate; 1338 1339 lockdep_assert_held(&prepare_lock); 1340 1341 if (!core) 1342 return 0; 1343 1344 req->rate = clamp(req->rate, req->min_rate, req->max_rate); 1345 1346 /* 1347 * At this point, core protection will be disabled 1348 * - if the provider is not protected at all 1349 * - if the calling consumer is the only one which has exclusivity 1350 * over the provider 1351 */ 1352 if (clk_core_rate_is_protected(core)) { 1353 req->rate = core->rate; 1354 } else if (core->ops->determine_rate) { 1355 return core->ops->determine_rate(core->hw, req); 1356 } else if (core->ops->round_rate) { 1357 rate = core->ops->round_rate(core->hw, req->rate, 1358 &req->best_parent_rate); 1359 if (rate < 0) 1360 return rate; 1361 1362 req->rate = rate; 1363 } else { 1364 return -EINVAL; 1365 } 1366 1367 return 0; 1368} 1369 1370static void clk_core_init_rate_req(struct clk_core * const core, 1371 struct clk_rate_request *req) 1372{ 1373 struct clk_core *parent; 1374 1375 if (WARN_ON(!core || !req)) 1376 return; 1377 1378 parent = core->parent; 1379 if (parent) { 1380 req->best_parent_hw = parent->hw; 1381 req->best_parent_rate = parent->rate; 1382 } else { 1383 req->best_parent_hw = NULL; 1384 req->best_parent_rate = 0; 1385 } 1386} 1387 1388static bool clk_core_can_round(struct clk_core * const core) 1389{ 1390 return core->ops->determine_rate || core->ops->round_rate; 1391} 1392 1393static int clk_core_round_rate_nolock(struct clk_core *core, 1394 struct clk_rate_request *req) 1395{ 1396 lockdep_assert_held(&prepare_lock); 1397 1398 if (!core) { 1399 req->rate = 0; 1400 return 0; 1401 } 1402 1403 clk_core_init_rate_req(core, req); 1404 1405 if (clk_core_can_round(core)) 1406 return clk_core_determine_round_nolock(core, req); 1407 else if (core->flags & CLK_SET_RATE_PARENT) 1408 return clk_core_round_rate_nolock(core->parent, req); 1409 1410 req->rate = core->rate; 1411 return 0; 1412} 1413 1414/** 1415 * __clk_determine_rate - get the closest rate actually supported by a clock 1416 * @hw: determine the rate of this clock 1417 * @req: target rate request 1418 * 1419 * Useful for clk_ops such as .set_rate and .determine_rate. 1420 */ 1421int __clk_determine_rate(struct clk_hw *hw, struct clk_rate_request *req) 1422{ 1423 if (!hw) { 1424 req->rate = 0; 1425 return 0; 1426 } 1427 1428 return clk_core_round_rate_nolock(hw->core, req); 1429} 1430EXPORT_SYMBOL_GPL(__clk_determine_rate); 1431 1432/** 1433 * clk_hw_round_rate() - round the given rate for a hw clk 1434 * @hw: the hw clk for which we are rounding a rate 1435 * @rate: the rate which is to be rounded 1436 * 1437 * Takes in a rate as input and rounds it to a rate that the clk can actually 1438 * use. 1439 * 1440 * Context: prepare_lock must be held. 1441 * For clk providers to call from within clk_ops such as .round_rate, 1442 * .determine_rate. 1443 * 1444 * Return: returns rounded rate of hw clk if clk supports round_rate operation 1445 * else returns the parent rate. 1446 */ 1447unsigned long clk_hw_round_rate(struct clk_hw *hw, unsigned long rate) 1448{ 1449 int ret; 1450 struct clk_rate_request req; 1451 1452 clk_core_get_boundaries(hw->core, &req.min_rate, &req.max_rate); 1453 req.rate = rate; 1454 1455 ret = clk_core_round_rate_nolock(hw->core, &req); 1456 if (ret) 1457 return 0; 1458 1459 return req.rate; 1460} 1461EXPORT_SYMBOL_GPL(clk_hw_round_rate); 1462 1463/** 1464 * clk_round_rate - round the given rate for a clk 1465 * @clk: the clk for which we are rounding a rate 1466 * @rate: the rate which is to be rounded 1467 * 1468 * Takes in a rate as input and rounds it to a rate that the clk can actually 1469 * use which is then returned. If clk doesn't support round_rate operation 1470 * then the parent rate is returned. 1471 */ 1472long clk_round_rate(struct clk *clk, unsigned long rate) 1473{ 1474 struct clk_rate_request req; 1475 int ret; 1476 1477 if (!clk) 1478 return 0; 1479 1480 clk_prepare_lock(); 1481 1482 if (clk->exclusive_count) 1483 clk_core_rate_unprotect(clk->core); 1484 1485 clk_core_get_boundaries(clk->core, &req.min_rate, &req.max_rate); 1486 req.rate = rate; 1487 1488 ret = clk_core_round_rate_nolock(clk->core, &req); 1489 1490 if (clk->exclusive_count) 1491 clk_core_rate_protect(clk->core); 1492 1493 clk_prepare_unlock(); 1494 1495 if (ret) 1496 return ret; 1497 1498 return req.rate; 1499} 1500EXPORT_SYMBOL_GPL(clk_round_rate); 1501 1502/** 1503 * __clk_notify - call clk notifier chain 1504 * @core: clk that is changing rate 1505 * @msg: clk notifier type (see include/linux/clk.h) 1506 * @old_rate: old clk rate 1507 * @new_rate: new clk rate 1508 * 1509 * Triggers a notifier call chain on the clk rate-change notification 1510 * for 'clk'. Passes a pointer to the struct clk and the previous 1511 * and current rates to the notifier callback. Intended to be called by 1512 * internal clock code only. Returns NOTIFY_DONE from the last driver 1513 * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if 1514 * a driver returns that. 1515 */ 1516static int __clk_notify(struct clk_core *core, unsigned long msg, 1517 unsigned long old_rate, unsigned long new_rate) 1518{ 1519 struct clk_notifier *cn; 1520 struct clk_notifier_data cnd; 1521 int ret = NOTIFY_DONE; 1522 1523 cnd.old_rate = old_rate; 1524 cnd.new_rate = new_rate; 1525 1526 list_for_each_entry(cn, &clk_notifier_list, node) { 1527 if (cn->clk->core == core) { 1528 cnd.clk = cn->clk; 1529 ret = srcu_notifier_call_chain(&cn->notifier_head, msg, 1530 &cnd); 1531 if (ret & NOTIFY_STOP_MASK) 1532 return ret; 1533 } 1534 } 1535 1536 return ret; 1537} 1538 1539/** 1540 * __clk_recalc_accuracies 1541 * @core: first clk in the subtree 1542 * 1543 * Walks the subtree of clks starting with clk and recalculates accuracies as 1544 * it goes. Note that if a clk does not implement the .recalc_accuracy 1545 * callback then it is assumed that the clock will take on the accuracy of its 1546 * parent. 1547 */ 1548static void __clk_recalc_accuracies(struct clk_core *core) 1549{ 1550 unsigned long parent_accuracy = 0; 1551 struct clk_core *child; 1552 1553 lockdep_assert_held(&prepare_lock); 1554 1555 if (core->parent) 1556 parent_accuracy = core->parent->accuracy; 1557 1558 if (core->ops->recalc_accuracy) 1559 core->accuracy = core->ops->recalc_accuracy(core->hw, 1560 parent_accuracy); 1561 else 1562 core->accuracy = parent_accuracy; 1563 1564 hlist_for_each_entry(child, &core->children, child_node) 1565 __clk_recalc_accuracies(child); 1566} 1567 1568static long clk_core_get_accuracy_recalc(struct clk_core *core) 1569{ 1570 if (core && (core->flags & CLK_GET_ACCURACY_NOCACHE)) 1571 __clk_recalc_accuracies(core); 1572 1573 return clk_core_get_accuracy_no_lock(core); 1574} 1575 1576/** 1577 * clk_get_accuracy - return the accuracy of clk 1578 * @clk: the clk whose accuracy is being returned 1579 * 1580 * Simply returns the cached accuracy of the clk, unless 1581 * CLK_GET_ACCURACY_NOCACHE flag is set, which means a recalc_rate will be 1582 * issued. 1583 * If clk is NULL then returns 0. 1584 */ 1585long clk_get_accuracy(struct clk *clk) 1586{ 1587 long accuracy; 1588 1589 if (!clk) 1590 return 0; 1591 1592 clk_prepare_lock(); 1593 accuracy = clk_core_get_accuracy_recalc(clk->core); 1594 clk_prepare_unlock(); 1595 1596 return accuracy; 1597} 1598EXPORT_SYMBOL_GPL(clk_get_accuracy); 1599 1600static unsigned long clk_recalc(struct clk_core *core, 1601 unsigned long parent_rate) 1602{ 1603 unsigned long rate = parent_rate; 1604 1605 if (core->ops->recalc_rate && !clk_pm_runtime_get(core)) { 1606 rate = core->ops->recalc_rate(core->hw, parent_rate); 1607 clk_pm_runtime_put(core); 1608 } 1609 return rate; 1610} 1611 1612/** 1613 * __clk_recalc_rates 1614 * @core: first clk in the subtree 1615 * @msg: notification type (see include/linux/clk.h) 1616 * 1617 * Walks the subtree of clks starting with clk and recalculates rates as it 1618 * goes. Note that if a clk does not implement the .recalc_rate callback then 1619 * it is assumed that the clock will take on the rate of its parent. 1620 * 1621 * clk_recalc_rates also propagates the POST_RATE_CHANGE notification, 1622 * if necessary. 1623 */ 1624static void __clk_recalc_rates(struct clk_core *core, unsigned long msg) 1625{ 1626 unsigned long old_rate; 1627 unsigned long parent_rate = 0; 1628 struct clk_core *child; 1629 1630 lockdep_assert_held(&prepare_lock); 1631 1632 old_rate = core->rate; 1633 1634 if (core->parent) 1635 parent_rate = core->parent->rate; 1636 1637 core->rate = clk_recalc(core, parent_rate); 1638 1639 /* 1640 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE 1641 * & ABORT_RATE_CHANGE notifiers 1642 */ 1643 if (core->notifier_count && msg) 1644 __clk_notify(core, msg, old_rate, core->rate); 1645 1646 hlist_for_each_entry(child, &core->children, child_node) 1647 __clk_recalc_rates(child, msg); 1648} 1649 1650static unsigned long clk_core_get_rate_recalc(struct clk_core *core) 1651{ 1652 if (core && (core->flags & CLK_GET_RATE_NOCACHE)) 1653 __clk_recalc_rates(core, 0); 1654 1655 return clk_core_get_rate_nolock(core); 1656} 1657 1658/** 1659 * clk_get_rate - return the rate of clk 1660 * @clk: the clk whose rate is being returned 1661 * 1662 * Simply returns the cached rate of the clk, unless CLK_GET_RATE_NOCACHE flag 1663 * is set, which means a recalc_rate will be issued. 1664 * If clk is NULL then returns 0. 1665 */ 1666unsigned long clk_get_rate(struct clk *clk) 1667{ 1668 unsigned long rate; 1669 1670 if (!clk) 1671 return 0; 1672 1673 clk_prepare_lock(); 1674 rate = clk_core_get_rate_recalc(clk->core); 1675 clk_prepare_unlock(); 1676 1677 return rate; 1678} 1679EXPORT_SYMBOL_GPL(clk_get_rate); 1680 1681static int clk_fetch_parent_index(struct clk_core *core, 1682 struct clk_core *parent) 1683{ 1684 int i; 1685 1686 if (!parent) 1687 return -EINVAL; 1688 1689 for (i = 0; i < core->num_parents; i++) { 1690 /* Found it first try! */ 1691 if (core->parents[i].core == parent) 1692 return i; 1693 1694 /* Something else is here, so keep looking */ 1695 if (core->parents[i].core) 1696 continue; 1697 1698 /* Maybe core hasn't been cached but the hw is all we know? */ 1699 if (core->parents[i].hw) { 1700 if (core->parents[i].hw == parent->hw) 1701 break; 1702 1703 /* Didn't match, but we're expecting a clk_hw */ 1704 continue; 1705 } 1706 1707 /* Maybe it hasn't been cached (clk_set_parent() path) */ 1708 if (parent == clk_core_get(core, i)) 1709 break; 1710 1711 /* Fallback to comparing globally unique names */ 1712 if (core->parents[i].name && 1713 !strcmp(parent->name, core->parents[i].name)) 1714 break; 1715 } 1716 1717 if (i == core->num_parents) 1718 return -EINVAL; 1719 1720 core->parents[i].core = parent; 1721 return i; 1722} 1723 1724/** 1725 * clk_hw_get_parent_index - return the index of the parent clock 1726 * @hw: clk_hw associated with the clk being consumed 1727 * 1728 * Fetches and returns the index of parent clock. Returns -EINVAL if the given 1729 * clock does not have a current parent. 1730 */ 1731int clk_hw_get_parent_index(struct clk_hw *hw) 1732{ 1733 struct clk_hw *parent = clk_hw_get_parent(hw); 1734 1735 if (WARN_ON(parent == NULL)) 1736 return -EINVAL; 1737 1738 return clk_fetch_parent_index(hw->core, parent->core); 1739} 1740EXPORT_SYMBOL_GPL(clk_hw_get_parent_index); 1741 1742/* 1743 * Update the orphan status of @core and all its children. 1744 */ 1745static void clk_core_update_orphan_status(struct clk_core *core, bool is_orphan) 1746{ 1747 struct clk_core *child; 1748 1749 core->orphan = is_orphan; 1750 1751 hlist_for_each_entry(child, &core->children, child_node) 1752 clk_core_update_orphan_status(child, is_orphan); 1753} 1754 1755static void clk_reparent(struct clk_core *core, struct clk_core *new_parent) 1756{ 1757 bool was_orphan = core->orphan; 1758 1759 hlist_del(&core->child_node); 1760 1761 if (new_parent) { 1762 bool becomes_orphan = new_parent->orphan; 1763 1764 /* avoid duplicate POST_RATE_CHANGE notifications */ 1765 if (new_parent->new_child == core) 1766 new_parent->new_child = NULL; 1767 1768 hlist_add_head(&core->child_node, &new_parent->children); 1769 1770 if (was_orphan != becomes_orphan) 1771 clk_core_update_orphan_status(core, becomes_orphan); 1772 } else { 1773 hlist_add_head(&core->child_node, &clk_orphan_list); 1774 if (!was_orphan) 1775 clk_core_update_orphan_status(core, true); 1776 } 1777 1778 core->parent = new_parent; 1779} 1780 1781static struct clk_core *__clk_set_parent_before(struct clk_core *core, 1782 struct clk_core *parent) 1783{ 1784 unsigned long flags; 1785 struct clk_core *old_parent = core->parent; 1786 1787 /* 1788 * 1. enable parents for CLK_OPS_PARENT_ENABLE clock 1789 * 1790 * 2. Migrate prepare state between parents and prevent race with 1791 * clk_enable(). 1792 * 1793 * If the clock is not prepared, then a race with 1794 * clk_enable/disable() is impossible since we already have the 1795 * prepare lock (future calls to clk_enable() need to be preceded by 1796 * a clk_prepare()). 1797 * 1798 * If the clock is prepared, migrate the prepared state to the new 1799 * parent and also protect against a race with clk_enable() by 1800 * forcing the clock and the new parent on. This ensures that all 1801 * future calls to clk_enable() are practically NOPs with respect to 1802 * hardware and software states. 1803 * 1804 * See also: Comment for clk_set_parent() below. 1805 */ 1806 1807 /* enable old_parent & parent if CLK_OPS_PARENT_ENABLE is set */ 1808 if (core->flags & CLK_OPS_PARENT_ENABLE) { 1809 clk_core_prepare_enable(old_parent); 1810 clk_core_prepare_enable(parent); 1811 } 1812 1813 /* migrate prepare count if > 0 */ 1814 if (core->prepare_count) { 1815 clk_core_prepare_enable(parent); 1816 clk_core_enable_lock(core); 1817 } 1818 1819 /* update the clk tree topology */ 1820 flags = clk_enable_lock(); 1821 clk_reparent(core, parent); 1822 clk_enable_unlock(flags); 1823 1824 return old_parent; 1825} 1826 1827static void __clk_set_parent_after(struct clk_core *core, 1828 struct clk_core *parent, 1829 struct clk_core *old_parent) 1830{ 1831 /* 1832 * Finish the migration of prepare state and undo the changes done 1833 * for preventing a race with clk_enable(). 