cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

clk.c (134111B)


      1// SPDX-License-Identifier: GPL-2.0
      2/*
      3 * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com>
      4 * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org>
      5 *
      6 * Standard functionality for the common clock API.  See Documentation/driver-api/clk.rst
      7 */
      8
      9#include <linux/clk.h>
     10#include <linux/clk-provider.h>
     11#include <linux/clk/clk-conf.h>
     12#include <linux/module.h>
     13#include <linux/mutex.h>
     14#include <linux/spinlock.h>
     15#include <linux/err.h>
     16#include <linux/list.h>
     17#include <linux/slab.h>
     18#include <linux/of.h>
     19#include <linux/device.h>
     20#include <linux/init.h>
     21#include <linux/pm_runtime.h>
     22#include <linux/sched.h>
     23#include <linux/clkdev.h>
     24
     25#include "clk.h"
     26
     27static DEFINE_SPINLOCK(enable_lock);
     28static DEFINE_MUTEX(prepare_lock);
     29
     30static struct task_struct *prepare_owner;
     31static struct task_struct *enable_owner;
     32
     33static int prepare_refcnt;
     34static int enable_refcnt;
     35
     36static HLIST_HEAD(clk_root_list);
     37static HLIST_HEAD(clk_orphan_list);
     38static LIST_HEAD(clk_notifier_list);
     39
     40static const struct hlist_head *all_lists[] = {
     41	&clk_root_list,
     42	&clk_orphan_list,
     43	NULL,
     44};
     45
     46/***    private data structures    ***/
     47
     48struct clk_parent_map {
     49	const struct clk_hw	*hw;
     50	struct clk_core		*core;
     51	const char		*fw_name;
     52	const char		*name;
     53	int			index;
     54};
     55
     56struct clk_core {
     57	const char		*name;
     58	const struct clk_ops	*ops;
     59	struct clk_hw		*hw;
     60	struct module		*owner;
     61	struct device		*dev;
     62	struct device_node	*of_node;
     63	struct clk_core		*parent;
     64	struct clk_parent_map	*parents;
     65	u8			num_parents;
     66	u8			new_parent_index;
     67	unsigned long		rate;
     68	unsigned long		req_rate;
     69	unsigned long		new_rate;
     70	struct clk_core		*new_parent;
     71	struct clk_core		*new_child;
     72	unsigned long		flags;
     73	bool			orphan;
     74	bool			rpm_enabled;
     75	unsigned int		enable_count;
     76	unsigned int		prepare_count;
     77	unsigned int		protect_count;
     78	unsigned long		min_rate;
     79	unsigned long		max_rate;
     80	unsigned long		accuracy;
     81	int			phase;
     82	struct clk_duty		duty;
     83	struct hlist_head	children;
     84	struct hlist_node	child_node;
     85	struct hlist_head	clks;
     86	unsigned int		notifier_count;
     87#ifdef CONFIG_DEBUG_FS
     88	struct dentry		*dentry;
     89	struct hlist_node	debug_node;
     90#endif
     91	struct kref		ref;
     92};
     93
     94#define CREATE_TRACE_POINTS
     95#include <trace/events/clk.h>
     96
     97struct clk {
     98	struct clk_core	*core;
     99	struct device *dev;
    100	const char *dev_id;
    101	const char *con_id;
    102	unsigned long min_rate;
    103	unsigned long max_rate;
    104	unsigned int exclusive_count;
    105	struct hlist_node clks_node;
    106};
    107
    108/***           runtime pm          ***/
    109static int clk_pm_runtime_get(struct clk_core *core)
    110{
    111	if (!core->rpm_enabled)
    112		return 0;
    113
    114	return pm_runtime_resume_and_get(core->dev);
    115}
    116
    117static void clk_pm_runtime_put(struct clk_core *core)
    118{
    119	if (!core->rpm_enabled)
    120		return;
    121
    122	pm_runtime_put_sync(core->dev);
    123}
    124
    125/***           locking             ***/
    126static void clk_prepare_lock(void)
    127{
    128	if (!mutex_trylock(&prepare_lock)) {
    129		if (prepare_owner == current) {
    130			prepare_refcnt++;
    131			return;
    132		}
    133		mutex_lock(&prepare_lock);
    134	}
    135	WARN_ON_ONCE(prepare_owner != NULL);
    136	WARN_ON_ONCE(prepare_refcnt != 0);
    137	prepare_owner = current;
    138	prepare_refcnt = 1;
    139}
    140
    141static void clk_prepare_unlock(void)
    142{
    143	WARN_ON_ONCE(prepare_owner != current);
    144	WARN_ON_ONCE(prepare_refcnt == 0);
    145
    146	if (--prepare_refcnt)
    147		return;
    148	prepare_owner = NULL;
    149	mutex_unlock(&prepare_lock);
    150}
    151
    152static unsigned long clk_enable_lock(void)
    153	__acquires(enable_lock)
    154{
    155	unsigned long flags;
    156
    157	/*
    158	 * On UP systems, spin_trylock_irqsave() always returns true, even if
    159	 * we already hold the lock. So, in that case, we rely only on
    160	 * reference counting.
    161	 */
    162	if (!IS_ENABLED(CONFIG_SMP) ||
    163	    !spin_trylock_irqsave(&enable_lock, flags)) {
    164		if (enable_owner == current) {
    165			enable_refcnt++;
    166			__acquire(enable_lock);
    167			if (!IS_ENABLED(CONFIG_SMP))
    168				local_save_flags(flags);
    169			return flags;
    170		}
    171		spin_lock_irqsave(&enable_lock, flags);
    172	}
    173	WARN_ON_ONCE(enable_owner != NULL);
    174	WARN_ON_ONCE(enable_refcnt != 0);
    175	enable_owner = current;
    176	enable_refcnt = 1;
    177	return flags;
    178}
    179
    180static void clk_enable_unlock(unsigned long flags)
    181	__releases(enable_lock)
    182{
    183	WARN_ON_ONCE(enable_owner != current);
    184	WARN_ON_ONCE(enable_refcnt == 0);
    185
    186	if (--enable_refcnt) {
    187		__release(enable_lock);
    188		return;
    189	}
    190	enable_owner = NULL;
    191	spin_unlock_irqrestore(&enable_lock, flags);
    192}
    193
    194static bool clk_core_rate_is_protected(struct clk_core *core)
    195{
    196	return core->protect_count;
    197}
    198
    199static bool clk_core_is_prepared(struct clk_core *core)
    200{
    201	bool ret = false;
    202
    203	/*
    204	 * .is_prepared is optional for clocks that can prepare
    205	 * fall back to software usage counter if it is missing
    206	 */
    207	if (!core->ops->is_prepared)
    208		return core->prepare_count;
    209
    210	if (!clk_pm_runtime_get(core)) {
    211		ret = core->ops->is_prepared(core->hw);
    212		clk_pm_runtime_put(core);
    213	}
    214
    215	return ret;
    216}
    217
    218static bool clk_core_is_enabled(struct clk_core *core)
    219{
    220	bool ret = false;
    221
    222	/*
    223	 * .is_enabled is only mandatory for clocks that gate
    224	 * fall back to software usage counter if .is_enabled is missing
    225	 */
    226	if (!core->ops->is_enabled)
    227		return core->enable_count;
    228
    229	/*
    230	 * Check if clock controller's device is runtime active before
    231	 * calling .is_enabled callback. If not, assume that clock is
    232	 * disabled, because we might be called from atomic context, from
    233	 * which pm_runtime_get() is not allowed.
    234	 * This function is called mainly from clk_disable_unused_subtree,
    235	 * which ensures proper runtime pm activation of controller before
    236	 * taking enable spinlock, but the below check is needed if one tries
    237	 * to call it from other places.
    238	 */
    239	if (core->rpm_enabled) {
    240		pm_runtime_get_noresume(core->dev);
    241		if (!pm_runtime_active(core->dev)) {
    242			ret = false;
    243			goto done;
    244		}
    245	}
    246
    247	ret = core->ops->is_enabled(core->hw);
    248done:
    249	if (core->rpm_enabled)
    250		pm_runtime_put(core->dev);
    251
    252	return ret;
    253}
    254
    255/***    helper functions   ***/
    256
    257const char *__clk_get_name(const struct clk *clk)
    258{
    259	return !clk ? NULL : clk->core->name;
    260}
    261EXPORT_SYMBOL_GPL(__clk_get_name);
    262
    263const char *clk_hw_get_name(const struct clk_hw *hw)
    264{
    265	return hw->core->name;
    266}
    267EXPORT_SYMBOL_GPL(clk_hw_get_name);
    268
    269struct clk_hw *__clk_get_hw(struct clk *clk)
    270{
    271	return !clk ? NULL : clk->core->hw;
    272}
    273EXPORT_SYMBOL_GPL(__clk_get_hw);
    274
    275unsigned int clk_hw_get_num_parents(const struct clk_hw *hw)
    276{
    277	return hw->core->num_parents;
    278}
    279EXPORT_SYMBOL_GPL(clk_hw_get_num_parents);
    280
    281struct clk_hw *clk_hw_get_parent(const struct clk_hw *hw)
    282{
    283	return hw->core->parent ? hw->core->parent->hw : NULL;
    284}
    285EXPORT_SYMBOL_GPL(clk_hw_get_parent);
    286
    287static struct clk_core *__clk_lookup_subtree(const char *name,
    288					     struct clk_core *core)
    289{
    290	struct clk_core *child;
    291	struct clk_core *ret;
    292
    293	if (!strcmp(core->name, name))
    294		return core;
    295
    296	hlist_for_each_entry(child, &core->children, child_node) {
    297		ret = __clk_lookup_subtree(name, child);
    298		if (ret)
    299			return ret;
    300	}
    301
    302	return NULL;
    303}
    304
    305static struct clk_core *clk_core_lookup(const char *name)
    306{
    307	struct clk_core *root_clk;
    308	struct clk_core *ret;
    309
    310	if (!name)
    311		return NULL;
    312
    313	/* search the 'proper' clk tree first */
    314	hlist_for_each_entry(root_clk, &clk_root_list, child_node) {
    315		ret = __clk_lookup_subtree(name, root_clk);
    316		if (ret)
    317			return ret;
    318	}
    319
    320	/* if not found, then search the orphan tree */
    321	hlist_for_each_entry(root_clk, &clk_orphan_list, child_node) {
    322		ret = __clk_lookup_subtree(name, root_clk);
    323		if (ret)
    324			return ret;
    325	}
    326
    327	return NULL;
    328}
    329
    330#ifdef CONFIG_OF
    331static int of_parse_clkspec(const struct device_node *np, int index,
    332			    const char *name, struct of_phandle_args *out_args);
    333static struct clk_hw *
    334of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec);
    335#else
    336static inline int of_parse_clkspec(const struct device_node *np, int index,
    337				   const char *name,
    338				   struct of_phandle_args *out_args)
    339{
    340	return -ENOENT;
    341}
    342static inline struct clk_hw *
    343of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec)
    344{
    345	return ERR_PTR(-ENOENT);
    346}
    347#endif
    348
    349/**
    350 * clk_core_get - Find the clk_core parent of a clk
    351 * @core: clk to find parent of
    352 * @p_index: parent index to search for
    353 *
    354 * This is the preferred method for clk providers to find the parent of a
    355 * clk when that parent is external to the clk controller. The parent_names
    356 * array is indexed and treated as a local name matching a string in the device
    357 * node's 'clock-names' property or as the 'con_id' matching the device's
    358 * dev_name() in a clk_lookup. This allows clk providers to use their own
    359 * namespace instead of looking for a globally unique parent string.
    360 *
    361 * For example the following DT snippet would allow a clock registered by the
    362 * clock-controller@c001 that has a clk_init_data::parent_data array
    363 * with 'xtal' in the 'name' member to find the clock provided by the
    364 * clock-controller@f00abcd without needing to get the globally unique name of
    365 * the xtal clk.
    366 *
    367 *      parent: clock-controller@f00abcd {
    368 *              reg = <0xf00abcd 0xabcd>;
    369 *              #clock-cells = <0>;
    370 *      };
    371 *
    372 *      clock-controller@c001 {
    373 *              reg = <0xc001 0xf00d>;
    374 *              clocks = <&parent>;
    375 *              clock-names = "xtal";
    376 *              #clock-cells = <1>;
    377 *      };
    378 *
    379 * Returns: -ENOENT when the provider can't be found or the clk doesn't
    380 * exist in the provider or the name can't be found in the DT node or
    381 * in a clkdev lookup. NULL when the provider knows about the clk but it
    382 * isn't provided on this system.
    383 * A valid clk_core pointer when the clk can be found in the provider.
    384 */
    385static struct clk_core *clk_core_get(struct clk_core *core, u8 p_index)
    386{
    387	const char *name = core->parents[p_index].fw_name;
    388	int index = core->parents[p_index].index;
    389	struct clk_hw *hw = ERR_PTR(-ENOENT);
    390	struct device *dev = core->dev;
    391	const char *dev_id = dev ? dev_name(dev) : NULL;
    392	struct device_node *np = core->of_node;
    393	struct of_phandle_args clkspec;
    394
    395	if (np && (name || index >= 0) &&
    396	    !of_parse_clkspec(np, index, name, &clkspec)) {
    397		hw = of_clk_get_hw_from_clkspec(&clkspec);
    398		of_node_put(clkspec.np);
    399	} else if (name) {
    400		/*
    401		 * If the DT search above couldn't find the provider fallback to
    402		 * looking up via clkdev based clk_lookups.
    403		 */
    404		hw = clk_find_hw(dev_id, name);
    405	}
    406
    407	if (IS_ERR(hw))
    408		return ERR_CAST(hw);
    409
    410	return hw->core;
    411}
    412
    413static void clk_core_fill_parent_index(struct clk_core *core, u8 index)
    414{
    415	struct clk_parent_map *entry = &core->parents[index];
    416	struct clk_core *parent;
    417
    418	if (entry->hw) {
    419		parent = entry->hw->core;
    420	} else {
    421		parent = clk_core_get(core, index);
    422		if (PTR_ERR(parent) == -ENOENT && entry->name)
    423			parent = clk_core_lookup(entry->name);
    424	}
    425
    426	/*
    427	 * We have a direct reference but it isn't registered yet?
    428	 * Orphan it and let clk_reparent() update the orphan status
    429	 * when the parent is registered.
    430	 */
    431	if (!parent)
    432		parent = ERR_PTR(-EPROBE_DEFER);
    433
    434	/* Only cache it if it's not an error */
    435	if (!IS_ERR(parent))
    436		entry->core = parent;
    437}
    438
    439static struct clk_core *clk_core_get_parent_by_index(struct clk_core *core,
    440							 u8 index)
    441{
    442	if (!core || index >= core->num_parents || !core->parents)
    443		return NULL;
    444
    445	if (!core->parents[index].core)
    446		clk_core_fill_parent_index(core, index);
    447
    448	return core->parents[index].core;
    449}
    450
    451struct clk_hw *
    452clk_hw_get_parent_by_index(const struct clk_hw *hw, unsigned int index)
    453{
    454	struct clk_core *parent;
    455
    456	parent = clk_core_get_parent_by_index(hw->core, index);
    457
    458	return !parent ? NULL : parent->hw;
    459}
    460EXPORT_SYMBOL_GPL(clk_hw_get_parent_by_index);
    461
    462unsigned int __clk_get_enable_count(struct clk *clk)
    463{
    464	return !clk ? 0 : clk->core->enable_count;
    465}
    466
    467static unsigned long clk_core_get_rate_nolock(struct clk_core *core)
    468{
    469	if (!core)
    470		return 0;
    471
    472	if (!core->num_parents || core->parent)
    473		return core->rate;
    474
    475	/*
    476	 * Clk must have a parent because num_parents > 0 but the parent isn't
    477	 * known yet. Best to return 0 as the rate of this clk until we can
    478	 * properly recalc the rate based on the parent's rate.
    479	 */
    480	return 0;
    481}
    482
    483unsigned long clk_hw_get_rate(const struct clk_hw *hw)
    484{
    485	return clk_core_get_rate_nolock(hw->core);
    486}
    487EXPORT_SYMBOL_GPL(clk_hw_get_rate);
    488
    489static unsigned long clk_core_get_accuracy_no_lock(struct clk_core *core)
    490{
    491	if (!core)
    492		return 0;
    493
    494	return core->accuracy;
    495}
    496
    497unsigned long clk_hw_get_flags(const struct clk_hw *hw)
    498{
    499	return hw->core->flags;
    500}
    501EXPORT_SYMBOL_GPL(clk_hw_get_flags);
    502
    503bool clk_hw_is_prepared(const struct clk_hw *hw)
    504{
    505	return clk_core_is_prepared(hw->core);
    506}
    507EXPORT_SYMBOL_GPL(clk_hw_is_prepared);
    508
    509bool clk_hw_rate_is_protected(const struct clk_hw *hw)
    510{
    511	return clk_core_rate_is_protected(hw->core);
    512}
    513EXPORT_SYMBOL_GPL(clk_hw_rate_is_protected);
    514
    515bool clk_hw_is_enabled(const struct clk_hw *hw)
    516{
    517	return clk_core_is_enabled(hw->core);
    518}
    519EXPORT_SYMBOL_GPL(clk_hw_is_enabled);
    520
    521bool __clk_is_enabled(struct clk *clk)
    522{
    523	if (!clk)
    524		return false;
    525
    526	return clk_core_is_enabled(clk->core);
    527}
    528EXPORT_SYMBOL_GPL(__clk_is_enabled);
    529
    530static bool mux_is_better_rate(unsigned long rate, unsigned long now,
    531			   unsigned long best, unsigned long flags)
    532{
    533	if (flags & CLK_MUX_ROUND_CLOSEST)
    534		return abs(now - rate) < abs(best - rate);
    535
    536	return now <= rate && now > best;
    537}
    538
    539int clk_mux_determine_rate_flags(struct clk_hw *hw,
    540				 struct clk_rate_request *req,
    541				 unsigned long flags)
    542{
    543	struct clk_core *core = hw->core, *parent, *best_parent = NULL;
    544	int i, num_parents, ret;
    545	unsigned long best = 0;
    546	struct clk_rate_request parent_req = *req;
    547
    548	/* if NO_REPARENT flag set, pass through to current parent */
    549	if (core->flags & CLK_SET_RATE_NO_REPARENT) {
    550		parent = core->parent;
    551		if (core->flags & CLK_SET_RATE_PARENT) {
    552			ret = __clk_determine_rate(parent ? parent->hw : NULL,
    553						   &parent_req);
    554			if (ret)
    555				return ret;
    556
    557			best = parent_req.rate;
    558		} else if (parent) {
    559			best = clk_core_get_rate_nolock(parent);
    560		} else {
    561			best = clk_core_get_rate_nolock(core);
    562		}
    563
    564		goto out;
    565	}
    566
    567	/* find the parent that can provide the fastest rate <= rate */
    568	num_parents = core->num_parents;
    569	for (i = 0; i < num_parents; i++) {
    570		parent = clk_core_get_parent_by_index(core, i);
    571		if (!parent)
    572			continue;
    573
    574		if (core->flags & CLK_SET_RATE_PARENT) {
    575			parent_req = *req;
    576			ret = __clk_determine_rate(parent->hw, &parent_req);
    577			if (ret)
    578				continue;
    579		} else {
    580			parent_req.rate = clk_core_get_rate_nolock(parent);
    581		}
    582
    583		if (mux_is_better_rate(req->rate, parent_req.rate,
    584				       best, flags)) {
    585			best_parent = parent;
    586			best = parent_req.rate;
    587		}
    588	}
    589
    590	if (!best_parent)
    591		return -EINVAL;
    592
    593out:
    594	if (best_parent)
    595		req->best_parent_hw = best_parent->hw;
    596	req->best_parent_rate = best;
    597	req->rate = best;
    598
    599	return 0;
    600}
    601EXPORT_SYMBOL_GPL(clk_mux_determine_rate_flags);
    602
    603struct clk *__clk_lookup(const char *name)
    604{
    605	struct clk_core *core = clk_core_lookup(name);
    606
    607	return !core ? NULL : core->hw->clk;
    608}
    609
    610static void clk_core_get_boundaries(struct clk_core *core,
    611				    unsigned long *min_rate,
    612				    unsigned long *max_rate)
    613{
    614	struct clk *clk_user;
    615
    616	lockdep_assert_held(&prepare_lock);
    617
    618	*min_rate = core->min_rate;
    619	*max_rate = core->max_rate;
    620
    621	hlist_for_each_entry(clk_user, &core->clks, clks_node)
    622		*min_rate = max(*min_rate, clk_user->min_rate);
    623
    624	hlist_for_each_entry(clk_user, &core->clks, clks_node)
    625		*max_rate = min(*max_rate, clk_user->max_rate);
    626}
    627
    628static bool clk_core_check_boundaries(struct clk_core *core,
    629				      unsigned long min_rate,
    630				      unsigned long max_rate)
    631{
    632	struct clk *user;
    633
    634	lockdep_assert_held(&prepare_lock);
    635
    636	if (min_rate > core->max_rate || max_rate < core->min_rate)
    637		return false;
    638
    639	hlist_for_each_entry(user, &core->clks, clks_node)
    640		if (min_rate > user->max_rate || max_rate < user->min_rate)
    641			return false;
    642
    643	return true;
    644}
    645
    646void clk_hw_set_rate_range(struct clk_hw *hw, unsigned long min_rate,
    647			   unsigned long max_rate)
    648{
    649	hw->core->min_rate = min_rate;
    650	hw->core->max_rate = max_rate;
    651}
    652EXPORT_SYMBOL_GPL(clk_hw_set_rate_range);
    653
    654/*
    655 * __clk_mux_determine_rate - clk_ops::determine_rate implementation for a mux type clk
    656 * @hw: mux type clk to determine rate on
    657 * @req: rate request, also used to return preferred parent and frequencies
    658 *
    659 * Helper for finding best parent to provide a given frequency. This can be used
    660 * directly as a determine_rate callback (e.g. for a mux), or from a more
    661 * complex clock that may combine a mux with other operations.
    662 *
    663 * Returns: 0 on success, -EERROR value on error
    664 */
    665int __clk_mux_determine_rate(struct clk_hw *hw,
    666			     struct clk_rate_request *req)
    667{
    668	return clk_mux_determine_rate_flags(hw, req, 0);
    669}
    670EXPORT_SYMBOL_GPL(__clk_mux_determine_rate);
    671
    672int __clk_mux_determine_rate_closest(struct clk_hw *hw,
    673				     struct clk_rate_request *req)
    674{
    675	return clk_mux_determine_rate_flags(hw, req, CLK_MUX_ROUND_CLOSEST);
    676}
    677EXPORT_SYMBOL_GPL(__clk_mux_determine_rate_closest);
    678
    679/***        clk api        ***/
    680
    681static void clk_core_rate_unprotect(struct clk_core *core)
    682{
    683	lockdep_assert_held(&prepare_lock);
    684
    685	if (!core)
    686		return;
    687
    688	if (WARN(core->protect_count == 0,
    689	    "%s already unprotected\n", core->name))
    690		return;
    691
    692	if (--core->protect_count > 0)
    693		return;
    694
    695	clk_core_rate_unprotect(core->parent);
    696}
    697
    698static int clk_core_rate_nuke_protect(struct clk_core *core)
    699{
    700	int ret;
    701
    702	lockdep_assert_held(&prepare_lock);
    703
    704	if (!core)
    705		return -EINVAL;
    706
    707	if (core->protect_count == 0)
    708		return 0;
    709
    710	ret = core->protect_count;
    711	core->protect_count = 1;
    712	clk_core_rate_unprotect(core);
    713
    714	return ret;
    715}
    716
    717/**
    718 * clk_rate_exclusive_put - release exclusivity over clock rate control
    719 * @clk: the clk over which the exclusivity is released
    720 *
    721 * clk_rate_exclusive_put() completes a critical section during which a clock
    722 * consumer cannot tolerate any other consumer making any operation on the
    723 * clock which could result in a rate change or rate glitch. Exclusive clocks
    724 * cannot have their rate changed, either directly or indirectly due to changes
    725 * further up the parent chain of clocks. As a result, clocks up parent chain
    726 * also get under exclusive control of the calling consumer.
