cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

r9a06g032-clocks.c (35091B)


      1// SPDX-License-Identifier: GPL-2.0
      2/*
      3 * R9A06G032 clock driver
      4 *
      5 * Copyright (C) 2018 Renesas Electronics Europe Limited
      6 *
      7 * Michel Pollet <michel.pollet@bp.renesas.com>, <buserror@gmail.com>
      8 */
      9
     10#include <linux/clk.h>
     11#include <linux/clk-provider.h>
     12#include <linux/delay.h>
     13#include <linux/init.h>
     14#include <linux/io.h>
     15#include <linux/kernel.h>
     16#include <linux/math64.h>
     17#include <linux/of.h>
     18#include <linux/of_address.h>
     19#include <linux/of_platform.h>
     20#include <linux/platform_device.h>
     21#include <linux/pm_clock.h>
     22#include <linux/pm_domain.h>
     23#include <linux/slab.h>
     24#include <linux/soc/renesas/r9a06g032-sysctrl.h>
     25#include <linux/spinlock.h>
     26#include <dt-bindings/clock/r9a06g032-sysctrl.h>
     27
     28#define R9A06G032_SYSCTRL_DMAMUX 0xA0
     29
     30struct r9a06g032_gate {
     31	u16 gate, reset, ready, midle,
     32		scon, mirack, mistat;
     33};
     34
     35/* This is used to describe a clock for instantiation */
     36struct r9a06g032_clkdesc {
     37	const char *name;
     38	uint32_t managed: 1;
     39	uint32_t type: 3;
     40	uint32_t index: 8;
     41	uint32_t source : 8; /* source index + 1 (0 == none) */
     42	/* these are used to populate the bitsel struct */
     43	union {
     44		struct r9a06g032_gate gate;
     45		/* for dividers */
     46		struct {
     47			unsigned int div_min : 10, div_max : 10, reg: 10;
     48			u16 div_table[4];
     49		};
     50		/* For fixed-factor ones */
     51		struct {
     52			u16 div, mul;
     53		};
     54		unsigned int factor;
     55		unsigned int frequency;
     56		/* for dual gate */
     57		struct {
     58			uint16_t group : 1, index: 3;
     59			u16 sel, g1, r1, g2, r2;
     60		} dual;
     61	};
     62};
     63
     64#define I_GATE(_clk, _rst, _rdy, _midle, _scon, _mirack, _mistat) \
     65	{ .gate = _clk, .reset = _rst, \
     66		.ready = _rdy, .midle = _midle, \
     67		.scon = _scon, .mirack = _mirack, .mistat = _mistat }
     68#define D_GATE(_idx, _n, _src, ...) \
     69	{ .type = K_GATE, .index = R9A06G032_##_idx, \
     70		.source = 1 + R9A06G032_##_src, .name = _n, \
     71		.gate = I_GATE(__VA_ARGS__) }
     72#define D_MODULE(_idx, _n, _src, ...) \
     73	{ .type = K_GATE, .index = R9A06G032_##_idx, \
     74		.source = 1 + R9A06G032_##_src, .name = _n, \
     75		.managed = 1, .gate = I_GATE(__VA_ARGS__) }
     76#define D_ROOT(_idx, _n, _mul, _div) \
     77	{ .type = K_FFC, .index = R9A06G032_##_idx, .name = _n, \
     78		.div = _div, .mul = _mul }
     79#define D_FFC(_idx, _n, _src, _div) \
     80	{ .type = K_FFC, .index = R9A06G032_##_idx, \
     81		.source = 1 + R9A06G032_##_src, .name = _n, \
     82		.div = _div, .mul = 1}
     83#define D_DIV(_idx, _n, _src, _reg, _min, _max, ...) \
     84	{ .type = K_DIV, .index = R9A06G032_##_idx, \
     85		.source = 1 + R9A06G032_##_src, .name = _n, \
     86		.reg = _reg, .div_min = _min, .div_max = _max, \
     87		.div_table = { __VA_ARGS__ } }
     88#define D_UGATE(_idx, _n, _src, _g, _gi, _g1, _r1, _g2, _r2) \
     89	{ .type = K_DUALGATE, .index = R9A06G032_##_idx, \
     90		.source = 1 + R9A06G032_##_src, .name = _n, \
     91		.dual = { .group = _g, .index = _gi, \
     92			.g1 = _g1, .r1 = _r1, .g2 = _g2, .r2 = _r2 }, }
     93
     94enum { K_GATE = 0, K_FFC, K_DIV, K_BITSEL, K_DUALGATE };
     95
     96/* Internal clock IDs */
     97#define R9A06G032_CLKOUT		0
     98#define R9A06G032_CLKOUT_D10		2
     99#define R9A06G032_CLKOUT_D16		3
    100#define R9A06G032_CLKOUT_D160		4
    101#define R9A06G032_CLKOUT_D1OR2		5
    102#define R9A06G032_CLKOUT_D20		6
    103#define R9A06G032_CLKOUT_D40		7
    104#define R9A06G032_CLKOUT_D5		8
    105#define R9A06G032_CLKOUT_D8		9
    106#define R9A06G032_DIV_ADC		10
    107#define R9A06G032_DIV_I2C		11
    108#define R9A06G032_DIV_NAND		12
    109#define R9A06G032_DIV_P1_PG		13
    110#define R9A06G032_DIV_P2_PG		14
    111#define R9A06G032_DIV_P3_PG		15
    112#define R9A06G032_DIV_P4_PG		16
    113#define R9A06G032_DIV_P5_PG		17
    114#define R9A06G032_DIV_P6_PG		18
    115#define R9A06G032_DIV_QSPI0		19
    116#define R9A06G032_DIV_QSPI1		20