1834 */ 1835 if (core->prepare_count) { 1836 clk_core_disable_lock(core); 1837 clk_core_disable_unprepare(old_parent); 1838 } 1839 1840 /* re-balance ref counting if CLK_OPS_PARENT_ENABLE is set */ 1841 if (core->flags & CLK_OPS_PARENT_ENABLE) { 1842 clk_core_disable_unprepare(parent); 1843 clk_core_disable_unprepare(old_parent); 1844 } 1845} 1846 1847static int __clk_set_parent(struct clk_core *core, struct clk_core *parent, 1848 u8 p_index) 1849{ 1850 unsigned long flags; 1851 int ret = 0; 1852 struct clk_core *old_parent; 1853 1854 old_parent = __clk_set_parent_before(core, parent); 1855 1856 trace_clk_set_parent(core, parent); 1857 1858 /* change clock input source */ 1859 if (parent && core->ops->set_parent) 1860 ret = core->ops->set_parent(core->hw, p_index); 1861 1862 trace_clk_set_parent_complete(core, parent); 1863 1864 if (ret) { 1865 flags = clk_enable_lock(); 1866 clk_reparent(core, old_parent); 1867 clk_enable_unlock(flags); 1868 __clk_set_parent_after(core, old_parent, parent); 1869 1870 return ret; 1871 } 1872 1873 __clk_set_parent_after(core, parent, old_parent); 1874 1875 return 0; 1876} 1877 1878/** 1879 * __clk_speculate_rates 1880 * @core: first clk in the subtree 1881 * @parent_rate: the "future" rate of clk's parent 1882 * 1883 * Walks the subtree of clks starting with clk, speculating rates as it 1884 * goes and firing off PRE_RATE_CHANGE notifications as necessary. 1885 * 1886 * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending 1887 * pre-rate change notifications and returns early if no clks in the 1888 * subtree have subscribed to the notifications. Note that if a clk does not 1889 * implement the .recalc_rate callback then it is assumed that the clock will 1890 * take on the rate of its parent. 1891 */ 1892static int __clk_speculate_rates(struct clk_core *core, 1893 unsigned long parent_rate) 1894{ 1895 struct clk_core *child; 1896 unsigned long new_rate; 1897 int ret = NOTIFY_DONE; 1898 1899 lockdep_assert_held(&prepare_lock); 1900 1901 new_rate = clk_recalc(core, parent_rate); 1902 1903 /* abort rate change if a driver returns NOTIFY_BAD or NOTIFY_STOP */ 1904 if (core->notifier_count) 1905 ret = __clk_notify(core, PRE_RATE_CHANGE, core->rate, new_rate); 1906 1907 if (ret & NOTIFY_STOP_MASK) { 1908 pr_debug("%s: clk notifier callback for clock %s aborted with error %d\n", 1909 __func__, core->name, ret); 1910 goto out; 1911 } 1912 1913 hlist_for_each_entry(child, &core->children, child_node) { 1914 ret = __clk_speculate_rates(child, new_rate); 1915 if (ret & NOTIFY_STOP_MASK) 1916 break; 1917 } 1918 1919out: 1920 return ret; 1921} 1922 1923static void clk_calc_subtree(struct clk_core *core, unsigned long new_rate, 1924 struct clk_core *new_parent, u8 p_index) 1925{ 1926 struct clk_core *child; 1927 1928 core->new_rate = new_rate; 1929 core->new_parent = new_parent; 1930 core->new_parent_index = p_index; 1931 /* include clk in new parent's PRE_RATE_CHANGE notifications */ 1932 core->new_child = NULL; 1933 if (new_parent && new_parent != core->parent) 1934 new_parent->new_child = core; 1935 1936 hlist_for_each_entry(child, &core->children, child_node) { 1937 child->new_rate = clk_recalc(child, new_rate); 1938 clk_calc_subtree(child, child->new_rate, NULL, 0); 1939 } 1940} 1941 1942/* 1943 * calculate the new rates returning the topmost clock that has to be 1944 * changed. 1945 */ 1946static struct clk_core *clk_calc_new_rates(struct clk_core *core, 1947 unsigned long rate) 1948{ 1949 struct clk_core *top = core; 1950 struct clk_core *old_parent, *parent; 1951 unsigned long best_parent_rate = 0; 1952 unsigned long new_rate; 1953 unsigned long min_rate; 1954 unsigned long max_rate; 1955 int p_index = 0; 1956 long ret; 1957 1958 /* sanity */ 1959 if (IS_ERR_OR_NULL(core)) 1960 return NULL; 1961 1962 /* save parent rate, if it exists */ 1963 parent = old_parent = core->parent; 1964 if (parent) 1965 best_parent_rate = parent->rate; 1966 1967 clk_core_get_boundaries(core, &min_rate, &max_rate); 1968 1969 /* find the closest rate and parent clk/rate */ 1970 if (clk_core_can_round(core)) { 1971 struct clk_rate_request req; 1972 1973 req.rate = rate; 1974 req.min_rate = min_rate; 1975 req.max_rate = max_rate; 1976 1977 clk_core_init_rate_req(core, &req); 1978 1979 ret = clk_core_determine_round_nolock(core, &req); 1980 if (ret < 0) 1981 return NULL; 1982 1983 best_parent_rate = req.best_parent_rate; 1984 new_rate = req.rate; 1985 parent = req.best_parent_hw ? req.best_parent_hw->core : NULL; 1986 1987 if (new_rate < min_rate || new_rate > max_rate) 1988 return NULL; 1989 } else if (!parent || !(core->flags & CLK_SET_RATE_PARENT)) { 1990 /* pass-through clock without adjustable parent */ 1991 core->new_rate = core->rate; 1992 return NULL; 1993 } else { 1994 /* pass-through clock with adjustable parent */ 1995 top = clk_calc_new_rates(parent, rate); 1996 new_rate = parent->new_rate; 1997 goto out; 1998 } 1999 2000 /* some clocks must be gated to change parent */ 2001 if (parent != old_parent && 2002 (core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) { 2003 pr_debug("%s: %s not gated but wants to reparent\n", 2004 __func__, core->name); 2005 return NULL; 2006 } 2007 2008 /* try finding the new parent index */ 2009 if (parent && core->num_parents > 1) { 2010 p_index = clk_fetch_parent_index(core, parent); 2011 if (p_index < 0) { 2012 pr_debug("%s: clk %s can not be parent of clk %s\n", 2013 __func__, parent->name, core->name); 2014 return NULL; 2015 } 2016 } 2017 2018 if ((core->flags & CLK_SET_RATE_PARENT) && parent && 2019 best_parent_rate != parent->rate) 2020 top = clk_calc_new_rates(parent, best_parent_rate); 2021 2022out: 2023 clk_calc_subtree(core, new_rate, parent, p_index); 2024 2025 return top; 2026} 2027 2028/* 2029 * Notify about rate changes in a subtree. Always walk down the whole tree 2030 * so that in case of an error we can walk down the whole tree again and 2031 * abort the change. 2032 */ 2033static struct clk_core *clk_propagate_rate_change(struct clk_core *core, 2034 unsigned long event) 2035{ 2036 struct clk_core *child, *tmp_clk, *fail_clk = NULL; 2037 int ret = NOTIFY_DONE; 2038 2039 if (core->rate == core->new_rate) 2040 return NULL; 2041 2042 if (core->notifier_count) { 2043 ret = __clk_notify(core, event, core->rate, core->new_rate); 2044 if (ret & NOTIFY_STOP_MASK) 2045 fail_clk = core; 2046 } 2047 2048 hlist_for_each_entry(child, &core->children, child_node) { 2049 /* Skip children who will be reparented to another clock */ 2050 if (child->new_parent && child->new_parent != core) 2051 continue; 2052 tmp_clk = clk_propagate_rate_change(child, event); 2053 if (tmp_clk) 2054 fail_clk = tmp_clk; 2055 } 2056 2057 /* handle the new child who might not be in core->children yet */ 2058 if (core->new_child) { 2059 tmp_clk = clk_propagate_rate_change(core->new_child, event); 2060 if (tmp_clk) 2061 fail_clk = tmp_clk; 2062 } 2063 2064 return fail_clk; 2065} 2066 2067/* 2068 * walk down a subtree and set the new rates notifying the rate 2069 * change on the way 2070 */ 2071static void clk_change_rate(struct clk_core *core) 2072{ 2073 struct clk_core *child; 2074 struct hlist_node *tmp; 2075 unsigned long old_rate; 2076 unsigned long best_parent_rate = 0; 2077 bool skip_set_rate = false; 2078 struct clk_core *old_parent; 2079 struct clk_core *parent = NULL; 2080 2081 old_rate = core->rate; 2082 2083 if (core->new_parent) { 2084 parent = core->new_parent; 2085 best_parent_rate = core->new_parent->rate; 2086 } else if (core->parent) { 2087 parent = core->parent; 2088 best_parent_rate = core->parent->rate; 2089 } 2090 2091 if (clk_pm_runtime_get(core)) 2092 return; 2093 2094 if (core->flags & CLK_SET_RATE_UNGATE) { 2095 clk_core_prepare(core); 2096 clk_core_enable_lock(core); 2097 } 2098 2099 if (core->new_parent && core->new_parent != core->parent) { 2100 old_parent = __clk_set_parent_before(core, core->new_parent); 2101 trace_clk_set_parent(core, core->new_parent); 2102 2103 if (core->ops->set_rate_and_parent) { 2104 skip_set_rate = true; 2105 core->ops->set_rate_and_parent(core->hw, core->new_rate, 2106 best_parent_rate, 2107 core->new_parent_index); 2108 } else if (core->ops->set_parent) { 2109 core->ops->set_parent(core->hw, core->new_parent_index); 2110 } 2111 2112 trace_clk_set_parent_complete(core, core->new_parent); 2113 __clk_set_parent_after(core, core->new_parent, old_parent); 2114 } 2115 2116 if (core->flags & CLK_OPS_PARENT_ENABLE) 2117 clk_core_prepare_enable(parent); 2118 2119 trace_clk_set_rate(core, core->new_rate); 2120 2121 if (!skip_set_rate && core->ops->set_rate) 2122 core->ops->set_rate(core->hw, core->new_rate, best_parent_rate); 2123 2124 trace_clk_set_rate_complete(core, core->new_rate); 2125 2126 core->rate = clk_recalc(core, best_parent_rate); 2127 2128 if (core->flags & CLK_SET_RATE_UNGATE) { 2129 clk_core_disable_lock(core); 2130 clk_core_unprepare(core); 2131 } 2132 2133 if (core->flags & CLK_OPS_PARENT_ENABLE) 2134 clk_core_disable_unprepare(parent); 2135 2136 if (core->notifier_count && old_rate != core->rate) 2137 __clk_notify(core, POST_RATE_CHANGE, old_rate, core->rate); 2138 2139 if (core->flags & CLK_RECALC_NEW_RATES) 2140 (void)clk_calc_new_rates(core, core->new_rate); 2141 2142 /* 2143 * Use safe iteration, as change_rate can actually swap parents 2144 * for certain clock types. 2145 */ 2146 hlist_for_each_entry_safe(child, tmp, &core->children, child_node) { 2147 /* Skip children who will be reparented to another clock */ 2148 if (child->new_parent && child->new_parent != core) 2149 continue; 2150 clk_change_rate(child); 2151 } 2152 2153 /* handle the new child who might not be in core->children yet */ 2154 if (core->new_child) 2155 clk_change_rate(core->new_child); 2156 2157 clk_pm_runtime_put(core); 2158} 2159 2160static unsigned long clk_core_req_round_rate_nolock(struct clk_core *core, 2161 unsigned long req_rate) 2162{ 2163 int ret, cnt; 2164 struct clk_rate_request req; 2165 2166 lockdep_assert_held(&prepare_lock); 2167 2168 if (!core) 2169 return 0; 2170 2171 /* simulate what the rate would be if it could be freely set */ 2172 cnt = clk_core_rate_nuke_protect(core); 2173 if (cnt < 0) 2174 return cnt; 2175 2176 clk_core_get_boundaries(core, &req.min_rate, &req.max_rate); 2177 req.rate = req_rate; 2178 2179 ret = clk_core_round_rate_nolock(core, &req); 2180 2181 /* restore the protection */ 2182 clk_core_rate_restore_protect(core, cnt); 2183 2184 return ret ? 0 : req.rate; 2185} 2186 2187static int clk_core_set_rate_nolock(struct clk_core *core, 2188 unsigned long req_rate) 2189{ 2190 struct clk_core *top, *fail_clk; 2191 unsigned long rate; 2192 int ret = 0; 2193 2194 if (!core) 2195 return 0; 2196 2197 rate = clk_core_req_round_rate_nolock(core, req_rate); 2198 2199 /* bail early if nothing to do */ 2200 if (rate == clk_core_get_rate_nolock(core)) 2201 return 0; 2202 2203 /* fail on a direct rate set of a protected provider */ 2204 if (clk_core_rate_is_protected(core)) 2205 return -EBUSY; 2206 2207 /* calculate new rates and get the topmost changed clock */ 2208 top = clk_calc_new_rates(core, req_rate); 2209 if (!top) 2210 return -EINVAL; 2211 2212 ret = clk_pm_runtime_get(core); 2213 if (ret) 2214 return ret; 2215 2216 /* notify that we are about to change rates */ 2217 fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE); 2218 if (fail_clk) { 2219 pr_debug("%s: failed to set %s rate\n", __func__, 2220 fail_clk->name); 2221 clk_propagate_rate_change(top, ABORT_RATE_CHANGE); 2222 ret = -EBUSY; 2223 goto err; 2224 } 2225 2226 /* change the rates */ 2227 clk_change_rate(top); 2228 2229 core->req_rate = req_rate; 2230err: 2231 clk_pm_runtime_put(core); 2232 2233 return ret; 2234} 2235 2236/** 2237 * clk_set_rate - specify a new rate for clk 2238 * @clk: the clk whose rate is being changed 2239 * @rate: the new rate for clk 2240 * 2241 * In the simplest case clk_set_rate will only adjust the rate of clk. 2242 * 2243 * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to 2244 * propagate up to clk's parent; whether or not this happens depends on the 2245 * outcome of clk's .round_rate implementation. If *parent_rate is unchanged 2246 * after calling .round_rate then upstream parent propagation is ignored. If 2247 * *parent_rate comes back with a new rate for clk's parent then we propagate 2248 * up to clk's parent and set its rate. Upward propagation will continue 2249 * until either a clk does not support the CLK_SET_RATE_PARENT flag or 2250 * .round_rate stops requesting changes to clk's parent_rate. 2251 * 2252 * Rate changes are accomplished via tree traversal that also recalculates the 2253 * rates for the clocks and fires off POST_RATE_CHANGE notifiers. 2254 * 2255 * Returns 0 on success, -EERROR otherwise. 2256 */ 2257int clk_set_rate(struct clk *clk, unsigned long rate) 2258{ 2259 int ret; 2260 2261 if (!clk) 2262 return 0; 2263 2264 /* prevent racing with updates to the clock topology */ 2265 clk_prepare_lock(); 2266 2267 if (clk->exclusive_count) 2268 clk_core_rate_unprotect(clk->core); 2269 2270 ret = clk_core_set_rate_nolock(clk->core, rate); 2271 2272 if (clk->exclusive_count) 2273 clk_core_rate_protect(clk->core); 2274 2275 clk_prepare_unlock(); 2276 2277 return ret; 2278} 2279EXPORT_SYMBOL_GPL(clk_set_rate); 2280 2281/** 2282 * clk_set_rate_exclusive - specify a new rate and get exclusive control 2283 * @clk: the clk whose rate is being changed 2284 * @rate: the new rate for clk 2285 * 2286 * This is a combination of clk_set_rate() and clk_rate_exclusive_get() 2287 * within a critical section 2288 * 2289 * This can be used initially to ensure that at least 1 consumer is 2290 * satisfied when several consumers are competing for exclusivity over the 2291 * same clock provider. 2292 * 2293 * The exclusivity is not applied if setting the rate failed. 2294 * 2295 * Calls to clk_rate_exclusive_get() should be balanced with calls to 2296 * clk_rate_exclusive_put(). 2297 * 2298 * Returns 0 on success, -EERROR otherwise. 2299 */ 2300int clk_set_rate_exclusive(struct clk *clk, unsigned long rate) 2301{ 2302 int ret; 2303 2304 if (!clk) 2305 return 0; 2306 2307 /* prevent racing with updates to the clock topology */ 2308 clk_prepare_lock(); 2309 2310 /* 2311 * The temporary protection removal is not here, on purpose 2312 * This function is meant to be used instead of clk_rate_protect, 2313 * so before the consumer code path protect the clock provider 2314 */ 2315 2316 ret = clk_core_set_rate_nolock(clk->core, rate); 2317 if (!ret) { 2318 clk_core_rate_protect(clk->core); 2319 clk->exclusive_count++; 2320 } 2321 2322 clk_prepare_unlock(); 2323 2324 return ret; 2325} 2326EXPORT_SYMBOL_GPL(clk_set_rate_exclusive); 2327 2328/** 2329 * clk_set_rate_range - set a rate range for a clock source 2330 * @clk: clock source 2331 * @min: desired minimum clock rate in Hz, inclusive 2332 * @max: desired maximum clock rate in Hz, inclusive 2333 * 2334 * Returns success (0) or negative errno. 