    727 *
    728 * If exlusivity is claimed more than once on clock, even by the same consumer,
    729 * the rate effectively gets locked as exclusivity can't be preempted.
    730 *
    731 * Calls to clk_rate_exclusive_put() must be balanced with calls to
    732 * clk_rate_exclusive_get(). Calls to this function may sleep, and do not return
    733 * error status.
    734 */
    735void clk_rate_exclusive_put(struct clk *clk)
    736{
    737	if (!clk)
    738		return;
    739
    740	clk_prepare_lock();
    741
    742	/*
    743	 * if there is something wrong with this consumer protect count, stop
    744	 * here before messing with the provider
    745	 */
    746	if (WARN_ON(clk->exclusive_count <= 0))
    747		goto out;
    748
    749	clk_core_rate_unprotect(clk->core);
    750	clk->exclusive_count--;
    751out:
    752	clk_prepare_unlock();
    753}
    754EXPORT_SYMBOL_GPL(clk_rate_exclusive_put);
    755
    756static void clk_core_rate_protect(struct clk_core *core)
    757{
    758	lockdep_assert_held(&prepare_lock);
    759
    760	if (!core)
    761		return;
    762
    763	if (core->protect_count == 0)
    764		clk_core_rate_protect(core->parent);
    765
    766	core->protect_count++;
    767}
    768
    769static void clk_core_rate_restore_protect(struct clk_core *core, int count)
    770{
    771	lockdep_assert_held(&prepare_lock);
    772
    773	if (!core)
    774		return;
    775
    776	if (count == 0)
    777		return;
    778
    779	clk_core_rate_protect(core);
    780	core->protect_count = count;
    781}
    782
    783/**
    784 * clk_rate_exclusive_get - get exclusivity over the clk rate control
    785 * @clk: the clk over which the exclusity of rate control is requested
    786 *
    787 * clk_rate_exclusive_get() begins a critical section during which a clock
    788 * consumer cannot tolerate any other consumer making any operation on the
    789 * clock which could result in a rate change or rate glitch. Exclusive clocks
    790 * cannot have their rate changed, either directly or indirectly due to changes
    791 * further up the parent chain of clocks. As a result, clocks up parent chain
    792 * also get under exclusive control of the calling consumer.
    793 *
    794 * If exlusivity is claimed more than once on clock, even by the same consumer,
    795 * the rate effectively gets locked as exclusivity can't be preempted.
    796 *
    797 * Calls to clk_rate_exclusive_get() should be balanced with calls to
    798 * clk_rate_exclusive_put(). Calls to this function may sleep.
    799 * Returns 0 on success, -EERROR otherwise
    800 */
    801int clk_rate_exclusive_get(struct clk *clk)
    802{
    803	if (!clk)
    804		return 0;
    805
    806	clk_prepare_lock();
    807	clk_core_rate_protect(clk->core);
    808	clk->exclusive_count++;
    809	clk_prepare_unlock();
    810
    811	return 0;
    812}
    813EXPORT_SYMBOL_GPL(clk_rate_exclusive_get);
    814
    815static void clk_core_unprepare(struct clk_core *core)
    816{
    817	lockdep_assert_held(&prepare_lock);
    818
    819	if (!core)
    820		return;
    821
    822	if (WARN(core->prepare_count == 0,
    823	    "%s already unprepared\n", core->name))
    824		return;
    825
    826	if (WARN(core->prepare_count == 1 && core->flags & CLK_IS_CRITICAL,
    827	    "Unpreparing critical %s\n", core->name))
    828		return;
    829
    830	if (core->flags & CLK_SET_RATE_GATE)
    831		clk_core_rate_unprotect(core);
    832
    833	if (--core->prepare_count > 0)
    834		return;
    835
    836	WARN(core->enable_count > 0, "Unpreparing enabled %s\n", core->name);
    837
    838	trace_clk_unprepare(core);
    839
    840	if (core->ops->unprepare)
    841		core->ops->unprepare(core->hw);
    842
    843	clk_pm_runtime_put(core);
    844
    845	trace_clk_unprepare_complete(core);
    846	clk_core_unprepare(core->parent);
    847}
    848
    849static void clk_core_unprepare_lock(struct clk_core *core)
    850{
    851	clk_prepare_lock();
    852	clk_core_unprepare(core);
    853	clk_prepare_unlock();
    854}
    855
    856/**
    857 * clk_unprepare - undo preparation of a clock source
    858 * @clk: the clk being unprepared
    859 *
    860 * clk_unprepare may sleep, which differentiates it from clk_disable.  In a
    861 * simple case, clk_unprepare can be used instead of clk_disable to gate a clk
    862 * if the operation may sleep.  One example is a clk which is accessed over
    863 * I2c.  In the complex case a clk gate operation may require a fast and a slow
    864 * part.  It is this reason that clk_unprepare and clk_disable are not mutually
    865 * exclusive.  In fact clk_disable must be called before clk_unprepare.
    866 */
    867void clk_unprepare(struct clk *clk)
    868{
    869	if (IS_ERR_OR_NULL(clk))
    870		return;
    871
    872	clk_core_unprepare_lock(clk->core);
    873}
    874EXPORT_SYMBOL_GPL(clk_unprepare);
    875
    876static int clk_core_prepare(struct clk_core *core)
    877{
    878	int ret = 0;
    879
    880	lockdep_assert_held(&prepare_lock);
    881
    882	if (!core)
    883		return 0;
    884
    885	if (core->prepare_count == 0) {
    886		ret = clk_pm_runtime_get(core);
    887		if (ret)
    888			return ret;
    889
    890		ret = clk_core_prepare(core->parent);
    891		if (ret)
    892			goto runtime_put;
    893
    894		trace_clk_prepare(core);
    895
    896		if (core->ops->prepare)
    897			ret = core->ops->prepare(core->hw);
    898
    899		trace_clk_prepare_complete(core);
    900
    901		if (ret)
    902			goto unprepare;
    903	}
    904
    905	core->prepare_count++;
    906
    907	/*
    908	 * CLK_SET_RATE_GATE is a special case of clock protection
    909	 * Instead of a consumer claiming exclusive rate control, it is
    910	 * actually the provider which prevents any consumer from making any
    911	 * operation which could result in a rate change or rate glitch while
    912	 * the clock is prepared.
    913	 */
    914	if (core->flags & CLK_SET_RATE_GATE)
    915		clk_core_rate_protect(core);
    916
    917	return 0;
    918unprepare:
    919	clk_core_unprepare(core->parent);
    920runtime_put:
    921	clk_pm_runtime_put(core);
    922	return ret;
    923}
    924
    925static int clk_core_prepare_lock(struct clk_core *core)
    926{
    927	int ret;
    928
    929	clk_prepare_lock();
    930	ret = clk_core_prepare(core);
    931	clk_prepare_unlock();
    932
    933	return ret;
    934}
    935
    936/**
    937 * clk_prepare - prepare a clock source
    938 * @clk: the clk being prepared
    939 *
    940 * clk_prepare may sleep, which differentiates it from clk_enable.  In a simple
    941 * case, clk_prepare can be used instead of clk_enable to ungate a clk if the
    942 * operation may sleep.  One example is a clk which is accessed over I2c.  In
    943 * the complex case a clk ungate operation may require a fast and a slow part.
    944 * It is this reason that clk_prepare and clk_enable are not mutually
    945 * exclusive.  In fact clk_prepare must be called before clk_enable.
    946 * Returns 0 on success, -EERROR otherwise.
    947 */
    948int clk_prepare(struct clk *clk)
    949{
    950	if (!clk)
    951		return 0;
    952
    953	return clk_core_prepare_lock(clk->core);
    954}
    955EXPORT_SYMBOL_GPL(clk_prepare);
    956
    957static void clk_core_disable(struct clk_core *core)
    958{
    959	lockdep_assert_held(&enable_lock);
    960
    961	if (!core)
    962		return;
    963
    964	if (WARN(core->enable_count == 0, "%s already disabled\n", core->name))
    965		return;
    966
    967	if (WARN(core->enable_count == 1 && core->flags & CLK_IS_CRITICAL,
    968	    "Disabling critical %s\n", core->name))
    969		return;
    970
    971	if (--core->enable_count > 0)
    972		return;
    973
    974	trace_clk_disable_rcuidle(core);
    975
    976	if (core->ops->disable)
    977		core->ops->disable(core->hw);
    978
    979	trace_clk_disable_complete_rcuidle(core);
    980
    981	clk_core_disable(core->parent);
    982}
    983
    984static void clk_core_disable_lock(struct clk_core *core)
    985{
    986	unsigned long flags;
    987
    988	flags = clk_enable_lock();
    989	clk_core_disable(core);
    990	clk_enable_unlock(flags);
    991}
    992
    993/**
    994 * clk_disable - gate a clock
    995 * @clk: the clk being gated
    996 *
    997 * clk_disable must not sleep, which differentiates it from clk_unprepare.  In
    998 * a simple case, clk_disable can be used instead of clk_unprepare to gate a
    999 * clk if the operation is fast and will never sleep.  One example is a
   1000 * SoC-internal clk which is controlled via simple register writes.  In the
   1001 * complex case a clk gate operation may require a fast and a slow part.  It is
   1002 * this reason that clk_unprepare and clk_disable are not mutually exclusive.
   1003 * In fact clk_disable must be called before clk_unprepare.
   1004 */
   1005void clk_disable(struct clk *clk)
   1006{
   1007	if (IS_ERR_OR_NULL(clk))
   1008		return;
   1009
   1010	clk_core_disable_lock(clk->core);
   1011}
   1012EXPORT_SYMBOL_GPL(clk_disable);
   1013
   1014static int clk_core_enable(struct clk_core *core)
   1015{
   1016	int ret = 0;
   1017
   1018	lockdep_assert_held(&enable_lock);
   1019
   1020	if (!core)
   1021		return 0;
   1022
   1023	if (WARN(core->prepare_count == 0,
   1024	    "Enabling unprepared %s\n", core->name))
   1025		return -ESHUTDOWN;
   1026
   1027	if (core->enable_count == 0) {
   1028		ret = clk_core_enable(core->parent);
   1029
   1030		if (ret)
   1031			return ret;
   1032
   1033		trace_clk_enable_rcuidle(core);
   1034
   1035		if (core->ops->enable)
   1036			ret = core->ops->enable(core->hw);
   1037
   1038		trace_clk_enable_complete_rcuidle(core);
   1039
   1040		if (ret) {
   1041			clk_core_disable(core->parent);
   1042			return ret;
   1043		}
   1044	}
   1045
   1046	core->enable_count++;
   1047	return 0;
   1048}
   1049
   1050static int clk_core_enable_lock(struct clk_core *core)
   1051{
   1052	unsigned long flags;
   1053	int ret;
   1054
   1055	flags = clk_enable_lock();
   1056	ret = clk_core_enable(core);
   1057	clk_enable_unlock(flags);
   1058
   1059	return ret;
   1060}
   1061
   1062/**
   1063 * clk_gate_restore_context - restore context for poweroff
   1064 * @hw: the clk_hw pointer of clock whose state is to be restored
   1065 *
   1066 * The clock gate restore context function enables or disables
   1067 * the gate clocks based on the enable_count. This is done in cases
   1068 * where the clock context is lost and based on the enable_count
   1069 * the clock either needs to be enabled/disabled. This
   1070 * helps restore the state of gate clocks.
   1071 */
   1072void clk_gate_restore_context(struct clk_hw *hw)
   1073{
   1074	struct clk_core *core = hw->core;
   1075
   1076	if (core->enable_count)
   1077		core->ops->enable(hw);
   1078	else
   1079		core->ops->disable(hw);
   1080}
   1081EXPORT_SYMBOL_GPL(clk_gate_restore_context);
   1082
   1083static int clk_core_save_context(struct clk_core *core)
   1084{
   1085	struct clk_core *child;
   1086	int ret = 0;
   1087
   1088	hlist_for_each_entry(child, &core->children, child_node) {
   1089		ret = clk_core_save_context(child);
   1090		if (ret < 0)
   1091			return ret;
   1092	}
   1093
   1094	if (core->ops && core->ops->save_context)
   1095		ret = core->ops->save_context(core->hw);
   1096
   1097	return ret;
   1098}
   1099
   1100static void clk_core_restore_context(struct clk_core *core)
   1101{
   1102	struct clk_core *child;
   1103
   1104	if (core->ops && core->ops->restore_context)
   1105		core->ops->restore_context(core->hw);
   1106
   1107	hlist_for_each_entry(child, &core->children, child_node)
   1108		clk_core_restore_context(child);
   1109}
   1110
   1111/**
   1112 * clk_save_context - save clock context for poweroff
   1113 *
   1114 * Saves the context of the clock register for powerstates in which the
   1115 * contents of the registers will be lost. Occurs deep within the suspend
   1116 * code.  Returns 0 on success.
   1117 */
   1118int clk_save_context(void)
   1119{
   1120	struct clk_core *clk;
   1121	int ret;
   1122
   1123	hlist_for_each_entry(clk, &clk_root_list, child_node) {
   1124		ret = clk_core_save_context(clk);
   1125		if (ret < 0)
   1126			return ret;
   1127	}
   1128
   1129	hlist_for_each_entry(clk, &clk_orphan_list, child_node) {
   1130		ret = clk_core_save_context(clk);
   1131		if (ret < 0)
   1132			return ret;
   1133	}
   1134
   1135	return 0;
   1136}
   1137EXPORT_SYMBOL_GPL(clk_save_context);
   1138
   1139/**
   1140 * clk_restore_context - restore clock context after poweroff
   1141 *
   1142 * Restore the saved clock context upon resume.
   1143 *
   1144 */
   1145void clk_restore_context(void)
   1146{
   1147	struct clk_core *core;
   1148
   1149	hlist_for_each_entry(core, &clk_root_list, child_node)
   1150		clk_core_restore_context(core);
   1151
   1152	hlist_for_each_entry(core, &clk_orphan_list, child_node)
   1153		clk_core_restore_context(core);
   1154}
   1155EXPORT_SYMBOL_GPL(clk_restore_context);
   1156
   1157/**
   1158 * clk_enable - ungate a clock
   1159 * @clk: the clk being ungated
   1160 *
   1161 * clk_enable must not sleep, which differentiates it from clk_prepare.  In a
   1162 * simple case, clk_enable can be used instead of clk_prepare to ungate a clk
   1163 * if the operation will never sleep.  One example is a SoC-internal clk which
   1164 * is controlled via simple register writes.  In the complex case a clk ungate
   1165 * operation may require a fast and a slow part.  It is this reason that
   1166 * clk_enable and clk_prepare are not mutually exclusive.  In fact clk_prepare
   1167 * must be called before clk_enable.  Returns 0 on success, -EERROR
   1168 * otherwise.
   1169 */
   1170int clk_enable(struct clk *clk)
   1171{
   1172	if (!clk)
   1173		return 0;
   1174
   1175	return clk_core_enable_lock(clk->core);
   1176}
   1177EXPORT_SYMBOL_GPL(clk_enable);
   1178
   1179/**
   1180 * clk_is_enabled_when_prepared - indicate if preparing a clock also enables it.
   1181 * @clk: clock source
   1182 *
   1183 * Returns true if clk_prepare() implicitly enables the clock, effectively
   1184 * making clk_enable()/clk_disable() no-ops, false otherwise.
   1185 *
   1186 * This is of interest mainly to power management code where actually
   1187 * disabling the clock also requires unpreparing it to have any material
   1188 * effect.
   1189 *
   1190 * Regardless of the value returned here, the caller must always invoke
   1191 * clk_enable() or clk_prepare_enable()  and counterparts for usage counts
   1192 * to be right.
   1193 */
   1194bool clk_is_enabled_when_prepared(struct clk *clk)
   1195{
   1196	return clk && !(clk->core->ops->enable && clk->core->ops->disable);
   1197}
   1198EXPORT_SYMBOL_GPL(clk_is_enabled_when_prepared);
   1199
   1200static int clk_core_prepare_enable(struct clk_core *core)
   1201{
   1202	int ret;
   1203
   1204	ret = clk_core_prepare_lock(core);
   1205	if (ret)
   1206		return ret;
   1207
   1208	ret = clk_core_enable_lock(core);
   1209	if (ret)
   1210		clk_core_unprepare_lock(core);
   1211
   1212	return ret;
   1213}
   1214
   1215static void clk_core_disable_unprepare(struct clk_core *core)
   1216{
   1217	clk_core_disable_lock(core);
   1218	clk_core_unprepare_lock(core);
   1219}
   1220
   1221static void __init clk_unprepare_unused_subtree(struct clk_core *core)
   1222{
   1223	struct clk_core *child;
   1224
   1225	lockdep_assert_held(&prepare_lock);
   1226
   1227	hlist_for_each_entry(child, &core->children, child_node)
   1228		clk_unprepare_unused_subtree(child);
   1229
   1230	if (core->prepare_count)
   1231		return;
   1232
   1233	if (core->flags & CLK_IGNORE_UNUSED)
   1234		return;
   1235
   1236	if (clk_pm_runtime_get(core))
   1237		return;
   1238
   1239	if (clk_core_is_prepared(core)) {
   1240		trace_clk_unprepare(core);
   1241		if (core->ops->unprepare_unused)
   1242			core->ops->unprepare_unused(core->hw);
   1243		else if (core->ops->unprepare)
   1244			core->ops->unprepare(core->hw);
   1245		trace_clk_unprepare_complete(core);
   1246	}
   1247
   1248	clk_pm_runtime_put(core);
   1249}
   1250
   1251static void __init clk_disable_unused_subtree(struct clk_core *core)
   1252{
   1253	struct clk_core *child;
   1254	unsigned long flags;
   1255
   1256	lockdep_assert_held(&prepare_lock);
   1257
   1258	hlist_for_each_entry(child, &core->children, child_node)
   1259		clk_disable_unused_subtree(child);
   1260
   1261	if (core->flags & CLK_OPS_PARENT_ENABLE)
   1262		clk_core_prepare_enable(core->parent);
   1263
   1264	if (clk_pm_runtime_get(core))
   1265		goto unprepare_out;
   1266
   1267	flags = clk_enable_lock();
   1268
   1269	if (core->enable_count)
   1270		goto unlock_out;
   1271
   1272	if (core->flags & CLK_IGNORE_UNUSED)
   1273		goto unlock_out;
   1274
   1275	/*
   1276	 * some gate clocks have special needs during the disable-unused
   1277	 * sequence.  call .disable_unused if available, otherwise fall
   1278	 * back to .disable
   1279	 */
   1280	if (clk_core_is_enabled(core)) {
   1281		trace_clk_disable(core);
   1282		if (core->ops->disable_unused)
   1283			core->ops->disable_unused(core->hw);
   1284		else if (core->ops->disable)
   1285			core->ops->disable(core->hw);
   1286		trace_clk_disable_complete(core);
   1287	}
   1288
   1289unlock_out:
   1290	clk_enable_unlock(flags);
   1291	clk_pm_runtime_put(core);
   1292unprepare_out:
   1293	if (core->flags & CLK_OPS_PARENT_ENABLE)
   1294		clk_core_disable_unprepare(core->parent);
   1295}
   1296
   1297static bool clk_ignore_unused __initdata;
   1298static int __init clk_ignore_unused_setup(char *__unused)
   1299{
   1300	clk_ignore_unused = true;
   1301	return 1;
   1302}
   1303__setup("clk_ignore_unused", clk_ignore_unused_setup);
   1304
   1305static int __init clk_disable_unused(void)
   1306{
   1307	struct clk_core *core;
   1308
   1309	if (clk_ignore_unused) {
   1310		pr_warn("clk: Not disabling unused clocks\n");
   1311		return 0;
   1312	}
   1313
   1314	clk_prepare_lock();
   1315
   1316	hlist_for_each_entry(core, &clk_root_list, child_node)
   1317		clk_disable_unused_subtree(core);
   1318
   1319	hlist_for_each_entry(core, &clk_orphan_list, child_node)
   1320		clk_disable_unused_subtree(core);
   1321
   1322	hlist_for_each_entry(core, &clk_root_list, child_node)
   1323		clk_unprepare_unused_subtree(core);
   1324
   1325	hlist_for_each_entry(core, &clk_orphan_list, child_node)
   1326		clk_unprepare_unused_subtree(core);
   1327
   1328	clk_prepare_unlock();
   1329
   1330	return 0;
   1331}
   1332late_initcall_sync(clk_disable_unused);
   1333
   1334static int clk_core_determine_round_nolock(struct clk_core *core,
   1335					   struct clk_rate_request *req)
   1336{
   1337	long rate;
   1338
   1339	lockdep_assert_held(&prepare_lock);
   1340
   1341	if (!core)
   1342		return 0;
   1343
   1344	req->rate = clamp(req->rate, req->min_rate, req->max_rate);
   1345
   1346	/*
   1347	 * At this point, core protection will be disabled
   1348	 * - if the provider is not protected at all
   1349	 * - if the calling consumer is the only one which has exclusivity
   1350	 *   over the provider
   1351	 */
   1352	if (clk_core_rate_is_protected(core)) {
   1353		req->rate = core->rate;
   1354	} else if (core->ops->determine_rate) {
   1355		return core->ops->determine_rate(core->hw, req);
   1356	} else if (core->ops->round_rate) {
   1357		rate = core->ops->round_rate(core->hw, req->rate,
   1358					     &req->best_parent_rate);
   1359		if (rate < 0)
   1360			return rate;
   1361
   1362		req->rate = rate;
   1363	} else {
   1364		return -EINVAL;
   1365	}
   1366
   1367	return 0;
   1368}
   1369
   1370static void clk_core_init_rate_req(struct clk_core * const core,
   1371				   struct clk_rate_request *req)
   1372{
   1373	struct clk_core *parent;
   1374
   1375	if (WARN_ON(!core || !req))
   1376		return;
   1377
   1378	parent = core->parent;
   1379	if (parent) {
   1380		req->best_parent_hw = parent->hw;
   1381		req->best_parent_rate = parent->rate;
   1382	} else {
   1383		req->best_parent_hw = NULL;
   1384		req->best_parent_rate = 0;
   1385	}
   1386}
   1387
   1388static bool clk_core_can_round(struct clk_core * const core)
   1389{
   1390	return core->ops->determine_rate || core->ops->round_rate;
   1391}
   1392
   1393static int clk_core_round_rate_nolock(struct clk_core *core,
   1394				      struct clk_rate_request *req)
   1395{
   1396	lockdep_assert_held(&prepare_lock);
   1397
   1398	if (!core) {
   1399		req->rate = 0;
   1400		return 0;
   1401	}
   1402
   1403	clk_core_init_rate_req(core, req);
   1404
   1405	if (clk_core_can_round(core))
   1406		return clk_core_determine_round_nolock(core, req);
   1407	else if (core->flags & CLK_SET_RATE_PARENT)
   1408		return clk_core_round_rate_nolock(core->parent, req);
   1409
   1410	req->rate = core->rate;
   1411	return 0;
   1412}
   1413
   1414/**
   1415 * __clk_determine_rate - get the closest rate actually supported by a clock
   1416 * @hw: determine the rate of this clock
   1417 * @req: target rate request
   1418 *
   1419 * Useful for clk_ops such as .set_rate and .determine_rate.