    117#define R9A06G032_DIV_REF_SYNC		21
    118#define R9A06G032_DIV_SDIO0		22
    119#define R9A06G032_DIV_SDIO1		23
    120#define R9A06G032_DIV_SWITCH		24
    121#define R9A06G032_DIV_UART		25
    122#define R9A06G032_DIV_MOTOR		64
    123#define R9A06G032_CLK_DDRPHY_PLLCLK_D4	78
    124#define R9A06G032_CLK_ECAT100_D4	79
    125#define R9A06G032_CLK_HSR100_D2		80
    126#define R9A06G032_CLK_REF_SYNC_D4	81
    127#define R9A06G032_CLK_REF_SYNC_D8	82
    128#define R9A06G032_CLK_SERCOS100_D2	83
    129#define R9A06G032_DIV_CA7		84
    130
    131#define R9A06G032_UART_GROUP_012	154
    132#define R9A06G032_UART_GROUP_34567	155
    133
    134#define R9A06G032_CLOCK_COUNT		(R9A06G032_UART_GROUP_34567 + 1)
    135
    136static const struct r9a06g032_clkdesc r9a06g032_clocks[] = {
    137	D_ROOT(CLKOUT, "clkout", 25, 1),
    138	D_ROOT(CLK_PLL_USB, "clk_pll_usb", 12, 10),
    139	D_FFC(CLKOUT_D10, "clkout_d10", CLKOUT, 10),
    140	D_FFC(CLKOUT_D16, "clkout_d16", CLKOUT, 16),
    141	D_FFC(CLKOUT_D160, "clkout_d160", CLKOUT, 160),
    142	D_DIV(CLKOUT_D1OR2, "clkout_d1or2", CLKOUT, 0, 1, 2),
    143	D_FFC(CLKOUT_D20, "clkout_d20", CLKOUT, 20),
    144	D_FFC(CLKOUT_D40, "clkout_d40", CLKOUT, 40),
    145	D_FFC(CLKOUT_D5, "clkout_d5", CLKOUT, 5),
    146	D_FFC(CLKOUT_D8, "clkout_d8", CLKOUT, 8),
    147	D_DIV(DIV_ADC, "div_adc", CLKOUT, 77, 50, 250),
    148	D_DIV(DIV_I2C, "div_i2c", CLKOUT, 78, 12, 16),
    149	D_DIV(DIV_NAND, "div_nand", CLKOUT, 82, 12, 32),
    150	D_DIV(DIV_P1_PG, "div_p1_pg", CLKOUT, 68, 12, 200),
    151	D_DIV(DIV_P2_PG, "div_p2_pg", CLKOUT, 62, 12, 128),
    152	D_DIV(DIV_P3_PG, "div_p3_pg", CLKOUT, 64, 8, 128),
    153	D_DIV(DIV_P4_PG, "div_p4_pg", CLKOUT, 66, 8, 128),
    154	D_DIV(DIV_P5_PG, "div_p5_pg", CLKOUT, 71, 10, 40),
    155	D_DIV(DIV_P6_PG, "div_p6_pg", CLKOUT, 18, 12, 64),
    156	D_DIV(DIV_QSPI0, "div_qspi0", CLKOUT, 73, 3, 7),
    157	D_DIV(DIV_QSPI1, "div_qspi1", CLKOUT, 25, 3, 7),
    158	D_DIV(DIV_REF_SYNC, "div_ref_sync", CLKOUT, 56, 2, 16, 2, 4, 8, 16),
    159	D_DIV(DIV_SDIO0, "div_sdio0", CLKOUT, 74, 20, 128),
    160	D_DIV(DIV_SDIO1, "div_sdio1", CLKOUT, 75, 20, 128),
    161	D_DIV(DIV_SWITCH, "div_switch", CLKOUT, 37, 5, 40),
    162	D_DIV(DIV_UART, "div_uart", CLKOUT, 79, 12, 128),
    163	D_GATE(CLK_25_PG4, "clk_25_pg4", CLKOUT_D40, 0x749, 0x74a, 0x74b, 0, 0xae3, 0, 0),
    164	D_GATE(CLK_25_PG5, "clk_25_pg5", CLKOUT_D40, 0x74c, 0x74d, 0x74e, 0, 0xae4, 0, 0),
    165	D_GATE(CLK_25_PG6, "clk_25_pg6", CLKOUT_D40, 0x74f, 0x750, 0x751, 0, 0xae5, 0, 0),
    166	D_GATE(CLK_25_PG7, "clk_25_pg7", CLKOUT_D40, 0x752, 0x753, 0x754, 0, 0xae6, 0, 0),
    167	D_GATE(CLK_25_PG8, "clk_25_pg8", CLKOUT_D40, 0x755, 0x756, 0x757, 0, 0xae7, 0, 0),
    168	D_GATE(CLK_ADC, "clk_adc", DIV_ADC, 0x1ea, 0x1eb, 0, 0, 0, 0, 0),
    169	D_GATE(CLK_ECAT100, "clk_ecat100", CLKOUT_D10, 0x405, 0, 0, 0, 0, 0, 0),
    170	D_GATE(CLK_HSR100, "clk_hsr100", CLKOUT_D10, 0x483, 0, 0, 0, 0, 0, 0),
    171	D_GATE(CLK_I2C0, "clk_i2c0", DIV_I2C, 0x1e6, 0x1e7, 0, 0, 0, 0, 0),
    172	D_GATE(CLK_I2C1, "clk_i2c1", DIV_I2C, 0x1e8, 0x1e9, 0, 0, 0, 0, 0),
    173	D_GATE(CLK_MII_REF, "clk_mii_ref", CLKOUT_D40, 0x342, 0, 0, 0, 0, 0, 0),
    174	D_GATE(CLK_NAND, "clk_nand", DIV_NAND, 0x284, 0x285, 0, 0, 0, 0, 0),
    175	D_GATE(CLK_NOUSBP2_PG6, "clk_nousbp2_pg6", DIV_P2_PG, 0x774, 0x775, 0, 0, 0, 0, 0),
    176	D_GATE(CLK_P1_PG2, "clk_p1_pg2", DIV_P1_PG, 0x862, 0x863, 0, 0, 0, 0, 0),
    177	D_GATE(CLK_P1_PG3, "clk_p1_pg3", DIV_P1_PG, 0x864, 0x865, 0, 0, 0, 0, 0),
    178	D_GATE(CLK_P1_PG4, "clk_p1_pg4", DIV_P1_PG, 0x866, 0x867, 0, 0, 0, 0, 0),
    179	D_GATE(CLK_P4_PG3, "clk_p4_pg3", DIV_P4_PG, 0x824, 0x825, 0, 0, 0, 0, 0),
    180	D_GATE(CLK_P4_PG4, "clk_p4_pg4", DIV_P4_PG, 0x826, 0x827, 0, 0, 0, 0, 0),
    181	D_GATE(CLK_P6_PG1, "clk_p6_pg1", DIV_P6_PG, 0x8a0, 0x8a1, 0x8a2, 0, 0xb60, 0, 0),
    182	D_GATE(CLK_P6_PG2, "clk_p6_pg2", DIV_P6_PG, 0x8a3, 0x8a4, 0x8a5, 0, 0xb61, 0, 0),
    183	D_GATE(CLK_P6_PG3, "clk_p6_pg3", DIV_P6_PG, 0x8a6, 0x8a7, 0x8a8, 0, 0xb62, 0, 0),
    184	D_GATE(CLK_P6_PG4, "clk_p6_pg4", DIV_P6_PG, 0x8a9, 0x8aa, 0x8ab, 0, 0xb63, 0, 0),
    185	D_MODULE(CLK_PCI_USB, "clk_pci_usb", CLKOUT_D40, 0xe6, 0, 0, 0, 0, 0, 0),
    186	D_GATE(CLK_QSPI0, "clk_qspi0", DIV_QSPI0, 0x2a4, 0x2a5, 0, 0, 0, 0, 0),
    187	D_GATE(CLK_QSPI1, "clk_qspi1", DIV_QSPI1, 0x484, 0x485, 0, 0, 0, 0, 0),
    188	D_GATE(CLK_RGMII_REF, "clk_rgmii_ref", CLKOUT_D8, 0x340, 0, 0, 0, 0, 0, 0),