2335 */ 2336int clk_set_rate_range(struct clk *clk, unsigned long min, unsigned long max) 2337{ 2338 int ret = 0; 2339 unsigned long old_min, old_max, rate; 2340 2341 if (!clk) 2342 return 0; 2343 2344 trace_clk_set_rate_range(clk->core, min, max); 2345 2346 if (min > max) { 2347 pr_err("%s: clk %s dev %s con %s: invalid range [%lu, %lu]\n", 2348 __func__, clk->core->name, clk->dev_id, clk->con_id, 2349 min, max); 2350 return -EINVAL; 2351 } 2352 2353 clk_prepare_lock(); 2354 2355 if (clk->exclusive_count) 2356 clk_core_rate_unprotect(clk->core); 2357 2358 /* Save the current values in case we need to rollback the change */ 2359 old_min = clk->min_rate; 2360 old_max = clk->max_rate; 2361 clk->min_rate = min; 2362 clk->max_rate = max; 2363 2364 if (!clk_core_check_boundaries(clk->core, min, max)) { 2365 ret = -EINVAL; 2366 goto out; 2367 } 2368 2369 /* 2370 * Since the boundaries have been changed, let's give the 2371 * opportunity to the provider to adjust the clock rate based on 2372 * the new boundaries. 2373 * 2374 * We also need to handle the case where the clock is currently 2375 * outside of the boundaries. Clamping the last requested rate 2376 * to the current minimum and maximum will also handle this. 2377 * 2378 * FIXME: 2379 * There is a catch. It may fail for the usual reason (clock 2380 * broken, clock protected, etc) but also because: 2381 * - round_rate() was not favorable and fell on the wrong 2382 * side of the boundary 2383 * - the determine_rate() callback does not really check for 2384 * this corner case when determining the rate 2385 */ 2386 rate = clamp(clk->core->req_rate, min, max); 2387 ret = clk_core_set_rate_nolock(clk->core, rate); 2388 if (ret) { 2389 /* rollback the changes */ 2390 clk->min_rate = old_min; 2391 clk->max_rate = old_max; 2392 } 2393 2394out: 2395 if (clk->exclusive_count) 2396 clk_core_rate_protect(clk->core); 2397 2398 clk_prepare_unlock(); 2399 2400 return ret; 2401} 2402EXPORT_SYMBOL_GPL(clk_set_rate_range); 2403 2404/** 2405 * clk_set_min_rate - set a minimum clock rate for a clock source 2406 * @clk: clock source 2407 * @rate: desired minimum clock rate in Hz, inclusive 2408 * 2409 * Returns success (0) or negative errno. 2410 */ 2411int clk_set_min_rate(struct clk *clk, unsigned long rate) 2412{ 2413 if (!clk) 2414 return 0; 2415 2416 trace_clk_set_min_rate(clk->core, rate); 2417 2418 return clk_set_rate_range(clk, rate, clk->max_rate); 2419} 2420EXPORT_SYMBOL_GPL(clk_set_min_rate); 2421 2422/** 2423 * clk_set_max_rate - set a maximum clock rate for a clock source 2424 * @clk: clock source 2425 * @rate: desired maximum clock rate in Hz, inclusive 2426 * 2427 * Returns success (0) or negative errno. 2428 */ 2429int clk_set_max_rate(struct clk *clk, unsigned long rate) 2430{ 2431 if (!clk) 2432 return 0; 2433 2434 trace_clk_set_max_rate(clk->core, rate); 2435 2436 return clk_set_rate_range(clk, clk->min_rate, rate); 2437} 2438EXPORT_SYMBOL_GPL(clk_set_max_rate); 2439 2440/** 2441 * clk_get_parent - return the parent of a clk 2442 * @clk: the clk whose parent gets returned 2443 * 2444 * Simply returns clk->parent. Returns NULL if clk is NULL. 2445 */ 2446struct clk *clk_get_parent(struct clk *clk) 2447{ 2448 struct clk *parent; 2449 2450 if (!clk) 2451 return NULL; 2452 2453 clk_prepare_lock(); 2454 /* TODO: Create a per-user clk and change callers to call clk_put */ 2455 parent = !clk->core->parent ? NULL : clk->core->parent->hw->clk; 2456 clk_prepare_unlock(); 2457 2458 return parent; 2459} 2460EXPORT_SYMBOL_GPL(clk_get_parent); 2461 2462static struct clk_core *__clk_init_parent(struct clk_core *core) 2463{ 2464 u8 index = 0; 2465 2466 if (core->num_parents > 1 && core->ops->get_parent) 2467 index = core->ops->get_parent(core->hw); 2468 2469 return clk_core_get_parent_by_index(core, index); 2470} 2471 2472static void clk_core_reparent(struct clk_core *core, 2473 struct clk_core *new_parent) 2474{ 2475 clk_reparent(core, new_parent); 2476 __clk_recalc_accuracies(core); 2477 __clk_recalc_rates(core, POST_RATE_CHANGE); 2478} 2479 2480void clk_hw_reparent(struct clk_hw *hw, struct clk_hw *new_parent) 2481{ 2482 if (!hw) 2483 return; 2484 2485 clk_core_reparent(hw->core, !new_parent ? NULL : new_parent->core); 2486} 2487 2488/** 2489 * clk_has_parent - check if a clock is a possible parent for another 2490 * @clk: clock source 2491 * @parent: parent clock source 2492 * 2493 * This function can be used in drivers that need to check that a clock can be 2494 * the parent of another without actually changing the parent. 2495 * 2496 * Returns true if @parent is a possible parent for @clk, false otherwise. 2497 */ 2498bool clk_has_parent(struct clk *clk, struct clk *parent) 2499{ 2500 struct clk_core *core, *parent_core; 2501 int i; 2502 2503 /* NULL clocks should be nops, so return success if either is NULL. */ 2504 if (!clk || !parent) 2505 return true; 2506 2507 core = clk->core; 2508 parent_core = parent->core; 2509 2510 /* Optimize for the case where the parent is already the parent. */ 2511 if (core->parent == parent_core) 2512 return true; 2513 2514 for (i = 0; i < core->num_parents; i++) 2515 if (!strcmp(core->parents[i].name, parent_core->name)) 2516 return true; 2517 2518 return false; 2519} 2520EXPORT_SYMBOL_GPL(clk_has_parent); 2521 2522static int clk_core_set_parent_nolock(struct clk_core *core, 2523 struct clk_core *parent) 2524{ 2525 int ret = 0; 2526 int p_index = 0; 2527 unsigned long p_rate = 0; 2528 2529 lockdep_assert_held(&prepare_lock); 2530 2531 if (!core) 2532 return 0; 2533 2534 if (core->parent == parent) 2535 return 0; 2536 2537 /* verify ops for multi-parent clks */ 2538 if (core->num_parents > 1 && !core->ops->set_parent) 2539 return -EPERM; 2540 2541 /* check that we are allowed to re-parent if the clock is in use */ 2542 if ((core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) 2543 return -EBUSY; 2544 2545 if (clk_core_rate_is_protected(core)) 2546 return -EBUSY; 2547 2548 /* try finding the new parent index */ 2549 if (parent) { 2550 p_index = clk_fetch_parent_index(core, parent); 2551 if (p_index < 0) { 2552 pr_debug("%s: clk %s can not be parent of clk %s\n", 2553 __func__, parent->name, core->name); 2554 return p_index; 2555 } 2556 p_rate = parent->rate; 2557 } 2558 2559 ret = clk_pm_runtime_get(core); 2560 if (ret) 2561 return ret; 2562 2563 /* propagate PRE_RATE_CHANGE notifications */ 2564 ret = __clk_speculate_rates(core, p_rate); 2565 2566 /* abort if a driver objects */ 2567 if (ret & NOTIFY_STOP_MASK) 2568 goto runtime_put; 2569 2570 /* do the re-parent */ 2571 ret = __clk_set_parent(core, parent, p_index); 2572 2573 /* propagate rate an accuracy recalculation accordingly */ 2574 if (ret) { 2575 __clk_recalc_rates(core, ABORT_RATE_CHANGE); 2576 } else { 2577 __clk_recalc_rates(core, POST_RATE_CHANGE); 2578 __clk_recalc_accuracies(core); 2579 } 2580 2581runtime_put: 2582 clk_pm_runtime_put(core); 2583 2584 return ret; 2585} 2586 2587int clk_hw_set_parent(struct clk_hw *hw, struct clk_hw *parent) 2588{ 2589 return clk_core_set_parent_nolock(hw->core, parent->core); 2590} 2591EXPORT_SYMBOL_GPL(clk_hw_set_parent); 2592 2593/** 2594 * clk_set_parent - switch the parent of a mux clk 2595 * @clk: the mux clk whose input we are switching 2596 * @parent: the new input to clk 2597 * 2598 * Re-parent clk to use parent as its new input source. If clk is in 2599 * prepared state, the clk will get enabled for the duration of this call. If 2600 * that's not acceptable for a specific clk (Eg: the consumer can't handle 2601 * that, the reparenting is glitchy in hardware, etc), use the 2602 * CLK_SET_PARENT_GATE flag to allow reparenting only when clk is unprepared. 2603 * 2604 * After successfully changing clk's parent clk_set_parent will update the 2605 * clk topology, sysfs topology and propagate rate recalculation via 2606 * __clk_recalc_rates. 2607 * 2608 * Returns 0 on success, -EERROR otherwise. 2609 */ 2610int clk_set_parent(struct clk *clk, struct clk *parent) 2611{ 2612 int ret; 2613 2614 if (!clk) 2615 return 0; 2616 2617 clk_prepare_lock(); 2618 2619 if (clk->exclusive_count) 2620 clk_core_rate_unprotect(clk->core); 2621 2622 ret = clk_core_set_parent_nolock(clk->core, 2623 parent ? parent->core : NULL); 2624 2625 if (clk->exclusive_count) 2626 clk_core_rate_protect(clk->core); 2627 2628 clk_prepare_unlock(); 2629 2630 return ret; 2631} 2632EXPORT_SYMBOL_GPL(clk_set_parent); 2633 2634static int clk_core_set_phase_nolock(struct clk_core *core, int degrees) 2635{ 2636 int ret = -EINVAL; 2637 2638 lockdep_assert_held(&prepare_lock); 2639 2640 if (!core) 2641 return 0; 2642 2643 if (clk_core_rate_is_protected(core)) 2644 return -EBUSY; 2645 2646 trace_clk_set_phase(core, degrees); 2647 2648 if (core->ops->set_phase) { 2649 ret = core->ops->set_phase(core->hw, degrees); 2650 if (!ret) 2651 core->phase = degrees; 2652 } 2653 2654 trace_clk_set_phase_complete(core, degrees); 2655 2656 return ret; 2657} 2658 2659/** 2660 * clk_set_phase - adjust the phase shift of a clock signal 2661 * @clk: clock signal source 2662 * @degrees: number of degrees the signal is shifted 2663 * 2664 * Shifts the phase of a clock signal by the specified 2665 * degrees. Returns 0 on success, -EERROR otherwise. 2666 * 2667 * This function makes no distinction about the input or reference 2668 * signal that we adjust the clock signal phase against. For example 2669 * phase locked-loop clock signal generators we may shift phase with 2670 * respect to feedback clock signal input, but for other cases the 2671 * clock phase may be shifted with respect to some other, unspecified 2672 * signal. 2673 * 2674 * Additionally the concept of phase shift does not propagate through 2675 * the clock tree hierarchy, which sets it apart from clock rates and 2676 * clock accuracy. A parent clock phase attribute does not have an 2677 * impact on the phase attribute of a child clock. 2678 */ 2679int clk_set_phase(struct clk *clk, int degrees) 2680{ 2681 int ret; 2682 2683 if (!clk) 2684 return 0; 2685 2686 /* sanity check degrees */ 2687 degrees %= 360; 2688 if (degrees < 0) 2689 degrees += 360; 2690 2691 clk_prepare_lock(); 2692 2693 if (clk->exclusive_count) 2694 clk_core_rate_unprotect(clk->core); 2695 2696 ret = clk_core_set_phase_nolock(clk->core, degrees); 2697 2698 if (clk->exclusive_count) 2699 clk_core_rate_protect(clk->core); 2700 2701 clk_prepare_unlock(); 2702 2703 return ret; 2704} 2705EXPORT_SYMBOL_GPL(clk_set_phase); 2706 2707static int clk_core_get_phase(struct clk_core *core) 2708{ 2709 int ret; 2710 2711 lockdep_assert_held(&prepare_lock); 2712 if (!core->ops->get_phase) 2713 return 0; 2714 2715 /* Always try to update cached phase if possible */ 2716 ret = core->ops->get_phase(core->hw); 2717 if (ret >= 0) 2718 core->phase = ret; 2719 2720 return ret; 2721} 2722 2723/** 2724 * clk_get_phase - return the phase shift of a clock signal 2725 * @clk: clock signal source 2726 * 2727 * Returns the phase shift of a clock node in degrees, otherwise returns 2728 * -EERROR. 2729 */ 2730int clk_get_phase(struct clk *clk) 2731{ 2732 int ret; 2733 2734 if (!clk) 2735 return 0; 2736 2737 clk_prepare_lock(); 2738 ret = clk_core_get_phase(clk->core); 2739 clk_prepare_unlock(); 2740 2741 return ret; 2742} 2743EXPORT_SYMBOL_GPL(clk_get_phase); 2744 2745static void clk_core_reset_duty_cycle_nolock(struct clk_core *core) 2746{ 2747 /* Assume a default value of 50% */ 2748 core->duty.num = 1; 2749 core->duty.den = 2; 2750} 2751 2752static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core); 2753 2754static int clk_core_update_duty_cycle_nolock(struct clk_core *core) 2755{ 2756 struct clk_duty *duty = &core->duty; 2757 int ret = 0; 2758 2759 if (!core->ops->get_duty_cycle) 2760 return clk_core_update_duty_cycle_parent_nolock(core); 2761 2762 ret = core->ops->get_duty_cycle(core->hw, duty); 2763 if (ret) 2764 goto reset; 2765 2766 /* Don't trust the clock provider too much */ 2767 if (duty->den == 0 || duty->num > duty->den) { 2768 ret = -EINVAL; 2769 goto reset; 2770 } 2771 2772 return 0; 2773 2774reset: 2775 clk_core_reset_duty_cycle_nolock(core); 2776 return ret; 2777} 2778 2779static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core) 2780{ 2781 int ret = 0; 2782 2783 if (core->parent && 2784 core->flags & CLK_DUTY_CYCLE_PARENT) { 2785 ret = clk_core_update_duty_cycle_nolock(core->parent); 2786 memcpy(&core->duty, &core->parent->duty, sizeof(core->duty)); 2787 } else { 2788 clk_core_reset_duty_cycle_nolock(core); 2789 } 2790 2791 return ret; 2792} 2793 2794static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core, 2795 struct clk_duty *duty); 2796 2797static int clk_core_set_duty_cycle_nolock(struct clk_core *core, 2798 struct clk_duty *duty) 2799{ 2800 int ret; 2801 2802 lockdep_assert_held(&prepare_lock); 2803 2804 if (clk_core_rate_is_protected(core)) 2805 return -EBUSY; 2806 2807 trace_clk_set_duty_cycle(core, duty); 2808 2809 if (!core->ops->set_duty_cycle) 2810 return clk_core_set_duty_cycle_parent_nolock(core, duty); 2811 2812 ret = core->ops->set_duty_cycle(core->hw, duty); 2813 if (!ret) 2814 memcpy(&core->duty, duty, sizeof(*duty)); 2815 2816 trace_clk_set_duty_cycle_complete(core, duty); 2817 2818 return ret; 2819} 2820 2821static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core, 2822 struct clk_duty *duty) 2823{ 2824 int ret = 0; 2825 2826 if (core->parent && 2827 core->flags & (CLK_DUTY_CYCLE_PARENT | CLK_SET_RATE_PARENT)) { 2828 ret = clk_core_set_duty_cycle_nolock(core->parent, duty); 2829 memcpy(&core->duty, &core->parent->duty, sizeof(core->duty)); 2830 } 2831 2832 return ret; 2833} 2834 2835/** 2836 * clk_set_duty_cycle - adjust the duty cycle ratio of a clock signal 2837 * @clk: clock signal source 2838 * @num: numerator of the duty cycle ratio to be applied 2839 * @den: denominator of the duty cycle ratio to be applied 2840 * 2841 * Apply the duty cycle ratio if the ratio is valid and the clock can 2842 * perform this operation 2843 * 2844 * Returns (0) on success, a negative errno otherwise. 