   1420 */
   1421int __clk_determine_rate(struct clk_hw *hw, struct clk_rate_request *req)
   1422{
   1423	if (!hw) {
   1424		req->rate = 0;
   1425		return 0;
   1426	}
   1427
   1428	return clk_core_round_rate_nolock(hw->core, req);
   1429}
   1430EXPORT_SYMBOL_GPL(__clk_determine_rate);
   1431
   1432/**
   1433 * clk_hw_round_rate() - round the given rate for a hw clk
   1434 * @hw: the hw clk for which we are rounding a rate
   1435 * @rate: the rate which is to be rounded
   1436 *
   1437 * Takes in a rate as input and rounds it to a rate that the clk can actually
   1438 * use.
   1439 *
   1440 * Context: prepare_lock must be held.
   1441 *          For clk providers to call from within clk_ops such as .round_rate,
   1442 *          .determine_rate.
   1443 *
   1444 * Return: returns rounded rate of hw clk if clk supports round_rate operation
   1445 *         else returns the parent rate.
   1446 */
   1447unsigned long clk_hw_round_rate(struct clk_hw *hw, unsigned long rate)
   1448{
   1449	int ret;
   1450	struct clk_rate_request req;
   1451
   1452	clk_core_get_boundaries(hw->core, &req.min_rate, &req.max_rate);
   1453	req.rate = rate;
   1454
   1455	ret = clk_core_round_rate_nolock(hw->core, &req);
   1456	if (ret)
   1457		return 0;
   1458
   1459	return req.rate;
   1460}
   1461EXPORT_SYMBOL_GPL(clk_hw_round_rate);
   1462
   1463/**
   1464 * clk_round_rate - round the given rate for a clk
   1465 * @clk: the clk for which we are rounding a rate
   1466 * @rate: the rate which is to be rounded
   1467 *
   1468 * Takes in a rate as input and rounds it to a rate that the clk can actually
   1469 * use which is then returned.  If clk doesn't support round_rate operation
   1470 * then the parent rate is returned.
   1471 */
   1472long clk_round_rate(struct clk *clk, unsigned long rate)
   1473{
   1474	struct clk_rate_request req;
   1475	int ret;
   1476
   1477	if (!clk)
   1478		return 0;
   1479
   1480	clk_prepare_lock();
   1481
   1482	if (clk->exclusive_count)
   1483		clk_core_rate_unprotect(clk->core);
   1484
   1485	clk_core_get_boundaries(clk->core, &req.min_rate, &req.max_rate);
   1486	req.rate = rate;
   1487
   1488	ret = clk_core_round_rate_nolock(clk->core, &req);
   1489
   1490	if (clk->exclusive_count)
   1491		clk_core_rate_protect(clk->core);
   1492
   1493	clk_prepare_unlock();
   1494
   1495	if (ret)
   1496		return ret;
   1497
   1498	return req.rate;
   1499}
   1500EXPORT_SYMBOL_GPL(clk_round_rate);
   1501
   1502/**
   1503 * __clk_notify - call clk notifier chain
   1504 * @core: clk that is changing rate
   1505 * @msg: clk notifier type (see include/linux/clk.h)
   1506 * @old_rate: old clk rate
   1507 * @new_rate: new clk rate
   1508 *
   1509 * Triggers a notifier call chain on the clk rate-change notification
   1510 * for 'clk'.  Passes a pointer to the struct clk and the previous
   1511 * and current rates to the notifier callback.  Intended to be called by
   1512 * internal clock code only.  Returns NOTIFY_DONE from the last driver
   1513 * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if
   1514 * a driver returns that.
   1515 */
   1516static int __clk_notify(struct clk_core *core, unsigned long msg,
   1517		unsigned long old_rate, unsigned long new_rate)
   1518{
   1519	struct clk_notifier *cn;
   1520	struct clk_notifier_data cnd;
   1521	int ret = NOTIFY_DONE;
   1522
   1523	cnd.old_rate = old_rate;
   1524	cnd.new_rate = new_rate;
   1525
   1526	list_for_each_entry(cn, &clk_notifier_list, node) {
   1527		if (cn->clk->core == core) {
   1528			cnd.clk = cn->clk;
   1529			ret = srcu_notifier_call_chain(&cn->notifier_head, msg,
   1530					&cnd);
   1531			if (ret & NOTIFY_STOP_MASK)
   1532				return ret;
   1533		}
   1534	}
   1535
   1536	return ret;
   1537}
   1538
   1539/**
   1540 * __clk_recalc_accuracies
   1541 * @core: first clk in the subtree
   1542 *
   1543 * Walks the subtree of clks starting with clk and recalculates accuracies as
   1544 * it goes.  Note that if a clk does not implement the .recalc_accuracy
   1545 * callback then it is assumed that the clock will take on the accuracy of its
   1546 * parent.
   1547 */
   1548static void __clk_recalc_accuracies(struct clk_core *core)
   1549{
   1550	unsigned long parent_accuracy = 0;
   1551	struct clk_core *child;
   1552
   1553	lockdep_assert_held(&prepare_lock);
   1554
   1555	if (core->parent)
   1556		parent_accuracy = core->parent->accuracy;
   1557
   1558	if (core->ops->recalc_accuracy)
   1559		core->accuracy = core->ops->recalc_accuracy(core->hw,
   1560							  parent_accuracy);
   1561	else
   1562		core->accuracy = parent_accuracy;
   1563
   1564	hlist_for_each_entry(child, &core->children, child_node)
   1565		__clk_recalc_accuracies(child);
   1566}
   1567
   1568static long clk_core_get_accuracy_recalc(struct clk_core *core)
   1569{
   1570	if (core && (core->flags & CLK_GET_ACCURACY_NOCACHE))
   1571		__clk_recalc_accuracies(core);
   1572
   1573	return clk_core_get_accuracy_no_lock(core);
   1574}
   1575
   1576/**
   1577 * clk_get_accuracy - return the accuracy of clk
   1578 * @clk: the clk whose accuracy is being returned
   1579 *
   1580 * Simply returns the cached accuracy of the clk, unless
   1581 * CLK_GET_ACCURACY_NOCACHE flag is set, which means a recalc_rate will be
   1582 * issued.
   1583 * If clk is NULL then returns 0.
   1584 */
   1585long clk_get_accuracy(struct clk *clk)
   1586{
   1587	long accuracy;
   1588
   1589	if (!clk)
   1590		return 0;
   1591
   1592	clk_prepare_lock();
   1593	accuracy = clk_core_get_accuracy_recalc(clk->core);
   1594	clk_prepare_unlock();
   1595
   1596	return accuracy;
   1597}
   1598EXPORT_SYMBOL_GPL(clk_get_accuracy);
   1599
   1600static unsigned long clk_recalc(struct clk_core *core,
   1601				unsigned long parent_rate)
   1602{
   1603	unsigned long rate = parent_rate;
   1604
   1605	if (core->ops->recalc_rate && !clk_pm_runtime_get(core)) {
   1606		rate = core->ops->recalc_rate(core->hw, parent_rate);
   1607		clk_pm_runtime_put(core);
   1608	}
   1609	return rate;
   1610}
   1611
   1612/**
   1613 * __clk_recalc_rates
   1614 * @core: first clk in the subtree
   1615 * @msg: notification type (see include/linux/clk.h)
   1616 *
   1617 * Walks the subtree of clks starting with clk and recalculates rates as it
   1618 * goes.  Note that if a clk does not implement the .recalc_rate callback then
   1619 * it is assumed that the clock will take on the rate of its parent.
   1620 *
   1621 * clk_recalc_rates also propagates the POST_RATE_CHANGE notification,
   1622 * if necessary.
   1623 */
   1624static void __clk_recalc_rates(struct clk_core *core, unsigned long msg)
   1625{
   1626	unsigned long old_rate;
   1627	unsigned long parent_rate = 0;
   1628	struct clk_core *child;
   1629
   1630	lockdep_assert_held(&prepare_lock);
   1631
   1632	old_rate = core->rate;
   1633
   1634	if (core->parent)
   1635		parent_rate = core->parent->rate;
   1636
   1637	core->rate = clk_recalc(core, parent_rate);
   1638
   1639	/*
   1640	 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE
   1641	 * & ABORT_RATE_CHANGE notifiers
   1642	 */
   1643	if (core->notifier_count && msg)
   1644		__clk_notify(core, msg, old_rate, core->rate);
   1645
   1646	hlist_for_each_entry(child, &core->children, child_node)
   1647		__clk_recalc_rates(child, msg);
   1648}
   1649
   1650static unsigned long clk_core_get_rate_recalc(struct clk_core *core)
   1651{
   1652	if (core && (core->flags & CLK_GET_RATE_NOCACHE))
   1653		__clk_recalc_rates(core, 0);
   1654
   1655	return clk_core_get_rate_nolock(core);
   1656}
   1657
   1658/**
   1659 * clk_get_rate - return the rate of clk
   1660 * @clk: the clk whose rate is being returned
   1661 *
   1662 * Simply returns the cached rate of the clk, unless CLK_GET_RATE_NOCACHE flag
   1663 * is set, which means a recalc_rate will be issued.
   1664 * If clk is NULL then returns 0.
   1665 */
   1666unsigned long clk_get_rate(struct clk *clk)
   1667{
   1668	unsigned long rate;
   1669
   1670	if (!clk)
   1671		return 0;
   1672
   1673	clk_prepare_lock();
   1674	rate = clk_core_get_rate_recalc(clk->core);
   1675	clk_prepare_unlock();
   1676
   1677	return rate;
   1678}
   1679EXPORT_SYMBOL_GPL(clk_get_rate);
   1680
   1681static int clk_fetch_parent_index(struct clk_core *core,
   1682				  struct clk_core *parent)
   1683{
   1684	int i;
   1685
   1686	if (!parent)
   1687		return -EINVAL;
   1688
   1689	for (i = 0; i < core->num_parents; i++) {
   1690		/* Found it first try! */
   1691		if (core->parents[i].core == parent)
   1692			return i;
   1693
   1694		/* Something else is here, so keep looking */
   1695		if (core->parents[i].core)
   1696			continue;
   1697
   1698		/* Maybe core hasn't been cached but the hw is all we know? */
   1699		if (core->parents[i].hw) {
   1700			if (core->parents[i].hw == parent->hw)
   1701				break;
   1702
   1703			/* Didn't match, but we're expecting a clk_hw */
   1704			continue;
   1705		}
   1706
   1707		/* Maybe it hasn't been cached (clk_set_parent() path) */
   1708		if (parent == clk_core_get(core, i))
   1709			break;
   1710
   1711		/* Fallback to comparing globally unique names */
   1712		if (core->parents[i].name &&
   1713		    !strcmp(parent->name, core->parents[i].name))
   1714			break;
   1715	}
   1716
   1717	if (i == core->num_parents)
   1718		return -EINVAL;
   1719
   1720	core->parents[i].core = parent;
   1721	return i;
   1722}
   1723
   1724/**
   1725 * clk_hw_get_parent_index - return the index of the parent clock
   1726 * @hw: clk_hw associated with the clk being consumed
   1727 *
   1728 * Fetches and returns the index of parent clock. Returns -EINVAL if the given
   1729 * clock does not have a current parent.
   1730 */
   1731int clk_hw_get_parent_index(struct clk_hw *hw)
   1732{
   1733	struct clk_hw *parent = clk_hw_get_parent(hw);
   1734
   1735	if (WARN_ON(parent == NULL))
   1736		return -EINVAL;
   1737
   1738	return clk_fetch_parent_index(hw->core, parent->core);
   1739}
   1740EXPORT_SYMBOL_GPL(clk_hw_get_parent_index);
   1741
   1742/*
   1743 * Update the orphan status of @core and all its children.
   1744 */
   1745static void clk_core_update_orphan_status(struct clk_core *core, bool is_orphan)
   1746{
   1747	struct clk_core *child;
   1748
   1749	core->orphan = is_orphan;
   1750
   1751	hlist_for_each_entry(child, &core->children, child_node)
   1752		clk_core_update_orphan_status(child, is_orphan);
   1753}
   1754
   1755static void clk_reparent(struct clk_core *core, struct clk_core *new_parent)
   1756{
   1757	bool was_orphan = core->orphan;
   1758
   1759	hlist_del(&core->child_node);
   1760
   1761	if (new_parent) {
   1762		bool becomes_orphan = new_parent->orphan;
   1763
   1764		/* avoid duplicate POST_RATE_CHANGE notifications */
   1765		if (new_parent->new_child == core)
   1766			new_parent->new_child = NULL;
   1767
   1768		hlist_add_head(&core->child_node, &new_parent->children);
   1769
   1770		if (was_orphan != becomes_orphan)
   1771			clk_core_update_orphan_status(core, becomes_orphan);
   1772	} else {
   1773		hlist_add_head(&core->child_node, &clk_orphan_list);
   1774		if (!was_orphan)
   1775			clk_core_update_orphan_status(core, true);
   1776	}
   1777
   1778	core->parent = new_parent;
   1779}
   1780
   1781static struct clk_core *__clk_set_parent_before(struct clk_core *core,
   1782					   struct clk_core *parent)
   1783{
   1784	unsigned long flags;
   1785	struct clk_core *old_parent = core->parent;
   1786
   1787	/*
   1788	 * 1. enable parents for CLK_OPS_PARENT_ENABLE clock
   1789	 *
   1790	 * 2. Migrate prepare state between parents and prevent race with
   1791	 * clk_enable().
   1792	 *
   1793	 * If the clock is not prepared, then a race with
   1794	 * clk_enable/disable() is impossible since we already have the
   1795	 * prepare lock (future calls to clk_enable() need to be preceded by
   1796	 * a clk_prepare()).
   1797	 *
   1798	 * If the clock is prepared, migrate the prepared state to the new
   1799	 * parent and also protect against a race with clk_enable() by
   1800	 * forcing the clock and the new parent on.  This ensures that all
   1801	 * future calls to clk_enable() are practically NOPs with respect to
   1802	 * hardware and software states.
   1803	 *
   1804	 * See also: Comment for clk_set_parent() below.
   1805	 */
   1806
   1807	/* enable old_parent & parent if CLK_OPS_PARENT_ENABLE is set */
   1808	if (core->flags & CLK_OPS_PARENT_ENABLE) {
   1809		clk_core_prepare_enable(old_parent);
   1810		clk_core_prepare_enable(parent);
   1811	}
   1812
   1813	/* migrate prepare count if > 0 */
   1814	if (core->prepare_count) {
   1815		clk_core_prepare_enable(parent);
   1816		clk_core_enable_lock(core);
   1817	}
   1818
   1819	/* update the clk tree topology */
   1820	flags = clk_enable_lock();
   1821	clk_reparent(core, parent);
   1822	clk_enable_unlock(flags);
   1823
   1824	return old_parent;
   1825}
   1826
   1827static void __clk_set_parent_after(struct clk_core *core,
   1828				   struct clk_core *parent,
   1829				   struct clk_core *old_parent)
   1830{
   1831	/*
   1832	 * Finish the migration of prepare state and undo the changes done
   1833	 * for preventing a race with clk_enable().
   1834	 */
   1835	if (core->prepare_count) {
   1836		clk_core_disable_lock(core);
   1837		clk_core_disable_unprepare(old_parent);
   1838	}
   1839
   1840	/* re-balance ref counting if CLK_OPS_PARENT_ENABLE is set */
   1841	if (core->flags & CLK_OPS_PARENT_ENABLE) {
   1842		clk_core_disable_unprepare(parent);
   1843		clk_core_disable_unprepare(old_parent);
   1844	}
   1845}
   1846
   1847static int __clk_set_parent(struct clk_core *core, struct clk_core *parent,
   1848			    u8 p_index)
   1849{
   1850	unsigned long flags;
   1851	int ret = 0;
   1852	struct clk_core *old_parent;
   1853
   1854	old_parent = __clk_set_parent_before(core, parent);
   1855
   1856	trace_clk_set_parent(core, parent);
   1857
   1858	/* change clock input source */
   1859	if (parent && core->ops->set_parent)
   1860		ret = core->ops->set_parent(core->hw, p_index);
   1861
   1862	trace_clk_set_parent_complete(core, parent);
   1863
   1864	if (ret) {
   1865		flags = clk_enable_lock();
   1866		clk_reparent(core, old_parent);
   1867		clk_enable_unlock(flags);
   1868		__clk_set_parent_after(core, old_parent, parent);
   1869
   1870		return ret;
   1871	}
   1872
   1873	__clk_set_parent_after(core, parent, old_parent);
   1874
   1875	return 0;
   1876}
   1877
   1878/**
   1879 * __clk_speculate_rates
   1880 * @core: first clk in the subtree
   1881 * @parent_rate: the "future" rate of clk's parent
   1882 *
   1883 * Walks the subtree of clks starting with clk, speculating rates as it
   1884 * goes and firing off PRE_RATE_CHANGE notifications as necessary.
   1885 *
   1886 * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending
   1887 * pre-rate change notifications and returns early if no clks in the
   1888 * subtree have subscribed to the notifications.  Note that if a clk does not
   1889 * implement the .recalc_rate callback then it is assumed that the clock will
   1890 * take on the rate of its parent.
   1891 */
   1892static int __clk_speculate_rates(struct clk_core *core,
   1893				 unsigned long parent_rate)
   1894{
   1895	struct clk_core *child;
   1896	unsigned long new_rate;
   1897	int ret = NOTIFY_DONE;
   1898
   1899	lockdep_assert_held(&prepare_lock);
   1900
   1901	new_rate = clk_recalc(core, parent_rate);
   1902
   1903	/* abort rate change if a driver returns NOTIFY_BAD or NOTIFY_STOP */
   1904	if (core->notifier_count)
   1905		ret = __clk_notify(core, PRE_RATE_CHANGE, core->rate, new_rate);
   1906
   1907	if (ret & NOTIFY_STOP_MASK) {
   1908		pr_debug("%s: clk notifier callback for clock %s aborted with error %d\n",
   1909				__func__, core->name, ret);
   1910		goto out;
   1911	}
   1912
   1913	hlist_for_each_entry(child, &core->children, child_node) {
   1914		ret = __clk_speculate_rates(child, new_rate);
   1915		if (ret & NOTIFY_STOP_MASK)
   1916			break;
   1917	}
   1918
   1919out:
   1920	return ret;
   1921}
   1922
   1923static void clk_calc_subtree(struct clk_core *core, unsigned long new_rate,
   1924			     struct clk_core *new_parent, u8 p_index)
   1925{
   1926	struct clk_core *child;
   1927
   1928	core->new_rate = new_rate;
   1929	core->new_parent = new_parent;
   1930	core->new_parent_index = p_index;
   1931	/* include clk in new parent's PRE_RATE_CHANGE notifications */
   1932	core->new_child = NULL;
   1933	if (new_parent && new_parent != core->parent)
   1934		new_parent->new_child = core;
   1935
   1936	hlist_for_each_entry(child, &core->children, child_node) {
   1937		child->new_rate = clk_recalc(child, new_rate);
   1938		clk_calc_subtree(child, child->new_rate, NULL, 0);
   1939	}
   1940}
   1941
   1942/*
   1943 * calculate the new rates returning the topmost clock that has to be
   1944 * changed.
   1945 */
   1946static struct clk_core *clk_calc_new_rates(struct clk_core *core,
   1947					   unsigned long rate)
   1948{
   1949	struct clk_core *top = core;
   1950	struct clk_core *old_parent, *parent;
   1951	unsigned long best_parent_rate = 0;
   1952	unsigned long new_rate;
   1953	unsigned long min_rate;
   1954	unsigned long max_rate;
   1955	int p_index = 0;
   1956	long ret;
   1957
   1958	/* sanity */
   1959	if (IS_ERR_OR_NULL(core))
   1960		return NULL;
   1961
   1962	/* save parent rate, if it exists */
   1963	parent = old_parent = core->parent;
   1964	if (parent)
   1965		best_parent_rate = parent->rate;
   1966
   1967	clk_core_get_boundaries(core, &min_rate, &max_rate);
   1968
   1969	/* find the closest rate and parent clk/rate */
   1970	if (clk_core_can_round(core)) {
   1971		struct clk_rate_request req;
   1972
   1973		req.rate = rate;
   1974		req.min_rate = min_rate;
   1975		req.max_rate = max_rate;
   1976
   1977		clk_core_init_rate_req(core, &req);
   1978
   1979		ret = clk_core_determine_round_nolock(core, &req);
   1980		if (ret < 0)
   1981			return NULL;
   1982
   1983		best_parent_rate = req.best_parent_rate;
   1984		new_rate = req.rate;
   1985		parent = req.best_parent_hw ? req.best_parent_hw->core : NULL;
   1986
   1987		if (new_rate < min_rate || new_rate > max_rate)
   1988			return NULL;
   1989	} else if (!parent || !(core->flags & CLK_SET_RATE_PARENT)) {
   1990		/* pass-through clock without adjustable parent */
   1991		core->new_rate = core->rate;
   1992		return NULL;
   1993	} else {
   1994		/* pass-through clock with adjustable parent */
   1995		top = clk_calc_new_rates(parent, rate);
   1996		new_rate = parent->new_rate;
   1997		goto out;
   1998	}
   1999
   2000	/* some clocks must be gated to change parent */
   2001	if (parent != old_parent &&
   2002	    (core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) {
   2003		pr_debug("%s: %s not gated but wants to reparent\n",
   2004			 __func__, core->name);
   2005		return NULL;
   2006	}
   2007
   2008	/* try finding the new parent index */
   2009	if (parent && core->num_parents > 1) {
   2010		p_index = clk_fetch_parent_index(core, parent);
   2011		if (p_index < 0) {
   2012			pr_debug("%s: clk %s can not be parent of clk %s\n",
   2013				 __func__, parent->name, core->name);
   2014			return NULL;
   2015		}
   2016	}
   2017
   2018	if ((core->flags & CLK_SET_RATE_PARENT) && parent &&
   2019	    best_parent_rate != parent->rate)
   2020		top = clk_calc_new_rates(parent, best_parent_rate);
   2021
   2022out:
   2023	clk_calc_subtree(core, new_rate, parent, p_index);
   2024
   2025	return top;
   2026}
   2027
   2028/*
   2029 * Notify about rate changes in a subtree. Always walk down the whole tree
   2030 * so that in case of an error we can walk down the whole tree again and
   2031 * abort the change.
