cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

clk-dfll.c (55982B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 * clk-dfll.c - Tegra DFLL clock source common code
      4 *
      5 * Copyright (C) 2012-2019 NVIDIA Corporation. All rights reserved.
      6 *
      7 * Aleksandr Frid <afrid@nvidia.com>
      8 * Paul Walmsley <pwalmsley@nvidia.com>
      9 *
     10 * This library is for the DVCO and DFLL IP blocks on the Tegra124
     11 * SoC. These IP blocks together are also known at NVIDIA as
     12 * "CL-DVFS". To try to avoid confusion, this code refers to them
     13 * collectively as the "DFLL."
     14 *
     15 * The DFLL is a root clocksource which tolerates some amount of
     16 * supply voltage noise. Tegra124 uses it to clock the fast CPU
     17 * complex when the target CPU speed is above a particular rate. The
     18 * DFLL can be operated in either open-loop mode or closed-loop mode.
     19 * In open-loop mode, the DFLL generates an output clock appropriate
     20 * to the supply voltage. In closed-loop mode, when configured with a
     21 * target frequency, the DFLL minimizes supply voltage while
     22 * delivering an average frequency equal to the target.
     23 *
     24 * Devices clocked by the DFLL must be able to tolerate frequency
     25 * variation. In the case of the CPU, it's important to note that the
     26 * CPU cycle time will vary. This has implications for
     27 * performance-measurement code and any code that relies on the CPU
     28 * cycle time to delay for a certain length of time.
     29 */
     30
     31#include <linux/clk.h>
     32#include <linux/clk-provider.h>
     33#include <linux/debugfs.h>
     34#include <linux/device.h>
     35#include <linux/err.h>
     36#include <linux/i2c.h>
     37#include <linux/io.h>
     38#include <linux/kernel.h>
     39#include <linux/module.h>
     40#include <linux/of.h>
     41#include <linux/pinctrl/consumer.h>
     42#include <linux/pm_opp.h>
     43#include <linux/pm_runtime.h>
     44#include <linux/regmap.h>
     45#include <linux/regulator/consumer.h>
     46#include <linux/reset.h>
     47#include <linux/seq_file.h>
     48
     49#include "clk-dfll.h"
     50#include "cvb.h"
     51
     52/*
     53 * DFLL control registers - access via dfll_{readl,writel}
     54 */
     55
     56/* DFLL_CTRL: DFLL control register */
     57#define DFLL_CTRL			0x00
     58#define DFLL_CTRL_MODE_MASK		0x03
     59
     60/* DFLL_CONFIG: DFLL sample rate control */
     61#define DFLL_CONFIG			0x04
     62#define DFLL_CONFIG_DIV_MASK		0xff
     63#define DFLL_CONFIG_DIV_PRESCALE	32
     64
     65/* DFLL_PARAMS: tuning coefficients for closed loop integrator */
     66#define DFLL_PARAMS			0x08
     67#define DFLL_PARAMS_CG_SCALE		(0x1 << 24)
     68#define DFLL_PARAMS_FORCE_MODE_SHIFT	22
     69#define DFLL_PARAMS_FORCE_MODE_MASK	(0x3 << DFLL_PARAMS_FORCE_MODE_SHIFT)
     70#define DFLL_PARAMS_CF_PARAM_SHIFT	16
     71#define DFLL_PARAMS_CF_PARAM_MASK	(0x3f << DFLL_PARAMS_CF_PARAM_SHIFT)
     72#define DFLL_PARAMS_CI_PARAM_SHIFT	8
     73#define DFLL_PARAMS_CI_PARAM_MASK	(0x7 << DFLL_PARAMS_CI_PARAM_SHIFT)
     74#define DFLL_PARAMS_CG_PARAM_SHIFT	0
     75#define DFLL_PARAMS_CG_PARAM_MASK	(0xff << DFLL_PARAMS_CG_PARAM_SHIFT)