2845 */ 2846int clk_set_duty_cycle(struct clk *clk, unsigned int num, unsigned int den) 2847{ 2848 int ret; 2849 struct clk_duty duty; 2850 2851 if (!clk) 2852 return 0; 2853 2854 /* sanity check the ratio */ 2855 if (den == 0 || num > den) 2856 return -EINVAL; 2857 2858 duty.num = num; 2859 duty.den = den; 2860 2861 clk_prepare_lock(); 2862 2863 if (clk->exclusive_count) 2864 clk_core_rate_unprotect(clk->core); 2865 2866 ret = clk_core_set_duty_cycle_nolock(clk->core, &duty); 2867 2868 if (clk->exclusive_count) 2869 clk_core_rate_protect(clk->core); 2870 2871 clk_prepare_unlock(); 2872 2873 return ret; 2874} 2875EXPORT_SYMBOL_GPL(clk_set_duty_cycle); 2876 2877static int clk_core_get_scaled_duty_cycle(struct clk_core *core, 2878 unsigned int scale) 2879{ 2880 struct clk_duty *duty = &core->duty; 2881 int ret; 2882 2883 clk_prepare_lock(); 2884 2885 ret = clk_core_update_duty_cycle_nolock(core); 2886 if (!ret) 2887 ret = mult_frac(scale, duty->num, duty->den); 2888 2889 clk_prepare_unlock(); 2890 2891 return ret; 2892} 2893 2894/** 2895 * clk_get_scaled_duty_cycle - return the duty cycle ratio of a clock signal 2896 * @clk: clock signal source 2897 * @scale: scaling factor to be applied to represent the ratio as an integer 2898 * 2899 * Returns the duty cycle ratio of a clock node multiplied by the provided 2900 * scaling factor, or negative errno on error. 2901 */ 2902int clk_get_scaled_duty_cycle(struct clk *clk, unsigned int scale) 2903{ 2904 if (!clk) 2905 return 0; 2906 2907 return clk_core_get_scaled_duty_cycle(clk->core, scale); 2908} 2909EXPORT_SYMBOL_GPL(clk_get_scaled_duty_cycle); 2910 2911/** 2912 * clk_is_match - check if two clk's point to the same hardware clock 2913 * @p: clk compared against q 2914 * @q: clk compared against p 2915 * 2916 * Returns true if the two struct clk pointers both point to the same hardware 2917 * clock node. Put differently, returns true if struct clk *p and struct clk *q 2918 * share the same struct clk_core object. 2919 * 2920 * Returns false otherwise. Note that two NULL clks are treated as matching. 2921 */ 2922bool clk_is_match(const struct clk *p, const struct clk *q) 2923{ 2924 /* trivial case: identical struct clk's or both NULL */ 2925 if (p == q) 2926 return true; 2927 2928 /* true if clk->core pointers match. Avoid dereferencing garbage */ 2929 if (!IS_ERR_OR_NULL(p) && !IS_ERR_OR_NULL(q)) 2930 if (p->core == q->core) 2931 return true; 2932 2933 return false; 2934} 2935EXPORT_SYMBOL_GPL(clk_is_match); 2936 2937/*** debugfs support ***/ 2938 2939#ifdef CONFIG_DEBUG_FS 2940#include <linux/debugfs.h> 2941 2942static struct dentry *rootdir; 2943static int inited = 0; 2944static DEFINE_MUTEX(clk_debug_lock); 2945static HLIST_HEAD(clk_debug_list); 2946 2947static struct hlist_head *orphan_list[] = { 2948 &clk_orphan_list, 2949 NULL, 2950}; 2951 2952static void clk_summary_show_one(struct seq_file *s, struct clk_core *c, 2953 int level) 2954{ 2955 int phase; 2956 2957 seq_printf(s, "%*s%-*s %7d %8d %8d %11lu %10lu ", 2958 level * 3 + 1, "", 2959 30 - level * 3, c->name, 2960 c->enable_count, c->prepare_count, c->protect_count, 2961 clk_core_get_rate_recalc(c), 2962 clk_core_get_accuracy_recalc(c)); 2963 2964 phase = clk_core_get_phase(c); 2965 if (phase >= 0) 2966 seq_printf(s, "%5d", phase); 2967 else 2968 seq_puts(s, "-----"); 2969 2970 seq_printf(s, " %6d", clk_core_get_scaled_duty_cycle(c, 100000)); 2971 2972 if (c->ops->is_enabled) 2973 seq_printf(s, " %9c\n", clk_core_is_enabled(c) ? 'Y' : 'N'); 2974 else if (!c->ops->enable) 2975 seq_printf(s, " %9c\n", 'Y'); 2976 else 2977 seq_printf(s, " %9c\n", '?'); 2978} 2979 2980static void clk_summary_show_subtree(struct seq_file *s, struct clk_core *c, 2981 int level) 2982{ 2983 struct clk_core *child; 2984 2985 clk_pm_runtime_get(c); 2986 clk_summary_show_one(s, c, level); 2987 clk_pm_runtime_put(c); 2988 2989 hlist_for_each_entry(child, &c->children, child_node) 2990 clk_summary_show_subtree(s, child, level + 1); 2991} 2992 2993static int clk_summary_show(struct seq_file *s, void *data) 2994{ 2995 struct clk_core *c; 2996 struct hlist_head **lists = (struct hlist_head **)s->private; 2997 2998 seq_puts(s, " enable prepare protect duty hardware\n"); 2999 seq_puts(s, " clock count count count rate accuracy phase cycle enable\n"); 3000 seq_puts(s, "-------------------------------------------------------------------------------------------------------\n"); 3001 3002 clk_prepare_lock(); 3003 3004 for (; *lists; lists++) 3005 hlist_for_each_entry(c, *lists, child_node) 3006 clk_summary_show_subtree(s, c, 0); 3007 3008 clk_prepare_unlock(); 3009 3010 return 0; 3011} 3012DEFINE_SHOW_ATTRIBUTE(clk_summary); 3013 3014static void clk_dump_one(struct seq_file *s, struct clk_core *c, int level) 3015{ 3016 int phase; 3017 unsigned long min_rate, max_rate; 3018 3019 clk_core_get_boundaries(c, &min_rate, &max_rate); 3020 3021 /* This should be JSON format, i.e. elements separated with a comma */ 3022 seq_printf(s, "\"%s\": { ", c->name); 3023 seq_printf(s, "\"enable_count\": %d,", c->enable_count); 3024 seq_printf(s, "\"prepare_count\": %d,", c->prepare_count); 3025 seq_printf(s, "\"protect_count\": %d,", c->protect_count); 3026 seq_printf(s, "\"rate\": %lu,", clk_core_get_rate_recalc(c)); 3027 seq_printf(s, "\"min_rate\": %lu,", min_rate); 3028 seq_printf(s, "\"max_rate\": %lu,", max_rate); 3029 seq_printf(s, "\"accuracy\": %lu,", clk_core_get_accuracy_recalc(c)); 3030 phase = clk_core_get_phase(c); 3031 if (phase >= 0) 3032 seq_printf(s, "\"phase\": %d,", phase); 3033 seq_printf(s, "\"duty_cycle\": %u", 3034 clk_core_get_scaled_duty_cycle(c, 100000)); 3035} 3036 3037static void clk_dump_subtree(struct seq_file *s, struct clk_core *c, int level) 3038{ 3039 struct clk_core *child; 3040 3041 clk_dump_one(s, c, level); 3042 3043 hlist_for_each_entry(child, &c->children, child_node) { 3044 seq_putc(s, ','); 3045 clk_dump_subtree(s, child, level + 1); 3046 } 3047 3048 seq_putc(s, '}'); 3049} 3050 3051static int clk_dump_show(struct seq_file *s, void *data) 3052{ 3053 struct clk_core *c; 3054 bool first_node = true; 3055 struct hlist_head **lists = (struct hlist_head **)s->private; 3056 3057 seq_putc(s, '{'); 3058 clk_prepare_lock(); 3059 3060 for (; *lists; lists++) { 3061 hlist_for_each_entry(c, *lists, child_node) { 3062 if (!first_node) 3063 seq_putc(s, ','); 3064 first_node = false; 3065 clk_dump_subtree(s, c, 0); 3066 } 3067 } 3068 3069 clk_prepare_unlock(); 3070 3071 seq_puts(s, "}\n"); 3072 return 0; 3073} 3074DEFINE_SHOW_ATTRIBUTE(clk_dump); 3075 3076#undef CLOCK_ALLOW_WRITE_DEBUGFS 3077#ifdef CLOCK_ALLOW_WRITE_DEBUGFS 3078/* 3079 * This can be dangerous, therefore don't provide any real compile time 3080 * configuration option for this feature. 3081 * People who want to use this will need to modify the source code directly. 3082 */ 3083static int clk_rate_set(void *data, u64 val) 3084{ 3085 struct clk_core *core = data; 3086 int ret; 3087 3088 clk_prepare_lock(); 3089 ret = clk_core_set_rate_nolock(core, val); 3090 clk_prepare_unlock(); 3091 3092 return ret; 3093} 3094 3095#define clk_rate_mode 0644 3096 3097static int clk_prepare_enable_set(void *data, u64 val) 3098{ 3099 struct clk_core *core = data; 3100 int ret = 0; 3101 3102 if (val) 3103 ret = clk_prepare_enable(core->hw->clk); 3104 else 3105 clk_disable_unprepare(core->hw->clk); 3106 3107 return ret; 3108} 3109 3110static int clk_prepare_enable_get(void *data, u64 *val) 3111{ 3112 struct clk_core *core = data; 3113 3114 *val = core->enable_count && core->prepare_count; 3115 return 0; 3116} 3117 3118DEFINE_DEBUGFS_ATTRIBUTE(clk_prepare_enable_fops, clk_prepare_enable_get, 3119 clk_prepare_enable_set, "%llu\n"); 3120 3121#else 3122#define clk_rate_set NULL 3123#define clk_rate_mode 0444 3124#endif 3125 3126static int clk_rate_get(void *data, u64 *val) 3127{ 3128 struct clk_core *core = data; 3129 3130 clk_prepare_lock(); 3131 *val = clk_core_get_rate_recalc(core); 3132 clk_prepare_unlock(); 3133 3134 return 0; 3135} 3136 3137DEFINE_DEBUGFS_ATTRIBUTE(clk_rate_fops, clk_rate_get, clk_rate_set, "%llu\n"); 3138 3139static const struct { 3140 unsigned long flag; 3141 const char *name; 3142} clk_flags[] = { 3143#define ENTRY(f) { f, #f } 3144 ENTRY(CLK_SET_RATE_GATE), 3145 ENTRY(CLK_SET_PARENT_GATE), 3146 ENTRY(CLK_SET_RATE_PARENT), 3147 ENTRY(CLK_IGNORE_UNUSED), 3148 ENTRY(CLK_GET_RATE_NOCACHE), 3149 ENTRY(CLK_SET_RATE_NO_REPARENT), 3150 ENTRY(CLK_GET_ACCURACY_NOCACHE), 3151 ENTRY(CLK_RECALC_NEW_RATES), 3152 ENTRY(CLK_SET_RATE_UNGATE), 3153 ENTRY(CLK_IS_CRITICAL), 3154 ENTRY(CLK_OPS_PARENT_ENABLE), 3155 ENTRY(CLK_DUTY_CYCLE_PARENT), 3156#undef ENTRY 3157}; 3158 3159static int clk_flags_show(struct seq_file *s, void *data) 3160{ 3161 struct clk_core *core = s->private; 3162 unsigned long flags = core->flags; 3163 unsigned int i; 3164 3165 for (i = 0; flags && i < ARRAY_SIZE(clk_flags); i++) { 3166 if (flags & clk_flags[i].flag) { 3167 seq_printf(s, "%s\n", clk_flags[i].name); 3168 flags &= ~clk_flags[i].flag; 3169 } 3170 } 3171 if (flags) { 3172 /* Unknown flags */ 3173 seq_printf(s, "0x%lx\n", flags); 3174 } 3175 3176 return 0; 3177} 3178DEFINE_SHOW_ATTRIBUTE(clk_flags); 3179 3180static void possible_parent_show(struct seq_file *s, struct clk_core *core, 3181 unsigned int i, char terminator) 3182{ 3183 struct clk_core *parent; 3184 3185 /* 3186 * Go through the following options to fetch a parent's name. 3187 * 3188 * 1. Fetch the registered parent clock and use its name 3189 * 2. Use the global (fallback) name if specified 3190 * 3. Use the local fw_name if provided 3191 * 4. Fetch parent clock's clock-output-name if DT index was set 3192 * 3193 * This may still fail in some cases, such as when the parent is 3194 * specified directly via a struct clk_hw pointer, but it isn't 3195 * registered (yet). 3196 */ 3197 parent = clk_core_get_parent_by_index(core, i); 3198 if (parent) 3199 seq_puts(s, parent->name); 3200 else if (core->parents[i].name) 3201 seq_puts(s, core->parents[i].name); 3202 else if (core->parents[i].fw_name) 3203 seq_printf(s, "<%s>(fw)", core->parents[i].fw_name); 3204 else if (core->parents[i].index >= 0) 3205 seq_puts(s, 3206 of_clk_get_parent_name(core->of_node, 3207 core->parents[i].index)); 3208 else 3209 seq_puts(s, "(missing)"); 3210 3211 seq_putc(s, terminator); 3212} 3213 3214static int possible_parents_show(struct seq_file *s, void *data) 3215{ 3216 struct clk_core *core = s->private; 3217 int i; 3218 3219 for (i = 0; i < core->num_parents - 1; i++) 3220 possible_parent_show(s, core, i, ' '); 3221 3222 possible_parent_show(s, core, i, '\n'); 3223 3224 return 0; 3225} 3226DEFINE_SHOW_ATTRIBUTE(possible_parents); 3227 3228static int current_parent_show(struct seq_file *s, void *data) 3229{ 3230 struct clk_core *core = s->private; 3231 3232 if (core->parent) 3233 seq_printf(s, "%s\n", core->parent->name); 3234 3235 return 0; 3236} 3237DEFINE_SHOW_ATTRIBUTE(current_parent); 3238 3239#ifdef CLOCK_ALLOW_WRITE_DEBUGFS 3240static ssize_t current_parent_write(struct file *file, const char __user *ubuf, 3241 size_t count, loff_t *ppos) 3242{ 3243 struct seq_file *s = file->private_data; 3244 struct clk_core *core = s->private; 3245 struct clk_core *parent; 3246 u8 idx; 3247 int err; 3248 3249 err = kstrtou8_from_user(ubuf, count, 0, &idx); 3250 if (err < 0) 3251 return err; 3252 3253 parent = clk_core_get_parent_by_index(core, idx); 3254 if (!parent) 3255 return -ENOENT; 3256 3257 clk_prepare_lock(); 3258 err = clk_core_set_parent_nolock(core, parent); 3259 clk_prepare_unlock(); 3260 if (err) 3261 return err; 3262 3263 return count; 3264} 3265 3266static const struct file_operations current_parent_rw_fops = { 3267 .open = current_parent_open, 3268 .write = current_parent_write, 3269 .read = seq_read, 3270 .llseek = seq_lseek, 3271 .release = single_release, 3272}; 3273#endif 3274 3275static int clk_duty_cycle_show(struct seq_file *s, void *data) 3276{ 3277 struct clk_core *core = s->private; 3278 struct clk_duty *duty = &core->duty; 3279 3280 seq_printf(s, "%u/%u\n", duty->num, duty->den); 3281 3282 return 0; 3283} 3284DEFINE_SHOW_ATTRIBUTE(clk_duty_cycle); 3285 3286static int clk_min_rate_show(struct seq_file *s, void *data) 3287{ 3288 struct clk_core *core = s->private; 3289 unsigned long min_rate, max_rate; 3290 3291 clk_prepare_lock(); 3292 clk_core_get_boundaries(core, &min_rate, &max_rate); 3293 clk_prepare_unlock(); 3294 seq_printf(s, "%lu\n", min_rate); 3295 3296 return 0; 3297} 3298DEFINE_SHOW_ATTRIBUTE(clk_min_rate); 3299 3300static int clk_max_rate_show(struct seq_file *s, void *data) 3301{ 3302 struct clk_core *core = s->private; 3303 unsigned long min_rate, max_rate; 3304 3305 clk_prepare_lock(); 3306 clk_core_get_boundaries(core, &min_rate, &max_rate); 3307 clk_prepare_unlock(); 3308 seq_printf(s, "%lu\n", max_rate); 3309 3310 return 0; 3311} 3312DEFINE_SHOW_ATTRIBUTE(clk_max_rate); 3313 3314static void clk_debug_create_one(struct clk_core *core, struct dentry *pdentry) 3315{ 3316 struct dentry *root; 3317 3318 if (!core || !pdentry) 3319 return; 3320 3321 root = debugfs_create_dir(core->name, pdentry); 3322 core->dentry = root; 3323 3324 debugfs_create_file("clk_rate", clk_rate_mode, root, core, 3325 &clk_rate_fops); 3326 debugfs_create_file("clk_min_rate", 0444, root, core, &clk_min_rate_fops); 3327 debugfs_create_file("clk_max_rate", 0444, root, core, &clk_max_rate_fops); 3328 debugfs_create_ulong("clk_accuracy", 0444, root, &core->accuracy); 3329 debugfs_create_u32("clk_phase", 0444, root, &core->phase); 3330 debugfs_create_file("clk_flags", 0444, root, core, &clk_flags_fops); 3331 debugfs_create_u32("clk_prepare_count", 0444, root, &core->prepare_count); 3332 debugfs_create_u32("clk_enable_count", 0444, root, &core->enable_count); 3333 debugfs_create_u32("clk_protect_count", 0444, root, &core->protect_count); 3334 debugfs_create_u32("clk_notifier_count", 0444, root, &core->notifier_count); 3335 debugfs_create_file("clk_duty_cycle", 0444, root, core, 3336 &clk_duty_cycle_fops); 3337#ifdef CLOCK_ALLOW_WRITE_DEBUGFS 3338 debugfs_create_file("clk_prepare_enable", 0644, root, core, 3339 &clk_prepare_enable_fops); 3340 3341 if (core->num_parents > 1) 3342 debugfs_create_file("clk_parent", 0644, root, core, 3343 ¤t_parent_rw_fops); 3344 else 3345#endif 3346 if (core->num_parents > 0) 3347 debugfs_create_file("clk_parent", 0444, root, core, 3348 ¤t_parent_fops); 3349 3350 if (core->num_parents > 1) 3351 debugfs_create_file("clk_possible_parents", 0444, root, core, 3352 &possible_parents_fops); 3353 3354 if (core->ops->debug_init) 3355 core->ops->debug_init(core->hw, core->dentry); 3356} 3357 3358/** 3359 * clk_debug_register - add a clk node to the debugfs clk directory 3360 * @core: the clk being added to the debugfs clk directory 3361 * 3362 * Dynamically adds a clk to the debugfs clk directory if debugfs has been 3363 * initialized. Otherwise it bails out early since the debugfs clk directory 3364 * will be created lazily by clk_debug_init as part of a late_initcall. 