   2032 */
   2033static struct clk_core *clk_propagate_rate_change(struct clk_core *core,
   2034						  unsigned long event)
   2035{
   2036	struct clk_core *child, *tmp_clk, *fail_clk = NULL;
   2037	int ret = NOTIFY_DONE;
   2038
   2039	if (core->rate == core->new_rate)
   2040		return NULL;
   2041
   2042	if (core->notifier_count) {
   2043		ret = __clk_notify(core, event, core->rate, core->new_rate);
   2044		if (ret & NOTIFY_STOP_MASK)
   2045			fail_clk = core;
   2046	}
   2047
   2048	hlist_for_each_entry(child, &core->children, child_node) {
   2049		/* Skip children who will be reparented to another clock */
   2050		if (child->new_parent && child->new_parent != core)
   2051			continue;
   2052		tmp_clk = clk_propagate_rate_change(child, event);
   2053		if (tmp_clk)
   2054			fail_clk = tmp_clk;
   2055	}
   2056
   2057	/* handle the new child who might not be in core->children yet */
   2058	if (core->new_child) {
   2059		tmp_clk = clk_propagate_rate_change(core->new_child, event);
   2060		if (tmp_clk)
   2061			fail_clk = tmp_clk;
   2062	}
   2063
   2064	return fail_clk;
   2065}
   2066
   2067/*
   2068 * walk down a subtree and set the new rates notifying the rate
   2069 * change on the way
   2070 */
   2071static void clk_change_rate(struct clk_core *core)
   2072{
   2073	struct clk_core *child;
   2074	struct hlist_node *tmp;
   2075	unsigned long old_rate;
   2076	unsigned long best_parent_rate = 0;
   2077	bool skip_set_rate = false;
   2078	struct clk_core *old_parent;
   2079	struct clk_core *parent = NULL;
   2080
   2081	old_rate = core->rate;
   2082
   2083	if (core->new_parent) {
   2084		parent = core->new_parent;
   2085		best_parent_rate = core->new_parent->rate;
   2086	} else if (core->parent) {
   2087		parent = core->parent;
   2088		best_parent_rate = core->parent->rate;
   2089	}
   2090
   2091	if (clk_pm_runtime_get(core))
   2092		return;
   2093
   2094	if (core->flags & CLK_SET_RATE_UNGATE) {
   2095		clk_core_prepare(core);
   2096		clk_core_enable_lock(core);
   2097	}
   2098
   2099	if (core->new_parent && core->new_parent != core->parent) {
   2100		old_parent = __clk_set_parent_before(core, core->new_parent);
   2101		trace_clk_set_parent(core, core->new_parent);
   2102
   2103		if (core->ops->set_rate_and_parent) {
   2104			skip_set_rate = true;
   2105			core->ops->set_rate_and_parent(core->hw, core->new_rate,
   2106					best_parent_rate,
   2107					core->new_parent_index);
   2108		} else if (core->ops->set_parent) {
   2109			core->ops->set_parent(core->hw, core->new_parent_index);
   2110		}
   2111
   2112		trace_clk_set_parent_complete(core, core->new_parent);
   2113		__clk_set_parent_after(core, core->new_parent, old_parent);
   2114	}
   2115
   2116	if (core->flags & CLK_OPS_PARENT_ENABLE)
   2117		clk_core_prepare_enable(parent);
   2118
   2119	trace_clk_set_rate(core, core->new_rate);
   2120
   2121	if (!skip_set_rate && core->ops->set_rate)
   2122		core->ops->set_rate(core->hw, core->new_rate, best_parent_rate);
   2123
   2124	trace_clk_set_rate_complete(core, core->new_rate);
   2125
   2126	core->rate = clk_recalc(core, best_parent_rate);
   2127
   2128	if (core->flags & CLK_SET_RATE_UNGATE) {
   2129		clk_core_disable_lock(core);
   2130		clk_core_unprepare(core);
   2131	}
   2132
   2133	if (core->flags & CLK_OPS_PARENT_ENABLE)
   2134		clk_core_disable_unprepare(parent);
   2135
   2136	if (core->notifier_count && old_rate != core->rate)
   2137		__clk_notify(core, POST_RATE_CHANGE, old_rate, core->rate);
   2138
   2139	if (core->flags & CLK_RECALC_NEW_RATES)
   2140		(void)clk_calc_new_rates(core, core->new_rate);
   2141
   2142	/*
   2143	 * Use safe iteration, as change_rate can actually swap parents
   2144	 * for certain clock types.
   2145	 */
   2146	hlist_for_each_entry_safe(child, tmp, &core->children, child_node) {
   2147		/* Skip children who will be reparented to another clock */
   2148		if (child->new_parent && child->new_parent != core)
   2149			continue;
   2150		clk_change_rate(child);
   2151	}
   2152
   2153	/* handle the new child who might not be in core->children yet */
   2154	if (core->new_child)
   2155		clk_change_rate(core->new_child);
   2156
   2157	clk_pm_runtime_put(core);
   2158}
   2159
   2160static unsigned long clk_core_req_round_rate_nolock(struct clk_core *core,
   2161						     unsigned long req_rate)
   2162{
   2163	int ret, cnt;
   2164	struct clk_rate_request req;
   2165
   2166	lockdep_assert_held(&prepare_lock);
   2167
   2168	if (!core)
   2169		return 0;
   2170
   2171	/* simulate what the rate would be if it could be freely set */
   2172	cnt = clk_core_rate_nuke_protect(core);
   2173	if (cnt < 0)
   2174		return cnt;
   2175
   2176	clk_core_get_boundaries(core, &req.min_rate, &req.max_rate);
   2177	req.rate = req_rate;
   2178
   2179	ret = clk_core_round_rate_nolock(core, &req);
   2180
   2181	/* restore the protection */
   2182	clk_core_rate_restore_protect(core, cnt);
   2183
   2184	return ret ? 0 : req.rate;
   2185}
   2186
   2187static int clk_core_set_rate_nolock(struct clk_core *core,
   2188				    unsigned long req_rate)
   2189{
   2190	struct clk_core *top, *fail_clk;
   2191	unsigned long rate;
   2192	int ret = 0;
   2193
   2194	if (!core)
   2195		return 0;
   2196
   2197	rate = clk_core_req_round_rate_nolock(core, req_rate);
   2198
   2199	/* bail early if nothing to do */
   2200	if (rate == clk_core_get_rate_nolock(core))
   2201		return 0;
   2202
   2203	/* fail on a direct rate set of a protected provider */
   2204	if (clk_core_rate_is_protected(core))
   2205		return -EBUSY;
   2206
   2207	/* calculate new rates and get the topmost changed clock */
   2208	top = clk_calc_new_rates(core, req_rate);
   2209	if (!top)
   2210		return -EINVAL;
   2211
   2212	ret = clk_pm_runtime_get(core);
   2213	if (ret)
   2214		return ret;
   2215
   2216	/* notify that we are about to change rates */
   2217	fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE);
   2218	if (fail_clk) {
   2219		pr_debug("%s: failed to set %s rate\n", __func__,
   2220				fail_clk->name);
   2221		clk_propagate_rate_change(top, ABORT_RATE_CHANGE);
   2222		ret = -EBUSY;
   2223		goto err;
   2224	}
   2225
   2226	/* change the rates */
   2227	clk_change_rate(top);
   2228
   2229	core->req_rate = req_rate;
   2230err:
   2231	clk_pm_runtime_put(core);
   2232
   2233	return ret;
   2234}
   2235
   2236/**
   2237 * clk_set_rate - specify a new rate for clk
   2238 * @clk: the clk whose rate is being changed
   2239 * @rate: the new rate for clk
   2240 *
   2241 * In the simplest case clk_set_rate will only adjust the rate of clk.
   2242 *
   2243 * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to
   2244 * propagate up to clk's parent; whether or not this happens depends on the
   2245 * outcome of clk's .round_rate implementation.  If *parent_rate is unchanged
   2246 * after calling .round_rate then upstream parent propagation is ignored.  If
   2247 * *parent_rate comes back with a new rate for clk's parent then we propagate
   2248 * up to clk's parent and set its rate.  Upward propagation will continue
   2249 * until either a clk does not support the CLK_SET_RATE_PARENT flag or
   2250 * .round_rate stops requesting changes to clk's parent_rate.
   2251 *
   2252 * Rate changes are accomplished via tree traversal that also recalculates the
   2253 * rates for the clocks and fires off POST_RATE_CHANGE notifiers.
   2254 *
   2255 * Returns 0 on success, -EERROR otherwise.
   2256 */
   2257int clk_set_rate(struct clk *clk, unsigned long rate)
   2258{
   2259	int ret;
   2260
   2261	if (!clk)
   2262		return 0;
   2263
   2264	/* prevent racing with updates to the clock topology */
   2265	clk_prepare_lock();
   2266
   2267	if (clk->exclusive_count)
   2268		clk_core_rate_unprotect(clk->core);
   2269
   2270	ret = clk_core_set_rate_nolock(clk->core, rate);
   2271
   2272	if (clk->exclusive_count)
   2273		clk_core_rate_protect(clk->core);
   2274
   2275	clk_prepare_unlock();
   2276
   2277	return ret;
   2278}
   2279EXPORT_SYMBOL_GPL(clk_set_rate);
   2280
   2281/**
   2282 * clk_set_rate_exclusive - specify a new rate and get exclusive control
   2283 * @clk: the clk whose rate is being changed
   2284 * @rate: the new rate for clk
   2285 *
   2286 * This is a combination of clk_set_rate() and clk_rate_exclusive_get()
   2287 * within a critical section
   2288 *
   2289 * This can be used initially to ensure that at least 1 consumer is
   2290 * satisfied when several consumers are competing for exclusivity over the
   2291 * same clock provider.
   2292 *
   2293 * The exclusivity is not applied if setting the rate failed.
   2294 *
   2295 * Calls to clk_rate_exclusive_get() should be balanced with calls to
   2296 * clk_rate_exclusive_put().
   2297 *
   2298 * Returns 0 on success, -EERROR otherwise.
   2299 */
   2300int clk_set_rate_exclusive(struct clk *clk, unsigned long rate)
   2301{
   2302	int ret;
   2303
   2304	if (!clk)
   2305		return 0;
   2306
   2307	/* prevent racing with updates to the clock topology */
   2308	clk_prepare_lock();
   2309
   2310	/*
   2311	 * The temporary protection removal is not here, on purpose
   2312	 * This function is meant to be used instead of clk_rate_protect,
   2313	 * so before the consumer code path protect the clock provider
   2314	 */
   2315
   2316	ret = clk_core_set_rate_nolock(clk->core, rate);
   2317	if (!ret) {
   2318		clk_core_rate_protect(clk->core);
   2319		clk->exclusive_count++;
   2320	}
   2321
   2322	clk_prepare_unlock();
   2323
   2324	return ret;
   2325}
   2326EXPORT_SYMBOL_GPL(clk_set_rate_exclusive);
   2327
   2328/**
   2329 * clk_set_rate_range - set a rate range for a clock source
   2330 * @clk: clock source
   2331 * @min: desired minimum clock rate in Hz, inclusive
   2332 * @max: desired maximum clock rate in Hz, inclusive
   2333 *
   2334 * Returns success (0) or negative errno.
   2335 */
   2336int clk_set_rate_range(struct clk *clk, unsigned long min, unsigned long max)
   2337{
   2338	int ret = 0;
   2339	unsigned long old_min, old_max, rate;
   2340
   2341	if (!clk)
   2342		return 0;
   2343
   2344	trace_clk_set_rate_range(clk->core, min, max);
   2345
   2346	if (min > max) {
   2347		pr_err("%s: clk %s dev %s con %s: invalid range [%lu, %lu]\n",
   2348		       __func__, clk->core->name, clk->dev_id, clk->con_id,
   2349		       min, max);
   2350		return -EINVAL;
   2351	}
   2352
   2353	clk_prepare_lock();
   2354
   2355	if (clk->exclusive_count)
   2356		clk_core_rate_unprotect(clk->core);
   2357
   2358	/* Save the current values in case we need to rollback the change */
   2359	old_min = clk->min_rate;
   2360	old_max = clk->max_rate;
   2361	clk->min_rate = min;
   2362	clk->max_rate = max;
   2363
   2364	if (!clk_core_check_boundaries(clk->core, min, max)) {
   2365		ret = -EINVAL;
   2366		goto out;
   2367	}
   2368
   2369	/*
   2370	 * Since the boundaries have been changed, let's give the
   2371	 * opportunity to the provider to adjust the clock rate based on
   2372	 * the new boundaries.
   2373	 *
   2374	 * We also need to handle the case where the clock is currently
   2375	 * outside of the boundaries. Clamping the last requested rate
   2376	 * to the current minimum and maximum will also handle this.
   2377	 *
   2378	 * FIXME:
   2379	 * There is a catch. It may fail for the usual reason (clock
   2380	 * broken, clock protected, etc) but also because:
   2381	 * - round_rate() was not favorable and fell on the wrong
   2382	 *   side of the boundary
   2383	 * - the determine_rate() callback does not really check for
   2384	 *   this corner case when determining the rate
   2385	 */
   2386	rate = clamp(clk->core->req_rate, min, max);
   2387	ret = clk_core_set_rate_nolock(clk->core, rate);
   2388	if (ret) {
   2389		/* rollback the changes */
   2390		clk->min_rate = old_min;
   2391		clk->max_rate = old_max;
   2392	}
   2393
   2394out:
   2395	if (clk->exclusive_count)
   2396		clk_core_rate_protect(clk->core);
   2397
   2398	clk_prepare_unlock();
   2399
   2400	return ret;
   2401}
   2402EXPORT_SYMBOL_GPL(clk_set_rate_range);
   2403
   2404/**
   2405 * clk_set_min_rate - set a minimum clock rate for a clock source
   2406 * @clk: clock source
   2407 * @rate: desired minimum clock rate in Hz, inclusive
   2408 *
   2409 * Returns success (0) or negative errno.
   2410 */
   2411int clk_set_min_rate(struct clk *clk, unsigned long rate)
   2412{
   2413	if (!clk)
   2414		return 0;
   2415
   2416	trace_clk_set_min_rate(clk->core, rate);
   2417
   2418	return clk_set_rate_range(clk, rate, clk->max_rate);
   2419}
   2420EXPORT_SYMBOL_GPL(clk_set_min_rate);
   2421
   2422/**
   2423 * clk_set_max_rate - set a maximum clock rate for a clock source
   2424 * @clk: clock source
   2425 * @rate: desired maximum clock rate in Hz, inclusive
   2426 *
   2427 * Returns success (0) or negative errno.
   2428 */
   2429int clk_set_max_rate(struct clk *clk, unsigned long rate)
   2430{
   2431	if (!clk)
   2432		return 0;
   2433
   2434	trace_clk_set_max_rate(clk->core, rate);
   2435
   2436	return clk_set_rate_range(clk, clk->min_rate, rate);
   2437}
   2438EXPORT_SYMBOL_GPL(clk_set_max_rate);
   2439
   2440/**
   2441 * clk_get_parent - return the parent of a clk
   2442 * @clk: the clk whose parent gets returned
   2443 *
   2444 * Simply returns clk->parent.  Returns NULL if clk is NULL.
   2445 */
   2446struct clk *clk_get_parent(struct clk *clk)
   2447{
   2448	struct clk *parent;
   2449
   2450	if (!clk)
   2451		return NULL;
   2452
   2453	clk_prepare_lock();
   2454	/* TODO: Create a per-user clk and change callers to call clk_put */
   2455	parent = !clk->core->parent ? NULL : clk->core->parent->hw->clk;
   2456	clk_prepare_unlock();
   2457
   2458	return parent;
   2459}
   2460EXPORT_SYMBOL_GPL(clk_get_parent);
   2461
   2462static struct clk_core *__clk_init_parent(struct clk_core *core)
   2463{
   2464	u8 index = 0;
   2465
   2466	if (core->num_parents > 1 && core->ops->get_parent)
   2467		index = core->ops->get_parent(core->hw);
   2468
   2469	return clk_core_get_parent_by_index(core, index);
   2470}
   2471
   2472static void clk_core_reparent(struct clk_core *core,
   2473				  struct clk_core *new_parent)
   2474{
   2475	clk_reparent(core, new_parent);
   2476	__clk_recalc_accuracies(core);
   2477	__clk_recalc_rates(core, POST_RATE_CHANGE);
   2478}
   2479
   2480void clk_hw_reparent(struct clk_hw *hw, struct clk_hw *new_parent)
   2481{
   2482	if (!hw)
   2483		return;
   2484
   2485	clk_core_reparent(hw->core, !new_parent ? NULL : new_parent->core);
   2486}
   2487
   2488/**
   2489 * clk_has_parent - check if a clock is a possible parent for another
   2490 * @clk: clock source
   2491 * @parent: parent clock source
   2492 *
   2493 * This function can be used in drivers that need to check that a clock can be
   2494 * the parent of another without actually changing the parent.
   2495 *
   2496 * Returns true if @parent is a possible parent for @clk, false otherwise.
   2497 */
   2498bool clk_has_parent(struct clk *clk, struct clk *parent)
   2499{
   2500	struct clk_core *core, *parent_core;
   2501	int i;
   2502
   2503	/* NULL clocks should be nops, so return success if either is NULL. */
   2504	if (!clk || !parent)
   2505		return true;
   2506
   2507	core = clk->core;
   2508	parent_core = parent->core;
   2509
   2510	/* Optimize for the case where the parent is already the parent. */
   2511	if (core->parent == parent_core)
   2512		return true;
   2513
   2514	for (i = 0; i < core->num_parents; i++)
   2515		if (!strcmp(core->parents[i].name, parent_core->name))
   2516			return true;
   2517
   2518	return false;
   2519}
   2520EXPORT_SYMBOL_GPL(clk_has_parent);
   2521
   2522static int clk_core_set_parent_nolock(struct clk_core *core,
   2523				      struct clk_core *parent)
   2524{
   2525	int ret = 0;
   2526	int p_index = 0;
   2527	unsigned long p_rate = 0;
   2528
   2529	lockdep_assert_held(&prepare_lock);
   2530
   2531	if (!core)
   2532		return 0;
   2533
   2534	if (core->parent == parent)
   2535		return 0;
   2536
   2537	/* verify ops for multi-parent clks */
   2538	if (core->num_parents > 1 && !core->ops->set_parent)
   2539		return -EPERM;
   2540
   2541	/* check that we are allowed to re-parent if the clock is in use */
   2542	if ((core->flags & CLK_SET_PARENT_GATE) && core->prepare_count)
   2543		return -EBUSY;
   2544
   2545	if (clk_core_rate_is_protected(core))
   2546		return -EBUSY;
   2547
   2548	/* try finding the new parent index */
   2549	if (parent) {
   2550		p_index = clk_fetch_parent_index(core, parent);
   2551		if (p_index < 0) {
   2552			pr_debug("%s: clk %s can not be parent of clk %s\n",
   2553					__func__, parent->name, core->name);
   2554			return p_index;
   2555		}
   2556		p_rate = parent->rate;
   2557	}
   2558
   2559	ret = clk_pm_runtime_get(core);
   2560	if (ret)
   2561		return ret;
   2562
   2563	/* propagate PRE_RATE_CHANGE notifications */
   2564	ret = __clk_speculate_rates(core, p_rate);
   2565
   2566	/* abort if a driver objects */
   2567	if (ret & NOTIFY_STOP_MASK)
   2568		goto runtime_put;
   2569
   2570	/* do the re-parent */
   2571	ret = __clk_set_parent(core, parent, p_index);
   2572
   2573	/* propagate rate an accuracy recalculation accordingly */
   2574	if (ret) {
   2575		__clk_recalc_rates(core, ABORT_RATE_CHANGE);
   2576	} else {
   2577		__clk_recalc_rates(core, POST_RATE_CHANGE);
   2578		__clk_recalc_accuracies(core);
   2579	}
   2580
   2581runtime_put:
   2582	clk_pm_runtime_put(core);
   2583
   2584	return ret;
   2585}
   2586
   2587int clk_hw_set_parent(struct clk_hw *hw, struct clk_hw *parent)
   2588{
   2589	return clk_core_set_parent_nolock(hw->core, parent->core);
   2590}
   2591EXPORT_SYMBOL_GPL(clk_hw_set_parent);
   2592
   2593/**
   2594 * clk_set_parent - switch the parent of a mux clk
   2595 * @clk: the mux clk whose input we are switching
   2596 * @parent: the new input to clk
   2597 *
   2598 * Re-parent clk to use parent as its new input source.  If clk is in
   2599 * prepared state, the clk will get enabled for the duration of this call. If
   2600 * that's not acceptable for a specific clk (Eg: the consumer can't handle
   2601 * that, the reparenting is glitchy in hardware, etc), use the
   2602 * CLK_SET_PARENT_GATE flag to allow reparenting only when clk is unprepared.
   2603 *
   2604 * After successfully changing clk's parent clk_set_parent will update the
   2605 * clk topology, sysfs topology and propagate rate recalculation via
   2606 * __clk_recalc_rates.
   2607 *
   2608 * Returns 0 on success, -EERROR otherwise.
   2609 */
   2610int clk_set_parent(struct clk *clk, struct clk *parent)
   2611{
   2612	int ret;
   2613
   2614	if (!clk)
   2615		return 0;
   2616
   2617	clk_prepare_lock();
   2618
   2619	if (clk->exclusive_count)
   2620		clk_core_rate_unprotect(clk->core);
   2621
   2622	ret = clk_core_set_parent_nolock(clk->core,
   2623					 parent ? parent->core : NULL);
   2624
   2625	if (clk->exclusive_count)
   2626		clk_core_rate_protect(clk->core);
   2627
   2628	clk_prepare_unlock();
   2629
   2630	return ret;
   2631}
   2632EXPORT_SYMBOL_GPL(clk_set_parent);
   2633
   2634static int clk_core_set_phase_nolock(struct clk_core *core, int degrees)
   2635{
   2636	int ret = -EINVAL;
   2637
   2638	lockdep_assert_held(&prepare_lock);
   2639
   2640	if (!core)
   2641		return 0;
   2642
   2643	if (clk_core_rate_is_protected(core))
   2644		return -EBUSY;
   2645
   2646	trace_clk_set_phase(core, degrees);
   2647
   2648	if (core->ops->set_phase) {
   2649		ret = core->ops->set_phase(core->hw, degrees);
   2650		if (!ret)
   2651			core->phase = degrees;
   2652	}
   2653
   2654	trace_clk_set_phase_complete(core, degrees);
   2655
   2656	return ret;
   2657}
   2658
   2659/**
   2660 * clk_set_phase - adjust the phase shift of a clock signal
   2661 * @clk: clock signal source
   2662 * @degrees: number of degrees the signal is shifted
   2663 *
   2664 * Shifts the phase of a clock signal by the specified
   2665 * degrees. Returns 0 on success, -EERROR otherwise.
   2666 *
   2667 * This function makes no distinction about the input or reference
   2668 * signal that we adjust the clock signal phase against. For example
   2669 * phase locked-loop clock signal generators we may shift phase with
   2670 * respect to feedback clock signal input, but for other cases the
   2671 * clock phase may be shifted with respect to some other, unspecified
   2672 * signal.
   2673 *
   2674 * Additionally the concept of phase shift does not propagate through
   2675 * the clock tree hierarchy, which sets it apart from clock rates and
   2676 * clock accuracy. A parent clock phase attribute does not have an
   2677 * impact on the phase attribute of a child clock.
   2678 */
   2679int clk_set_phase(struct clk *clk, int degrees)
   2680{
   2681	int ret;
   2682
   2683	if (!clk)
   2684		return 0;
   2685
   2686	/* sanity check degrees */
   2687	degrees %= 360;
   2688	if (degrees < 0)
   2689		degrees += 360;
   2690
   2691	clk_prepare_lock();
   2692
   2693	if (clk->exclusive_count)
   2694		clk_core_rate_unprotect(clk->core);
   2695
   2696	ret = clk_core_set_phase_nolock(clk->core, degrees);
   2697
   2698	if (clk->exclusive_count)
   2699		clk_core_rate_protect(clk->core);
   2700
   2701	clk_prepare_unlock();
   2702
   2703	return ret;
   2704}
   2705EXPORT_SYMBOL_GPL(clk_set_phase);
   2706
   2707static int clk_core_get_phase(struct clk_core *core)
   2708{
   2709	int ret;
   2710
   2711	lockdep_assert_held(&prepare_lock);
   2712	if (!core->ops->get_phase)
   2713		return 0;
   2714
   2715	/* Always try to update cached phase if possible */
   2716	ret = core->ops->get_phase(core->hw);
   2717	if (ret >= 0)
   2718		core->phase = ret;
   2719
   2720	return ret;
   2721}
   2722
   2723/**
   2724 * clk_get_phase - return the phase shift of a clock signal
   2725 * @clk: clock signal source
   2726 *
   2727 * Returns the phase shift of a clock node in degrees, otherwise returns
   2728 * -EERROR.