     76
     77/* DFLL_TUNE0: delay line configuration register 0 */
     78#define DFLL_TUNE0			0x0c
     79
     80/* DFLL_TUNE1: delay line configuration register 1 */
     81#define DFLL_TUNE1			0x10
     82
     83/* DFLL_FREQ_REQ: target DFLL frequency control */
     84#define DFLL_FREQ_REQ			0x14
     85#define DFLL_FREQ_REQ_FORCE_ENABLE	(0x1 << 28)
     86#define DFLL_FREQ_REQ_FORCE_SHIFT	16
     87#define DFLL_FREQ_REQ_FORCE_MASK	(0xfff << DFLL_FREQ_REQ_FORCE_SHIFT)
     88#define FORCE_MAX			2047
     89#define FORCE_MIN			-2048
     90#define DFLL_FREQ_REQ_SCALE_SHIFT	8
     91#define DFLL_FREQ_REQ_SCALE_MASK	(0xff << DFLL_FREQ_REQ_SCALE_SHIFT)
     92#define DFLL_FREQ_REQ_SCALE_MAX		256
     93#define DFLL_FREQ_REQ_FREQ_VALID	(0x1 << 7)
     94#define DFLL_FREQ_REQ_MULT_SHIFT	0
     95#define DFLL_FREQ_REG_MULT_MASK		(0x7f << DFLL_FREQ_REQ_MULT_SHIFT)
     96#define FREQ_MAX			127
     97
     98/* DFLL_DROOP_CTRL: droop prevention control */
     99#define DFLL_DROOP_CTRL			0x1c
    100
    101/* DFLL_OUTPUT_CFG: closed loop mode control registers */
    102/* NOTE: access via dfll_i2c_{readl,writel} */
    103#define DFLL_OUTPUT_CFG			0x20
    104#define DFLL_OUTPUT_CFG_I2C_ENABLE	(0x1 << 30)
    105#define OUT_MASK			0x3f
    106#define DFLL_OUTPUT_CFG_SAFE_SHIFT	24
    107#define DFLL_OUTPUT_CFG_SAFE_MASK	\
    108		(OUT_MASK << DFLL_OUTPUT_CFG_SAFE_SHIFT)
    109#define DFLL_OUTPUT_CFG_MAX_SHIFT	16
    110#define DFLL_OUTPUT_CFG_MAX_MASK	\
    111		(OUT_MASK << DFLL_OUTPUT_CFG_MAX_SHIFT)
    112#define DFLL_OUTPUT_CFG_MIN_SHIFT	8
    113#define DFLL_OUTPUT_CFG_MIN_MASK	\
    114		(OUT_MASK << DFLL_OUTPUT_CFG_MIN_SHIFT)
    115#define DFLL_OUTPUT_CFG_PWM_DELTA	(0x1 << 7)
    116#define DFLL_OUTPUT_CFG_PWM_ENABLE	(0x1 << 6)
    117#define DFLL_OUTPUT_CFG_PWM_DIV_SHIFT	0
    118#define DFLL_OUTPUT_CFG_PWM_DIV_MASK	\
    119		(OUT_MASK << DFLL_OUTPUT_CFG_PWM_DIV_SHIFT)
    120
    121/* DFLL_OUTPUT_FORCE: closed loop mode voltage forcing control */
    122#define DFLL_OUTPUT_FORCE		0x24
    123#define DFLL_OUTPUT_FORCE_ENABLE	(0x1 << 6)
    124#define DFLL_OUTPUT_FORCE_VALUE_SHIFT	0
    125#define DFLL_OUTPUT_FORCE_VALUE_MASK	\
    126		(OUT_MASK << DFLL_OUTPUT_FORCE_VALUE_SHIFT)
    127
    128/* DFLL_MONITOR_CTRL: internal monitor data source control */
    129#define DFLL_MONITOR_CTRL		0x28
    130#define DFLL_MONITOR_CTRL_FREQ		6
    131
    132/* DFLL_MONITOR_DATA: internal monitor data output */
    133#define DFLL_MONITOR_DATA		0x2c
    134#define DFLL_MONITOR_DATA_NEW_MASK	(0x1 << 16)
    135#define DFLL_MONITOR_DATA_VAL_SHIFT	0
    136#define DFLL_MONITOR_DATA_VAL_MASK	(0xFFFF << DFLL_MONITOR_DATA_VAL_SHIFT)
    137
    138/*
    139 * I2C output control registers - access via dfll_i2c_{readl,writel}
    140 */
    141
    142/* DFLL_I2C_CFG: I2C controller configuration register */
    143#define DFLL_I2C_CFG			0x40
    144#define DFLL_I2C_CFG_ARB_ENABLE		(0x1 << 20)
    145#define DFLL_I2C_CFG_HS_CODE_SHIFT	16
    146#define DFLL_I2C_CFG_HS_CODE_MASK	(0x7 << DFLL_I2C_CFG_HS_CODE_SHIFT)
    147#define DFLL_I2C_CFG_PACKET_ENABLE	(0x1 << 15)
    148#define DFLL_I2C_CFG_SIZE_SHIFT		12
    149#define DFLL_I2C_CFG_SIZE_MASK		(0x7 << DFLL_I2C_CFG_SIZE_SHIFT)