    189	D_GATE(CLK_RMII_REF, "clk_rmii_ref", CLKOUT_D20, 0x341, 0, 0, 0, 0, 0, 0),
    190	D_GATE(CLK_SDIO0, "clk_sdio0", DIV_SDIO0, 0x64, 0, 0, 0, 0, 0, 0),
    191	D_GATE(CLK_SDIO1, "clk_sdio1", DIV_SDIO1, 0x644, 0, 0, 0, 0, 0, 0),
    192	D_GATE(CLK_SERCOS100, "clk_sercos100", CLKOUT_D10, 0x425, 0, 0, 0, 0, 0, 0),
    193	D_GATE(CLK_SLCD, "clk_slcd", DIV_P1_PG, 0x860, 0x861, 0, 0, 0, 0, 0),
    194	D_GATE(CLK_SPI0, "clk_spi0", DIV_P3_PG, 0x7e0, 0x7e1, 0, 0, 0, 0, 0),
    195	D_GATE(CLK_SPI1, "clk_spi1", DIV_P3_PG, 0x7e2, 0x7e3, 0, 0, 0, 0, 0),
    196	D_GATE(CLK_SPI2, "clk_spi2", DIV_P3_PG, 0x7e4, 0x7e5, 0, 0, 0, 0, 0),
    197	D_GATE(CLK_SPI3, "clk_spi3", DIV_P3_PG, 0x7e6, 0x7e7, 0, 0, 0, 0, 0),
    198	D_GATE(CLK_SPI4, "clk_spi4", DIV_P4_PG, 0x820, 0x821, 0, 0, 0, 0, 0),
    199	D_GATE(CLK_SPI5, "clk_spi5", DIV_P4_PG, 0x822, 0x823, 0, 0, 0, 0, 0),
    200	D_GATE(CLK_SWITCH, "clk_switch", DIV_SWITCH, 0x982, 0x983, 0, 0, 0, 0, 0),
    201	D_DIV(DIV_MOTOR, "div_motor", CLKOUT_D5, 84, 2, 8),
    202	D_MODULE(HCLK_ECAT125, "hclk_ecat125", CLKOUT_D8, 0x400, 0x401, 0, 0x402, 0, 0x440, 0x441),
    203	D_MODULE(HCLK_PINCONFIG, "hclk_pinconfig", CLKOUT_D40, 0x740, 0x741, 0x742, 0, 0xae0, 0, 0),
    204	D_MODULE(HCLK_SERCOS, "hclk_sercos", CLKOUT_D10, 0x420, 0x422, 0, 0x421, 0, 0x460, 0x461),
    205	D_MODULE(HCLK_SGPIO2, "hclk_sgpio2", DIV_P5_PG, 0x8c3, 0x8c4, 0x8c5, 0, 0xb41, 0, 0),
    206	D_MODULE(HCLK_SGPIO3, "hclk_sgpio3", DIV_P5_PG, 0x8c6, 0x8c7, 0x8c8, 0, 0xb42, 0, 0),
    207	D_MODULE(HCLK_SGPIO4, "hclk_sgpio4", DIV_P5_PG, 0x8c9, 0x8ca, 0x8cb, 0, 0xb43, 0, 0),
    208	D_MODULE(HCLK_TIMER0, "hclk_timer0", CLKOUT_D40, 0x743, 0x744, 0x745, 0, 0xae1, 0, 0),
    209	D_MODULE(HCLK_TIMER1, "hclk_timer1", CLKOUT_D40, 0x746, 0x747, 0x748, 0, 0xae2, 0, 0),
    210	D_MODULE(HCLK_USBF, "hclk_usbf", CLKOUT_D8, 0xe3, 0, 0, 0xe4, 0, 0x102, 0x103),
    211	D_MODULE(HCLK_USBH, "hclk_usbh", CLKOUT_D8, 0xe0, 0xe1, 0, 0xe2, 0, 0x100, 0x101),
    212	D_MODULE(HCLK_USBPM, "hclk_usbpm", CLKOUT_D8, 0xe5, 0, 0, 0, 0, 0, 0),
    213	D_GATE(CLK_48_PG_F, "clk_48_pg_f", CLK_48, 0x78c, 0x78d, 0, 0x78e, 0, 0xb04, 0xb05),
    214	D_GATE(CLK_48_PG4, "clk_48_pg4", CLK_48, 0x789, 0x78a, 0x78b, 0, 0xb03, 0, 0),
    215	D_FFC(CLK_DDRPHY_PLLCLK_D4, "clk_ddrphy_pllclk_d4", CLK_DDRPHY_PLLCLK, 4),
    216	D_FFC(CLK_ECAT100_D4, "clk_ecat100_d4", CLK_ECAT100, 4),
    217	D_FFC(CLK_HSR100_D2, "clk_hsr100_d2", CLK_HSR100, 2),
    218	D_FFC(CLK_REF_SYNC_D4, "clk_ref_sync_d4", CLK_REF_SYNC, 4),
    219	D_FFC(CLK_REF_SYNC_D8, "clk_ref_sync_d8", CLK_REF_SYNC, 8),
    220	D_FFC(CLK_SERCOS100_D2, "clk_sercos100_d2", CLK_SERCOS100, 2),
    221	D_DIV(DIV_CA7, "div_ca7", CLK_REF_SYNC, 57, 1, 4, 1, 2, 4),
    222	D_MODULE(HCLK_CAN0, "hclk_can0", CLK_48, 0x783, 0x784, 0x785, 0, 0xb01, 0, 0),
    223	D_MODULE(HCLK_CAN1, "hclk_can1", CLK_48, 0x786, 0x787, 0x788, 0, 0xb02, 0, 0),
    224	D_MODULE(HCLK_DELTASIGMA, "hclk_deltasigma", DIV_MOTOR, 0x1ef, 0x1f0, 0x1f1, 0, 0, 0, 0),
    225	D_MODULE(HCLK_PWMPTO, "hclk_pwmpto", DIV_MOTOR, 0x1ec, 0x1ed, 0x1ee, 0, 0, 0, 0),
    226	D_MODULE(HCLK_RSV, "hclk_rsv", CLK_48, 0x780, 0x781, 0x782, 0, 0xb00, 0, 0),
    227	D_MODULE(HCLK_SGPIO0, "hclk_sgpio0", DIV_MOTOR, 0x1e0, 0x1e1, 0x1e2, 0, 0, 0, 0),
    228	D_MODULE(HCLK_SGPIO1, "hclk_sgpio1", DIV_MOTOR, 0x1e3, 0x1e4, 0x1e5, 0, 0, 0, 0),
    229	D_DIV(RTOS_MDC, "rtos_mdc", CLK_REF_SYNC, 100, 80, 640, 80, 160, 320, 640),
    230	D_GATE(CLK_CM3, "clk_cm3", CLK_REF_SYNC_D4, 0xba0, 0xba1, 0, 0xba2, 0, 0xbc0, 0xbc1),
    231	D_GATE(CLK_DDRC, "clk_ddrc", CLK_DDRPHY_PLLCLK_D4, 0x323, 0x324, 0, 0, 0, 0, 0),
    232	D_GATE(CLK_ECAT25, "clk_ecat25", CLK_ECAT100_D4, 0x403, 0x404, 0, 0, 0, 0, 0),
    233	D_GATE(CLK_HSR50, "clk_hsr50", CLK_HSR100_D2, 0x484, 0x485, 0, 0, 0, 0, 0),
    234	D_GATE(CLK_HW_RTOS, "clk_hw_rtos", CLK_REF_SYNC_D4, 0xc60, 0xc61, 0, 0, 0, 0, 0),
    235	D_GATE(CLK_SERCOS50, "clk_sercos50", CLK_SERCOS100_D2, 0x424, 0x423, 0, 0, 0, 0, 0),
    236	D_MODULE(HCLK_ADC, "hclk_adc", CLK_REF_SYNC_D8, 0x1af, 0x1b0, 0x1b1, 0, 0, 0, 0),
    237	D_MODULE(HCLK_CM3, "hclk_cm3", CLK_REF_SYNC_D4, 0xc20, 0xc21, 0xc22, 0, 0, 0, 0),
    238	D_MODULE(HCLK_CRYPTO_EIP150, "hclk_crypto_eip150", CLK_REF_SYNC_D4, 0x123, 0x124, 0x125, 0, 0x142, 0, 0),
    239	D_MODULE(HCLK_CRYPTO_EIP93, "hclk_crypto_eip93", CLK_REF_SYNC_D4, 0x120, 0x121, 0, 0x122, 0, 0x140, 0x141),