   2729 */
   2730int clk_get_phase(struct clk *clk)
   2731{
   2732	int ret;
   2733
   2734	if (!clk)
   2735		return 0;
   2736
   2737	clk_prepare_lock();
   2738	ret = clk_core_get_phase(clk->core);
   2739	clk_prepare_unlock();
   2740
   2741	return ret;
   2742}
   2743EXPORT_SYMBOL_GPL(clk_get_phase);
   2744
   2745static void clk_core_reset_duty_cycle_nolock(struct clk_core *core)
   2746{
   2747	/* Assume a default value of 50% */
   2748	core->duty.num = 1;
   2749	core->duty.den = 2;
   2750}
   2751
   2752static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core);
   2753
   2754static int clk_core_update_duty_cycle_nolock(struct clk_core *core)
   2755{
   2756	struct clk_duty *duty = &core->duty;
   2757	int ret = 0;
   2758
   2759	if (!core->ops->get_duty_cycle)
   2760		return clk_core_update_duty_cycle_parent_nolock(core);
   2761
   2762	ret = core->ops->get_duty_cycle(core->hw, duty);
   2763	if (ret)
   2764		goto reset;
   2765
   2766	/* Don't trust the clock provider too much */
   2767	if (duty->den == 0 || duty->num > duty->den) {
   2768		ret = -EINVAL;
   2769		goto reset;
   2770	}
   2771
   2772	return 0;
   2773
   2774reset:
   2775	clk_core_reset_duty_cycle_nolock(core);
   2776	return ret;
   2777}
   2778
   2779static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core)
   2780{
   2781	int ret = 0;
   2782
   2783	if (core->parent &&
   2784	    core->flags & CLK_DUTY_CYCLE_PARENT) {
   2785		ret = clk_core_update_duty_cycle_nolock(core->parent);
   2786		memcpy(&core->duty, &core->parent->duty, sizeof(core->duty));
   2787	} else {
   2788		clk_core_reset_duty_cycle_nolock(core);
   2789	}
   2790
   2791	return ret;
   2792}
   2793
   2794static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core,
   2795						 struct clk_duty *duty);
   2796
   2797static int clk_core_set_duty_cycle_nolock(struct clk_core *core,
   2798					  struct clk_duty *duty)
   2799{
   2800	int ret;
   2801
   2802	lockdep_assert_held(&prepare_lock);
   2803
   2804	if (clk_core_rate_is_protected(core))
   2805		return -EBUSY;
   2806
   2807	trace_clk_set_duty_cycle(core, duty);
   2808
   2809	if (!core->ops->set_duty_cycle)
   2810		return clk_core_set_duty_cycle_parent_nolock(core, duty);
   2811
   2812	ret = core->ops->set_duty_cycle(core->hw, duty);
   2813	if (!ret)
   2814		memcpy(&core->duty, duty, sizeof(*duty));
   2815
   2816	trace_clk_set_duty_cycle_complete(core, duty);
   2817
   2818	return ret;
   2819}
   2820
   2821static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core,
   2822						 struct clk_duty *duty)
   2823{
   2824	int ret = 0;
   2825
   2826	if (core->parent &&
   2827	    core->flags & (CLK_DUTY_CYCLE_PARENT | CLK_SET_RATE_PARENT)) {
   2828		ret = clk_core_set_duty_cycle_nolock(core->parent, duty);
   2829		memcpy(&core->duty, &core->parent->duty, sizeof(core->duty));
   2830	}
   2831
   2832	return ret;
   2833}
   2834
   2835/**
   2836 * clk_set_duty_cycle - adjust the duty cycle ratio of a clock signal
   2837 * @clk: clock signal source
   2838 * @num: numerator of the duty cycle ratio to be applied
   2839 * @den: denominator of the duty cycle ratio to be applied
   2840 *
   2841 * Apply the duty cycle ratio if the ratio is valid and the clock can
   2842 * perform this operation
   2843 *
   2844 * Returns (0) on success, a negative errno otherwise.
   2845 */
   2846int clk_set_duty_cycle(struct clk *clk, unsigned int num, unsigned int den)
   2847{
   2848	int ret;
   2849	struct clk_duty duty;
   2850
   2851	if (!clk)
   2852		return 0;
   2853
   2854	/* sanity check the ratio */
   2855	if (den == 0 || num > den)
   2856		return -EINVAL;
   2857
   2858	duty.num = num;
   2859	duty.den = den;
   2860
   2861	clk_prepare_lock();
   2862
   2863	if (clk->exclusive_count)
   2864		clk_core_rate_unprotect(clk->core);
   2865
   2866	ret = clk_core_set_duty_cycle_nolock(clk->core, &duty);
   2867
   2868	if (clk->exclusive_count)
   2869		clk_core_rate_protect(clk->core);
   2870
   2871	clk_prepare_unlock();
   2872
   2873	return ret;
   2874}
   2875EXPORT_SYMBOL_GPL(clk_set_duty_cycle);
   2876
   2877static int clk_core_get_scaled_duty_cycle(struct clk_core *core,
   2878					  unsigned int scale)
   2879{
   2880	struct clk_duty *duty = &core->duty;
   2881	int ret;
   2882
   2883	clk_prepare_lock();
   2884
   2885	ret = clk_core_update_duty_cycle_nolock(core);
   2886	if (!ret)
   2887		ret = mult_frac(scale, duty->num, duty->den);
   2888
   2889	clk_prepare_unlock();
   2890
   2891	return ret;
   2892}
   2893
   2894/**
   2895 * clk_get_scaled_duty_cycle - return the duty cycle ratio of a clock signal
   2896 * @clk: clock signal source
   2897 * @scale: scaling factor to be applied to represent the ratio as an integer
   2898 *
   2899 * Returns the duty cycle ratio of a clock node multiplied by the provided
   2900 * scaling factor, or negative errno on error.
   2901 */
   2902int clk_get_scaled_duty_cycle(struct clk *clk, unsigned int scale)
   2903{
   2904	if (!clk)
   2905		return 0;
   2906
   2907	return clk_core_get_scaled_duty_cycle(clk->core, scale);
   2908}
   2909EXPORT_SYMBOL_GPL(clk_get_scaled_duty_cycle);
   2910
   2911/**
   2912 * clk_is_match - check if two clk's point to the same hardware clock
   2913 * @p: clk compared against q
   2914 * @q: clk compared against p
   2915 *
   2916 * Returns true if the two struct clk pointers both point to the same hardware
   2917 * clock node. Put differently, returns true if struct clk *p and struct clk *q
   2918 * share the same struct clk_core object.
   2919 *
   2920 * Returns false otherwise. Note that two NULL clks are treated as matching.
   2921 */
   2922bool clk_is_match(const struct clk *p, const struct clk *q)
   2923{
   2924	/* trivial case: identical struct clk's or both NULL */
   2925	if (p == q)
   2926		return true;
   2927
   2928	/* true if clk->core pointers match. Avoid dereferencing garbage */
   2929	if (!IS_ERR_OR_NULL(p) && !IS_ERR_OR_NULL(q))
   2930		if (p->core == q->core)
   2931			return true;
   2932
   2933	return false;
   2934}
   2935EXPORT_SYMBOL_GPL(clk_is_match);
   2936
   2937/***        debugfs support        ***/
   2938
   2939#ifdef CONFIG_DEBUG_FS
   2940#include <linux/debugfs.h>
   2941
   2942static struct dentry *rootdir;
   2943static int inited = 0;
   2944static DEFINE_MUTEX(clk_debug_lock);
   2945static HLIST_HEAD(clk_debug_list);
   2946
   2947static struct hlist_head *orphan_list[] = {
   2948	&clk_orphan_list,
   2949	NULL,
   2950};
   2951
   2952static void clk_summary_show_one(struct seq_file *s, struct clk_core *c,
   2953				 int level)
   2954{
   2955	int phase;
   2956
   2957	seq_printf(s, "%*s%-*s %7d %8d %8d %11lu %10lu ",
   2958		   level * 3 + 1, "",
   2959		   30 - level * 3, c->name,
   2960		   c->enable_count, c->prepare_count, c->protect_count,
   2961		   clk_core_get_rate_recalc(c),
   2962		   clk_core_get_accuracy_recalc(c));
   2963
   2964	phase = clk_core_get_phase(c);
   2965	if (phase >= 0)
   2966		seq_printf(s, "%5d", phase);
   2967	else
   2968		seq_puts(s, "-----");
   2969
   2970	seq_printf(s, " %6d", clk_core_get_scaled_duty_cycle(c, 100000));
   2971
   2972	if (c->ops->is_enabled)
   2973		seq_printf(s, " %9c\n", clk_core_is_enabled(c) ? 'Y' : 'N');
   2974	else if (!c->ops->enable)
   2975		seq_printf(s, " %9c\n", 'Y');
   2976	else
   2977		seq_printf(s, " %9c\n", '?');
   2978}
   2979
   2980static void clk_summary_show_subtree(struct seq_file *s, struct clk_core *c,
   2981				     int level)
   2982{
   2983	struct clk_core *child;
   2984
   2985	clk_pm_runtime_get(c);
   2986	clk_summary_show_one(s, c, level);
   2987	clk_pm_runtime_put(c);
   2988
   2989	hlist_for_each_entry(child, &c->children, child_node)
   2990		clk_summary_show_subtree(s, child, level + 1);
   2991}
   2992
   2993static int clk_summary_show(struct seq_file *s, void *data)
   2994{
   2995	struct clk_core *c;
   2996	struct hlist_head **lists = (struct hlist_head **)s->private;
   2997
   2998	seq_puts(s, "                                 enable  prepare  protect                                duty  hardware\n");
   2999	seq_puts(s, "   clock                          count    count    count        rate   accuracy phase  cycle    enable\n");
   3000	seq_puts(s, "-------------------------------------------------------------------------------------------------------\n");
   3001
   3002	clk_prepare_lock();
   3003
   3004	for (; *lists; lists++)
   3005		hlist_for_each_entry(c, *lists, child_node)
   3006			clk_summary_show_subtree(s, c, 0);
   3007
   3008	clk_prepare_unlock();
   3009
   3010	return 0;
   3011}
   3012DEFINE_SHOW_ATTRIBUTE(clk_summary);
   3013
   3014static void clk_dump_one(struct seq_file *s, struct clk_core *c, int level)
   3015{
   3016	int phase;
   3017	unsigned long min_rate, max_rate;
   3018
   3019	clk_core_get_boundaries(c, &min_rate, &max_rate);
   3020
   3021	/* This should be JSON format, i.e. elements separated with a comma */
   3022	seq_printf(s, "\"%s\": { ", c->name);
   3023	seq_printf(s, "\"enable_count\": %d,", c->enable_count);
   3024	seq_printf(s, "\"prepare_count\": %d,", c->prepare_count);
   3025	seq_printf(s, "\"protect_count\": %d,", c->protect_count);
   3026	seq_printf(s, "\"rate\": %lu,", clk_core_get_rate_recalc(c));
   3027	seq_printf(s, "\"min_rate\": %lu,", min_rate);
   3028	seq_printf(s, "\"max_rate\": %lu,", max_rate);
   3029	seq_printf(s, "\"accuracy\": %lu,", clk_core_get_accuracy_recalc(c));
   3030	phase = clk_core_get_phase(c);
   3031	if (phase >= 0)
   3032		seq_printf(s, "\"phase\": %d,", phase);
   3033	seq_printf(s, "\"duty_cycle\": %u",
   3034		   clk_core_get_scaled_duty_cycle(c, 100000));
   3035}
   3036
   3037static void clk_dump_subtree(struct seq_file *s, struct clk_core *c, int level)
   3038{
   3039	struct clk_core *child;
   3040
   3041	clk_dump_one(s, c, level);
   3042
   3043	hlist_for_each_entry(child, &c->children, child_node) {
   3044		seq_putc(s, ',');
   3045		clk_dump_subtree(s, child, level + 1);
   3046	}
   3047
   3048	seq_putc(s, '}');
   3049}
   3050
   3051static int clk_dump_show(struct seq_file *s, void *data)
   3052{
   3053	struct clk_core *c;
   3054	bool first_node = true;
   3055	struct hlist_head **lists = (struct hlist_head **)s->private;
   3056
   3057	seq_putc(s, '{');
   3058	clk_prepare_lock();
   3059
   3060	for (; *lists; lists++) {
   3061		hlist_for_each_entry(c, *lists, child_node) {
   3062			if (!first_node)
   3063				seq_putc(s, ',');
   3064			first_node = false;
   3065			clk_dump_subtree(s, c, 0);
   3066		}
   3067	}
   3068
   3069	clk_prepare_unlock();
   3070
   3071	seq_puts(s, "}\n");
   3072	return 0;
   3073}
   3074DEFINE_SHOW_ATTRIBUTE(clk_dump);
   3075
   3076#undef CLOCK_ALLOW_WRITE_DEBUGFS
   3077#ifdef CLOCK_ALLOW_WRITE_DEBUGFS
   3078/*
   3079 * This can be dangerous, therefore don't provide any real compile time
   3080 * configuration option for this feature.
   3081 * People who want to use this will need to modify the source code directly.
   3082 */
   3083static int clk_rate_set(void *data, u64 val)
   3084{
   3085	struct clk_core *core = data;
   3086	int ret;
   3087
   3088	clk_prepare_lock();
   3089	ret = clk_core_set_rate_nolock(core, val);
   3090	clk_prepare_unlock();
   3091
   3092	return ret;
   3093}
   3094
   3095#define clk_rate_mode	0644
   3096
   3097static int clk_prepare_enable_set(void *data, u64 val)
   3098{
   3099	struct clk_core *core = data;
   3100	int ret = 0;
   3101
   3102	if (val)
   3103		ret = clk_prepare_enable(core->hw->clk);
   3104	else
   3105		clk_disable_unprepare(core->hw->clk);
   3106
   3107	return ret;
   3108}
   3109
   3110static int clk_prepare_enable_get(void *data, u64 *val)
   3111{
   3112	struct clk_core *core = data;
   3113
   3114	*val = core->enable_count && core->prepare_count;
   3115	return 0;
   3116}
   3117
   3118DEFINE_DEBUGFS_ATTRIBUTE(clk_prepare_enable_fops, clk_prepare_enable_get,
   3119			 clk_prepare_enable_set, "%llu\n");
   3120
   3121#else
   3122#define clk_rate_set	NULL
   3123#define clk_rate_mode	0444
   3124#endif
   3125
   3126static int clk_rate_get(void *data, u64 *val)
   3127{
   3128	struct clk_core *core = data;
   3129
   3130	clk_prepare_lock();
   3131	*val = clk_core_get_rate_recalc(core);
   3132	clk_prepare_unlock();
   3133
   3134	return 0;
   3135}
   3136
   3137DEFINE_DEBUGFS_ATTRIBUTE(clk_rate_fops, clk_rate_get, clk_rate_set, "%llu\n");
   3138
   3139static const struct {
   3140	unsigned long flag;
   3141	const char *name;
   3142} clk_flags[] = {
   3143#define ENTRY(f) { f, #f }
   3144	ENTRY(CLK_SET_RATE_GATE),
   3145	ENTRY(CLK_SET_PARENT_GATE),
   3146	ENTRY(CLK_SET_RATE_PARENT),
   3147	ENTRY(CLK_IGNORE_UNUSED),
   3148	ENTRY(CLK_GET_RATE_NOCACHE),
   3149	ENTRY(CLK_SET_RATE_NO_REPARENT),
   3150	ENTRY(CLK_GET_ACCURACY_NOCACHE),
   3151	ENTRY(CLK_RECALC_NEW_RATES),
   3152	ENTRY(CLK_SET_RATE_UNGATE),
   3153	ENTRY(CLK_IS_CRITICAL),
   3154	ENTRY(CLK_OPS_PARENT_ENABLE),
   3155	ENTRY(CLK_DUTY_CYCLE_PARENT),
   3156#undef ENTRY
   3157};
   3158
   3159static int clk_flags_show(struct seq_file *s, void *data)
   3160{
   3161	struct clk_core *core = s->private;
   3162	unsigned long flags = core->flags;
   3163	unsigned int i;
   3164
   3165	for (i = 0; flags && i < ARRAY_SIZE(clk_flags); i++) {
   3166		if (flags & clk_flags[i].flag) {
   3167			seq_printf(s, "%s\n", clk_flags[i].name);
   3168			flags &= ~clk_flags[i].flag;
   3169		}
   3170	}
   3171	if (flags) {
   3172		/* Unknown flags */
   3173		seq_printf(s, "0x%lx\n", flags);
   3174	}
   3175
   3176	return 0;
   3177}
   3178DEFINE_SHOW_ATTRIBUTE(clk_flags);
   3179
   3180static void possible_parent_show(struct seq_file *s, struct clk_core *core,
   3181				 unsigned int i, char terminator)
   3182{
   3183	struct clk_core *parent;
   3184
   3185	/*
   3186	 * Go through the following options to fetch a parent's name.
   3187	 *
   3188	 * 1. Fetch the registered parent clock and use its name
   3189	 * 2. Use the global (fallback) name if specified
   3190	 * 3. Use the local fw_name if provided
   3191	 * 4. Fetch parent clock's clock-output-name if DT index was set
   3192	 *
   3193	 * This may still fail in some cases, such as when the parent is
   3194	 * specified directly via a struct clk_hw pointer, but it isn't
   3195	 * registered (yet).
   3196	 */
   3197	parent = clk_core_get_parent_by_index(core, i);
   3198	if (parent)
   3199		seq_puts(s, parent->name);
   3200	else if (core->parents[i].name)
   3201		seq_puts(s, core->parents[i].name);
   3202	else if (core->parents[i].fw_name)
   3203		seq_printf(s, "<%s>(fw)", core->parents[i].fw_name);
   3204	else if (core->parents[i].index >= 0)
   3205		seq_puts(s,
   3206			 of_clk_get_parent_name(core->of_node,
   3207						core->parents[i].index));
   3208	else
   3209		seq_puts(s, "(missing)");
   3210
   3211	seq_putc(s, terminator);
   3212}
   3213
   3214static int possible_parents_show(struct seq_file *s, void *data)
   3215{
   3216	struct clk_core *core = s->private;
   3217	int i;
   3218
   3219	for (i = 0; i < core->num_parents - 1; i++)
   3220		possible_parent_show(s, core, i, ' ');
   3221
   3222	possible_parent_show(s, core, i, '\n');
   3223
   3224	return 0;
   3225}
   3226DEFINE_SHOW_ATTRIBUTE(possible_parents);
   3227
   3228static int current_parent_show(struct seq_file *s, void *data)
   3229{
   3230	struct clk_core *core = s->private;
   3231
   3232	if (core->parent)
   3233		seq_printf(s, "%s\n", core->parent->name);
   3234
   3235	return 0;
   3236}
   3237DEFINE_SHOW_ATTRIBUTE(current_parent);
   3238
   3239#ifdef CLOCK_ALLOW_WRITE_DEBUGFS
   3240static ssize_t current_parent_write(struct file *file, const char __user *ubuf,
   3241				    size_t count, loff_t *ppos)
   3242{
   3243	struct seq_file *s = file->private_data;
   3244	struct clk_core *core = s->private;
   3245	struct clk_core *parent;
   3246	u8 idx;
   3247	int err;
   3248
   3249	err = kstrtou8_from_user(ubuf, count, 0, &idx);
   3250	if (err < 0)
   3251		return err;
   3252
   3253	parent = clk_core_get_parent_by_index(core, idx);
   3254	if (!parent)
   3255		return -ENOENT;
   3256
   3257	clk_prepare_lock();
   3258	err = clk_core_set_parent_nolock(core, parent);
   3259	clk_prepare_unlock();
   3260	if (err)
   3261		return err;
   3262
   3263	return count;
   3264}
   3265
   3266static const struct file_operations current_parent_rw_fops = {
   3267	.open		= current_parent_open,
   3268	.write		= current_parent_write,
   3269	.read		= seq_read,
   3270	.llseek		= seq_lseek,
   3271	.release	= single_release,
   3272};
   3273#endif
   3274
   3275static int clk_duty_cycle_show(struct seq_file *s, void *data)
   3276{
   3277	struct clk_core *core = s->private;
   3278	struct clk_duty *duty = &core->duty;
   3279
   3280	seq_printf(s, "%u/%u\n", duty->num, duty->den);
   3281
   3282	return 0;
   3283}
   3284DEFINE_SHOW_ATTRIBUTE(clk_duty_cycle);
   3285
   3286static int clk_min_rate_show(struct seq_file *s, void *data)
   3287{
   3288	struct clk_core *core = s->private;
   3289	unsigned long min_rate, max_rate;
   3290
   3291	clk_prepare_lock();
   3292	clk_core_get_boundaries(core, &min_rate, &max_rate);
   3293	clk_prepare_unlock();
   3294	seq_printf(s, "%lu\n", min_rate);
   3295
   3296	return 0;
   3297}
   3298DEFINE_SHOW_ATTRIBUTE(clk_min_rate);
   3299
   3300static int clk_max_rate_show(struct seq_file *s, void *data)
   3301{
   3302	struct clk_core *core = s->private;
   3303	unsigned long min_rate, max_rate;
   3304
   3305	clk_prepare_lock();
   3306	clk_core_get_boundaries(core, &min_rate, &max_rate);
   3307	clk_prepare_unlock();
   3308	seq_printf(s, "%lu\n", max_rate);
   3309
   3310	return 0;
   3311}
   3312DEFINE_SHOW_ATTRIBUTE(clk_max_rate);
   3313
   3314static void clk_debug_create_one(struct clk_core *core, struct dentry *pdentry)
   3315{
   3316	struct dentry *root;
   3317
   3318	if (!core || !pdentry)
   3319		return;
   3320
   3321	root = debugfs_create_dir(core->name, pdentry);
   3322	core->dentry = root;
   3323
   3324	debugfs_create_file("clk_rate", clk_rate_mode, root, core,
   3325			    &clk_rate_fops);
   3326	debugfs_create_file("clk_min_rate", 0444, root, core, &clk_min_rate_fops);
   3327	debugfs_create_file("clk_max_rate", 0444, root, core, &clk_max_rate_fops);
   3328	debugfs_create_ulong("clk_accuracy", 0444, root, &core->accuracy);
   3329	debugfs_create_u32("clk_phase", 0444, root, &core->phase);
   3330	debugfs_create_file("clk_flags", 0444, root, core, &clk_flags_fops);
   3331	debugfs_create_u32("clk_prepare_count", 0444, root, &core->prepare_count);
   3332	debugfs_create_u32("clk_enable_count", 0444, root, &core->enable_count);
   3333	debugfs_create_u32("clk_protect_count", 0444, root, &core->protect_count);
   3334	debugfs_create_u32("clk_notifier_count", 0444, root, &core->notifier_count);
   3335	debugfs_create_file("clk_duty_cycle", 0444, root, core,
   3336			    &clk_duty_cycle_fops);
   3337#ifdef CLOCK_ALLOW_WRITE_DEBUGFS
   3338	debugfs_create_file("clk_prepare_enable", 0644, root, core,
   3339			    &clk_prepare_enable_fops);
   3340
   3341	if (core->num_parents > 1)
   3342		debugfs_create_file("clk_parent", 0644, root, core,
   3343				    &current_parent_rw_fops);
   3344	else
   3345#endif
   3346	if (core->num_parents > 0)
   3347		debugfs_create_file("clk_parent", 0444, root, core,
   3348				    &current_parent_fops);
   3349
   3350	if (core->num_parents > 1)
   3351		debugfs_create_file("clk_possible_parents", 0444, root, core,
   3352				    &possible_parents_fops);
   3353
   3354	if (core->ops->debug_init)
   3355		core->ops->debug_init(core->hw, core->dentry);
   3356}
   3357
   3358/**
   3359 * clk_debug_register - add a clk node to the debugfs clk directory
   3360 * @core: the clk being added to the debugfs clk directory
   3361 *
   3362 * Dynamically adds a clk to the debugfs clk directory if debugfs has been
   3363 * initialized.  Otherwise it bails out early since the debugfs clk directory
   3364 * will be created lazily by clk_debug_init as part of a late_initcall.