3365 */ 3366static void clk_debug_register(struct clk_core *core) 3367{ 3368 mutex_lock(&clk_debug_lock); 3369 hlist_add_head(&core->debug_node, &clk_debug_list); 3370 if (inited) 3371 clk_debug_create_one(core, rootdir); 3372 mutex_unlock(&clk_debug_lock); 3373} 3374 3375 /** 3376 * clk_debug_unregister - remove a clk node from the debugfs clk directory 3377 * @core: the clk being removed from the debugfs clk directory 3378 * 3379 * Dynamically removes a clk and all its child nodes from the 3380 * debugfs clk directory if clk->dentry points to debugfs created by 3381 * clk_debug_register in __clk_core_init. 3382 */ 3383static void clk_debug_unregister(struct clk_core *core) 3384{ 3385 mutex_lock(&clk_debug_lock); 3386 hlist_del_init(&core->debug_node); 3387 debugfs_remove_recursive(core->dentry); 3388 core->dentry = NULL; 3389 mutex_unlock(&clk_debug_lock); 3390} 3391 3392/** 3393 * clk_debug_init - lazily populate the debugfs clk directory 3394 * 3395 * clks are often initialized very early during boot before memory can be 3396 * dynamically allocated and well before debugfs is setup. This function 3397 * populates the debugfs clk directory once at boot-time when we know that 3398 * debugfs is setup. It should only be called once at boot-time, all other clks 3399 * added dynamically will be done so with clk_debug_register. 3400 */ 3401static int __init clk_debug_init(void) 3402{ 3403 struct clk_core *core; 3404 3405#ifdef CLOCK_ALLOW_WRITE_DEBUGFS 3406 pr_warn("\n"); 3407 pr_warn("********************************************************************\n"); 3408 pr_warn("** NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE **\n"); 3409 pr_warn("** **\n"); 3410 pr_warn("** WRITEABLE clk DebugFS SUPPORT HAS BEEN ENABLED IN THIS KERNEL **\n"); 3411 pr_warn("** **\n"); 3412 pr_warn("** This means that this kernel is built to expose clk operations **\n"); 3413 pr_warn("** such as parent or rate setting, enabling, disabling, etc. **\n"); 3414 pr_warn("** to userspace, which may compromise security on your system. **\n"); 3415 pr_warn("** **\n"); 3416 pr_warn("** If you see this message and you are not debugging the **\n"); 3417 pr_warn("** kernel, report this immediately to your vendor! **\n"); 3418 pr_warn("** **\n"); 3419 pr_warn("** NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE **\n"); 3420 pr_warn("********************************************************************\n"); 3421#endif 3422 3423 rootdir = debugfs_create_dir("clk", NULL); 3424 3425 debugfs_create_file("clk_summary", 0444, rootdir, &all_lists, 3426 &clk_summary_fops); 3427 debugfs_create_file("clk_dump", 0444, rootdir, &all_lists, 3428 &clk_dump_fops); 3429 debugfs_create_file("clk_orphan_summary", 0444, rootdir, &orphan_list, 3430 &clk_summary_fops); 3431 debugfs_create_file("clk_orphan_dump", 0444, rootdir, &orphan_list, 3432 &clk_dump_fops); 3433 3434 mutex_lock(&clk_debug_lock); 3435 hlist_for_each_entry(core, &clk_debug_list, debug_node) 3436 clk_debug_create_one(core, rootdir); 3437 3438 inited = 1; 3439 mutex_unlock(&clk_debug_lock); 3440 3441 return 0; 3442} 3443late_initcall(clk_debug_init); 3444#else 3445static inline void clk_debug_register(struct clk_core *core) { } 3446static inline void clk_debug_unregister(struct clk_core *core) 3447{ 3448} 3449#endif 3450 3451static void clk_core_reparent_orphans_nolock(void) 3452{ 3453 struct clk_core *orphan; 3454 struct hlist_node *tmp2; 3455 3456 /* 3457 * walk the list of orphan clocks and reparent any that newly finds a 3458 * parent. 3459 */ 3460 hlist_for_each_entry_safe(orphan, tmp2, &clk_orphan_list, child_node) { 3461 struct clk_core *parent = __clk_init_parent(orphan); 3462 3463 /* 3464 * We need to use __clk_set_parent_before() and _after() to 3465 * to properly migrate any prepare/enable count of the orphan 3466 * clock. This is important for CLK_IS_CRITICAL clocks, which 3467 * are enabled during init but might not have a parent yet. 3468 */ 3469 if (parent) { 3470 /* update the clk tree topology */ 3471 __clk_set_parent_before(orphan, parent); 3472 __clk_set_parent_after(orphan, parent, NULL); 3473 __clk_recalc_accuracies(orphan); 3474 __clk_recalc_rates(orphan, 0); 3475 3476 /* 3477 * __clk_init_parent() will set the initial req_rate to 3478 * 0 if the clock doesn't have clk_ops::recalc_rate and 3479 * is an orphan when it's registered. 3480 * 3481 * 'req_rate' is used by clk_set_rate_range() and 3482 * clk_put() to trigger a clk_set_rate() call whenever 3483 * the boundaries are modified. Let's make sure 3484 * 'req_rate' is set to something non-zero so that 3485 * clk_set_rate_range() doesn't drop the frequency. 3486 */ 3487 orphan->req_rate = orphan->rate; 3488 } 3489 } 3490} 3491 3492/** 3493 * __clk_core_init - initialize the data structures in a struct clk_core 3494 * @core: clk_core being initialized 3495 * 3496 * Initializes the lists in struct clk_core, queries the hardware for the 3497 * parent and rate and sets them both. 3498 */ 3499static int __clk_core_init(struct clk_core *core) 3500{ 3501 int ret; 3502 struct clk_core *parent; 3503 unsigned long rate; 3504 int phase; 3505 3506 clk_prepare_lock(); 3507 3508 /* 3509 * Set hw->core after grabbing the prepare_lock to synchronize with 3510 * callers of clk_core_fill_parent_index() where we treat hw->core 3511 * being NULL as the clk not being registered yet. This is crucial so 3512 * that clks aren't parented until their parent is fully registered. 3513 */ 3514 core->hw->core = core; 3515 3516 ret = clk_pm_runtime_get(core); 3517 if (ret) 3518 goto unlock; 3519 3520 /* check to see if a clock with this name is already registered */ 3521 if (clk_core_lookup(core->name)) { 3522 pr_debug("%s: clk %s already initialized\n", 3523 __func__, core->name); 3524 ret = -EEXIST; 3525 goto out; 3526 } 3527 3528 /* check that clk_ops are sane. See Documentation/driver-api/clk.rst */ 3529 if (core->ops->set_rate && 3530 !((core->ops->round_rate || core->ops->determine_rate) && 3531 core->ops->recalc_rate)) { 3532 pr_err("%s: %s must implement .round_rate or .determine_rate in addition to .recalc_rate\n", 3533 __func__, core->name); 3534 ret = -EINVAL; 3535 goto out; 3536 } 3537 3538 if (core->ops->set_parent && !core->ops->get_parent) { 3539 pr_err("%s: %s must implement .get_parent & .set_parent\n", 3540 __func__, core->name); 3541 ret = -EINVAL; 3542 goto out; 3543 } 3544 3545 if (core->num_parents > 1 && !core->ops->get_parent) { 3546 pr_err("%s: %s must implement .get_parent as it has multi parents\n", 3547 __func__, core->name); 3548 ret = -EINVAL; 3549 goto out; 3550 } 3551 3552 if (core->ops->set_rate_and_parent && 3553 !(core->ops->set_parent && core->ops->set_rate)) { 3554 pr_err("%s: %s must implement .set_parent & .set_rate\n", 3555 __func__, core->name); 3556 ret = -EINVAL; 3557 goto out; 3558 } 3559 3560 /* 3561 * optional platform-specific magic 3562 * 3563 * The .init callback is not used by any of the basic clock types, but 3564 * exists for weird hardware that must perform initialization magic for 3565 * CCF to get an accurate view of clock for any other callbacks. It may 3566 * also be used needs to perform dynamic allocations. Such allocation 3567 * must be freed in the terminate() callback. 3568 * This callback shall not be used to initialize the parameters state, 3569 * such as rate, parent, etc ... 3570 * 3571 * If it exist, this callback should called before any other callback of 3572 * the clock 3573 */ 3574 if (core->ops->init) { 3575 ret = core->ops->init(core->hw); 3576 if (ret) 3577 goto out; 3578 } 3579 3580 parent = core->parent = __clk_init_parent(core); 3581 3582 /* 3583 * Populate core->parent if parent has already been clk_core_init'd. If 3584 * parent has not yet been clk_core_init'd then place clk in the orphan 3585 * list. If clk doesn't have any parents then place it in the root 3586 * clk list. 3587 * 3588 * Every time a new clk is clk_init'd then we walk the list of orphan 3589 * clocks and re-parent any that are children of the clock currently 3590 * being clk_init'd. 3591 */ 3592 if (parent) { 3593 hlist_add_head(&core->child_node, &parent->children); 3594 core->orphan = parent->orphan; 3595 } else if (!core->num_parents) { 3596 hlist_add_head(&core->child_node, &clk_root_list); 3597 core->orphan = false; 3598 } else { 3599 hlist_add_head(&core->child_node, &clk_orphan_list); 3600 core->orphan = true; 3601 } 3602 3603 /* 3604 * Set clk's accuracy. The preferred method is to use 3605 * .recalc_accuracy. For simple clocks and lazy developers the default 3606 * fallback is to use the parent's accuracy. If a clock doesn't have a 3607 * parent (or is orphaned) then accuracy is set to zero (perfect 3608 * clock). 3609 */ 3610 if (core->ops->recalc_accuracy) 3611 core->accuracy = core->ops->recalc_accuracy(core->hw, 3612 clk_core_get_accuracy_no_lock(parent)); 3613 else if (parent) 3614 core->accuracy = parent->accuracy; 3615 else 3616 core->accuracy = 0; 3617 3618 /* 3619 * Set clk's phase by clk_core_get_phase() caching the phase. 3620 * Since a phase is by definition relative to its parent, just 3621 * query the current clock phase, or just assume it's in phase. 3622 */ 3623 phase = clk_core_get_phase(core); 3624 if (phase < 0) { 3625 ret = phase; 3626 pr_warn("%s: Failed to get phase for clk '%s'\n", __func__, 3627 core->name); 3628 goto out; 3629 } 3630 3631 /* 3632 * Set clk's duty cycle. 3633 */ 3634 clk_core_update_duty_cycle_nolock(core); 3635 3636 /* 3637 * Set clk's rate. The preferred method is to use .recalc_rate. For 3638 * simple clocks and lazy developers the default fallback is to use the 3639 * parent's rate. If a clock doesn't have a parent (or is orphaned) 3640 * then rate is set to zero. 3641 */ 3642 if (core->ops->recalc_rate) 3643 rate = core->ops->recalc_rate(core->hw, 3644 clk_core_get_rate_nolock(parent)); 3645 else if (parent) 3646 rate = parent->rate; 3647 else 3648 rate = 0; 3649 core->rate = core->req_rate = rate; 3650 3651 /* 3652 * Enable CLK_IS_CRITICAL clocks so newly added critical clocks 3653 * don't get accidentally disabled when walking the orphan tree and 3654 * reparenting clocks 3655 */ 3656 if (core->flags & CLK_IS_CRITICAL) { 3657 ret = clk_core_prepare(core); 3658 if (ret) { 3659 pr_warn("%s: critical clk '%s' failed to prepare\n", 3660 __func__, core->name); 3661 goto out; 3662 } 3663 3664 ret = clk_core_enable_lock(core); 3665 if (ret) { 3666 pr_warn("%s: critical clk '%s' failed to enable\n", 3667 __func__, core->name); 3668 clk_core_unprepare(core); 3669 goto out; 3670 } 3671 } 3672 3673 clk_core_reparent_orphans_nolock(); 3674 3675 3676 kref_init(&core->ref); 3677out: 3678 clk_pm_runtime_put(core); 3679unlock: 3680 if (ret) { 3681 hlist_del_init(&core->child_node); 3682 core->hw->core = NULL; 3683 } 3684 3685 clk_prepare_unlock(); 3686 3687 if (!ret) 3688 clk_debug_register(core); 3689 3690 return ret; 3691} 3692 3693/** 3694 * clk_core_link_consumer - Add a clk consumer to the list of consumers in a clk_core 3695 * @core: clk to add consumer to 3696 * @clk: consumer to link to a clk 3697 */ 3698static void clk_core_link_consumer(struct clk_core *core, struct clk *clk) 3699{ 3700 clk_prepare_lock(); 3701 hlist_add_head(&clk->clks_node, &core->clks); 3702 clk_prepare_unlock(); 3703} 3704 3705/** 3706 * clk_core_unlink_consumer - Remove a clk consumer from the list of consumers in a clk_core 3707 * @clk: consumer to unlink 3708 */ 3709static void clk_core_unlink_consumer(struct clk *clk) 3710{ 3711 lockdep_assert_held(&prepare_lock); 3712 hlist_del(&clk->clks_node); 3713} 3714 3715/** 3716 * alloc_clk - Allocate a clk consumer, but leave it unlinked to the clk_core 3717 * @core: clk to allocate a consumer for 3718 * @dev_id: string describing device name 3719 * @con_id: connection ID string on device 3720 * 3721 * Returns: clk consumer left unlinked from the consumer list 3722 */ 3723static struct clk *alloc_clk(struct clk_core *core, const char *dev_id, 3724 const char *con_id) 3725{ 3726 struct clk *clk; 3727 3728 clk = kzalloc(sizeof(*clk), GFP_KERNEL); 3729 if (!clk) 3730 return ERR_PTR(-ENOMEM); 3731 3732 clk->core = core; 3733 clk->dev_id = dev_id; 3734 clk->con_id = kstrdup_const(con_id, GFP_KERNEL); 3735 clk->max_rate = ULONG_MAX; 3736 3737 return clk; 3738} 3739 3740/** 3741 * free_clk - Free a clk consumer 3742 * @clk: clk consumer to free 3743 * 3744 * Note, this assumes the clk has been unlinked from the clk_core consumer 3745 * list. 3746 */ 3747static void free_clk(struct clk *clk) 3748{ 3749 kfree_const(clk->con_id); 3750 kfree(clk); 3751} 3752 3753/** 3754 * clk_hw_create_clk: Allocate and link a clk consumer to a clk_core given 3755 * a clk_hw 3756 * @dev: clk consumer device 3757 * @hw: clk_hw associated with the clk being consumed 3758 * @dev_id: string describing device name 3759 * @con_id: connection ID string on device 3760 * 3761 * This is the main function used to create a clk pointer for use by clk 3762 * consumers. It connects a consumer to the clk_core and clk_hw structures 3763 * used by the framework and clk provider respectively. 