    240	D_MODULE(HCLK_DDRC, "hclk_ddrc", CLK_REF_SYNC_D4, 0x320, 0x322, 0, 0x321, 0, 0x3a0, 0x3a1),
    241	D_MODULE(HCLK_DMA0, "hclk_dma0", CLK_REF_SYNC_D4, 0x260, 0x261, 0x262, 0x263, 0x2c0, 0x2c1, 0x2c2),
    242	D_MODULE(HCLK_DMA1, "hclk_dma1", CLK_REF_SYNC_D4, 0x264, 0x265, 0x266, 0x267, 0x2c3, 0x2c4, 0x2c5),
    243	D_MODULE(HCLK_GMAC0, "hclk_gmac0", CLK_REF_SYNC_D4, 0x360, 0x361, 0x362, 0x363, 0x3c0, 0x3c1, 0x3c2),
    244	D_MODULE(HCLK_GMAC1, "hclk_gmac1", CLK_REF_SYNC_D4, 0x380, 0x381, 0x382, 0x383, 0x3e0, 0x3e1, 0x3e2),
    245	D_MODULE(HCLK_GPIO0, "hclk_gpio0", CLK_REF_SYNC_D4, 0x212, 0x213, 0x214, 0, 0, 0, 0),
    246	D_MODULE(HCLK_GPIO1, "hclk_gpio1", CLK_REF_SYNC_D4, 0x215, 0x216, 0x217, 0, 0, 0, 0),
    247	D_MODULE(HCLK_GPIO2, "hclk_gpio2", CLK_REF_SYNC_D4, 0x229, 0x22a, 0x22b, 0, 0, 0, 0),
    248	D_MODULE(HCLK_HSR, "hclk_hsr", CLK_HSR100_D2, 0x480, 0x482, 0, 0x481, 0, 0x4c0, 0x4c1),
    249	D_MODULE(HCLK_I2C0, "hclk_i2c0", CLK_REF_SYNC_D8, 0x1a9, 0x1aa, 0x1ab, 0, 0, 0, 0),
    250	D_MODULE(HCLK_I2C1, "hclk_i2c1", CLK_REF_SYNC_D8, 0x1ac, 0x1ad, 0x1ae, 0, 0, 0, 0),
    251	D_MODULE(HCLK_LCD, "hclk_lcd", CLK_REF_SYNC_D4, 0x7a0, 0x7a1, 0x7a2, 0, 0xb20, 0, 0),
    252	D_MODULE(HCLK_MSEBI_M, "hclk_msebi_m", CLK_REF_SYNC_D4, 0x164, 0x165, 0x166, 0, 0x183, 0, 0),
    253	D_MODULE(HCLK_MSEBI_S, "hclk_msebi_s", CLK_REF_SYNC_D4, 0x160, 0x161, 0x162, 0x163, 0x180, 0x181, 0x182),
    254	D_MODULE(HCLK_NAND, "hclk_nand", CLK_REF_SYNC_D4, 0x280, 0x281, 0x282, 0x283, 0x2e0, 0x2e1, 0x2e2),
    255	D_MODULE(HCLK_PG_I, "hclk_pg_i", CLK_REF_SYNC_D4, 0x7ac, 0x7ad, 0, 0x7ae, 0, 0xb24, 0xb25),
    256	D_MODULE(HCLK_PG19, "hclk_pg19", CLK_REF_SYNC_D4, 0x22c, 0x22d, 0x22e, 0, 0, 0, 0),
    257	D_MODULE(HCLK_PG20, "hclk_pg20", CLK_REF_SYNC_D4, 0x22f, 0x230, 0x231, 0, 0, 0, 0),
    258	D_MODULE(HCLK_PG3, "hclk_pg3", CLK_REF_SYNC_D4, 0x7a6, 0x7a7, 0x7a8, 0, 0xb22, 0, 0),
    259	D_MODULE(HCLK_PG4, "hclk_pg4", CLK_REF_SYNC_D4, 0x7a9, 0x7aa, 0x7ab, 0, 0xb23, 0, 0),
    260	D_MODULE(HCLK_QSPI0, "hclk_qspi0", CLK_REF_SYNC_D4, 0x2a0, 0x2a1, 0x2a2, 0x2a3, 0x300, 0x301, 0x302),
    261	D_MODULE(HCLK_QSPI1, "hclk_qspi1", CLK_REF_SYNC_D4, 0x480, 0x481, 0x482, 0x483, 0x4c0, 0x4c1, 0x4c2),
    262	D_MODULE(HCLK_ROM, "hclk_rom", CLK_REF_SYNC_D4, 0xaa0, 0xaa1, 0xaa2, 0, 0xb80, 0, 0),
    263	D_MODULE(HCLK_RTC, "hclk_rtc", CLK_REF_SYNC_D8, 0xa00, 0xa03, 0, 0xa02, 0, 0, 0),
    264	D_MODULE(HCLK_SDIO0, "hclk_sdio0", CLK_REF_SYNC_D4, 0x60, 0x61, 0x62, 0x63, 0x80, 0x81, 0x82),
    265	D_MODULE(HCLK_SDIO1, "hclk_sdio1", CLK_REF_SYNC_D4, 0x640, 0x641, 0x642, 0x643, 0x660, 0x661, 0x662),
    266	D_MODULE(HCLK_SEMAP, "hclk_semap", CLK_REF_SYNC_D4, 0x7a3, 0x7a4, 0x7a5, 0, 0xb21, 0, 0),
    267	D_MODULE(HCLK_SPI0, "hclk_spi0", CLK_REF_SYNC_D4, 0x200, 0x201, 0x202, 0, 0, 0, 0),
    268	D_MODULE(HCLK_SPI1, "hclk_spi1", CLK_REF_SYNC_D4, 0x203, 0x204, 0x205, 0, 0, 0, 0),
    269	D_MODULE(HCLK_SPI2, "hclk_spi2", CLK_REF_SYNC_D4, 0x206, 0x207, 0x208, 0, 0, 0, 0),
    270	D_MODULE(HCLK_SPI3, "hclk_spi3", CLK_REF_SYNC_D4, 0x209, 0x20a, 0x20b, 0, 0, 0, 0),
    271	D_MODULE(HCLK_SPI4, "hclk_spi4", CLK_REF_SYNC_D4, 0x20c, 0x20d, 0x20e, 0, 0, 0, 0),
    272	D_MODULE(HCLK_SPI5, "hclk_spi5", CLK_REF_SYNC_D4, 0x20f, 0x210, 0x211, 0, 0, 0, 0),
    273	D_MODULE(HCLK_SWITCH, "hclk_switch", CLK_REF_SYNC_D4, 0x980, 0, 0x981, 0, 0, 0, 0),
    274	D_MODULE(HCLK_SWITCH_RG, "hclk_switch_rg", CLK_REF_SYNC_D4, 0xc40, 0xc41, 0xc42, 0, 0, 0, 0),
    275	D_MODULE(HCLK_UART0, "hclk_uart0", CLK_REF_SYNC_D8, 0x1a0, 0x1a1, 0x1a2, 0, 0, 0, 0),
    276	D_MODULE(HCLK_UART1, "hclk_uart1", CLK_REF_SYNC_D8, 0x1a3, 0x1a4, 0x1a5, 0, 0, 0, 0),
    277	D_MODULE(HCLK_UART2, "hclk_uart2", CLK_REF_SYNC_D8, 0x1a6, 0x1a7, 0x1a8, 0, 0, 0, 0),
    278	D_MODULE(HCLK_UART3, "hclk_uart3", CLK_REF_SYNC_D4, 0x218, 0x219, 0x21a, 0, 0, 0, 0),
    279	D_MODULE(HCLK_UART4, "hclk_uart4", CLK_REF_SYNC_D4, 0x21b, 0x21c, 0x21d, 0, 0, 0, 0),
    280	D_MODULE(HCLK_UART5, "hclk_uart5", CLK_REF_SYNC_D4, 0x220, 0x221, 0x222, 0, 0, 0, 0),
    281	D_MODULE(HCLK_UART6, "hclk_uart6", CLK_REF_SYNC_D4, 0x223, 0x224, 0x225, 0, 0, 0, 0),
    282	D_MODULE(HCLK_UART7, "hclk_uart7", CLK_REF_SYNC_D4, 0x226, 0x227, 0x228, 0, 0, 0, 0),
    283	/*
    284	 * These are not hardware clocks, but are needed to handle the special
    285	 * case where we have a 'selector bit' that doesn't just change the
    286	 * parent for a clock, but also the gate it's supposed to use.