   3365 */
   3366static void clk_debug_register(struct clk_core *core)
   3367{
   3368	mutex_lock(&clk_debug_lock);
   3369	hlist_add_head(&core->debug_node, &clk_debug_list);
   3370	if (inited)
   3371		clk_debug_create_one(core, rootdir);
   3372	mutex_unlock(&clk_debug_lock);
   3373}
   3374
   3375 /**
   3376 * clk_debug_unregister - remove a clk node from the debugfs clk directory
   3377 * @core: the clk being removed from the debugfs clk directory
   3378 *
   3379 * Dynamically removes a clk and all its child nodes from the
   3380 * debugfs clk directory if clk->dentry points to debugfs created by
   3381 * clk_debug_register in __clk_core_init.
   3382 */
   3383static void clk_debug_unregister(struct clk_core *core)
   3384{
   3385	mutex_lock(&clk_debug_lock);
   3386	hlist_del_init(&core->debug_node);
   3387	debugfs_remove_recursive(core->dentry);
   3388	core->dentry = NULL;
   3389	mutex_unlock(&clk_debug_lock);
   3390}
   3391
   3392/**
   3393 * clk_debug_init - lazily populate the debugfs clk directory
   3394 *
   3395 * clks are often initialized very early during boot before memory can be
   3396 * dynamically allocated and well before debugfs is setup. This function
   3397 * populates the debugfs clk directory once at boot-time when we know that
   3398 * debugfs is setup. It should only be called once at boot-time, all other clks
   3399 * added dynamically will be done so with clk_debug_register.
   3400 */
   3401static int __init clk_debug_init(void)
   3402{
   3403	struct clk_core *core;
   3404
   3405#ifdef CLOCK_ALLOW_WRITE_DEBUGFS
   3406	pr_warn("\n");
   3407	pr_warn("********************************************************************\n");
   3408	pr_warn("**     NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE           **\n");
   3409	pr_warn("**                                                                **\n");
   3410	pr_warn("**  WRITEABLE clk DebugFS SUPPORT HAS BEEN ENABLED IN THIS KERNEL **\n");
   3411	pr_warn("**                                                                **\n");
   3412	pr_warn("** This means that this kernel is built to expose clk operations  **\n");
   3413	pr_warn("** such as parent or rate setting, enabling, disabling, etc.      **\n");
   3414	pr_warn("** to userspace, which may compromise security on your system.    **\n");
   3415	pr_warn("**                                                                **\n");
   3416	pr_warn("** If you see this message and you are not debugging the          **\n");
   3417	pr_warn("** kernel, report this immediately to your vendor!                **\n");
   3418	pr_warn("**                                                                **\n");
   3419	pr_warn("**     NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE           **\n");
   3420	pr_warn("********************************************************************\n");
   3421#endif
   3422
   3423	rootdir = debugfs_create_dir("clk", NULL);
   3424
   3425	debugfs_create_file("clk_summary", 0444, rootdir, &all_lists,
   3426			    &clk_summary_fops);
   3427	debugfs_create_file("clk_dump", 0444, rootdir, &all_lists,
   3428			    &clk_dump_fops);
   3429	debugfs_create_file("clk_orphan_summary", 0444, rootdir, &orphan_list,
   3430			    &clk_summary_fops);
   3431	debugfs_create_file("clk_orphan_dump", 0444, rootdir, &orphan_list,
   3432			    &clk_dump_fops);
   3433
   3434	mutex_lock(&clk_debug_lock);
   3435	hlist_for_each_entry(core, &clk_debug_list, debug_node)
   3436		clk_debug_create_one(core, rootdir);
   3437
   3438	inited = 1;
   3439	mutex_unlock(&clk_debug_lock);
   3440
   3441	return 0;
   3442}
   3443late_initcall(clk_debug_init);
   3444#else
   3445static inline void clk_debug_register(struct clk_core *core) { }
   3446static inline void clk_debug_unregister(struct clk_core *core)
   3447{
   3448}
   3449#endif
   3450
   3451static void clk_core_reparent_orphans_nolock(void)
   3452{
   3453	struct clk_core *orphan;
   3454	struct hlist_node *tmp2;
   3455
   3456	/*
   3457	 * walk the list of orphan clocks and reparent any that newly finds a
   3458	 * parent.
   3459	 */
   3460	hlist_for_each_entry_safe(orphan, tmp2, &clk_orphan_list, child_node) {
   3461		struct clk_core *parent = __clk_init_parent(orphan);
   3462
   3463		/*
   3464		 * We need to use __clk_set_parent_before() and _after() to
   3465		 * to properly migrate any prepare/enable count of the orphan
   3466		 * clock. This is important for CLK_IS_CRITICAL clocks, which
   3467		 * are enabled during init but might not have a parent yet.
   3468		 */
   3469		if (parent) {
   3470			/* update the clk tree topology */
   3471			__clk_set_parent_before(orphan, parent);
   3472			__clk_set_parent_after(orphan, parent, NULL);
   3473			__clk_recalc_accuracies(orphan);
   3474			__clk_recalc_rates(orphan, 0);
   3475
   3476			/*
   3477			 * __clk_init_parent() will set the initial req_rate to
   3478			 * 0 if the clock doesn't have clk_ops::recalc_rate and
   3479			 * is an orphan when it's registered.
   3480			 *
   3481			 * 'req_rate' is used by clk_set_rate_range() and
   3482			 * clk_put() to trigger a clk_set_rate() call whenever
   3483			 * the boundaries are modified. Let's make sure
   3484			 * 'req_rate' is set to something non-zero so that
   3485			 * clk_set_rate_range() doesn't drop the frequency.
   3486			 */
   3487			orphan->req_rate = orphan->rate;
   3488		}
   3489	}
   3490}
   3491
   3492/**
   3493 * __clk_core_init - initialize the data structures in a struct clk_core
   3494 * @core:	clk_core being initialized
   3495 *
   3496 * Initializes the lists in struct clk_core, queries the hardware for the
   3497 * parent and rate and sets them both.
   3498 */
   3499static int __clk_core_init(struct clk_core *core)
   3500{
   3501	int ret;
   3502	struct clk_core *parent;
   3503	unsigned long rate;
   3504	int phase;
   3505
   3506	clk_prepare_lock();
   3507
   3508	/*
   3509	 * Set hw->core after grabbing the prepare_lock to synchronize with
   3510	 * callers of clk_core_fill_parent_index() where we treat hw->core
   3511	 * being NULL as the clk not being registered yet. This is crucial so
   3512	 * that clks aren't parented until their parent is fully registered.
   3513	 */
   3514	core->hw->core = core;
   3515
   3516	ret = clk_pm_runtime_get(core);
   3517	if (ret)
   3518		goto unlock;
   3519
   3520	/* check to see if a clock with this name is already registered */
   3521	if (clk_core_lookup(core->name)) {
   3522		pr_debug("%s: clk %s already initialized\n",
   3523				__func__, core->name);
   3524		ret = -EEXIST;
   3525		goto out;
   3526	}
   3527
   3528	/* check that clk_ops are sane.  See Documentation/driver-api/clk.rst */
   3529	if (core->ops->set_rate &&
   3530	    !((core->ops->round_rate || core->ops->determine_rate) &&
   3531	      core->ops->recalc_rate)) {
   3532		pr_err("%s: %s must implement .round_rate or .determine_rate in addition to .recalc_rate\n",
   3533		       __func__, core->name);
   3534		ret = -EINVAL;
   3535		goto out;
   3536	}
   3537
   3538	if (core->ops->set_parent && !core->ops->get_parent) {
   3539		pr_err("%s: %s must implement .get_parent & .set_parent\n",
   3540		       __func__, core->name);
   3541		ret = -EINVAL;
   3542		goto out;
   3543	}
   3544
   3545	if (core->num_parents > 1 && !core->ops->get_parent) {
   3546		pr_err("%s: %s must implement .get_parent as it has multi parents\n",
   3547		       __func__, core->name);
   3548		ret = -EINVAL;
   3549		goto out;
   3550	}
   3551
   3552	if (core->ops->set_rate_and_parent &&
   3553			!(core->ops->set_parent && core->ops->set_rate)) {
   3554		pr_err("%s: %s must implement .set_parent & .set_rate\n",
   3555				__func__, core->name);
   3556		ret = -EINVAL;
   3557		goto out;
   3558	}
   3559
   3560	/*
   3561	 * optional platform-specific magic
   3562	 *
   3563	 * The .init callback is not used by any of the basic clock types, but
   3564	 * exists for weird hardware that must perform initialization magic for
   3565	 * CCF to get an accurate view of clock for any other callbacks. It may
   3566	 * also be used needs to perform dynamic allocations. Such allocation
   3567	 * must be freed in the terminate() callback.
   3568	 * This callback shall not be used to initialize the parameters state,
   3569	 * such as rate, parent, etc ...
   3570	 *
   3571	 * If it exist, this callback should called before any other callback of
   3572	 * the clock
   3573	 */
   3574	if (core->ops->init) {
   3575		ret = core->ops->init(core->hw);
   3576		if (ret)
   3577			goto out;
   3578	}
   3579
   3580	parent = core->parent = __clk_init_parent(core);
   3581
   3582	/*
   3583	 * Populate core->parent if parent has already been clk_core_init'd. If
   3584	 * parent has not yet been clk_core_init'd then place clk in the orphan
   3585	 * list.  If clk doesn't have any parents then place it in the root
   3586	 * clk list.
   3587	 *
   3588	 * Every time a new clk is clk_init'd then we walk the list of orphan
   3589	 * clocks and re-parent any that are children of the clock currently
   3590	 * being clk_init'd.
   3591	 */
   3592	if (parent) {
   3593		hlist_add_head(&core->child_node, &parent->children);
   3594		core->orphan = parent->orphan;
   3595	} else if (!core->num_parents) {
   3596		hlist_add_head(&core->child_node, &clk_root_list);
   3597		core->orphan = false;
   3598	} else {
   3599		hlist_add_head(&core->child_node, &clk_orphan_list);
   3600		core->orphan = true;
   3601	}
   3602
   3603	/*
   3604	 * Set clk's accuracy.  The preferred method is to use
   3605	 * .recalc_accuracy. For simple clocks and lazy developers the default
   3606	 * fallback is to use the parent's accuracy.  If a clock doesn't have a
   3607	 * parent (or is orphaned) then accuracy is set to zero (perfect
   3608	 * clock).
   3609	 */
   3610	if (core->ops->recalc_accuracy)
   3611		core->accuracy = core->ops->recalc_accuracy(core->hw,
   3612					clk_core_get_accuracy_no_lock(parent));
   3613	else if (parent)
   3614		core->accuracy = parent->accuracy;
   3615	else
   3616		core->accuracy = 0;
   3617
   3618	/*
   3619	 * Set clk's phase by clk_core_get_phase() caching the phase.
   3620	 * Since a phase is by definition relative to its parent, just
   3621	 * query the current clock phase, or just assume it's in phase.
   3622	 */
   3623	phase = clk_core_get_phase(core);
   3624	if (phase < 0) {
   3625		ret = phase;
   3626		pr_warn("%s: Failed to get phase for clk '%s'\n", __func__,
   3627			core->name);
   3628		goto out;
   3629	}
   3630
   3631	/*
   3632	 * Set clk's duty cycle.
   3633	 */
   3634	clk_core_update_duty_cycle_nolock(core);
   3635
   3636	/*
   3637	 * Set clk's rate.  The preferred method is to use .recalc_rate.  For
   3638	 * simple clocks and lazy developers the default fallback is to use the
   3639	 * parent's rate.  If a clock doesn't have a parent (or is orphaned)
   3640	 * then rate is set to zero.
   3641	 */
   3642	if (core->ops->recalc_rate)
   3643		rate = core->ops->recalc_rate(core->hw,
   3644				clk_core_get_rate_nolock(parent));
   3645	else if (parent)
   3646		rate = parent->rate;
   3647	else
   3648		rate = 0;
   3649	core->rate = core->req_rate = rate;
   3650
   3651	/*
   3652	 * Enable CLK_IS_CRITICAL clocks so newly added critical clocks
   3653	 * don't get accidentally disabled when walking the orphan tree and
   3654	 * reparenting clocks
   3655	 */
   3656	if (core->flags & CLK_IS_CRITICAL) {
   3657		ret = clk_core_prepare(core);
   3658		if (ret) {
   3659			pr_warn("%s: critical clk '%s' failed to prepare\n",
   3660			       __func__, core->name);
   3661			goto out;
   3662		}
   3663
   3664		ret = clk_core_enable_lock(core);
   3665		if (ret) {
   3666			pr_warn("%s: critical clk '%s' failed to enable\n",
   3667			       __func__, core->name);
   3668			clk_core_unprepare(core);
   3669			goto out;
   3670		}
   3671	}
   3672
   3673	clk_core_reparent_orphans_nolock();
   3674
   3675
   3676	kref_init(&core->ref);
   3677out:
   3678	clk_pm_runtime_put(core);
   3679unlock:
   3680	if (ret) {
   3681		hlist_del_init(&core->child_node);
   3682		core->hw->core = NULL;
   3683	}
   3684
   3685	clk_prepare_unlock();
   3686
   3687	if (!ret)
   3688		clk_debug_register(core);
   3689
   3690	return ret;
   3691}
   3692
   3693/**
   3694 * clk_core_link_consumer - Add a clk consumer to the list of consumers in a clk_core
   3695 * @core: clk to add consumer to
   3696 * @clk: consumer to link to a clk
   3697 */
   3698static void clk_core_link_consumer(struct clk_core *core, struct clk *clk)
   3699{
   3700	clk_prepare_lock();
   3701	hlist_add_head(&clk->clks_node, &core->clks);
   3702	clk_prepare_unlock();
   3703}
   3704
   3705/**
   3706 * clk_core_unlink_consumer - Remove a clk consumer from the list of consumers in a clk_core
   3707 * @clk: consumer to unlink
   3708 */
   3709static void clk_core_unlink_consumer(struct clk *clk)
   3710{
   3711	lockdep_assert_held(&prepare_lock);
   3712	hlist_del(&clk->clks_node);
   3713}
   3714
   3715/**
   3716 * alloc_clk - Allocate a clk consumer, but leave it unlinked to the clk_core
   3717 * @core: clk to allocate a consumer for
   3718 * @dev_id: string describing device name
   3719 * @con_id: connection ID string on device
   3720 *
   3721 * Returns: clk consumer left unlinked from the consumer list
   3722 */
   3723static struct clk *alloc_clk(struct clk_core *core, const char *dev_id,
   3724			     const char *con_id)
   3725{
   3726	struct clk *clk;
   3727
   3728	clk = kzalloc(sizeof(*clk), GFP_KERNEL);
   3729	if (!clk)
   3730		return ERR_PTR(-ENOMEM);
   3731
   3732	clk->core = core;
   3733	clk->dev_id = dev_id;
   3734	clk->con_id = kstrdup_const(con_id, GFP_KERNEL);
   3735	clk->max_rate = ULONG_MAX;
   3736
   3737	return clk;
   3738}
   3739
   3740/**
   3741 * free_clk - Free a clk consumer
   3742 * @clk: clk consumer to free
   3743 *
   3744 * Note, this assumes the clk has been unlinked from the clk_core consumer
   3745 * list.
   3746 */
   3747static void free_clk(struct clk *clk)
   3748{
   3749	kfree_const(clk->con_id);
   3750	kfree(clk);
   3751}
   3752
   3753/**
   3754 * clk_hw_create_clk: Allocate and link a clk consumer to a clk_core given
   3755 * a clk_hw
   3756 * @dev: clk consumer device
   3757 * @hw: clk_hw associated with the clk being consumed
   3758 * @dev_id: string describing device name
   3759 * @con_id: connection ID string on device
   3760 *
   3761 * This is the main function used to create a clk pointer for use by clk
   3762 * consumers. It connects a consumer to the clk_core and clk_hw structures
   3763 * used by the framework and clk provider respectively.
   3764 */
   3765struct clk *clk_hw_create_clk(struct device *dev, struct clk_hw *hw,
   3766			      const char *dev_id, const char *con_id)
   3767{
   3768	struct clk *clk;
   3769	struct clk_core *core;
   3770
   3771	/* This is to allow this function to be chained to others */
   3772	if (IS_ERR_OR_NULL(hw))
   3773		return ERR_CAST(hw);
   3774
   3775	core = hw->core;
   3776	clk = alloc_clk(core, dev_id, con_id);
   3777	if (IS_ERR(clk))
   3778		return clk;
   3779	clk->dev = dev;
   3780
   3781	if (!try_module_get(core->owner)) {
   3782		free_clk(clk);
   3783		return ERR_PTR(-ENOENT);
   3784	}
   3785
   3786	kref_get(&core->ref);
   3787	clk_core_link_consumer(core, clk);
   3788
   3789	return clk;
   3790}
   3791
   3792/**
   3793 * clk_hw_get_clk - get clk consumer given an clk_hw
   3794 * @hw: clk_hw associated with the clk being consumed
   3795 * @con_id: connection ID string on device
   3796 *
   3797 * Returns: new clk consumer
   3798 * This is the function to be used by providers which need
   3799 * to get a consumer clk and act on the clock element
   3800 * Calls to this function must be balanced with calls clk_put()
   3801 */
   3802struct clk *clk_hw_get_clk(struct clk_hw *hw, const char *con_id)
   3803{
   3804	struct device *dev = hw->core->dev;
   3805	const char *name = dev ? dev_name(dev) : NULL;
   3806
   3807	return clk_hw_create_clk(dev, hw, name, con_id);
   3808}
   3809EXPORT_SYMBOL(clk_hw_get_clk);
   3810
   3811static int clk_cpy_name(const char **dst_p, const char *src, bool must_exist)
   3812{
   3813	const char *dst;
   3814
   3815	if (!src) {
   3816		if (must_exist)
   3817			return -EINVAL;
   3818		return 0;
   3819	}
   3820
   3821	*dst_p = dst = kstrdup_const(src, GFP_KERNEL);
   3822	if (!dst)
   3823		return -ENOMEM;
   3824
   3825	return 0;
   3826}
   3827
   3828static int clk_core_populate_parent_map(struct clk_core *core,
   3829					const struct clk_init_data *init)
   3830{
   3831	u8 num_parents = init->num_parents;
   3832	const char * const *parent_names = init->parent_names;
   3833	const struct clk_hw **parent_hws = init->parent_hws;
   3834	const struct clk_parent_data *parent_data = init->parent_data;
   3835	int i, ret = 0;
   3836	struct clk_parent_map *parents, *parent;
   3837
   3838	if (!num_parents)
   3839		return 0;
   3840
   3841	/*
   3842	 * Avoid unnecessary string look-ups of clk_core's possible parents by
   3843	 * having a cache of names/clk_hw pointers to clk_core pointers.
   3844	 */
   3845	parents = kcalloc(num_parents, sizeof(*parents), GFP_KERNEL);
   3846	core->parents = parents;
   3847	if (!parents)
   3848		return -ENOMEM;
   3849
   3850	/* Copy everything over because it might be __initdata */
   3851	for (i = 0, parent = parents; i < num_parents; i++, parent++) {
   3852		parent->index = -1;
   3853		if (parent_names) {
   3854			/* throw a WARN if any entries are NULL */
   3855			WARN(!parent_names[i],
   3856				"%s: invalid NULL in %s's .parent_names\n",
   3857				__func__, core->name);
   3858			ret = clk_cpy_name(&parent->name, parent_names[i],
   3859					   true);
   3860		} else if (parent_data) {
   3861			parent->hw = parent_data[i].hw;
   3862			parent->index = parent_data[i].index;
   3863			ret = clk_cpy_name(&parent->fw_name,
   3864					   parent_data[i].fw_name, false);
   3865			if (!ret)
   3866				ret = clk_cpy_name(&parent->name,
   3867						   parent_data[i].name,
   3868						   false);
   3869		} else if (parent_hws) {
   3870			parent->hw = parent_hws[i];
   3871		} else {
   3872			ret = -EINVAL;
   3873			WARN(1, "Must specify parents if num_parents > 0\n");
   3874		}
   3875
   3876		if (ret) {
   3877			do {
   3878				kfree_const(parents[i].name);
   3879				kfree_const(parents[i].fw_name);
   3880			} while (--i >= 0);
   3881			kfree(parents);
   3882
   3883			return ret;
   3884		}
   3885	}
   3886
   3887	return 0;
   3888}
   3889
   3890static void clk_core_free_parent_map(struct clk_core *core)
   3891{
   3892	int i = core->num_parents;
   3893
   3894	if (!core->num_parents)
   3895		return;
   3896
   3897	while (--i >= 0) {
   3898		kfree_const(core->parents[i].name);
   3899		kfree_const(core->parents[i].fw_name);
   3900	}
   3901
   3902	kfree(core->parents);
   3903}
   3904
   3905static struct clk *
   3906__clk_register(struct device *dev, struct device_node *np, struct clk_hw *hw)
   3907{
   3908	int ret;
   3909	struct clk_core *core;
   3910	const struct clk_init_data *init = hw->init;
   3911
   3912	/*
   3913	 * The init data is not supposed to be used outside of registration path.
   3914	 * Set it to NULL so that provider drivers can't use it either and so that
   3915	 * we catch use of hw->init early on in the core.
   3916	 */
   3917	hw->init = NULL;
   3918
   3919	core = kzalloc(sizeof(*core), GFP_KERNEL);
   3920	if (!core) {
   3921		ret = -ENOMEM;
   3922		goto fail_out;
   3923	}
   3924
   3925	core->name = kstrdup_const(init->name, GFP_KERNEL);
   3926	if (!core->name) {
   3927		ret = -ENOMEM;
   3928		goto fail_name;
   3929	}
   3930
   3931	if (WARN_ON(!init->ops)) {
   3932		ret = -EINVAL;
   3933		goto fail_ops;
   3934	}
   3935	core->ops = init->ops;
   3936
   3937	if (dev && pm_runtime_enabled(dev))
   3938		core->rpm_enabled = true;
   3939	core->dev = dev;
   3940	core->of_node = np;
   3941	if (dev && dev->driver)
   3942		core->owner = dev->driver->owner;
   3943	core->hw = hw;
   3944	core->flags = init->flags;
   3945	core->num_parents = init->num_parents;
   3946	core->min_rate = 0;
   3947	core->max_rate = ULONG_MAX;
   3948
   3949	ret = clk_core_populate_parent_map(core, init);
   3950	if (ret)
   3951		goto fail_parents;
   3952
   3953	INIT_HLIST_HEAD(&core->clks);
   3954
   3955	/*
   3956	 * Don't call clk_hw_create_clk() here because that would pin the
   3957	 * provider module to itself and prevent it from ever being removed.