3764 */ 3765struct clk *clk_hw_create_clk(struct device *dev, struct clk_hw *hw, 3766 const char *dev_id, const char *con_id) 3767{ 3768 struct clk *clk; 3769 struct clk_core *core; 3770 3771 /* This is to allow this function to be chained to others */ 3772 if (IS_ERR_OR_NULL(hw)) 3773 return ERR_CAST(hw); 3774 3775 core = hw->core; 3776 clk = alloc_clk(core, dev_id, con_id); 3777 if (IS_ERR(clk)) 3778 return clk; 3779 clk->dev = dev; 3780 3781 if (!try_module_get(core->owner)) { 3782 free_clk(clk); 3783 return ERR_PTR(-ENOENT); 3784 } 3785 3786 kref_get(&core->ref); 3787 clk_core_link_consumer(core, clk); 3788 3789 return clk; 3790} 3791 3792/** 3793 * clk_hw_get_clk - get clk consumer given an clk_hw 3794 * @hw: clk_hw associated with the clk being consumed 3795 * @con_id: connection ID string on device 3796 * 3797 * Returns: new clk consumer 3798 * This is the function to be used by providers which need 3799 * to get a consumer clk and act on the clock element 3800 * Calls to this function must be balanced with calls clk_put() 3801 */ 3802struct clk *clk_hw_get_clk(struct clk_hw *hw, const char *con_id) 3803{ 3804 struct device *dev = hw->core->dev; 3805 const char *name = dev ? dev_name(dev) : NULL; 3806 3807 return clk_hw_create_clk(dev, hw, name, con_id); 3808} 3809EXPORT_SYMBOL(clk_hw_get_clk); 3810 3811static int clk_cpy_name(const char **dst_p, const char *src, bool must_exist) 3812{ 3813 const char *dst; 3814 3815 if (!src) { 3816 if (must_exist) 3817 return -EINVAL; 3818 return 0; 3819 } 3820 3821 *dst_p = dst = kstrdup_const(src, GFP_KERNEL); 3822 if (!dst) 3823 return -ENOMEM; 3824 3825 return 0; 3826} 3827 3828static int clk_core_populate_parent_map(struct clk_core *core, 3829 const struct clk_init_data *init) 3830{ 3831 u8 num_parents = init->num_parents; 3832 const char * const *parent_names = init->parent_names; 3833 const struct clk_hw **parent_hws = init->parent_hws; 3834 const struct clk_parent_data *parent_data = init->parent_data; 3835 int i, ret = 0; 3836 struct clk_parent_map *parents, *parent; 3837 3838 if (!num_parents) 3839 return 0; 3840 3841 /* 3842 * Avoid unnecessary string look-ups of clk_core's possible parents by 3843 * having a cache of names/clk_hw pointers to clk_core pointers. 3844 */ 3845 parents = kcalloc(num_parents, sizeof(*parents), GFP_KERNEL); 3846 core->parents = parents; 3847 if (!parents) 3848 return -ENOMEM; 3849 3850 /* Copy everything over because it might be __initdata */ 3851 for (i = 0, parent = parents; i < num_parents; i++, parent++) { 3852 parent->index = -1; 3853 if (parent_names) { 3854 /* throw a WARN if any entries are NULL */ 3855 WARN(!parent_names[i], 3856 "%s: invalid NULL in %s's .parent_names\n", 3857 __func__, core->name); 3858 ret = clk_cpy_name(&parent->name, parent_names[i], 3859 true); 3860 } else if (parent_data) { 3861 parent->hw = parent_data[i].hw; 3862 parent->index = parent_data[i].index; 3863 ret = clk_cpy_name(&parent->fw_name, 3864 parent_data[i].fw_name, false); 3865 if (!ret) 3866 ret = clk_cpy_name(&parent->name, 3867 parent_data[i].name, 3868 false); 3869 } else if (parent_hws) { 3870 parent->hw = parent_hws[i]; 3871 } else { 3872 ret = -EINVAL; 3873 WARN(1, "Must specify parents if num_parents > 0\n"); 3874 } 3875 3876 if (ret) { 3877 do { 3878 kfree_const(parents[i].name); 3879 kfree_const(parents[i].fw_name); 3880 } while (--i >= 0); 3881 kfree(parents); 3882 3883 return ret; 3884 } 3885 } 3886 3887 return 0; 3888} 3889 3890static void clk_core_free_parent_map(struct clk_core *core) 3891{ 3892 int i = core->num_parents; 3893 3894 if (!core->num_parents) 3895 return; 3896 3897 while (--i >= 0) { 3898 kfree_const(core->parents[i].name); 3899 kfree_const(core->parents[i].fw_name); 3900 } 3901 3902 kfree(core->parents); 3903} 3904 3905static struct clk * 3906__clk_register(struct device *dev, struct device_node *np, struct clk_hw *hw) 3907{ 3908 int ret; 3909 struct clk_core *core; 3910 const struct clk_init_data *init = hw->init; 3911 3912 /* 3913 * The init data is not supposed to be used outside of registration path. 3914 * Set it to NULL so that provider drivers can't use it either and so that 3915 * we catch use of hw->init early on in the core. 3916 */ 3917 hw->init = NULL; 3918 3919 core = kzalloc(sizeof(*core), GFP_KERNEL); 3920 if (!core) { 3921 ret = -ENOMEM; 3922 goto fail_out; 3923 } 3924 3925 core->name = kstrdup_const(init->name, GFP_KERNEL); 3926 if (!core->name) { 3927 ret = -ENOMEM; 3928 goto fail_name; 3929 } 3930 3931 if (WARN_ON(!init->ops)) { 3932 ret = -EINVAL; 3933 goto fail_ops; 3934 } 3935 core->ops = init->ops; 3936 3937 if (dev && pm_runtime_enabled(dev)) 3938 core->rpm_enabled = true; 3939 core->dev = dev; 3940 core->of_node = np; 3941 if (dev && dev->driver) 3942 core->owner = dev->driver->owner; 3943 core->hw = hw; 3944 core->flags = init->flags; 3945 core->num_parents = init->num_parents; 3946 core->min_rate = 0; 3947 core->max_rate = ULONG_MAX; 3948 3949 ret = clk_core_populate_parent_map(core, init); 3950 if (ret) 3951 goto fail_parents; 3952 3953 INIT_HLIST_HEAD(&core->clks); 3954 3955 /* 3956 * Don't call clk_hw_create_clk() here because that would pin the 3957 * provider module to itself and prevent it from ever being removed. 3958 */ 3959 hw->clk = alloc_clk(core, NULL, NULL); 3960 if (IS_ERR(hw->clk)) { 3961 ret = PTR_ERR(hw->clk); 3962 goto fail_create_clk; 3963 } 3964 3965 clk_core_link_consumer(core, hw->clk); 3966 3967 ret = __clk_core_init(core); 3968 if (!ret) 3969 return hw->clk; 3970 3971 clk_prepare_lock(); 3972 clk_core_unlink_consumer(hw->clk); 3973 clk_prepare_unlock(); 3974 3975 free_clk(hw->clk); 3976 hw->clk = NULL; 3977 3978fail_create_clk: 3979 clk_core_free_parent_map(core); 3980fail_parents: 3981fail_ops: 3982 kfree_const(core->name); 3983fail_name: 3984 kfree(core); 3985fail_out: 3986 return ERR_PTR(ret); 3987} 3988 3989/** 3990 * dev_or_parent_of_node() - Get device node of @dev or @dev's parent 3991 * @dev: Device to get device node of 3992 * 3993 * Return: device node pointer of @dev, or the device node pointer of 3994 * @dev->parent if dev doesn't have a device node, or NULL if neither 3995 * @dev or @dev->parent have a device node. 3996 */ 3997static struct device_node *dev_or_parent_of_node(struct device *dev) 3998{ 3999 struct device_node *np; 4000 4001 if (!dev) 4002 return NULL; 4003 4004 np = dev_of_node(dev); 4005 if (!np) 4006 np = dev_of_node(dev->parent); 4007 4008 return np; 4009} 4010 4011/** 4012 * clk_register - allocate a new clock, register it and return an opaque cookie 4013 * @dev: device that is registering this clock 4014 * @hw: link to hardware-specific clock data 4015 * 4016 * clk_register is the *deprecated* interface for populating the clock tree with 4017 * new clock nodes. Use clk_hw_register() instead. 4018 * 4019 * Returns: a pointer to the newly allocated struct clk which 4020 * cannot be dereferenced by driver code but may be used in conjunction with the 4021 * rest of the clock API. In the event of an error clk_register will return an 4022 * error code; drivers must test for an error code after calling clk_register. 4023 */ 4024struct clk *clk_register(struct device *dev, struct clk_hw *hw) 4025{ 4026 return __clk_register(dev, dev_or_parent_of_node(dev), hw); 4027} 4028EXPORT_SYMBOL_GPL(clk_register); 4029 4030/** 4031 * clk_hw_register - register a clk_hw and return an error code 4032 * @dev: device that is registering this clock 4033 * @hw: link to hardware-specific clock data 4034 * 4035 * clk_hw_register is the primary interface for populating the clock tree with 4036 * new clock nodes. It returns an integer equal to zero indicating success or 4037 * less than zero indicating failure. Drivers must test for an error code after 4038 * calling clk_hw_register(). 4039 */ 4040int clk_hw_register(struct device *dev, struct clk_hw *hw) 4041{ 4042 return PTR_ERR_OR_ZERO(__clk_register(dev, dev_or_parent_of_node(dev), 4043 hw)); 4044} 4045EXPORT_SYMBOL_GPL(clk_hw_register); 4046 4047/* 4048 * of_clk_hw_register - register a clk_hw and return an error code 4049 * @node: device_node of device that is registering this clock 4050 * @hw: link to hardware-specific clock data 4051 * 4052 * of_clk_hw_register() is the primary interface for populating the clock tree 4053 * with new clock nodes when a struct device is not available, but a struct 4054 * device_node is. It returns an integer equal to zero indicating success or 4055 * less than zero indicating failure. Drivers must test for an error code after 4056 * calling of_clk_hw_register(). 4057 */ 4058int of_clk_hw_register(struct device_node *node, struct clk_hw *hw) 4059{ 4060 return PTR_ERR_OR_ZERO(__clk_register(NULL, node, hw)); 4061} 4062EXPORT_SYMBOL_GPL(of_clk_hw_register); 4063 4064/* Free memory allocated for a clock. */ 4065static void __clk_release(struct kref *ref) 4066{ 4067 struct clk_core *core = container_of(ref, struct clk_core, ref); 4068 4069 lockdep_assert_held(&prepare_lock); 4070 4071 clk_core_free_parent_map(core); 4072 kfree_const(core->name); 4073 kfree(core); 4074} 4075 4076/* 4077 * Empty clk_ops for unregistered clocks. These are used temporarily 4078 * after clk_unregister() was called on a clock and until last clock 4079 * consumer calls clk_put() and the struct clk object is freed. 4080 */ 4081static int clk_nodrv_prepare_enable(struct clk_hw *hw) 4082{ 4083 return -ENXIO; 4084} 4085 4086static void clk_nodrv_disable_unprepare(struct clk_hw *hw) 4087{ 4088 WARN_ON_ONCE(1); 4089} 4090 4091static int clk_nodrv_set_rate(struct clk_hw *hw, unsigned long rate, 4092 unsigned long parent_rate) 4093{ 4094 return -ENXIO; 4095} 4096 4097static int clk_nodrv_set_parent(struct clk_hw *hw, u8 index) 4098{ 4099 return -ENXIO; 4100} 4101 4102static const struct clk_ops clk_nodrv_ops = { 4103 .enable = clk_nodrv_prepare_enable, 4104 .disable = clk_nodrv_disable_unprepare, 4105 .prepare = clk_nodrv_prepare_enable, 4106 .unprepare = clk_nodrv_disable_unprepare, 4107 .set_rate = clk_nodrv_set_rate, 4108 .set_parent = clk_nodrv_set_parent, 4109}; 4110 4111static void clk_core_evict_parent_cache_subtree(struct clk_core *root, 4112 const struct clk_core *target) 4113{ 4114 int i; 4115 struct clk_core *child; 4116 4117 for (i = 0; i < root->num_parents; i++) 4118 if (root->parents[i].core == target) 4119 root->parents[i].core = NULL; 4120 4121 hlist_for_each_entry(child, &root->children, child_node) 4122 clk_core_evict_parent_cache_subtree(child, target); 4123} 4124 4125/* Remove this clk from all parent caches */ 4126static void clk_core_evict_parent_cache(struct clk_core *core) 4127{ 4128 const struct hlist_head **lists; 4129 struct clk_core *root; 4130 4131 lockdep_assert_held(&prepare_lock); 4132 4133 for (lists = all_lists; *lists; lists++) 4134 hlist_for_each_entry(root, *lists, child_node) 4135 clk_core_evict_parent_cache_subtree(root, core); 4136 4137} 4138 4139/** 4140 * clk_unregister - unregister a currently registered clock 4141 * @clk: clock to unregister 4142 */ 4143void clk_unregister(struct clk *clk) 4144{ 4145 unsigned long flags; 4146 const struct clk_ops *ops; 4147 4148 if (!clk || WARN_ON_ONCE(IS_ERR(clk))) 4149 return; 4150 4151 clk_debug_unregister(clk->core); 4152 4153 clk_prepare_lock(); 4154 4155 ops = clk->core->ops; 4156 if (ops == &clk_nodrv_ops) { 4157 pr_err("%s: unregistered clock: %s\n", __func__, 4158 clk->core->name); 4159 goto unlock; 4160 } 4161 /* 4162 * Assign empty clock ops for consumers that might still hold 4163 * a reference to this clock. 4164 */ 4165 flags = clk_enable_lock(); 4166 clk->core->ops = &clk_nodrv_ops; 4167 clk_enable_unlock(flags); 4168 4169 if (ops->terminate) 4170 ops->terminate(clk->core->hw); 4171 4172 if (!hlist_empty(&clk->core->children)) { 4173 struct clk_core *child; 4174 struct hlist_node *t; 4175 4176 /* Reparent all children to the orphan list. */ 4177 hlist_for_each_entry_safe(child, t, &clk->core->children, 4178 child_node) 4179 clk_core_set_parent_nolock(child, NULL); 4180 } 4181 4182 clk_core_evict_parent_cache(clk->core); 4183 4184 hlist_del_init(&clk->core->child_node); 4185 4186 if (clk->core->prepare_count) 4187 pr_warn("%s: unregistering prepared clock: %s\n", 4188 __func__, clk->core->name); 4189 4190 if (clk->core->protect_count) 4191 pr_warn("%s: unregistering protected clock: %s\n", 4192 __func__, clk->core->name); 4193 4194 kref_put(&clk->core->ref, __clk_release); 4195 free_clk(clk); 4196unlock: 4197 clk_prepare_unlock(); 4198} 4199EXPORT_SYMBOL_GPL(clk_unregister); 4200 4201/** 4202 * clk_hw_unregister - unregister a currently registered clk_hw 4203 * @hw: hardware-specific clock data to unregister 4204 */ 4205void clk_hw_unregister(struct clk_hw *hw) 4206{ 4207 clk_unregister(hw->clk); 4208} 4209EXPORT_SYMBOL_GPL(clk_hw_unregister); 4210 4211static void devm_clk_unregister_cb(struct device *dev, void *res) 4212{ 4213 clk_unregister(*(struct clk **)res); 4214} 4215 4216static void devm_clk_hw_unregister_cb(struct device *dev, void *res) 4217{ 4218 clk_hw_unregister(*(struct clk_hw **)res); 4219} 4220 4221/** 4222 * devm_clk_register - resource managed clk_register() 4223 * @dev: device that is registering this clock 4224 * @hw: link to hardware-specific clock data 4225 * 4226 * Managed clk_register(). This function is *deprecated*, use devm_clk_hw_register() instead. 4227 * 4228 * Clocks returned from this function are automatically clk_unregister()ed on 4229 * driver detach. See clk_register() for more information. 4230 */ 4231struct clk *devm_clk_register(struct device *dev, struct clk_hw *hw) 4232{ 4233 struct clk *clk; 4234 struct clk **clkp; 4235 4236 clkp = devres_alloc(devm_clk_unregister_cb, sizeof(*clkp), GFP_KERNEL); 4237 if (!clkp) 4238 return ERR_PTR(-ENOMEM); 4239 4240 clk = clk_register(dev, hw); 4241 if (!IS_ERR(clk)) { 4242 *clkp = clk; 4243 devres_add(dev, clkp); 4244 } else { 4245 devres_free(clkp); 4246 } 4247 4248 return clk; 4249} 4250EXPORT_SYMBOL_GPL(devm_clk_register); 4251 4252/** 4253 * devm_clk_hw_register - resource managed clk_hw_register() 4254 * @dev: device that is registering this clock 4255 * @hw: link to hardware-specific clock data 4256 * 4257 * Managed clk_hw_register(). Clocks registered by this function are 4258 * automatically clk_hw_unregister()ed on driver detach. See clk_hw_register() 4259 * for more information. 