    287	 */
    288	{
    289		.index = R9A06G032_UART_GROUP_012,
    290		.name = "uart_group_012",
    291		.type = K_BITSEL,
    292		.source = 1 + R9A06G032_DIV_UART,
    293		/* R9A06G032_SYSCTRL_REG_PWRCTRL_PG1_PR2 */
    294		.dual.sel = ((0xec / 4) << 5) | 24,
    295		.dual.group = 0,
    296	},
    297	{
    298		.index = R9A06G032_UART_GROUP_34567,
    299		.name = "uart_group_34567",
    300		.type = K_BITSEL,
    301		.source = 1 + R9A06G032_DIV_P2_PG,
    302		/* R9A06G032_SYSCTRL_REG_PWRCTRL_PG0_0 */
    303		.dual.sel = ((0x34 / 4) << 5) | 30,
    304		.dual.group = 1,
    305	},
    306	D_UGATE(CLK_UART0, "clk_uart0", UART_GROUP_012, 0, 0, 0x1b2, 0x1b3, 0x1b4, 0x1b5),
    307	D_UGATE(CLK_UART1, "clk_uart1", UART_GROUP_012, 0, 1, 0x1b6, 0x1b7, 0x1b8, 0x1b9),
    308	D_UGATE(CLK_UART2, "clk_uart2", UART_GROUP_012, 0, 2, 0x1ba, 0x1bb, 0x1bc, 0x1bd),
    309	D_UGATE(CLK_UART3, "clk_uart3", UART_GROUP_34567, 1, 0, 0x760, 0x761, 0x762, 0x763),
    310	D_UGATE(CLK_UART4, "clk_uart4", UART_GROUP_34567, 1, 1, 0x764, 0x765, 0x766, 0x767),
    311	D_UGATE(CLK_UART5, "clk_uart5", UART_GROUP_34567, 1, 2, 0x768, 0x769, 0x76a, 0x76b),
    312	D_UGATE(CLK_UART6, "clk_uart6", UART_GROUP_34567, 1, 3, 0x76c, 0x76d, 0x76e, 0x76f),
    313	D_UGATE(CLK_UART7, "clk_uart7", UART_GROUP_34567, 1, 4, 0x770, 0x771, 0x772, 0x773),
    314};
    315
    316struct r9a06g032_priv {
    317	struct clk_onecell_data data;
    318	spinlock_t lock; /* protects concurrent access to gates */
    319	void __iomem *reg;
    320};
    321
    322static struct r9a06g032_priv *sysctrl_priv;
    323
    324/* Exported helper to access the DMAMUX register */
    325int r9a06g032_sysctrl_set_dmamux(u32 mask, u32 val)
    326{
    327	unsigned long flags;
    328	u32 dmamux;
    329
    330	if (!sysctrl_priv)
    331		return -EPROBE_DEFER;
    332
    333	spin_lock_irqsave(&sysctrl_priv->lock, flags);
    334
    335	dmamux = readl(sysctrl_priv->reg + R9A06G032_SYSCTRL_DMAMUX);
    336	dmamux &= ~mask;
    337	dmamux |= val & mask;
    338	writel(dmamux, sysctrl_priv->reg + R9A06G032_SYSCTRL_DMAMUX);
    339
    340	spin_unlock_irqrestore(&sysctrl_priv->lock, flags);
    341
    342	return 0;
    343}
    344EXPORT_SYMBOL_GPL(r9a06g032_sysctrl_set_dmamux);
    345
    346/* register/bit pairs are encoded as an uint16_t */
    347static void
    348clk_rdesc_set(struct r9a06g032_priv *clocks,
    349	      u16 one, unsigned int on)
    350{
    351	u32 __iomem *reg = clocks->reg + (4 * (one >> 5));
    352	u32 val = readl(reg);
    353
    354	val = (val & ~(1U << (one & 0x1f))) | ((!!on) << (one & 0x1f));
    355	writel(val, reg);
    356}
    357
    358static int
    359clk_rdesc_get(struct r9a06g032_priv *clocks,
    360	      uint16_t one)
    361{
    362	u32 __iomem *reg = clocks->reg + (4 * (one >> 5));
    363	u32 val = readl(reg);
    364
    365	return !!(val & (1U << (one & 0x1f)));
    366}
    367
    368/*
    369 * This implements the R9A06G032 clock gate 'driver'. We cannot use the system's
    370 * clock gate framework as the gates on the R9A06G032 have a special enabling
    371 * sequence, therefore we use this little proxy.
    372 */
    373struct r9a06g032_clk_gate {
    374	struct clk_hw hw;
    375	struct r9a06g032_priv *clocks;
    376	u16 index;
    377
    378	struct r9a06g032_gate gate;
    379};
    380
    381#define to_r9a06g032_gate(_hw) container_of(_hw, struct r9a06g032_clk_gate, hw)
    382
    383static int create_add_module_clock(struct of_phandle_args *clkspec,
    384				   struct device *dev)
    385{
    386	struct clk *clk;
    387	int error;
    388
    389	clk = of_clk_get_from_provider(clkspec);
    390	if (IS_ERR(clk))
    391		return PTR_ERR(clk);
    392
    393	error = pm_clk_create(dev);
    394	if (error) {
    395		clk_put(clk);
    396		return error;
    397	}
    398
    399	error = pm_clk_add_clk(dev, clk);
    400	if (error) {
    401		pm_clk_destroy(dev);
    402		clk_put(clk);
    403	}
    404
    405	return error;
    406}
    407
    408static int r9a06g032_attach_dev(struct generic_pm_domain *pd,
    409				struct device *dev)
    410{
    411	struct device_node *np = dev->of_node;
    412	struct of_phandle_args clkspec;
    413	int i = 0;
    414	int error;
    415	int index;
    416
    417	while (!of_parse_phandle_with_args(np, "clocks", "#clock-cells", i,
    418					   &clkspec)) {
    419		if (clkspec.np != pd->dev.of_node)
    420			continue;
    421
    422		index = clkspec.args[0];
    423		if (index < R9A06G032_CLOCK_COUNT &&
    424		    r9a06g032_clocks[index].managed) {
    425			error = create_add_module_clock(&clkspec, dev);
    426			of_node_put(clkspec.np);
    427			if (error)
    428				return error;
    429		}
    430		i++;
    431	}
    432
    433	return 0;
    434}
    435
    436static void r9a06g032_detach_dev(struct generic_pm_domain *unused, struct device *dev)
    437{
    438	if (!pm_clk_no_clocks(dev))
    439		pm_clk_destroy(dev);
    440}
    441
    442static int r9a06g032_add_clk_domain(struct device *dev)
    443{
    444	struct device_node *np = dev->of_node;
    445	struct generic_pm_domain *pd;
    446
    447	pd = devm_kzalloc(dev, sizeof(*pd), GFP_KERNEL);
    448	if (!pd)
    449		return -ENOMEM;
    450
    451	pd->name = np->name;
    452	pd->flags = GENPD_FLAG_PM_CLK | GENPD_FLAG_ALWAYS_ON |
    453		    GENPD_FLAG_ACTIVE_WAKEUP;
    454	pd->attach_dev = r9a06g032_attach_dev;
    455	pd->detach_dev = r9a06g032_detach_dev;
    456	pm_genpd_init(pd, &pm_domain_always_on_gov, false);
    457
    458	of_genpd_add_provider_simple(np, pd);
    459	return 0;
    460}
    461
    462static void
    463r9a06g032_clk_gate_set(struct r9a06g032_priv *clocks,
    464		       struct r9a06g032_gate *g, int on)
    465{
    466	unsigned long flags;
    467
    468	WARN_ON(!g->gate);
    469
    470	spin_lock_irqsave(&clocks->lock, flags);
    471	clk_rdesc_set(clocks, g->gate, on);
    472	/* De-assert reset */
    473	if (g->reset)
    474		clk_rdesc_set(clocks, g->reset, 1);
    475	spin_unlock_irqrestore(&clocks->lock, flags);
    476
    477	/* Hardware manual recommends 5us delay after enabling clock & reset */
    478	udelay(5);
    479
    480	/* If the peripheral is memory mapped (i.e. an AXI slave), there is an
    481	 * associated SLVRDY bit in the System Controller that needs to be set
    482	 * so that the FlexWAY bus fabric passes on the read/write requests.