   3958	 */
   3959	hw->clk = alloc_clk(core, NULL, NULL);
   3960	if (IS_ERR(hw->clk)) {
   3961		ret = PTR_ERR(hw->clk);
   3962		goto fail_create_clk;
   3963	}
   3964
   3965	clk_core_link_consumer(core, hw->clk);
   3966
   3967	ret = __clk_core_init(core);
   3968	if (!ret)
   3969		return hw->clk;
   3970
   3971	clk_prepare_lock();
   3972	clk_core_unlink_consumer(hw->clk);
   3973	clk_prepare_unlock();
   3974
   3975	free_clk(hw->clk);
   3976	hw->clk = NULL;
   3977
   3978fail_create_clk:
   3979	clk_core_free_parent_map(core);
   3980fail_parents:
   3981fail_ops:
   3982	kfree_const(core->name);
   3983fail_name:
   3984	kfree(core);
   3985fail_out:
   3986	return ERR_PTR(ret);
   3987}
   3988
   3989/**
   3990 * dev_or_parent_of_node() - Get device node of @dev or @dev's parent
   3991 * @dev: Device to get device node of
   3992 *
   3993 * Return: device node pointer of @dev, or the device node pointer of
   3994 * @dev->parent if dev doesn't have a device node, or NULL if neither
   3995 * @dev or @dev->parent have a device node.
   3996 */
   3997static struct device_node *dev_or_parent_of_node(struct device *dev)
   3998{
   3999	struct device_node *np;
   4000
   4001	if (!dev)
   4002		return NULL;
   4003
   4004	np = dev_of_node(dev);
   4005	if (!np)
   4006		np = dev_of_node(dev->parent);
   4007
   4008	return np;
   4009}
   4010
   4011/**
   4012 * clk_register - allocate a new clock, register it and return an opaque cookie
   4013 * @dev: device that is registering this clock
   4014 * @hw: link to hardware-specific clock data
   4015 *
   4016 * clk_register is the *deprecated* interface for populating the clock tree with
   4017 * new clock nodes. Use clk_hw_register() instead.
   4018 *
   4019 * Returns: a pointer to the newly allocated struct clk which
   4020 * cannot be dereferenced by driver code but may be used in conjunction with the
   4021 * rest of the clock API.  In the event of an error clk_register will return an
   4022 * error code; drivers must test for an error code after calling clk_register.
   4023 */
   4024struct clk *clk_register(struct device *dev, struct clk_hw *hw)
   4025{
   4026	return __clk_register(dev, dev_or_parent_of_node(dev), hw);
   4027}
   4028EXPORT_SYMBOL_GPL(clk_register);
   4029
   4030/**
   4031 * clk_hw_register - register a clk_hw and return an error code
   4032 * @dev: device that is registering this clock
   4033 * @hw: link to hardware-specific clock data
   4034 *
   4035 * clk_hw_register is the primary interface for populating the clock tree with
   4036 * new clock nodes. It returns an integer equal to zero indicating success or
   4037 * less than zero indicating failure. Drivers must test for an error code after
   4038 * calling clk_hw_register().
   4039 */
   4040int clk_hw_register(struct device *dev, struct clk_hw *hw)
   4041{
   4042	return PTR_ERR_OR_ZERO(__clk_register(dev, dev_or_parent_of_node(dev),
   4043			       hw));
   4044}
   4045EXPORT_SYMBOL_GPL(clk_hw_register);
   4046
   4047/*
   4048 * of_clk_hw_register - register a clk_hw and return an error code
   4049 * @node: device_node of device that is registering this clock
   4050 * @hw: link to hardware-specific clock data
   4051 *
   4052 * of_clk_hw_register() is the primary interface for populating the clock tree
   4053 * with new clock nodes when a struct device is not available, but a struct
   4054 * device_node is. It returns an integer equal to zero indicating success or
   4055 * less than zero indicating failure. Drivers must test for an error code after
   4056 * calling of_clk_hw_register().
   4057 */
   4058int of_clk_hw_register(struct device_node *node, struct clk_hw *hw)
   4059{
   4060	return PTR_ERR_OR_ZERO(__clk_register(NULL, node, hw));
   4061}
   4062EXPORT_SYMBOL_GPL(of_clk_hw_register);
   4063
   4064/* Free memory allocated for a clock. */
   4065static void __clk_release(struct kref *ref)
   4066{
   4067	struct clk_core *core = container_of(ref, struct clk_core, ref);
   4068
   4069	lockdep_assert_held(&prepare_lock);
   4070
   4071	clk_core_free_parent_map(core);
   4072	kfree_const(core->name);
   4073	kfree(core);
   4074}
   4075
   4076/*
   4077 * Empty clk_ops for unregistered clocks. These are used temporarily
   4078 * after clk_unregister() was called on a clock and until last clock
   4079 * consumer calls clk_put() and the struct clk object is freed.
   4080 */
   4081static int clk_nodrv_prepare_enable(struct clk_hw *hw)
   4082{
   4083	return -ENXIO;
   4084}
   4085
   4086static void clk_nodrv_disable_unprepare(struct clk_hw *hw)
   4087{
   4088	WARN_ON_ONCE(1);
   4089}
   4090
   4091static int clk_nodrv_set_rate(struct clk_hw *hw, unsigned long rate,
   4092					unsigned long parent_rate)
   4093{
   4094	return -ENXIO;
   4095}
   4096
   4097static int clk_nodrv_set_parent(struct clk_hw *hw, u8 index)
   4098{
   4099	return -ENXIO;
   4100}
   4101
   4102static const struct clk_ops clk_nodrv_ops = {
   4103	.enable		= clk_nodrv_prepare_enable,
   4104	.disable	= clk_nodrv_disable_unprepare,
   4105	.prepare	= clk_nodrv_prepare_enable,
   4106	.unprepare	= clk_nodrv_disable_unprepare,
   4107	.set_rate	= clk_nodrv_set_rate,
   4108	.set_parent	= clk_nodrv_set_parent,
   4109};
   4110
   4111static void clk_core_evict_parent_cache_subtree(struct clk_core *root,
   4112						const struct clk_core *target)
   4113{
   4114	int i;
   4115	struct clk_core *child;
   4116
   4117	for (i = 0; i < root->num_parents; i++)
   4118		if (root->parents[i].core == target)
   4119			root->parents[i].core = NULL;
   4120
   4121	hlist_for_each_entry(child, &root->children, child_node)
   4122		clk_core_evict_parent_cache_subtree(child, target);
   4123}
   4124
   4125/* Remove this clk from all parent caches */
   4126static void clk_core_evict_parent_cache(struct clk_core *core)
   4127{
   4128	const struct hlist_head **lists;
   4129	struct clk_core *root;
   4130
   4131	lockdep_assert_held(&prepare_lock);
   4132
   4133	for (lists = all_lists; *lists; lists++)
   4134		hlist_for_each_entry(root, *lists, child_node)
   4135			clk_core_evict_parent_cache_subtree(root, core);
   4136
   4137}
   4138
   4139/**
   4140 * clk_unregister - unregister a currently registered clock
   4141 * @clk: clock to unregister
   4142 */
   4143void clk_unregister(struct clk *clk)
   4144{
   4145	unsigned long flags;
   4146	const struct clk_ops *ops;
   4147
   4148	if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
   4149		return;
   4150
   4151	clk_debug_unregister(clk->core);
   4152
   4153	clk_prepare_lock();
   4154
   4155	ops = clk->core->ops;
   4156	if (ops == &clk_nodrv_ops) {
   4157		pr_err("%s: unregistered clock: %s\n", __func__,
   4158		       clk->core->name);
   4159		goto unlock;
   4160	}
   4161	/*
   4162	 * Assign empty clock ops for consumers that might still hold
   4163	 * a reference to this clock.
   4164	 */
   4165	flags = clk_enable_lock();
   4166	clk->core->ops = &clk_nodrv_ops;
   4167	clk_enable_unlock(flags);
   4168
   4169	if (ops->terminate)
   4170		ops->terminate(clk->core->hw);
   4171
   4172	if (!hlist_empty(&clk->core->children)) {
   4173		struct clk_core *child;
   4174		struct hlist_node *t;
   4175
   4176		/* Reparent all children to the orphan list. */
   4177		hlist_for_each_entry_safe(child, t, &clk->core->children,
   4178					  child_node)
   4179			clk_core_set_parent_nolock(child, NULL);
   4180	}
   4181
   4182	clk_core_evict_parent_cache(clk->core);
   4183
   4184	hlist_del_init(&clk->core->child_node);
   4185
   4186	if (clk->core->prepare_count)
   4187		pr_warn("%s: unregistering prepared clock: %s\n",
   4188					__func__, clk->core->name);
   4189
   4190	if (clk->core->protect_count)
   4191		pr_warn("%s: unregistering protected clock: %s\n",
   4192					__func__, clk->core->name);
   4193
   4194	kref_put(&clk->core->ref, __clk_release);
   4195	free_clk(clk);
   4196unlock:
   4197	clk_prepare_unlock();
   4198}
   4199EXPORT_SYMBOL_GPL(clk_unregister);
   4200
   4201/**
   4202 * clk_hw_unregister - unregister a currently registered clk_hw
   4203 * @hw: hardware-specific clock data to unregister
   4204 */
   4205void clk_hw_unregister(struct clk_hw *hw)
   4206{
   4207	clk_unregister(hw->clk);
   4208}
   4209EXPORT_SYMBOL_GPL(clk_hw_unregister);
   4210
   4211static void devm_clk_unregister_cb(struct device *dev, void *res)
   4212{
   4213	clk_unregister(*(struct clk **)res);
   4214}
   4215
   4216static void devm_clk_hw_unregister_cb(struct device *dev, void *res)
   4217{
   4218	clk_hw_unregister(*(struct clk_hw **)res);
   4219}
   4220
   4221/**
   4222 * devm_clk_register - resource managed clk_register()
   4223 * @dev: device that is registering this clock
   4224 * @hw: link to hardware-specific clock data
   4225 *
   4226 * Managed clk_register(). This function is *deprecated*, use devm_clk_hw_register() instead.
   4227 *
   4228 * Clocks returned from this function are automatically clk_unregister()ed on
   4229 * driver detach. See clk_register() for more information.
   4230 */
   4231struct clk *devm_clk_register(struct device *dev, struct clk_hw *hw)
   4232{
   4233	struct clk *clk;
   4234	struct clk **clkp;
   4235
   4236	clkp = devres_alloc(devm_clk_unregister_cb, sizeof(*clkp), GFP_KERNEL);
   4237	if (!clkp)
   4238		return ERR_PTR(-ENOMEM);
   4239
   4240	clk = clk_register(dev, hw);
   4241	if (!IS_ERR(clk)) {
   4242		*clkp = clk;
   4243		devres_add(dev, clkp);
   4244	} else {
   4245		devres_free(clkp);
   4246	}
   4247
   4248	return clk;
   4249}
   4250EXPORT_SYMBOL_GPL(devm_clk_register);
   4251
   4252/**
   4253 * devm_clk_hw_register - resource managed clk_hw_register()
   4254 * @dev: device that is registering this clock
   4255 * @hw: link to hardware-specific clock data
   4256 *
   4257 * Managed clk_hw_register(). Clocks registered by this function are
   4258 * automatically clk_hw_unregister()ed on driver detach. See clk_hw_register()
   4259 * for more information.
   4260 */
   4261int devm_clk_hw_register(struct device *dev, struct clk_hw *hw)
   4262{
   4263	struct clk_hw **hwp;
   4264	int ret;
   4265
   4266	hwp = devres_alloc(devm_clk_hw_unregister_cb, sizeof(*hwp), GFP_KERNEL);
   4267	if (!hwp)
   4268		return -ENOMEM;
   4269
   4270	ret = clk_hw_register(dev, hw);
   4271	if (!ret) {
   4272		*hwp = hw;
   4273		devres_add(dev, hwp);
   4274	} else {
   4275		devres_free(hwp);
   4276	}
   4277
   4278	return ret;
   4279}
   4280EXPORT_SYMBOL_GPL(devm_clk_hw_register);
   4281
   4282static int devm_clk_match(struct device *dev, void *res, void *data)
   4283{
   4284	struct clk *c = res;
   4285	if (WARN_ON(!c))
   4286		return 0;
   4287	return c == data;
   4288}
   4289
   4290static int devm_clk_hw_match(struct device *dev, void *res, void *data)
   4291{
   4292	struct clk_hw *hw = res;
   4293
   4294	if (WARN_ON(!hw))
   4295		return 0;
   4296	return hw == data;
   4297}
   4298
   4299/**
   4300 * devm_clk_unregister - resource managed clk_unregister()
   4301 * @dev: device that is unregistering the clock data
   4302 * @clk: clock to unregister
   4303 *
   4304 * Deallocate a clock allocated with devm_clk_register(). Normally
   4305 * this function will not need to be called and the resource management
   4306 * code will ensure that the resource is freed.
   4307 */
   4308void devm_clk_unregister(struct device *dev, struct clk *clk)
   4309{
   4310	WARN_ON(devres_release(dev, devm_clk_unregister_cb, devm_clk_match, clk));
   4311}
   4312EXPORT_SYMBOL_GPL(devm_clk_unregister);
   4313
   4314/**
   4315 * devm_clk_hw_unregister - resource managed clk_hw_unregister()
   4316 * @dev: device that is unregistering the hardware-specific clock data
   4317 * @hw: link to hardware-specific clock data
   4318 *
   4319 * Unregister a clk_hw registered with devm_clk_hw_register(). Normally
   4320 * this function will not need to be called and the resource management
   4321 * code will ensure that the resource is freed.
   4322 */
   4323void devm_clk_hw_unregister(struct device *dev, struct clk_hw *hw)
   4324{
   4325	WARN_ON(devres_release(dev, devm_clk_hw_unregister_cb, devm_clk_hw_match,
   4326				hw));
   4327}
   4328EXPORT_SYMBOL_GPL(devm_clk_hw_unregister);
   4329
   4330static void devm_clk_release(struct device *dev, void *res)
   4331{
   4332	clk_put(*(struct clk **)res);
   4333}
   4334
   4335/**
   4336 * devm_clk_hw_get_clk - resource managed clk_hw_get_clk()
   4337 * @dev: device that is registering this clock
   4338 * @hw: clk_hw associated with the clk being consumed
   4339 * @con_id: connection ID string on device
   4340 *
   4341 * Managed clk_hw_get_clk(). Clocks got with this function are
   4342 * automatically clk_put() on driver detach. See clk_put()
   4343 * for more information.
   4344 */
   4345struct clk *devm_clk_hw_get_clk(struct device *dev, struct clk_hw *hw,
   4346				const char *con_id)
   4347{
   4348	struct clk *clk;
   4349	struct clk **clkp;
   4350
   4351	/* This should not happen because it would mean we have drivers
   4352	 * passing around clk_hw pointers instead of having the caller use
   4353	 * proper clk_get() style APIs
   4354	 */
   4355	WARN_ON_ONCE(dev != hw->core->dev);
   4356
   4357	clkp = devres_alloc(devm_clk_release, sizeof(*clkp), GFP_KERNEL);
   4358	if (!clkp)
   4359		return ERR_PTR(-ENOMEM);
   4360
   4361	clk = clk_hw_get_clk(hw, con_id);
   4362	if (!IS_ERR(clk)) {
   4363		*clkp = clk;
   4364		devres_add(dev, clkp);
   4365	} else {
   4366		devres_free(clkp);
   4367	}
   4368
   4369	return clk;
   4370}
   4371EXPORT_SYMBOL_GPL(devm_clk_hw_get_clk);
   4372
   4373/*
   4374 * clkdev helpers
   4375 */
   4376
   4377void __clk_put(struct clk *clk)
   4378{
   4379	struct module *owner;
   4380
   4381	if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
   4382		return;
   4383
   4384	clk_prepare_lock();
   4385
   4386	/*
   4387	 * Before calling clk_put, all calls to clk_rate_exclusive_get() from a
   4388	 * given user should be balanced with calls to clk_rate_exclusive_put()
   4389	 * and by that same consumer
   4390	 */
   4391	if (WARN_ON(clk->exclusive_count)) {
   4392		/* We voiced our concern, let's sanitize the situation */
   4393		clk->core->protect_count -= (clk->exclusive_count - 1);
   4394		clk_core_rate_unprotect(clk->core);
   4395		clk->exclusive_count = 0;
   4396	}
   4397
   4398	hlist_del(&clk->clks_node);
   4399	if (clk->min_rate > clk->core->req_rate ||
   4400	    clk->max_rate < clk->core->req_rate)
   4401		clk_core_set_rate_nolock(clk->core, clk->core->req_rate);
   4402
   4403	owner = clk->core->owner;
   4404	kref_put(&clk->core->ref, __clk_release);
   4405
   4406	clk_prepare_unlock();
   4407
   4408	module_put(owner);
   4409
   4410	free_clk(clk);
   4411}
   4412
   4413/***        clk rate change notifiers        ***/
   4414
   4415/**
   4416 * clk_notifier_register - add a clk rate change notifier
   4417 * @clk: struct clk * to watch
   4418 * @nb: struct notifier_block * with callback info
   4419 *
   4420 * Request notification when clk's rate changes.  This uses an SRCU
   4421 * notifier because we want it to block and notifier unregistrations are
   4422 * uncommon.  The callbacks associated with the notifier must not
   4423 * re-enter into the clk framework by calling any top-level clk APIs;
   4424 * this will cause a nested prepare_lock mutex.
   4425 *
   4426 * In all notification cases (pre, post and abort rate change) the original
   4427 * clock rate is passed to the callback via struct clk_notifier_data.old_rate
   4428 * and the new frequency is passed via struct clk_notifier_data.new_rate.
   4429 *
   4430 * clk_notifier_register() must be called from non-atomic context.
   4431 * Returns -EINVAL if called with null arguments, -ENOMEM upon
   4432 * allocation failure; otherwise, passes along the return value of
   4433 * srcu_notifier_chain_register().
   4434 */
   4435int clk_notifier_register(struct clk *clk, struct notifier_block *nb)
   4436{
   4437	struct clk_notifier *cn;
   4438	int ret = -ENOMEM;
   4439
   4440	if (!clk || !nb)
   4441		return -EINVAL;
   4442
   4443	clk_prepare_lock();
   4444
   4445	/* search the list of notifiers for this clk */
   4446	list_for_each_entry(cn, &clk_notifier_list, node)
   4447		if (cn->clk == clk)
   4448			goto found;
   4449
   4450	/* if clk wasn't in the notifier list, allocate new clk_notifier */
   4451	cn = kzalloc(sizeof(*cn), GFP_KERNEL);
   4452	if (!cn)
   4453		goto out;
   4454
   4455	cn->clk = clk;
   4456	srcu_init_notifier_head(&cn->notifier_head);
   4457
   4458	list_add(&cn->node, &clk_notifier_list);
   4459
   4460found:
   4461	ret = srcu_notifier_chain_register(&cn->notifier_head, nb);
   4462
   4463	clk->core->notifier_count++;
   4464
   4465out:
   4466	clk_prepare_unlock();
   4467
   4468	return ret;
   4469}
   4470EXPORT_SYMBOL_GPL(clk_notifier_register);
   4471
   4472/**
   4473 * clk_notifier_unregister - remove a clk rate change notifier
   4474 * @clk: struct clk *
   4475 * @nb: struct notifier_block * with callback info
   4476 *
   4477 * Request no further notification for changes to 'clk' and frees memory
   4478 * allocated in clk_notifier_register.
   4479 *
   4480 * Returns -EINVAL if called with null arguments; otherwise, passes
   4481 * along the return value of srcu_notifier_chain_unregister().
   4482 */
   4483int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb)
   4484{
   4485	struct clk_notifier *cn;
   4486	int ret = -ENOENT;
   4487
   4488	if (!clk || !nb)
   4489		return -EINVAL;
   4490
   4491	clk_prepare_lock();
   4492
   4493	list_for_each_entry(cn, &clk_notifier_list, node) {
   4494		if (cn->clk == clk) {
   4495			ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb);
   4496
   4497			clk->core->notifier_count--;
   4498
   4499			/* XXX the notifier code should handle this better */
   4500			if (!cn->notifier_head.head) {
   4501				srcu_cleanup_notifier_head(&cn->notifier_head);
   4502				list_del(&cn->node);
   4503				kfree(cn);
   4504			}
   4505			break;
   4506		}
   4507	}
   4508
   4509	clk_prepare_unlock();
   4510
   4511	return ret;
   4512}
   4513EXPORT_SYMBOL_GPL(clk_notifier_unregister);
   4514
   4515struct clk_notifier_devres {
   4516	struct clk *clk;
   4517	struct notifier_block *nb;
   4518};
   4519
   4520static void devm_clk_notifier_release(struct device *dev, void *res)
   4521{
   4522	struct clk_notifier_devres *devres = res;
   4523
   4524	clk_notifier_unregister(devres->clk, devres->nb);
   4525}
   4526
   4527int devm_clk_notifier_register(struct device *dev, struct clk *clk,
   4528			       struct notifier_block *nb)
   4529{
   4530	struct clk_notifier_devres *devres;
   4531	int ret;
   4532
   4533	devres = devres_alloc(devm_clk_notifier_release,
   4534			      sizeof(*devres), GFP_KERNEL);
   4535
   4536	if (!devres)
   4537		return -ENOMEM;
   4538
   4539	ret = clk_notifier_register(clk, nb);
   4540	if (!ret) {
   4541		devres->clk = clk;
   4542		devres->nb = nb;
   4543	} else {
   4544		devres_free(devres);
   4545	}
   4546
   4547	return ret;
   4548}
   4549EXPORT_SYMBOL_GPL(devm_clk_notifier_register);
   4550
   4551#ifdef CONFIG_OF
   4552static void clk_core_reparent_orphans(void)
   4553{
   4554	clk_prepare_lock();
   4555	clk_core_reparent_orphans_nolock();
   4556	clk_prepare_unlock();
   4557}
   4558
   4559/**
   4560 * struct of_clk_provider - Clock provider registration structure
   4561 * @link: Entry in global list of clock providers
   4562 * @node: Pointer to device tree node of clock provider
   4563 * @get: Get clock callback.  Returns NULL or a struct clk for the
   4564 *       given clock specifier
   4565 * @get_hw: Get clk_hw callback.  Returns NULL, ERR_PTR or a
   4566 *       struct clk_hw for the given clock specifier
   4567 * @data: context pointer to be passed into @get callback
   4568 */
   4569struct of_clk_provider {
   4570	struct list_head link;
   4571
   4572	struct device_node *node;
   4573	struct clk *(*get)(struct of_phandle_args *clkspec, void *data);
   4574	struct clk_hw *(*get_hw)(struct of_phandle_args *clkspec, void *data);
   4575	void *data;
   4576};
   4577
   4578extern struct of_device_id __clk_of_table;
   4579static const struct of_device_id __clk_of_table_sentinel
   4580	__used __section("__clk_of_table_end");
   4581
   4582static LIST_HEAD(of_clk_providers);
   4583static DEFINE_MUTEX(of_clk_mutex);
   4584
   4585struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec,
   4586				     void *data)
   4587{
   4588	return data;
   4589}
   4590EXPORT_SYMBOL_GPL(of_clk_src_simple_get);
   4591
   4592struct clk_hw *of_clk_hw_simple_get(struct of_phandle_args *clkspec, void *data)
   4593{
   4594	return data;
   4595}
   4596EXPORT_SYMBOL_GPL(of_clk_hw_simple_get);
   4597
   4598struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec, void *data)
   4599{
   4600	struct clk_onecell_data *clk_data = data;
   4601	unsigned int idx = clkspec->args[0];
   4602
   4603	if (idx >= clk_data->clk_num) {
   4604		pr_err("%s: invalid clock index %u\n", __func__, idx);
   4605		return ERR_PTR(-EINVAL);
   4606	}
   4607
   4608	return clk_data->clks[idx];
   4609}
   4610EXPORT_SYMBOL_GPL(of_clk_src_onecell_get);
   4611
   4612struct clk_hw *
   4613of_clk_hw_onecell_get(struct of_phandle_args *clkspec, void *data)
   4614{
   4615	struct clk_hw_onecell_data *hw_data = data;
   4616	unsigned int idx = clkspec->args[0];
   4617
   4618	if (idx >= hw_data->num) {
   4619		pr_err("%s: invalid index %u\n", __func__, idx);
   4620		return ERR_PTR(-EINVAL);
   4621	}
   4622
   4623	return hw_data->hws[idx];
   4624}
   4625EXPORT_SYMBOL_GPL(of_clk_hw_onecell_get);
   4626
   4627/**
   4628 * of_clk_add_provider() - Register a clock provider for a node
   4629 * @np: Device node pointer associated with clock provider
   4630 * @clk_src_get: callback for decoding clock
   4631 * @data: context pointer for @clk_src_get callback.