4260 */ 4261int devm_clk_hw_register(struct device *dev, struct clk_hw *hw) 4262{ 4263 struct clk_hw **hwp; 4264 int ret; 4265 4266 hwp = devres_alloc(devm_clk_hw_unregister_cb, sizeof(*hwp), GFP_KERNEL); 4267 if (!hwp) 4268 return -ENOMEM; 4269 4270 ret = clk_hw_register(dev, hw); 4271 if (!ret) { 4272 *hwp = hw; 4273 devres_add(dev, hwp); 4274 } else { 4275 devres_free(hwp); 4276 } 4277 4278 return ret; 4279} 4280EXPORT_SYMBOL_GPL(devm_clk_hw_register); 4281 4282static int devm_clk_match(struct device *dev, void *res, void *data) 4283{ 4284 struct clk *c = res; 4285 if (WARN_ON(!c)) 4286 return 0; 4287 return c == data; 4288} 4289 4290static int devm_clk_hw_match(struct device *dev, void *res, void *data) 4291{ 4292 struct clk_hw *hw = res; 4293 4294 if (WARN_ON(!hw)) 4295 return 0; 4296 return hw == data; 4297} 4298 4299/** 4300 * devm_clk_unregister - resource managed clk_unregister() 4301 * @dev: device that is unregistering the clock data 4302 * @clk: clock to unregister 4303 * 4304 * Deallocate a clock allocated with devm_clk_register(). Normally 4305 * this function will not need to be called and the resource management 4306 * code will ensure that the resource is freed. 4307 */ 4308void devm_clk_unregister(struct device *dev, struct clk *clk) 4309{ 4310 WARN_ON(devres_release(dev, devm_clk_unregister_cb, devm_clk_match, clk)); 4311} 4312EXPORT_SYMBOL_GPL(devm_clk_unregister); 4313 4314/** 4315 * devm_clk_hw_unregister - resource managed clk_hw_unregister() 4316 * @dev: device that is unregistering the hardware-specific clock data 4317 * @hw: link to hardware-specific clock data 4318 * 4319 * Unregister a clk_hw registered with devm_clk_hw_register(). Normally 4320 * this function will not need to be called and the resource management 4321 * code will ensure that the resource is freed. 4322 */ 4323void devm_clk_hw_unregister(struct device *dev, struct clk_hw *hw) 4324{ 4325 WARN_ON(devres_release(dev, devm_clk_hw_unregister_cb, devm_clk_hw_match, 4326 hw)); 4327} 4328EXPORT_SYMBOL_GPL(devm_clk_hw_unregister); 4329 4330static void devm_clk_release(struct device *dev, void *res) 4331{ 4332 clk_put(*(struct clk **)res); 4333} 4334 4335/** 4336 * devm_clk_hw_get_clk - resource managed clk_hw_get_clk() 4337 * @dev: device that is registering this clock 4338 * @hw: clk_hw associated with the clk being consumed 4339 * @con_id: connection ID string on device 4340 * 4341 * Managed clk_hw_get_clk(). Clocks got with this function are 4342 * automatically clk_put() on driver detach. See clk_put() 4343 * for more information. 4344 */ 4345struct clk *devm_clk_hw_get_clk(struct device *dev, struct clk_hw *hw, 4346 const char *con_id) 4347{ 4348 struct clk *clk; 4349 struct clk **clkp; 4350 4351 /* This should not happen because it would mean we have drivers 4352 * passing around clk_hw pointers instead of having the caller use 4353 * proper clk_get() style APIs 4354 */ 4355 WARN_ON_ONCE(dev != hw->core->dev); 4356 4357 clkp = devres_alloc(devm_clk_release, sizeof(*clkp), GFP_KERNEL); 4358 if (!clkp) 4359 return ERR_PTR(-ENOMEM); 4360 4361 clk = clk_hw_get_clk(hw, con_id); 4362 if (!IS_ERR(clk)) { 4363 *clkp = clk; 4364 devres_add(dev, clkp); 4365 } else { 4366 devres_free(clkp); 4367 } 4368 4369 return clk; 4370} 4371EXPORT_SYMBOL_GPL(devm_clk_hw_get_clk); 4372 4373/* 4374 * clkdev helpers 4375 */ 4376 4377void __clk_put(struct clk *clk) 4378{ 4379 struct module *owner; 4380 4381 if (!clk || WARN_ON_ONCE(IS_ERR(clk))) 4382 return; 4383 4384 clk_prepare_lock(); 4385 4386 /* 4387 * Before calling clk_put, all calls to clk_rate_exclusive_get() from a 4388 * given user should be balanced with calls to clk_rate_exclusive_put() 4389 * and by that same consumer 4390 */ 4391 if (WARN_ON(clk->exclusive_count)) { 4392 /* We voiced our concern, let's sanitize the situation */ 4393 clk->core->protect_count -= (clk->exclusive_count - 1); 4394 clk_core_rate_unprotect(clk->core); 4395 clk->exclusive_count = 0; 4396 } 4397 4398 hlist_del(&clk->clks_node); 4399 if (clk->min_rate > clk->core->req_rate || 4400 clk->max_rate < clk->core->req_rate) 4401 clk_core_set_rate_nolock(clk->core, clk->core->req_rate); 4402 4403 owner = clk->core->owner; 4404 kref_put(&clk->core->ref, __clk_release); 4405 4406 clk_prepare_unlock(); 4407 4408 module_put(owner); 4409 4410 free_clk(clk); 4411} 4412 4413/*** clk rate change notifiers ***/ 4414 4415/** 4416 * clk_notifier_register - add a clk rate change notifier 4417 * @clk: struct clk * to watch 4418 * @nb: struct notifier_block * with callback info 4419 * 4420 * Request notification when clk's rate changes. This uses an SRCU 4421 * notifier because we want it to block and notifier unregistrations are 4422 * uncommon. The callbacks associated with the notifier must not 4423 * re-enter into the clk framework by calling any top-level clk APIs; 4424 * this will cause a nested prepare_lock mutex. 4425 * 4426 * In all notification cases (pre, post and abort rate change) the original 4427 * clock rate is passed to the callback via struct clk_notifier_data.old_rate 4428 * and the new frequency is passed via struct clk_notifier_data.new_rate. 4429 * 4430 * clk_notifier_register() must be called from non-atomic context. 4431 * Returns -EINVAL if called with null arguments, -ENOMEM upon 4432 * allocation failure; otherwise, passes along the return value of 4433 * srcu_notifier_chain_register(). 4434 */ 4435int clk_notifier_register(struct clk *clk, struct notifier_block *nb) 4436{ 4437 struct clk_notifier *cn; 4438 int ret = -ENOMEM; 4439 4440 if (!clk || !nb) 4441 return -EINVAL; 4442 4443 clk_prepare_lock(); 4444 4445 /* search the list of notifiers for this clk */ 4446 list_for_each_entry(cn, &clk_notifier_list, node) 4447 if (cn->clk == clk) 4448 goto found; 4449 4450 /* if clk wasn't in the notifier list, allocate new clk_notifier */ 4451 cn = kzalloc(sizeof(*cn), GFP_KERNEL); 4452 if (!cn) 4453 goto out; 4454 4455 cn->clk = clk; 4456 srcu_init_notifier_head(&cn->notifier_head); 4457 4458 list_add(&cn->node, &clk_notifier_list); 4459 4460found: 4461 ret = srcu_notifier_chain_register(&cn->notifier_head, nb); 4462 4463 clk->core->notifier_count++; 4464 4465out: 4466 clk_prepare_unlock(); 4467 4468 return ret; 4469} 4470EXPORT_SYMBOL_GPL(clk_notifier_register); 4471 4472/** 4473 * clk_notifier_unregister - remove a clk rate change notifier 4474 * @clk: struct clk * 4475 * @nb: struct notifier_block * with callback info 4476 * 4477 * Request no further notification for changes to 'clk' and frees memory 4478 * allocated in clk_notifier_register. 4479 * 4480 * Returns -EINVAL if called with null arguments; otherwise, passes 4481 * along the return value of srcu_notifier_chain_unregister(). 4482 */ 4483int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb) 4484{ 4485 struct clk_notifier *cn; 4486 int ret = -ENOENT; 4487 4488 if (!clk || !nb) 4489 return -EINVAL; 4490 4491 clk_prepare_lock(); 4492 4493 list_for_each_entry(cn, &clk_notifier_list, node) { 4494 if (cn->clk == clk) { 4495 ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb); 4496 4497 clk->core->notifier_count--; 4498 4499 /* XXX the notifier code should handle this better */ 4500 if (!cn->notifier_head.head) { 4501 srcu_cleanup_notifier_head(&cn->notifier_head); 4502 list_del(&cn->node); 4503 kfree(cn); 4504 } 4505 break; 4506 } 4507 } 4508 4509 clk_prepare_unlock(); 4510 4511 return ret; 4512} 4513EXPORT_SYMBOL_GPL(clk_notifier_unregister); 4514 4515struct clk_notifier_devres { 4516 struct clk *clk; 4517 struct notifier_block *nb; 4518}; 4519 4520static void devm_clk_notifier_release(struct device *dev, void *res) 4521{ 4522 struct clk_notifier_devres *devres = res; 4523 4524 clk_notifier_unregister(devres->clk, devres->nb); 4525} 4526 4527int devm_clk_notifier_register(struct device *dev, struct clk *clk, 4528 struct notifier_block *nb) 4529{ 4530 struct clk_notifier_devres *devres; 4531 int ret; 4532 4533 devres = devres_alloc(devm_clk_notifier_release, 4534 sizeof(*devres), GFP_KERNEL); 4535 4536 if (!devres) 4537 return -ENOMEM; 4538 4539 ret = clk_notifier_register(clk, nb); 4540 if (!ret) { 4541 devres->clk = clk; 4542 devres->nb = nb; 4543 } else { 4544 devres_free(devres); 4545 } 4546 4547 return ret; 4548} 4549EXPORT_SYMBOL_GPL(devm_clk_notifier_register); 4550 4551#ifdef CONFIG_OF 4552static void clk_core_reparent_orphans(void) 4553{ 4554 clk_prepare_lock(); 4555 clk_core_reparent_orphans_nolock(); 4556 clk_prepare_unlock(); 4557} 4558 4559/** 4560 * struct of_clk_provider - Clock provider registration structure 4561 * @link: Entry in global list of clock providers 4562 * @node: Pointer to device tree node of clock provider 4563 * @get: Get clock callback. Returns NULL or a struct clk for the 4564 * given clock specifier 4565 * @get_hw: Get clk_hw callback. Returns NULL, ERR_PTR or a 4566 * struct clk_hw for the given clock specifier 4567 * @data: context pointer to be passed into @get callback 4568 */ 4569struct of_clk_provider { 4570 struct list_head link; 4571 4572 struct device_node *node; 4573 struct clk *(*get)(struct of_phandle_args *clkspec, void *data); 4574 struct clk_hw *(*get_hw)(struct of_phandle_args *clkspec, void *data); 4575 void *data; 4576}; 4577 4578extern struct of_device_id __clk_of_table; 4579static const struct of_device_id __clk_of_table_sentinel 4580 __used __section("__clk_of_table_end"); 4581 4582static LIST_HEAD(of_clk_providers); 4583static DEFINE_MUTEX(of_clk_mutex); 4584 4585struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec, 4586 void *data) 4587{ 4588 return data; 4589} 4590EXPORT_SYMBOL_GPL(of_clk_src_simple_get); 4591 4592struct clk_hw *of_clk_hw_simple_get(struct of_phandle_args *clkspec, void *data) 4593{ 4594 return data; 4595} 4596EXPORT_SYMBOL_GPL(of_clk_hw_simple_get); 4597 4598struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec, void *data) 4599{ 4600 struct clk_onecell_data *clk_data = data; 4601 unsigned int idx = clkspec->args[0]; 4602 4603 if (idx >= clk_data->clk_num) { 4604 pr_err("%s: invalid clock index %u\n", __func__, idx); 4605 return ERR_PTR(-EINVAL); 4606 } 4607 4608 return clk_data->clks[idx]; 4609} 4610EXPORT_SYMBOL_GPL(of_clk_src_onecell_get); 4611 4612struct clk_hw * 4613of_clk_hw_onecell_get(struct of_phandle_args *clkspec, void *data) 4614{ 4615 struct clk_hw_onecell_data *hw_data = data; 4616 unsigned int idx = clkspec->args[0]; 4617 4618 if (idx >= hw_data->num) { 4619 pr_err("%s: invalid index %u\n", __func__, idx); 4620 return ERR_PTR(-EINVAL); 4621 } 4622 4623 return hw_data->hws[idx]; 4624} 4625EXPORT_SYMBOL_GPL(of_clk_hw_onecell_get); 4626 4627/** 4628 * of_clk_add_provider() - Register a clock provider for a node 4629 * @np: Device node pointer associated with clock provider 4630 * @clk_src_get: callback for decoding clock 4631 * @data: context pointer for @clk_src_get callback. 4632 * 4633 * This function is *deprecated*. Use of_clk_add_hw_provider() instead. 4634 */ 4635int of_clk_add_provider(struct device_node *np, 4636 struct clk *(*clk_src_get)(struct of_phandle_args *clkspec, 4637 void *data), 4638 void *data) 4639{ 4640 struct of_clk_provider *cp; 4641 int ret; 4642 4643 if (!np) 4644 return 0; 4645 4646 cp = kzalloc(sizeof(*cp), GFP_KERNEL); 4647 if (!cp) 4648 return -ENOMEM; 4649 4650 cp->node = of_node_get(np); 4651 cp->data = data; 4652 cp->get = clk_src_get; 4653 4654 mutex_lock(&of_clk_mutex); 4655 list_add(&cp->link, &of_clk_providers); 4656 mutex_unlock(&of_clk_mutex); 4657 pr_debug("Added clock from %pOF\n", np); 4658 4659 clk_core_reparent_orphans(); 4660 4661 ret = of_clk_set_defaults(np, true); 4662 if (ret < 0) 4663 of_clk_del_provider(np); 4664 4665 fwnode_dev_initialized(&np->fwnode, true); 4666 4667 return ret; 4668} 4669EXPORT_SYMBOL_GPL(of_clk_add_provider); 4670 4671/** 4672 * of_clk_add_hw_provider() - Register a clock provider for a node 4673 * @np: Device node pointer associated with clock provider 4674 * @get: callback for decoding clk_hw 4675 * @data: context pointer for @get callback. 4676 */ 4677int of_clk_add_hw_provider(struct device_node *np, 4678 struct clk_hw *(*get)(struct of_phandle_args *clkspec, 4679 void *data), 4680 void *data) 4681{ 4682 struct of_clk_provider *cp; 4683 int ret; 4684 4685 if (!np) 4686 return 0; 4687 4688 cp = kzalloc(sizeof(*cp), GFP_KERNEL); 4689 if (!cp) 4690 return -ENOMEM; 4691 4692 cp->node = of_node_get(np); 4693 cp->data = data; 4694 cp->get_hw = get; 4695 4696 mutex_lock(&of_clk_mutex); 4697 list_add(&cp->link, &of_clk_providers); 4698 mutex_unlock(&of_clk_mutex); 4699 pr_debug("Added clk_hw provider from %pOF\n", np); 4700 4701 clk_core_reparent_orphans(); 4702 4703 ret = of_clk_set_defaults(np, true); 4704 if (ret < 0) 4705 of_clk_del_provider(np); 4706 4707 fwnode_dev_initialized(&np->fwnode, true); 4708 4709 return ret; 4710} 4711EXPORT_SYMBOL_GPL(of_clk_add_hw_provider); 4712 4713static void devm_of_clk_release_provider(struct device *dev, void *res) 4714{ 4715 of_clk_del_provider(*(struct device_node **)res); 4716} 4717 4718/* 4719 * We allow a child device to use its parent device as the clock provider node 4720 * for cases like MFD sub-devices where the child device driver wants to use 4721 * devm_*() APIs but not list the device in DT as a sub-node. 4722 */ 4723static struct device_node *get_clk_provider_node(struct device *dev) 4724{ 4725 struct device_node *np, *parent_np; 4726 4727 np = dev->of_node; 4728 parent_np = dev->parent ? dev->parent->of_node : NULL; 4729 4730 if (!of_find_property(np, "#clock-cells", NULL)) 4731 if (of_find_property(parent_np, "#clock-cells", NULL)) 4732 np = parent_np; 4733 4734 return np; 4735} 4736 4737/** 4738 * devm_of_clk_add_hw_provider() - Managed clk provider node registration 4739 * @dev: Device acting as the clock provider (used for DT node and lifetime) 4740 * @get: callback for decoding clk_hw 4741 * @data: context pointer for @get callback 4742 * 4743 * Registers clock provider for given device's node. If the device has no DT 4744 * node or if the device node lacks of clock provider information (#clock-cells) 4745 * then the parent device's node is scanned for this information. If parent node 4746 * has the #clock-cells then it is used in registration. Provider is 4747 * automatically released at device exit. 4748 * 4749 * Return: 0 on success or an errno on failure. 