    150#define DFLL_I2C_CFG_SLAVE_ADDR_10	(0x1 << 10)
    151#define DFLL_I2C_CFG_SLAVE_ADDR_SHIFT_7BIT	1
    152#define DFLL_I2C_CFG_SLAVE_ADDR_SHIFT_10BIT	0
    153
    154/* DFLL_I2C_VDD_REG_ADDR: PMIC I2C address for closed loop mode */
    155#define DFLL_I2C_VDD_REG_ADDR		0x44
    156
    157/* DFLL_I2C_STS: I2C controller status */
    158#define DFLL_I2C_STS			0x48
    159#define DFLL_I2C_STS_I2C_LAST_SHIFT	1
    160#define DFLL_I2C_STS_I2C_REQ_PENDING	0x1
    161
    162/* DFLL_INTR_STS: DFLL interrupt status register */
    163#define DFLL_INTR_STS			0x5c
    164
    165/* DFLL_INTR_EN: DFLL interrupt enable register */
    166#define DFLL_INTR_EN			0x60
    167#define DFLL_INTR_MIN_MASK		0x1
    168#define DFLL_INTR_MAX_MASK		0x2
    169
    170/*
    171 * Integrated I2C controller registers - relative to td->i2c_controller_base
    172 */
    173
    174/* DFLL_I2C_CLK_DIVISOR: I2C controller clock divisor */
    175#define DFLL_I2C_CLK_DIVISOR		0x6c
    176#define DFLL_I2C_CLK_DIVISOR_MASK	0xffff
    177#define DFLL_I2C_CLK_DIVISOR_FS_SHIFT	16
    178#define DFLL_I2C_CLK_DIVISOR_HS_SHIFT	0
    179#define DFLL_I2C_CLK_DIVISOR_PREDIV	8
    180#define DFLL_I2C_CLK_DIVISOR_HSMODE_PREDIV	12
    181
    182/*
    183 * Other constants
    184 */
    185
    186/* MAX_DFLL_VOLTAGES: number of LUT entries in the DFLL IP block */
    187#define MAX_DFLL_VOLTAGES		33
    188
    189/*
    190 * REF_CLK_CYC_PER_DVCO_SAMPLE: the number of ref_clk cycles that the hardware
    191 *    integrates the DVCO counter over - used for debug rate monitoring and
    192 *    droop control
    193 */
    194#define REF_CLK_CYC_PER_DVCO_SAMPLE	4
    195
    196/*
    197 * REF_CLOCK_RATE: the DFLL reference clock rate currently supported by this
    198 * driver, in Hz
    199 */
    200#define REF_CLOCK_RATE			51000000UL
    201
    202#define DVCO_RATE_TO_MULT(rate, ref_rate)	((rate) / ((ref_rate) / 2))
    203#define MULT_TO_DVCO_RATE(mult, ref_rate)	((mult) * ((ref_rate) / 2))
    204
    205/**
    206 * enum dfll_ctrl_mode - DFLL hardware operating mode
    207 * @DFLL_UNINITIALIZED: (uninitialized state - not in hardware bitfield)
    208 * @DFLL_DISABLED: DFLL not generating an output clock
    209 * @DFLL_OPEN_LOOP: DVCO running, but DFLL not adjusting voltage
    210 * @DFLL_CLOSED_LOOP: DVCO running, and DFLL adjusting voltage to match
    211 *		      the requested rate
    212 *
    213 * The integer corresponding to the last two states, minus one, is
    214 * written to the DFLL hardware to change operating modes.
    215 */
    216enum dfll_ctrl_mode {
    217	DFLL_UNINITIALIZED = 0,
    218	DFLL_DISABLED = 1,
    219	DFLL_OPEN_LOOP = 2,
    220	DFLL_CLOSED_LOOP = 3,
    221};
    222
    223/**
    224 * enum dfll_tune_range - voltage range that the driver believes it's in
    225 * @DFLL_TUNE_UNINITIALIZED: DFLL tuning not yet programmed
    226 * @DFLL_TUNE_LOW: DFLL in the low-voltage range (or open-loop mode)
    227 *
    228 * Some DFLL tuning parameters may need to change depending on the
    229 * DVCO's voltage; these states represent the ranges that the driver
    230 * supports. These are software states; these values are never
    231 * written into registers.