    483	 */
    484	if (g->ready || g->midle) {
    485		spin_lock_irqsave(&clocks->lock, flags);
    486		if (g->ready)
    487			clk_rdesc_set(clocks, g->ready, on);
    488		/* Clear 'Master Idle Request' bit */
    489		if (g->midle)
    490			clk_rdesc_set(clocks, g->midle, !on);
    491		spin_unlock_irqrestore(&clocks->lock, flags);
    492	}
    493	/* Note: We don't wait for FlexWAY Socket Connection signal */
    494}
    495
    496static int r9a06g032_clk_gate_enable(struct clk_hw *hw)
    497{
    498	struct r9a06g032_clk_gate *g = to_r9a06g032_gate(hw);
    499
    500	r9a06g032_clk_gate_set(g->clocks, &g->gate, 1);
    501	return 0;
    502}
    503
    504static void r9a06g032_clk_gate_disable(struct clk_hw *hw)
    505{
    506	struct r9a06g032_clk_gate *g = to_r9a06g032_gate(hw);
    507
    508	r9a06g032_clk_gate_set(g->clocks, &g->gate, 0);
    509}
    510
    511static int r9a06g032_clk_gate_is_enabled(struct clk_hw *hw)
    512{
    513	struct r9a06g032_clk_gate *g = to_r9a06g032_gate(hw);
    514
    515	/* if clock is in reset, the gate might be on, and still not 'be' on */
    516	if (g->gate.reset && !clk_rdesc_get(g->clocks, g->gate.reset))
    517		return 0;
    518
    519	return clk_rdesc_get(g->clocks, g->gate.gate);
    520}
    521
    522static const struct clk_ops r9a06g032_clk_gate_ops = {
    523	.enable = r9a06g032_clk_gate_enable,
    524	.disable = r9a06g032_clk_gate_disable,
    525	.is_enabled = r9a06g032_clk_gate_is_enabled,
    526};
    527
    528static struct clk *
    529r9a06g032_register_gate(struct r9a06g032_priv *clocks,
    530			const char *parent_name,
    531			const struct r9a06g032_clkdesc *desc)
    532{
    533	struct clk *clk;
    534	struct r9a06g032_clk_gate *g;
    535	struct clk_init_data init = {};
    536
    537	g = kzalloc(sizeof(*g), GFP_KERNEL);
    538	if (!g)
    539		return NULL;
    540
    541	init.name = desc->name;
    542	init.ops = &r9a06g032_clk_gate_ops;
    543	init.flags = CLK_SET_RATE_PARENT;
    544	init.parent_names = parent_name ? &parent_name : NULL;
    545	init.num_parents = parent_name ? 1 : 0;
    546
    547	g->clocks = clocks;
    548	g->index = desc->index;
    549	g->gate = desc->gate;
    550	g->hw.init = &init;
    551
    552	/*
    553	 * important here, some clocks are already in use by the CM3, we
    554	 * have to assume they are not Linux's to play with and try to disable
    555	 * at the end of the boot!
    556	 */
    557	if (r9a06g032_clk_gate_is_enabled(&g->hw)) {
    558		init.flags |= CLK_IS_CRITICAL;
    559		pr_debug("%s was enabled, making read-only\n", desc->name);
    560	}
    561
    562	clk = clk_register(NULL, &g->hw);
    563	if (IS_ERR(clk)) {
    564		kfree(g);
    565		return NULL;
    566	}
    567	return clk;
    568}
    569
    570struct r9a06g032_clk_div {
    571	struct clk_hw hw;
    572	struct r9a06g032_priv *clocks;
    573	u16 index;
    574	u16 reg;
    575	u16 min, max;
    576	u8 table_size;
    577	u16 table[8];	/* we know there are no more than 8 */
    578};
    579
    580#define to_r9a06g032_div(_hw) \
    581		container_of(_hw, struct r9a06g032_clk_div, hw)
    582
    583static unsigned long
    584r9a06g032_div_recalc_rate(struct clk_hw *hw,
    585			  unsigned long parent_rate)
    586{
    587	struct r9a06g032_clk_div *clk = to_r9a06g032_div(hw);
    588	u32 __iomem *reg = clk->clocks->reg + (4 * clk->reg);
    589	u32 div = readl(reg);
    590
    591	if (div < clk->min)
    592		div = clk->min;
    593	else if (div > clk->max)
    594		div = clk->max;
    595	return DIV_ROUND_UP(parent_rate, div);
    596}
    597
    598/*
    599 * Attempts to find a value that is in range of min,max,
    600 * and if a table of set dividers was specified for this
    601 * register, try to find the fixed divider that is the closest
    602 * to the target frequency
    603 */
    604static long
    605r9a06g032_div_clamp_div(struct r9a06g032_clk_div *clk,
    606			unsigned long rate, unsigned long prate)
    607{
    608	/* + 1 to cope with rates that have the remainder dropped */
    609	u32 div = DIV_ROUND_UP(prate, rate + 1);
    610	int i;
    611
    612	if (div <= clk->min)
    613		return clk->min;
    614	if (div >= clk->max)
    615		return clk->max;
    616
    617	for (i = 0; clk->table_size && i < clk->table_size - 1; i++) {
    618		if (div >= clk->table[i] && div <= clk->table[i + 1]) {
    619			unsigned long m = rate -
    620				DIV_ROUND_UP(prate, clk->table[i]);
    621			unsigned long p =
    622				DIV_ROUND_UP(prate, clk->table[i + 1]) -
    623				rate;
    624			/*
    625			 * select the divider that generates
    626			 * the value closest to the ideal frequency
    627			 */
    628			div = p >= m ? clk->table[i] : clk->table[i + 1];
    629			return div;
    630		}
    631	}
    632	return div;
    633}
    634
    635static int
    636r9a06g032_div_determine_rate(struct clk_hw *hw, struct clk_rate_request *req)
    637{
    638	struct r9a06g032_clk_div *clk = to_r9a06g032_div(hw);
    639	u32 div = DIV_ROUND_UP(req->best_parent_rate, req->rate);
    640
    641	pr_devel("%s %pC %ld (prate %ld) (wanted div %u)\n", __func__,
    642		 hw->clk, req->rate, req->best_parent_rate, div);
    643	pr_devel("   min %d (%ld) max %d (%ld)\n",
    644		 clk->min, DIV_ROUND_UP(req->best_parent_rate, clk->min),
    645		 clk->max, DIV_ROUND_UP(req->best_parent_rate, clk->max));
    646
    647	div = r9a06g032_div_clamp_div(clk, req->rate, req->best_parent_rate);
    648	/*
    649	 * this is a hack. Currently the serial driver asks for a clock rate
    650	 * that is 16 times the baud rate -- and that is wildly outside the
    651	 * range of the UART divider, somehow there is no provision for that
    652	 * case of 'let the divider as is if outside range'.