4750 */ 4751int devm_of_clk_add_hw_provider(struct device *dev, 4752 struct clk_hw *(*get)(struct of_phandle_args *clkspec, 4753 void *data), 4754 void *data) 4755{ 4756 struct device_node **ptr, *np; 4757 int ret; 4758 4759 ptr = devres_alloc(devm_of_clk_release_provider, sizeof(*ptr), 4760 GFP_KERNEL); 4761 if (!ptr) 4762 return -ENOMEM; 4763 4764 np = get_clk_provider_node(dev); 4765 ret = of_clk_add_hw_provider(np, get, data); 4766 if (!ret) { 4767 *ptr = np; 4768 devres_add(dev, ptr); 4769 } else { 4770 devres_free(ptr); 4771 } 4772 4773 return ret; 4774} 4775EXPORT_SYMBOL_GPL(devm_of_clk_add_hw_provider); 4776 4777/** 4778 * of_clk_del_provider() - Remove a previously registered clock provider 4779 * @np: Device node pointer associated with clock provider 4780 */ 4781void of_clk_del_provider(struct device_node *np) 4782{ 4783 struct of_clk_provider *cp; 4784 4785 if (!np) 4786 return; 4787 4788 mutex_lock(&of_clk_mutex); 4789 list_for_each_entry(cp, &of_clk_providers, link) { 4790 if (cp->node == np) { 4791 list_del(&cp->link); 4792 fwnode_dev_initialized(&np->fwnode, false); 4793 of_node_put(cp->node); 4794 kfree(cp); 4795 break; 4796 } 4797 } 4798 mutex_unlock(&of_clk_mutex); 4799} 4800EXPORT_SYMBOL_GPL(of_clk_del_provider); 4801 4802static int devm_clk_provider_match(struct device *dev, void *res, void *data) 4803{ 4804 struct device_node **np = res; 4805 4806 if (WARN_ON(!np || !*np)) 4807 return 0; 4808 4809 return *np == data; 4810} 4811 4812/** 4813 * devm_of_clk_del_provider() - Remove clock provider registered using devm 4814 * @dev: Device to whose lifetime the clock provider was bound 4815 */ 4816void devm_of_clk_del_provider(struct device *dev) 4817{ 4818 int ret; 4819 struct device_node *np = get_clk_provider_node(dev); 4820 4821 ret = devres_release(dev, devm_of_clk_release_provider, 4822 devm_clk_provider_match, np); 4823 4824 WARN_ON(ret); 4825} 4826EXPORT_SYMBOL(devm_of_clk_del_provider); 4827 4828/** 4829 * of_parse_clkspec() - Parse a DT clock specifier for a given device node 4830 * @np: device node to parse clock specifier from 4831 * @index: index of phandle to parse clock out of. If index < 0, @name is used 4832 * @name: clock name to find and parse. If name is NULL, the index is used 4833 * @out_args: Result of parsing the clock specifier 4834 * 4835 * Parses a device node's "clocks" and "clock-names" properties to find the 4836 * phandle and cells for the index or name that is desired. The resulting clock 4837 * specifier is placed into @out_args, or an errno is returned when there's a 4838 * parsing error. The @index argument is ignored if @name is non-NULL. 4839 * 4840 * Example: 4841 * 4842 * phandle1: clock-controller@1 { 4843 * #clock-cells = <2>; 4844 * } 4845 * 4846 * phandle2: clock-controller@2 { 4847 * #clock-cells = <1>; 4848 * } 4849 * 4850 * clock-consumer@3 { 4851 * clocks = <&phandle1 1 2 &phandle2 3>; 4852 * clock-names = "name1", "name2"; 4853 * } 4854 * 4855 * To get a device_node for `clock-controller@2' node you may call this 4856 * function a few different ways: 4857 * 4858 * of_parse_clkspec(clock-consumer@3, -1, "name2", &args); 4859 * of_parse_clkspec(clock-consumer@3, 1, NULL, &args); 4860 * of_parse_clkspec(clock-consumer@3, 1, "name2", &args); 4861 * 4862 * Return: 0 upon successfully parsing the clock specifier. Otherwise, -ENOENT 4863 * if @name is NULL or -EINVAL if @name is non-NULL and it can't be found in 4864 * the "clock-names" property of @np. 4865 */ 4866static int of_parse_clkspec(const struct device_node *np, int index, 4867 const char *name, struct of_phandle_args *out_args) 4868{ 4869 int ret = -ENOENT; 4870 4871 /* Walk up the tree of devices looking for a clock property that matches */ 4872 while (np) { 4873 /* 4874 * For named clocks, first look up the name in the 4875 * "clock-names" property. If it cannot be found, then index 4876 * will be an error code and of_parse_phandle_with_args() will 4877 * return -EINVAL. 4878 */ 4879 if (name) 4880 index = of_property_match_string(np, "clock-names", name); 4881 ret = of_parse_phandle_with_args(np, "clocks", "#clock-cells", 4882 index, out_args); 4883 if (!ret) 4884 break; 4885 if (name && index >= 0) 4886 break; 4887 4888 /* 4889 * No matching clock found on this node. If the parent node 4890 * has a "clock-ranges" property, then we can try one of its 4891 * clocks. 4892 */ 4893 np = np->parent; 4894 if (np && !of_get_property(np, "clock-ranges", NULL)) 4895 break; 4896 index = 0; 4897 } 4898 4899 return ret; 4900} 4901 4902static struct clk_hw * 4903__of_clk_get_hw_from_provider(struct of_clk_provider *provider, 4904 struct of_phandle_args *clkspec) 4905{ 4906 struct clk *clk; 4907 4908 if (provider->get_hw) 4909 return provider->get_hw(clkspec, provider->data); 4910 4911 clk = provider->get(clkspec, provider->data); 4912 if (IS_ERR(clk)) 4913 return ERR_CAST(clk); 4914 return __clk_get_hw(clk); 4915} 4916 4917static struct clk_hw * 4918of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec) 4919{ 4920 struct of_clk_provider *provider; 4921 struct clk_hw *hw = ERR_PTR(-EPROBE_DEFER); 4922 4923 if (!clkspec) 4924 return ERR_PTR(-EINVAL); 4925 4926 mutex_lock(&of_clk_mutex); 4927 list_for_each_entry(provider, &of_clk_providers, link) { 4928 if (provider->node == clkspec->np) { 4929 hw = __of_clk_get_hw_from_provider(provider, clkspec); 4930 if (!IS_ERR(hw)) 4931 break; 4932 } 4933 } 4934 mutex_unlock(&of_clk_mutex); 4935 4936 return hw; 4937} 4938 4939/** 4940 * of_clk_get_from_provider() - Lookup a clock from a clock provider 4941 * @clkspec: pointer to a clock specifier data structure 4942 * 4943 * This function looks up a struct clk from the registered list of clock 4944 * providers, an input is a clock specifier data structure as returned 4945 * from the of_parse_phandle_with_args() function call. 4946 */ 4947struct clk *of_clk_get_from_provider(struct of_phandle_args *clkspec) 4948{ 4949 struct clk_hw *hw = of_clk_get_hw_from_clkspec(clkspec); 4950 4951 return clk_hw_create_clk(NULL, hw, NULL, __func__); 4952} 4953EXPORT_SYMBOL_GPL(of_clk_get_from_provider); 4954 4955struct clk_hw *of_clk_get_hw(struct device_node *np, int index, 4956 const char *con_id) 4957{ 4958 int ret; 4959 struct clk_hw *hw; 4960 struct of_phandle_args clkspec; 4961 4962 ret = of_parse_clkspec(np, index, con_id, &clkspec); 4963 if (ret) 4964 return ERR_PTR(ret); 4965 4966 hw = of_clk_get_hw_from_clkspec(&clkspec); 4967 of_node_put(clkspec.np); 4968 4969 return hw; 4970} 4971 4972static struct clk *__of_clk_get(struct device_node *np, 4973 int index, const char *dev_id, 4974 const char *con_id) 4975{ 4976 struct clk_hw *hw = of_clk_get_hw(np, index, con_id); 4977 4978 return clk_hw_create_clk(NULL, hw, dev_id, con_id); 4979} 4980 4981struct clk *of_clk_get(struct device_node *np, int index) 4982{ 4983 return __of_clk_get(np, index, np->full_name, NULL); 4984} 4985EXPORT_SYMBOL(of_clk_get); 4986 4987/** 4988 * of_clk_get_by_name() - Parse and lookup a clock referenced by a device node 4989 * @np: pointer to clock consumer node 4990 * @name: name of consumer's clock input, or NULL for the first clock reference 4991 * 4992 * This function parses the clocks and clock-names properties, 4993 * and uses them to look up the struct clk from the registered list of clock 4994 * providers. 4995 */ 4996struct clk *of_clk_get_by_name(struct device_node *np, const char *name) 4997{ 4998 if (!np) 4999 return ERR_PTR(-ENOENT); 5000 5001 return __of_clk_get(np, 0, np->full_name, name); 5002} 5003EXPORT_SYMBOL(of_clk_get_by_name); 5004 5005/** 5006 * of_clk_get_parent_count() - Count the number of clocks a device node has 5007 * @np: device node to count 5008 * 5009 * Returns: The number of clocks that are possible parents of this node 5010 */ 5011unsigned int of_clk_get_parent_count(const struct device_node *np) 5012{ 5013 int count; 5014 5015 count = of_count_phandle_with_args(np, "clocks", "#clock-cells"); 5016 if (count < 0) 5017 return 0; 5018 5019 return count; 5020} 5021EXPORT_SYMBOL_GPL(of_clk_get_parent_count); 5022 5023const char *of_clk_get_parent_name(const struct device_node *np, int index) 5024{ 5025 struct of_phandle_args clkspec; 5026 struct property *prop; 5027 const char *clk_name; 5028 const __be32 *vp; 5029 u32 pv; 5030 int rc; 5031 int count; 5032 struct clk *clk; 5033 5034 rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index, 5035 &clkspec); 5036 if (rc) 5037 return NULL; 5038 5039 index = clkspec.args_count ? clkspec.args[0] : 0; 5040 count = 0; 5041 5042 /* if there is an indices property, use it to transfer the index 5043 * specified into an array offset for the clock-output-names property. 5044 */ 5045 of_property_for_each_u32(clkspec.np, "clock-indices", prop, vp, pv) { 5046 if (index == pv) { 5047 index = count; 5048 break; 5049 } 5050 count++; 5051 } 5052 /* We went off the end of 'clock-indices' without finding it */ 5053 if (prop && !vp) 5054 return NULL; 5055 5056 if (of_property_read_string_index(clkspec.np, "clock-output-names", 5057 index, 5058 &clk_name) < 0) { 5059 /* 5060 * Best effort to get the name if the clock has been 5061 * registered with the framework. If the clock isn't 5062 * registered, we return the node name as the name of 5063 * the clock as long as #clock-cells = 0. 5064 */ 5065 clk = of_clk_get_from_provider(&clkspec); 5066 if (IS_ERR(clk)) { 5067 if (clkspec.args_count == 0) 5068 clk_name = clkspec.np->name; 5069 else 5070 clk_name = NULL; 5071 } else { 5072 clk_name = __clk_get_name(clk); 5073 clk_put(clk); 5074 } 5075 } 5076 5077 5078 of_node_put(clkspec.np); 5079 return clk_name; 5080} 5081EXPORT_SYMBOL_GPL(of_clk_get_parent_name); 5082 5083/** 5084 * of_clk_parent_fill() - Fill @parents with names of @np's parents and return 5085 * number of parents 5086 * @np: Device node pointer associated with clock provider 5087 * @parents: pointer to char array that hold the parents' names 5088 * @size: size of the @parents array 5089 * 5090 * Return: number of parents for the clock node. 5091 */ 5092int of_clk_parent_fill(struct device_node *np, const char **parents, 5093 unsigned int size) 5094{ 5095 unsigned int i = 0; 5096 5097 while (i < size && (parents[i] = of_clk_get_parent_name(np, i)) != NULL) 5098 i++; 5099 5100 return i; 5101} 5102EXPORT_SYMBOL_GPL(of_clk_parent_fill); 5103 5104struct clock_provider { 5105 void (*clk_init_cb)(struct device_node *); 5106 struct device_node *np; 5107 struct list_head node; 5108}; 5109 5110/* 5111 * This function looks for a parent clock. If there is one, then it 5112 * checks that the provider for this parent clock was initialized, in 5113 * this case the parent clock will be ready. 5114 */ 5115static int parent_ready(struct device_node *np) 5116{ 5117 int i = 0; 5118 5119 while (true) { 5120 struct clk *clk = of_clk_get(np, i); 5121 5122 /* this parent is ready we can check the next one */ 5123 if (!IS_ERR(clk)) { 5124 clk_put(clk); 5125 i++; 5126 continue; 5127 } 5128 5129 /* at least one parent is not ready, we exit now */ 5130 if (PTR_ERR(clk) == -EPROBE_DEFER) 5131 return 0; 5132 5133 /* 5134 * Here we make assumption that the device tree is 5135 * written correctly. So an error means that there is 5136 * no more parent. As we didn't exit yet, then the 5137 * previous parent are ready. If there is no clock 5138 * parent, no need to wait for them, then we can 5139 * consider their absence as being ready 5140 */ 5141 return 1; 5142 } 5143} 5144 5145/** 5146 * of_clk_detect_critical() - set CLK_IS_CRITICAL flag from Device Tree 5147 * @np: Device node pointer associated with clock provider 5148 * @index: clock index 5149 * @flags: pointer to top-level framework flags 5150 * 5151 * Detects if the clock-critical property exists and, if so, sets the 5152 * corresponding CLK_IS_CRITICAL flag. 5153 * 5154 * Do not use this function. It exists only for legacy Device Tree 5155 * bindings, such as the one-clock-per-node style that are outdated. 5156 * Those bindings typically put all clock data into .dts and the Linux 5157 * driver has no clock data, thus making it impossible to set this flag 5158 * correctly from the driver. Only those drivers may call 5159 * of_clk_detect_critical from their setup functions. 5160 * 5161 * Return: error code or zero on success 5162 */ 5163int of_clk_detect_critical(struct device_node *np, int index, 5164 unsigned long *flags) 5165{ 5166 struct property *prop; 5167 const __be32 *cur; 5168 uint32_t idx; 5169 5170 if (!np || !flags) 5171 return -EINVAL; 5172 5173 of_property_for_each_u32(np, "clock-critical", prop, cur, idx) 5174 if (index == idx) 5175 *flags |= CLK_IS_CRITICAL; 5176 5177 return 0; 5178} 5179 5180/** 5181 * of_clk_init() - Scan and init clock providers from the DT 5182 * @matches: array of compatible values and init functions for providers. 5183 * 5184 * This function scans the device tree for matching clock providers 5185 * and calls their initialization functions. It also does it by trying 5186 * to follow the dependencies. 5187 */ 5188void __init of_clk_init(const struct of_device_id *matches) 5189{ 5190 const struct of_device_id *match; 5191 struct device_node *np; 5192 struct clock_provider *clk_provider, *next; 5193 bool is_init_done; 5194 bool force = false; 5195 LIST_HEAD(clk_provider_list); 5196 5197 if (!matches) 5198 matches = &__clk_of_table; 5199 5200 /* First prepare the list of the clocks providers */ 5201 for_each_matching_node_and_match(np, matches, &match) { 5202 struct clock_provider *parent; 5203 5204 if (!of_device_is_available(np)) 5205 continue; 5206 5207 parent = kzalloc(sizeof(*parent), GFP_KERNEL); 5208 if (!parent) { 5209 list_for_each_entry_safe(clk_provider, next, 5210 &clk_provider_list, node) { 5211 list_del(&clk_provider->node); 5212 of_node_put(clk_provider->np); 5213 kfree(clk_provider); 5214 } 5215 of_node_put(np); 5216 return; 5217 } 5218 5219 parent->clk_init_cb = match->data; 5220 parent->np = of_node_get(np); 5221 list_add_tail(&parent->node, &clk_provider_list); 5222 } 5223 5224 while (!list_empty(&clk_provider_list)) { 5225 is_init_done = false; 5226 list_for_each_entry_safe(clk_provider, next, 5227 &clk_provider_list, node) { 5228 if (force || parent_ready(clk_provider->np)) { 5229 5230 /* Don't populate platform devices */ 5231 of_node_set_flag(clk_provider->np, 5232 OF_POPULATED); 5233 5234 clk_provider->clk_init_cb(clk_provider->np); 5235 of_clk_set_defaults(clk_provider->np, true); 5236 5237 list_del(&clk_provider->node); 5238 of_node_put(clk_provider->np); 5239 kfree(clk_provider); 5240 is_init_done = true; 5241 } 5242 } 5243 5244 /* 5245 * We didn't manage to initialize any of the 5246 * remaining providers during the last loop, so now we 5247 * initialize all the remaining ones unconditionally 5248 * in case the clock parent was not mandatory 5249 */ 5250 if (!is_init_done) 5251 force = true; 5252 } 5253} 5254#endif