    232 */
    233enum dfll_tune_range {
    234	DFLL_TUNE_UNINITIALIZED = 0,
    235	DFLL_TUNE_LOW = 1,
    236};
    237
    238
    239enum tegra_dfll_pmu_if {
    240	TEGRA_DFLL_PMU_I2C = 0,
    241	TEGRA_DFLL_PMU_PWM = 1,
    242};
    243
    244/**
    245 * struct dfll_rate_req - target DFLL rate request data
    246 * @rate: target frequency, after the postscaling
    247 * @dvco_target_rate: target frequency, after the postscaling
    248 * @lut_index: LUT index at which voltage the dvco_target_rate will be reached
    249 * @mult_bits: value to program to the MULT bits of the DFLL_FREQ_REQ register
    250 * @scale_bits: value to program to the SCALE bits of the DFLL_FREQ_REQ register
    251 */
    252struct dfll_rate_req {
    253	unsigned long rate;
    254	unsigned long dvco_target_rate;
    255	int lut_index;
    256	u8 mult_bits;
    257	u8 scale_bits;
    258};
    259
    260struct tegra_dfll {
    261	struct device			*dev;
    262	struct tegra_dfll_soc_data	*soc;
    263
    264	void __iomem			*base;
    265	void __iomem			*i2c_base;
    266	void __iomem			*i2c_controller_base;
    267	void __iomem			*lut_base;
    268
    269	struct regulator		*vdd_reg;
    270	struct clk			*soc_clk;
    271	struct clk			*ref_clk;
    272	struct clk			*i2c_clk;
    273	struct clk			*dfll_clk;
    274	struct reset_control		*dfll_rst;
    275	struct reset_control		*dvco_rst;
    276	unsigned long			ref_rate;
    277	unsigned long			i2c_clk_rate;
    278	unsigned long			dvco_rate_min;
    279
    280	enum dfll_ctrl_mode		mode;
    281	enum dfll_tune_range		tune_range;
    282	struct dentry			*debugfs_dir;
    283	struct clk_hw			dfll_clk_hw;
    284	const char			*output_clock_name;
    285	struct dfll_rate_req		last_req;
    286	unsigned long			last_unrounded_rate;
    287
    288	/* Parameters from DT */
    289	u32				droop_ctrl;
    290	u32				sample_rate;
    291	u32				force_mode;
    292	u32				cf;
    293	u32				ci;
    294	u32				cg;
    295	bool				cg_scale;
    296
    297	/* I2C interface parameters */
    298	u32				i2c_fs_rate;
    299	u32				i2c_reg;
    300	u32				i2c_slave_addr;
    301
    302	/* lut array entries are regulator framework selectors or PWM values*/
    303	unsigned			lut[MAX_DFLL_VOLTAGES];
    304	unsigned long			lut_uv[MAX_DFLL_VOLTAGES];
    305	int				lut_size;
    306	u8				lut_bottom, lut_min, lut_max, lut_safe;
    307
    308	/* PWM interface */
    309	enum tegra_dfll_pmu_if		pmu_if;
    310	unsigned long			pwm_rate;
    311	struct pinctrl			*pwm_pin;
    312	struct pinctrl_state		*pwm_enable_state;
    313	struct pinctrl_state		*pwm_disable_state;
    314	u32				reg_init_uV;
    315};
    316
    317#define clk_hw_to_dfll(_hw) container_of(_hw, struct tegra_dfll, dfll_clk_hw)
    318
    319/* mode_name: map numeric DFLL modes to names for friendly console messages */
    320static const char * const mode_name[] = {
    321	[DFLL_UNINITIALIZED] = "uninitialized",
    322	[DFLL_DISABLED] = "disabled",
    323	[DFLL_OPEN_LOOP] = "open_loop",
    324	[DFLL_CLOSED_LOOP] = "closed_loop",
    325};
    326
    327/*
    328 * Register accessors
    329 */
    330
    331static inline u32 dfll_readl(struct tegra_dfll *td, u32 offs)
    332{
    333	return __raw_readl(td->base + offs);
    334}
    335
    336static inline void dfll_writel(struct tegra_dfll *td, u32 val, u32 offs)
    337{
    338	WARN_ON(offs >= DFLL_I2C_CFG);
    339	__raw_writel(val, td->base + offs);
    340}
    341
    342static inline void dfll_wmb(struct tegra_dfll *td)
    343{
    344	dfll_readl(td, DFLL_CTRL);
    345}
    346
    347/* I2C output control registers - for addresses above DFLL_I2C_CFG */
    348
    349static inline u32 dfll_i2c_readl(struct tegra_dfll *td, u32 offs)
    350{
    351	return __raw_readl(td->i2c_base + offs);
    352}
    353
    354static inline void dfll_i2c_writel(struct tegra_dfll *td, u32 val, u32 offs)
    355{
    356	__raw_writel(val, td->i2c_base + offs);
    357}
    358
    359static inline void dfll_i2c_wmb(struct tegra_dfll *td)
    360{
    361	dfll_i2c_readl(td, DFLL_I2C_CFG);
    362}
    363
    364/**
    365 * dfll_is_running - is the DFLL currently generating a clock?