    653	 * The serial driver *shouldn't* play with these clocks anyway, there's
    654	 * several uarts attached to this divider, and changing this impacts
    655	 * everyone.
    656	 */
    657	if (clk->index == R9A06G032_DIV_UART ||
    658	    clk->index == R9A06G032_DIV_P2_PG) {
    659		pr_devel("%s div uart hack!\n", __func__);
    660		req->rate = clk_get_rate(hw->clk);
    661		return 0;
    662	}
    663	req->rate = DIV_ROUND_UP(req->best_parent_rate, div);
    664	pr_devel("%s %pC %ld / %u = %ld\n", __func__, hw->clk,
    665		 req->best_parent_rate, div, req->rate);
    666	return 0;
    667}
    668
    669static int
    670r9a06g032_div_set_rate(struct clk_hw *hw,
    671		       unsigned long rate, unsigned long parent_rate)
    672{
    673	struct r9a06g032_clk_div *clk = to_r9a06g032_div(hw);
    674	/* + 1 to cope with rates that have the remainder dropped */
    675	u32 div = DIV_ROUND_UP(parent_rate, rate + 1);
    676	u32 __iomem *reg = clk->clocks->reg + (4 * clk->reg);
    677
    678	pr_devel("%s %pC rate %ld parent %ld div %d\n", __func__, hw->clk,
    679		 rate, parent_rate, div);
    680
    681	/*
    682	 * Need to write the bit 31 with the divider value to
    683	 * latch it. Technically we should wait until it has been
    684	 * cleared too.
    685	 * TODO: Find whether this callback is sleepable, in case
    686	 * the hardware /does/ require some sort of spinloop here.
    687	 */
    688	writel(div | BIT(31), reg);
    689
    690	return 0;
    691}
    692
    693static const struct clk_ops r9a06g032_clk_div_ops = {
    694	.recalc_rate = r9a06g032_div_recalc_rate,
    695	.determine_rate = r9a06g032_div_determine_rate,
    696	.set_rate = r9a06g032_div_set_rate,
    697};
    698
    699static struct clk *
    700r9a06g032_register_div(struct r9a06g032_priv *clocks,
    701		       const char *parent_name,
    702		       const struct r9a06g032_clkdesc *desc)
    703{
    704	struct r9a06g032_clk_div *div;
    705	struct clk *clk;
    706	struct clk_init_data init = {};
    707	unsigned int i;
    708
    709	div = kzalloc(sizeof(*div), GFP_KERNEL);
    710	if (!div)
    711		return NULL;
    712
    713	init.name = desc->name;
    714	init.ops = &r9a06g032_clk_div_ops;
    715	init.flags = CLK_SET_RATE_PARENT;
    716	init.parent_names = parent_name ? &parent_name : NULL;
    717	init.num_parents = parent_name ? 1 : 0;
    718
    719	div->clocks = clocks;
    720	div->index = desc->index;
    721	div->reg = desc->reg;
    722	div->hw.init = &init;
    723	div->min = desc->div_min;
    724	div->max = desc->div_max;
    725	/* populate (optional) divider table fixed values */
    726	for (i = 0; i < ARRAY_SIZE(div->table) &&
    727	     i < ARRAY_SIZE(desc->div_table) && desc->div_table[i]; i++) {
    728		div->table[div->table_size++] = desc->div_table[i];
    729	}
    730
    731	clk = clk_register(NULL, &div->hw);
    732	if (IS_ERR(clk)) {
    733		kfree(div);
    734		return NULL;
    735	}
    736	return clk;
    737}
    738
    739/*
    740 * This clock provider handles the case of the R9A06G032 where you have
    741 * peripherals that have two potential clock source and two gates, one for
    742 * each of the clock source - the used clock source (for all sub clocks)
    743 * is selected by a single bit.
    744 * That single bit affects all sub-clocks, and therefore needs to change the
    745 * active gate (and turn the others off) and force a recalculation of the rates.
    746 *
    747 * This implements two clock providers, one 'bitselect' that
    748 * handles the switch between both parents, and another 'dualgate'
    749 * that knows which gate to poke at, depending on the parent's bit position.
    750 */
    751struct r9a06g032_clk_bitsel {
    752	struct clk_hw	hw;
    753	struct r9a06g032_priv *clocks;
    754	u16 index;
    755	u16 selector;		/* selector register + bit */
    756};
    757
    758#define to_clk_bitselect(_hw) \
    759		container_of(_hw, struct r9a06g032_clk_bitsel, hw)
    760
    761static u8 r9a06g032_clk_mux_get_parent(struct clk_hw *hw)
    762{
    763	struct r9a06g032_clk_bitsel *set = to_clk_bitselect(hw);
    764
    765	return clk_rdesc_get(set->clocks, set->selector);
    766}
    767
    768static int r9a06g032_clk_mux_set_parent(struct clk_hw *hw, u8 index)
    769{
    770	struct r9a06g032_clk_bitsel *set = to_clk_bitselect(hw);
    771
    772	/* a single bit in the register selects one of two parent clocks */
    773	clk_rdesc_set(set->clocks, set->selector, !!index);
    774
    775	return 0;
    776}
    777
    778static const struct clk_ops clk_bitselect_ops = {
    779	.get_parent = r9a06g032_clk_mux_get_parent,
    780	.set_parent = r9a06g032_clk_mux_set_parent,
    781};
    782
    783static struct clk *
    784r9a06g032_register_bitsel(struct r9a06g032_priv *clocks,
    785			  const char *parent_name,
    786			  const struct r9a06g032_clkdesc *desc)
    787{
    788	struct clk *clk;
    789	struct r9a06g032_clk_bitsel *g;
    790	struct clk_init_data init = {};
    791	const char *names[2];
    792
    793	/* allocate the gate */
    794	g = kzalloc(sizeof(*g), GFP_KERNEL);
    795	if (!g)
    796		return NULL;
    797
    798	names[0] = parent_name;
    799	names[1] = "clk_pll_usb";
    800
    801	init.name = desc->name;
    802	init.ops = &clk_bitselect_ops;
    803	init.flags = CLK_SET_RATE_PARENT;
    804	init.parent_names = names;
    805	init.num_parents = 2;
    806
    807	g->clocks = clocks;
    808	g->index = desc->index;
    809	g->selector = desc->dual.sel;
    810	g->hw.init = &init;
    811
    812	clk = clk_register(NULL, &g->hw);
    813	if (IS_ERR(clk)) {
    814		kfree(g);
    815		return NULL;
    816	}
    817	return clk;
    818}
    819
    820struct r9a06g032_clk_dualgate {
    821	struct clk_hw	hw;
    822	struct r9a06g032_priv *clocks;
    823	u16 index;
    824	u16 selector;		/* selector register + bit */
    825	struct r9a06g032_gate gate[2];
    826};
    827
    828#define to_clk_dualgate(_hw) \
    829		container_of(_hw, struct r9a06g032_clk_dualgate, hw)
    830
    831static int
    832r9a06g032_clk_dualgate_setenable(struct r9a06g032_clk_dualgate *g, int enable)