   4632 *
   4633 * This function is *deprecated*. Use of_clk_add_hw_provider() instead.
   4634 */
   4635int of_clk_add_provider(struct device_node *np,
   4636			struct clk *(*clk_src_get)(struct of_phandle_args *clkspec,
   4637						   void *data),
   4638			void *data)
   4639{
   4640	struct of_clk_provider *cp;
   4641	int ret;
   4642
   4643	if (!np)
   4644		return 0;
   4645
   4646	cp = kzalloc(sizeof(*cp), GFP_KERNEL);
   4647	if (!cp)
   4648		return -ENOMEM;
   4649
   4650	cp->node = of_node_get(np);
   4651	cp->data = data;
   4652	cp->get = clk_src_get;
   4653
   4654	mutex_lock(&of_clk_mutex);
   4655	list_add(&cp->link, &of_clk_providers);
   4656	mutex_unlock(&of_clk_mutex);
   4657	pr_debug("Added clock from %pOF\n", np);
   4658
   4659	clk_core_reparent_orphans();
   4660
   4661	ret = of_clk_set_defaults(np, true);
   4662	if (ret < 0)
   4663		of_clk_del_provider(np);
   4664
   4665	fwnode_dev_initialized(&np->fwnode, true);
   4666
   4667	return ret;
   4668}
   4669EXPORT_SYMBOL_GPL(of_clk_add_provider);
   4670
   4671/**
   4672 * of_clk_add_hw_provider() - Register a clock provider for a node
   4673 * @np: Device node pointer associated with clock provider
   4674 * @get: callback for decoding clk_hw
   4675 * @data: context pointer for @get callback.
   4676 */
   4677int of_clk_add_hw_provider(struct device_node *np,
   4678			   struct clk_hw *(*get)(struct of_phandle_args *clkspec,
   4679						 void *data),
   4680			   void *data)
   4681{
   4682	struct of_clk_provider *cp;
   4683	int ret;
   4684
   4685	if (!np)
   4686		return 0;
   4687
   4688	cp = kzalloc(sizeof(*cp), GFP_KERNEL);
   4689	if (!cp)
   4690		return -ENOMEM;
   4691
   4692	cp->node = of_node_get(np);
   4693	cp->data = data;
   4694	cp->get_hw = get;
   4695
   4696	mutex_lock(&of_clk_mutex);
   4697	list_add(&cp->link, &of_clk_providers);
   4698	mutex_unlock(&of_clk_mutex);
   4699	pr_debug("Added clk_hw provider from %pOF\n", np);
   4700
   4701	clk_core_reparent_orphans();
   4702
   4703	ret = of_clk_set_defaults(np, true);
   4704	if (ret < 0)
   4705		of_clk_del_provider(np);
   4706
   4707	fwnode_dev_initialized(&np->fwnode, true);
   4708
   4709	return ret;
   4710}
   4711EXPORT_SYMBOL_GPL(of_clk_add_hw_provider);
   4712
   4713static void devm_of_clk_release_provider(struct device *dev, void *res)
   4714{
   4715	of_clk_del_provider(*(struct device_node **)res);
   4716}
   4717
   4718/*
   4719 * We allow a child device to use its parent device as the clock provider node
   4720 * for cases like MFD sub-devices where the child device driver wants to use
   4721 * devm_*() APIs but not list the device in DT as a sub-node.
   4722 */
   4723static struct device_node *get_clk_provider_node(struct device *dev)
   4724{
   4725	struct device_node *np, *parent_np;
   4726
   4727	np = dev->of_node;
   4728	parent_np = dev->parent ? dev->parent->of_node : NULL;
   4729
   4730	if (!of_find_property(np, "#clock-cells", NULL))
   4731		if (of_find_property(parent_np, "#clock-cells", NULL))
   4732			np = parent_np;
   4733
   4734	return np;
   4735}
   4736
   4737/**
   4738 * devm_of_clk_add_hw_provider() - Managed clk provider node registration
   4739 * @dev: Device acting as the clock provider (used for DT node and lifetime)
   4740 * @get: callback for decoding clk_hw
   4741 * @data: context pointer for @get callback
   4742 *
   4743 * Registers clock provider for given device's node. If the device has no DT
   4744 * node or if the device node lacks of clock provider information (#clock-cells)
   4745 * then the parent device's node is scanned for this information. If parent node
   4746 * has the #clock-cells then it is used in registration. Provider is
   4747 * automatically released at device exit.
   4748 *
   4749 * Return: 0 on success or an errno on failure.
   4750 */
   4751int devm_of_clk_add_hw_provider(struct device *dev,
   4752			struct clk_hw *(*get)(struct of_phandle_args *clkspec,
   4753					      void *data),
   4754			void *data)
   4755{
   4756	struct device_node **ptr, *np;
   4757	int ret;
   4758
   4759	ptr = devres_alloc(devm_of_clk_release_provider, sizeof(*ptr),
   4760			   GFP_KERNEL);
   4761	if (!ptr)
   4762		return -ENOMEM;
   4763
   4764	np = get_clk_provider_node(dev);
   4765	ret = of_clk_add_hw_provider(np, get, data);
   4766	if (!ret) {
   4767		*ptr = np;
   4768		devres_add(dev, ptr);
   4769	} else {
   4770		devres_free(ptr);
   4771	}
   4772
   4773	return ret;
   4774}
   4775EXPORT_SYMBOL_GPL(devm_of_clk_add_hw_provider);
   4776
   4777/**
   4778 * of_clk_del_provider() - Remove a previously registered clock provider
   4779 * @np: Device node pointer associated with clock provider
   4780 */
   4781void of_clk_del_provider(struct device_node *np)
   4782{
   4783	struct of_clk_provider *cp;
   4784
   4785	if (!np)
   4786		return;
   4787
   4788	mutex_lock(&of_clk_mutex);
   4789	list_for_each_entry(cp, &of_clk_providers, link) {
   4790		if (cp->node == np) {
   4791			list_del(&cp->link);
   4792			fwnode_dev_initialized(&np->fwnode, false);
   4793			of_node_put(cp->node);
   4794			kfree(cp);
   4795			break;
   4796		}
   4797	}
   4798	mutex_unlock(&of_clk_mutex);
   4799}
   4800EXPORT_SYMBOL_GPL(of_clk_del_provider);
   4801
   4802static int devm_clk_provider_match(struct device *dev, void *res, void *data)
   4803{
   4804	struct device_node **np = res;
   4805
   4806	if (WARN_ON(!np || !*np))
   4807		return 0;
   4808
   4809	return *np == data;
   4810}
   4811
   4812/**
   4813 * devm_of_clk_del_provider() - Remove clock provider registered using devm
   4814 * @dev: Device to whose lifetime the clock provider was bound
   4815 */
   4816void devm_of_clk_del_provider(struct device *dev)
   4817{
   4818	int ret;
   4819	struct device_node *np = get_clk_provider_node(dev);
   4820
   4821	ret = devres_release(dev, devm_of_clk_release_provider,
   4822			     devm_clk_provider_match, np);
   4823
   4824	WARN_ON(ret);
   4825}
   4826EXPORT_SYMBOL(devm_of_clk_del_provider);
   4827
   4828/**
   4829 * of_parse_clkspec() - Parse a DT clock specifier for a given device node
   4830 * @np: device node to parse clock specifier from
   4831 * @index: index of phandle to parse clock out of. If index < 0, @name is used
   4832 * @name: clock name to find and parse. If name is NULL, the index is used
   4833 * @out_args: Result of parsing the clock specifier
   4834 *
   4835 * Parses a device node's "clocks" and "clock-names" properties to find the
   4836 * phandle and cells for the index or name that is desired. The resulting clock
   4837 * specifier is placed into @out_args, or an errno is returned when there's a
   4838 * parsing error. The @index argument is ignored if @name is non-NULL.
   4839 *
   4840 * Example:
   4841 *
   4842 * phandle1: clock-controller@1 {
   4843 *	#clock-cells = <2>;
   4844 * }
   4845 *
   4846 * phandle2: clock-controller@2 {
   4847 *	#clock-cells = <1>;
   4848 * }
   4849 *
   4850 * clock-consumer@3 {
   4851 *	clocks = <&phandle1 1 2 &phandle2 3>;
   4852 *	clock-names = "name1", "name2";
   4853 * }
   4854 *
   4855 * To get a device_node for `clock-controller@2' node you may call this
   4856 * function a few different ways:
   4857 *
   4858 *   of_parse_clkspec(clock-consumer@3, -1, "name2", &args);
   4859 *   of_parse_clkspec(clock-consumer@3, 1, NULL, &args);
   4860 *   of_parse_clkspec(clock-consumer@3, 1, "name2", &args);
   4861 *
   4862 * Return: 0 upon successfully parsing the clock specifier. Otherwise, -ENOENT
   4863 * if @name is NULL or -EINVAL if @name is non-NULL and it can't be found in
   4864 * the "clock-names" property of @np.
   4865 */
   4866static int of_parse_clkspec(const struct device_node *np, int index,
   4867			    const char *name, struct of_phandle_args *out_args)
   4868{
   4869	int ret = -ENOENT;
   4870
   4871	/* Walk up the tree of devices looking for a clock property that matches */
   4872	while (np) {
   4873		/*
   4874		 * For named clocks, first look up the name in the
   4875		 * "clock-names" property.  If it cannot be found, then index
   4876		 * will be an error code and of_parse_phandle_with_args() will
   4877		 * return -EINVAL.
   4878		 */
   4879		if (name)
   4880			index = of_property_match_string(np, "clock-names", name);
   4881		ret = of_parse_phandle_with_args(np, "clocks", "#clock-cells",
   4882						 index, out_args);
   4883		if (!ret)
   4884			break;
   4885		if (name && index >= 0)
   4886			break;
   4887
   4888		/*
   4889		 * No matching clock found on this node.  If the parent node
   4890		 * has a "clock-ranges" property, then we can try one of its
   4891		 * clocks.
   4892		 */
   4893		np = np->parent;
   4894		if (np && !of_get_property(np, "clock-ranges", NULL))
   4895			break;
   4896		index = 0;
   4897	}
   4898
   4899	return ret;
   4900}
   4901
   4902static struct clk_hw *
   4903__of_clk_get_hw_from_provider(struct of_clk_provider *provider,
   4904			      struct of_phandle_args *clkspec)
   4905{
   4906	struct clk *clk;
   4907
   4908	if (provider->get_hw)
   4909		return provider->get_hw(clkspec, provider->data);
   4910
   4911	clk = provider->get(clkspec, provider->data);
   4912	if (IS_ERR(clk))
   4913		return ERR_CAST(clk);
   4914	return __clk_get_hw(clk);
   4915}
   4916
   4917static struct clk_hw *
   4918of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec)
   4919{
   4920	struct of_clk_provider *provider;
   4921	struct clk_hw *hw = ERR_PTR(-EPROBE_DEFER);
   4922
   4923	if (!clkspec)
   4924		return ERR_PTR(-EINVAL);
   4925
   4926	mutex_lock(&of_clk_mutex);
   4927	list_for_each_entry(provider, &of_clk_providers, link) {
   4928		if (provider->node == clkspec->np) {
   4929			hw = __of_clk_get_hw_from_provider(provider, clkspec);
   4930			if (!IS_ERR(hw))
   4931				break;
   4932		}
   4933	}
   4934	mutex_unlock(&of_clk_mutex);
   4935
   4936	return hw;
   4937}
   4938
   4939/**
   4940 * of_clk_get_from_provider() - Lookup a clock from a clock provider
   4941 * @clkspec: pointer to a clock specifier data structure
   4942 *
   4943 * This function looks up a struct clk from the registered list of clock
   4944 * providers, an input is a clock specifier data structure as returned
   4945 * from the of_parse_phandle_with_args() function call.
   4946 */
   4947struct clk *of_clk_get_from_provider(struct of_phandle_args *clkspec)
   4948{
   4949	struct clk_hw *hw = of_clk_get_hw_from_clkspec(clkspec);
   4950
   4951	return clk_hw_create_clk(NULL, hw, NULL, __func__);
   4952}
   4953EXPORT_SYMBOL_GPL(of_clk_get_from_provider);
   4954
   4955struct clk_hw *of_clk_get_hw(struct device_node *np, int index,
   4956			     const char *con_id)
   4957{
   4958	int ret;
   4959	struct clk_hw *hw;
   4960	struct of_phandle_args clkspec;
   4961
   4962	ret = of_parse_clkspec(np, index, con_id, &clkspec);
   4963	if (ret)
   4964		return ERR_PTR(ret);
   4965
   4966	hw = of_clk_get_hw_from_clkspec(&clkspec);
   4967	of_node_put(clkspec.np);
   4968
   4969	return hw;
   4970}
   4971
   4972static struct clk *__of_clk_get(struct device_node *np,
   4973				int index, const char *dev_id,
   4974				const char *con_id)
   4975{
   4976	struct clk_hw *hw = of_clk_get_hw(np, index, con_id);
   4977
   4978	return clk_hw_create_clk(NULL, hw, dev_id, con_id);
   4979}
   4980
   4981struct clk *of_clk_get(struct device_node *np, int index)
   4982{
   4983	return __of_clk_get(np, index, np->full_name, NULL);
   4984}
   4985EXPORT_SYMBOL(of_clk_get);
   4986
   4987/**
   4988 * of_clk_get_by_name() - Parse and lookup a clock referenced by a device node
   4989 * @np: pointer to clock consumer node
   4990 * @name: name of consumer's clock input, or NULL for the first clock reference
   4991 *
   4992 * This function parses the clocks and clock-names properties,
   4993 * and uses them to look up the struct clk from the registered list of clock
   4994 * providers.
   4995 */
   4996struct clk *of_clk_get_by_name(struct device_node *np, const char *name)
   4997{
   4998	if (!np)
   4999		return ERR_PTR(-ENOENT);
   5000
   5001	return __of_clk_get(np, 0, np->full_name, name);
   5002}
   5003EXPORT_SYMBOL(of_clk_get_by_name);
   5004
   5005/**
   5006 * of_clk_get_parent_count() - Count the number of clocks a device node has
   5007 * @np: device node to count
   5008 *
   5009 * Returns: The number of clocks that are possible parents of this node
   5010 */
   5011unsigned int of_clk_get_parent_count(const struct device_node *np)
   5012{
   5013	int count;
   5014
   5015	count = of_count_phandle_with_args(np, "clocks", "#clock-cells");
   5016	if (count < 0)
   5017		return 0;
   5018
   5019	return count;
   5020}
   5021EXPORT_SYMBOL_GPL(of_clk_get_parent_count);
   5022
   5023const char *of_clk_get_parent_name(const struct device_node *np, int index)
   5024{
   5025	struct of_phandle_args clkspec;
   5026	struct property *prop;
   5027	const char *clk_name;
   5028	const __be32 *vp;
   5029	u32 pv;
   5030	int rc;
   5031	int count;
   5032	struct clk *clk;
   5033
   5034	rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index,
   5035					&clkspec);
   5036	if (rc)
   5037		return NULL;
   5038
   5039	index = clkspec.args_count ? clkspec.args[0] : 0;
   5040	count = 0;
   5041
   5042	/* if there is an indices property, use it to transfer the index
   5043	 * specified into an array offset for the clock-output-names property.
   5044	 */
   5045	of_property_for_each_u32(clkspec.np, "clock-indices", prop, vp, pv) {
   5046		if (index == pv) {
   5047			index = count;
   5048			break;
   5049		}
   5050		count++;
   5051	}
   5052	/* We went off the end of 'clock-indices' without finding it */
   5053	if (prop && !vp)
   5054		return NULL;
   5055
   5056	if (of_property_read_string_index(clkspec.np, "clock-output-names",
   5057					  index,
   5058					  &clk_name) < 0) {
   5059		/*
   5060		 * Best effort to get the name if the clock has been
   5061		 * registered with the framework. If the clock isn't
   5062		 * registered, we return the node name as the name of
   5063		 * the clock as long as #clock-cells = 0.
   5064		 */
   5065		clk = of_clk_get_from_provider(&clkspec);
   5066		if (IS_ERR(clk)) {
   5067			if (clkspec.args_count == 0)
   5068				clk_name = clkspec.np->name;
   5069			else
   5070				clk_name = NULL;
   5071		} else {
   5072			clk_name = __clk_get_name(clk);
   5073			clk_put(clk);
   5074		}
   5075	}
   5076
   5077
   5078	of_node_put(clkspec.np);
   5079	return clk_name;
   5080}
   5081EXPORT_SYMBOL_GPL(of_clk_get_parent_name);
   5082
   5083/**
   5084 * of_clk_parent_fill() - Fill @parents with names of @np's parents and return
   5085 * number of parents
   5086 * @np: Device node pointer associated with clock provider
   5087 * @parents: pointer to char array that hold the parents' names
   5088 * @size: size of the @parents array
   5089 *
   5090 * Return: number of parents for the clock node.
   5091 */
   5092int of_clk_parent_fill(struct device_node *np, const char **parents,
   5093		       unsigned int size)
   5094{
   5095	unsigned int i = 0;
   5096
   5097	while (i < size && (parents[i] = of_clk_get_parent_name(np, i)) != NULL)
   5098		i++;
   5099
   5100	return i;
   5101}
   5102EXPORT_SYMBOL_GPL(of_clk_parent_fill);
   5103
   5104struct clock_provider {
   5105	void (*clk_init_cb)(struct device_node *);
   5106	struct device_node *np;
   5107	struct list_head node;
   5108};
   5109
   5110/*
   5111 * This function looks for a parent clock. If there is one, then it
   5112 * checks that the provider for this parent clock was initialized, in
   5113 * this case the parent clock will be ready.
   5114 */
   5115static int parent_ready(struct device_node *np)
   5116{
   5117	int i = 0;
   5118
   5119	while (true) {
   5120		struct clk *clk = of_clk_get(np, i);
   5121
   5122		/* this parent is ready we can check the next one */
   5123		if (!IS_ERR(clk)) {
   5124			clk_put(clk);
   5125			i++;
   5126			continue;
   5127		}
   5128
   5129		/* at least one parent is not ready, we exit now */
   5130		if (PTR_ERR(clk) == -EPROBE_DEFER)
   5131			return 0;
   5132
   5133		/*
   5134		 * Here we make assumption that the device tree is
   5135		 * written correctly. So an error means that there is
   5136		 * no more parent. As we didn't exit yet, then the
   5137		 * previous parent are ready. If there is no clock
   5138		 * parent, no need to wait for them, then we can
   5139		 * consider their absence as being ready
   5140		 */
   5141		return 1;
   5142	}
   5143}
   5144
   5145/**
   5146 * of_clk_detect_critical() - set CLK_IS_CRITICAL flag from Device Tree
   5147 * @np: Device node pointer associated with clock provider
   5148 * @index: clock index
   5149 * @flags: pointer to top-level framework flags
   5150 *
   5151 * Detects if the clock-critical property exists and, if so, sets the
   5152 * corresponding CLK_IS_CRITICAL flag.
   5153 *
   5154 * Do not use this function. It exists only for legacy Device Tree
   5155 * bindings, such as the one-clock-per-node style that are outdated.
   5156 * Those bindings typically put all clock data into .dts and the Linux
   5157 * driver has no clock data, thus making it impossible to set this flag
   5158 * correctly from the driver. Only those drivers may call
   5159 * of_clk_detect_critical from their setup functions.
   5160 *
   5161 * Return: error code or zero on success
   5162 */
   5163int of_clk_detect_critical(struct device_node *np, int index,
   5164			   unsigned long *flags)
   5165{
   5166	struct property *prop;
   5167	const __be32 *cur;
   5168	uint32_t idx;
   5169
   5170	if (!np || !flags)
   5171		return -EINVAL;
   5172
   5173	of_property_for_each_u32(np, "clock-critical", prop, cur, idx)
   5174		if (index == idx)
   5175			*flags |= CLK_IS_CRITICAL;
   5176
   5177	return 0;
   5178}
   5179
   5180/**
   5181 * of_clk_init() - Scan and init clock providers from the DT
   5182 * @matches: array of compatible values and init functions for providers.
   5183 *
   5184 * This function scans the device tree for matching clock providers
   5185 * and calls their initialization functions. It also does it by trying
   5186 * to follow the dependencies.
   5187 */
   5188void __init of_clk_init(const struct of_device_id *matches)
   5189{
   5190	const struct of_device_id *match;
   5191	struct device_node *np;
   5192	struct clock_provider *clk_provider, *next;
   5193	bool is_init_done;
   5194	bool force = false;
   5195	LIST_HEAD(clk_provider_list);
   5196
   5197	if (!matches)
   5198		matches = &__clk_of_table;
   5199
   5200	/* First prepare the list of the clocks providers */
   5201	for_each_matching_node_and_match(np, matches, &match) {
   5202		struct clock_provider *parent;
   5203
   5204		if (!of_device_is_available(np))
   5205			continue;
   5206
   5207		parent = kzalloc(sizeof(*parent), GFP_KERNEL);
   5208		if (!parent) {
   5209			list_for_each_entry_safe(clk_provider, next,
   5210						 &clk_provider_list, node) {
   5211				list_del(&clk_provider->node);
   5212				of_node_put(clk_provider->np);
   5213				kfree(clk_provider);
   5214			}
   5215			of_node_put(np);
   5216			return;
   5217		}
   5218
   5219		parent->clk_init_cb = match->data;
   5220		parent->np = of_node_get(np);
   5221		list_add_tail(&parent->node, &clk_provider_list);
   5222	}
   5223
   5224	while (!list_empty(&clk_provider_list)) {
   5225		is_init_done = false;
   5226		list_for_each_entry_safe(clk_provider, next,
   5227					&clk_provider_list, node) {
   5228			if (force || parent_ready(clk_provider->np)) {
   5229
   5230				/* Don't populate platform devices */
   5231				of_node_set_flag(clk_provider->np,
   5232						 OF_POPULATED);
   5233
   5234				clk_provider->clk_init_cb(clk_provider->np);
   5235				of_clk_set_defaults(clk_provider->np, true);
   5236
   5237				list_del(&clk_provider->node);
   5238				of_node_put(clk_provider->np);
   5239				kfree(clk_provider);
   5240				is_init_done = true;
   5241			}
   5242		}
   5243
   5244		/*
   5245		 * We didn't manage to initialize any of the
   5246		 * remaining providers during the last loop, so now we
   5247		 * initialize all the remaining ones unconditionally
   5248		 * in case the clock parent was not mandatory
   5249		 */
   5250		if (!is_init_done)
   5251			force = true;
   5252	}
   5253}
   5254#endif