    366 * @td: DFLL instance
    367 *
    368 * If the DFLL is currently generating an output clock signal, return
    369 * true; otherwise return false.
    370 */
    371static bool dfll_is_running(struct tegra_dfll *td)
    372{
    373	return td->mode >= DFLL_OPEN_LOOP;
    374}
    375
    376/*
    377 * Runtime PM suspend/resume callbacks
    378 */
    379
    380/**
    381 * tegra_dfll_runtime_resume - enable all clocks needed by the DFLL
    382 * @dev: DFLL device *
    383 *
    384 * Enable all clocks needed by the DFLL. Assumes that clk_prepare()
    385 * has already been called on all the clocks.
    386 *
    387 * XXX Should also handle context restore when returning from off.
    388 */
    389int tegra_dfll_runtime_resume(struct device *dev)
    390{
    391	struct tegra_dfll *td = dev_get_drvdata(dev);
    392	int ret;
    393
    394	ret = clk_enable(td->ref_clk);
    395	if (ret) {
    396		dev_err(dev, "could not enable ref clock: %d\n", ret);
    397		return ret;
    398	}
    399
    400	ret = clk_enable(td->soc_clk);
    401	if (ret) {
    402		dev_err(dev, "could not enable register clock: %d\n", ret);
    403		clk_disable(td->ref_clk);
    404		return ret;
    405	}
    406
    407	ret = clk_enable(td->i2c_clk);
    408	if (ret) {
    409		dev_err(dev, "could not enable i2c clock: %d\n", ret);
    410		clk_disable(td->soc_clk);
    411		clk_disable(td->ref_clk);
    412		return ret;
    413	}
    414
    415	return 0;
    416}
    417EXPORT_SYMBOL(tegra_dfll_runtime_resume);
    418
    419/**
    420 * tegra_dfll_runtime_suspend - disable all clocks needed by the DFLL
    421 * @dev: DFLL device *
    422 *
    423 * Disable all clocks needed by the DFLL. Assumes that other code
    424 * will later call clk_unprepare().
    425 */
    426int tegra_dfll_runtime_suspend(struct device *dev)
    427{
    428	struct tegra_dfll *td = dev_get_drvdata(dev);
    429
    430	clk_disable(td->ref_clk);
    431	clk_disable(td->soc_clk);
    432	clk_disable(td->i2c_clk);
    433
    434	return 0;
    435}
    436EXPORT_SYMBOL(tegra_dfll_runtime_suspend);
    437
    438/*
    439 * DFLL tuning operations (per-voltage-range tuning settings)
    440 */
    441
    442/**
    443 * dfll_tune_low - tune to DFLL and CPU settings valid for any voltage
    444 * @td: DFLL instance
    445 *
    446 * Tune the DFLL oscillator parameters and the CPU clock shaper for
    447 * the low-voltage range. These settings are valid for any voltage,
    448 * but may not be optimal.
    449 */
    450static void dfll_tune_low(struct tegra_dfll *td)
    451{
    452	td->tune_range = DFLL_TUNE_LOW;
    453
    454	dfll_writel(td, td->soc->cvb->cpu_dfll_data.tune0_low, DFLL_TUNE0);
    455	dfll_writel(td, td->soc->cvb->cpu_dfll_data.tune1, DFLL_TUNE1);
    456	dfll_wmb(td);
    457
    458	if (td->soc->set_clock_trimmers_low)
    459		td->soc->set_clock_trimmers_low();
    460}
    461
    462/*
    463 * Output clock scaler helpers
    464 */
    465
    466/**
    467 * dfll_scale_dvco_rate - calculate scaled rate from the DVCO rate
    468 * @scale_bits: clock scaler value (bits in the DFLL_FREQ_REQ_SCALE field)
    469 * @dvco_rate: the DVCO rate
    470 *
    471 * Apply the same scaling formula that the DFLL hardware uses to scale
    472 * the DVCO rate.