    833{
    834	u8 sel_bit = clk_rdesc_get(g->clocks, g->selector);
    835
    836	/* we always turn off the 'other' gate, regardless */
    837	r9a06g032_clk_gate_set(g->clocks, &g->gate[!sel_bit], 0);
    838	r9a06g032_clk_gate_set(g->clocks, &g->gate[sel_bit], enable);
    839
    840	return 0;
    841}
    842
    843static int r9a06g032_clk_dualgate_enable(struct clk_hw *hw)
    844{
    845	struct r9a06g032_clk_dualgate *gate = to_clk_dualgate(hw);
    846
    847	r9a06g032_clk_dualgate_setenable(gate, 1);
    848
    849	return 0;
    850}
    851
    852static void r9a06g032_clk_dualgate_disable(struct clk_hw *hw)
    853{
    854	struct r9a06g032_clk_dualgate *gate = to_clk_dualgate(hw);
    855
    856	r9a06g032_clk_dualgate_setenable(gate, 0);
    857}
    858
    859static int r9a06g032_clk_dualgate_is_enabled(struct clk_hw *hw)
    860{
    861	struct r9a06g032_clk_dualgate *g = to_clk_dualgate(hw);
    862	u8 sel_bit = clk_rdesc_get(g->clocks, g->selector);
    863
    864	return clk_rdesc_get(g->clocks, g->gate[sel_bit].gate);
    865}
    866
    867static const struct clk_ops r9a06g032_clk_dualgate_ops = {
    868	.enable = r9a06g032_clk_dualgate_enable,
    869	.disable = r9a06g032_clk_dualgate_disable,
    870	.is_enabled = r9a06g032_clk_dualgate_is_enabled,
    871};
    872
    873static struct clk *
    874r9a06g032_register_dualgate(struct r9a06g032_priv *clocks,
    875			    const char *parent_name,
    876			    const struct r9a06g032_clkdesc *desc,
    877			    uint16_t sel)
    878{
    879	struct r9a06g032_clk_dualgate *g;
    880	struct clk *clk;
    881	struct clk_init_data init = {};
    882
    883	/* allocate the gate */
    884	g = kzalloc(sizeof(*g), GFP_KERNEL);
    885	if (!g)
    886		return NULL;
    887	g->clocks = clocks;
    888	g->index = desc->index;
    889	g->selector = sel;
    890	g->gate[0].gate = desc->dual.g1;
    891	g->gate[0].reset = desc->dual.r1;
    892	g->gate[1].gate = desc->dual.g2;
    893	g->gate[1].reset = desc->dual.r2;
    894
    895	init.name = desc->name;
    896	init.ops = &r9a06g032_clk_dualgate_ops;
    897	init.flags = CLK_SET_RATE_PARENT;
    898	init.parent_names = &parent_name;
    899	init.num_parents = 1;
    900	g->hw.init = &init;
    901	/*
    902	 * important here, some clocks are already in use by the CM3, we
    903	 * have to assume they are not Linux's to play with and try to disable
    904	 * at the end of the boot!
    905	 */
    906	if (r9a06g032_clk_dualgate_is_enabled(&g->hw)) {
    907		init.flags |= CLK_IS_CRITICAL;
    908		pr_debug("%s was enabled, making read-only\n", desc->name);
    909	}
    910
    911	clk = clk_register(NULL, &g->hw);
    912	if (IS_ERR(clk)) {
    913		kfree(g);
    914		return NULL;
    915	}
    916	return clk;
    917}
    918
    919static void r9a06g032_clocks_del_clk_provider(void *data)
    920{
    921	of_clk_del_provider(data);
    922}
    923
    924static int __init r9a06g032_clocks_probe(struct platform_device *pdev)
    925{
    926	struct device *dev = &pdev->dev;
    927	struct device_node *np = dev->of_node;
    928	struct r9a06g032_priv *clocks;
    929	struct clk **clks;
    930	struct clk *mclk;
    931	unsigned int i;
    932	u16 uart_group_sel[2];
    933	int error;
    934
    935	clocks = devm_kzalloc(dev, sizeof(*clocks), GFP_KERNEL);
    936	clks = devm_kcalloc(dev, R9A06G032_CLOCK_COUNT, sizeof(struct clk *),
    937			    GFP_KERNEL);
    938	if (!clocks || !clks)
    939		return -ENOMEM;
    940
    941	spin_lock_init(&clocks->lock);
    942
    943	clocks->data.clks = clks;
    944	clocks->data.clk_num = R9A06G032_CLOCK_COUNT;
    945
    946	mclk = devm_clk_get(dev, "mclk");
    947	if (IS_ERR(mclk))
    948		return PTR_ERR(mclk);
    949
    950	clocks->reg = of_iomap(np, 0);
    951	if (WARN_ON(!clocks->reg))
    952		return -ENOMEM;
    953	for (i = 0; i < ARRAY_SIZE(r9a06g032_clocks); ++i) {
    954		const struct r9a06g032_clkdesc *d = &r9a06g032_clocks[i];
    955		const char *parent_name = d->source ?
    956			__clk_get_name(clocks->data.clks[d->source - 1]) :
    957			__clk_get_name(mclk);
    958		struct clk *clk = NULL;
    959
    960		switch (d->type) {
    961		case K_FFC:
    962			clk = clk_register_fixed_factor(NULL, d->name,
    963							parent_name, 0,
    964							d->mul, d->div);
    965			break;
    966		case K_GATE:
    967			clk = r9a06g032_register_gate(clocks, parent_name, d);
    968			break;
    969		case K_DIV:
    970			clk = r9a06g032_register_div(clocks, parent_name, d);
    971			break;
    972		case K_BITSEL:
    973			/* keep that selector register around */
    974			uart_group_sel[d->dual.group] = d->dual.sel;
    975			clk = r9a06g032_register_bitsel(clocks, parent_name, d);
    976			break;
    977		case K_DUALGATE:
    978			clk = r9a06g032_register_dualgate(clocks, parent_name,
    979							  d,
    980							  uart_group_sel[d->dual.group]);
    981			break;
    982		}
    983		clocks->data.clks[d->index] = clk;
    984	}
    985	error = of_clk_add_provider(np, of_clk_src_onecell_get, &clocks->data);
    986	if (error)
    987		return error;
    988
    989	error = devm_add_action_or_reset(dev,
    990					r9a06g032_clocks_del_clk_provider, np);
    991	if (error)
    992		return error;
    993
    994	error = r9a06g032_add_clk_domain(dev);
    995	if (error)
    996		return error;
    997
    998	sysctrl_priv = clocks;
    999
   1000	error = of_platform_populate(np, NULL, NULL, dev);
   1001	if (error)
   1002		dev_err(dev, "Failed to populate children (%d)\n", error);
   1003
   1004	return 0;
   1005}
   1006
   1007static const struct of_device_id r9a06g032_match[] = {
   1008	{ .compatible = "renesas,r9a06g032-sysctrl" },
   1009	{ }
   1010};
   1011
   1012static struct platform_driver r9a06g032_clock_driver = {
   1013	.driver		= {
   1014		.name	= "renesas,r9a06g032-sysctrl",
   1015		.of_match_table = r9a06g032_match,
   1016	},
   1017};
   1018
   1019static int __init r9a06g032_clocks_init(void)
   1020{
   1021	return platform_driver_probe(&r9a06g032_clock_driver,
   1022			r9a06g032_clocks_probe);
   1023}
   1024
   1025subsys_initcall(r9a06g032_clocks_init);