    473 */
    474static unsigned long dfll_scale_dvco_rate(int scale_bits,
    475					  unsigned long dvco_rate)
    476{
    477	return (u64)dvco_rate * (scale_bits + 1) / DFLL_FREQ_REQ_SCALE_MAX;
    478}
    479
    480/*
    481 * DFLL mode switching
    482 */
    483
    484/**
    485 * dfll_set_mode - change the DFLL control mode
    486 * @td: DFLL instance
    487 * @mode: DFLL control mode (see enum dfll_ctrl_mode)
    488 *
    489 * Change the DFLL's operating mode between disabled, open-loop mode,
    490 * and closed-loop mode, or vice versa.
    491 */
    492static void dfll_set_mode(struct tegra_dfll *td,
    493			  enum dfll_ctrl_mode mode)
    494{
    495	td->mode = mode;
    496	dfll_writel(td, mode - 1, DFLL_CTRL);
    497	dfll_wmb(td);
    498}
    499
    500/*
    501 * DVCO rate control
    502 */
    503
    504static unsigned long get_dvco_rate_below(struct tegra_dfll *td, u8 out_min)
    505{
    506	struct dev_pm_opp *opp;
    507	unsigned long rate, prev_rate;
    508	unsigned long uv, min_uv;
    509
    510	min_uv = td->lut_uv[out_min];
    511	for (rate = 0, prev_rate = 0; ; rate++) {
    512		opp = dev_pm_opp_find_freq_ceil(td->soc->dev, &rate);
    513		if (IS_ERR(opp))
    514			break;
    515
    516		uv = dev_pm_opp_get_voltage(opp);
    517		dev_pm_opp_put(opp);
    518
    519		if (uv && uv > min_uv)
    520			return prev_rate;
    521
    522		prev_rate = rate;
    523	}
    524
    525	return prev_rate;
    526}
    527
    528/*
    529 * DFLL-to-I2C controller interface
    530 */
    531
    532/**
    533 * dfll_i2c_set_output_enabled - enable/disable I2C PMIC voltage requests
    534 * @td: DFLL instance
    535 * @enable: whether to enable or disable the I2C voltage requests
    536 *
    537 * Set the master enable control for I2C control value updates. If disabled,
    538 * then I2C control messages are inhibited, regardless of the DFLL mode.
    539 */
    540static int dfll_i2c_set_output_enabled(struct tegra_dfll *td, bool enable)
    541{
    542	u32 val;
    543
    544	val = dfll_i2c_readl(td, DFLL_OUTPUT_CFG);
    545
    546	if (enable)
    547		val |= DFLL_OUTPUT_CFG_I2C_ENABLE;
    548	else
    549		val &= ~DFLL_OUTPUT_CFG_I2C_ENABLE;
    550
    551	dfll_i2c_writel(td, val, DFLL_OUTPUT_CFG);
    552	dfll_i2c_wmb(td);
    553
    554	return 0;
    555}
    556
    557
    558/*
    559 * DFLL-to-PWM controller interface
    560 */
    561
    562/**
    563 * dfll_pwm_set_output_enabled - enable/disable PWM voltage requests
    564 * @td: DFLL instance
    565 * @enable: whether to enable or disable the PWM voltage requests
    566 *
    567 * Set the master enable control for PWM control value updates. If disabled,
    568 * then the PWM signal is not driven. Also configure the PWM output pad
    569 * to the appropriate state.
    570 */
    571static int dfll_pwm_set_output_enabled(struct tegra_dfll *td, bool enable)
    572{
    573	int ret;
    574	u32 val, div;
    575
    576	if (enable) {
    577		ret = pinctrl_select_state(td->pwm_pin, td->pwm_enable_state);
    578		if (ret < 0) {
    579			dev_err(td->dev, "setting enable state failed\n");
    580			return -EINVAL;
    581		}
    582		val = dfll_readl(td, DFLL_OUTPUT_CFG);
    583		val &= ~DFLL_OUTPUT_CFG_PWM_DIV_MASK;
    584		div = DIV_ROUND_UP(td->ref_rate, td->pwm_rate);
    585		val |= (div << DFLL_OUTPUT_CFG_PWM_DIV_SHIFT)
    586				& DFLL_OUTPUT_CFG_PWM_DIV_MASK;
    587		dfll_writel(td, val, DFLL_OUTPUT_CFG);
    588		dfll_wmb(td);
    589
    590		val |= DFLL_OUTPUT_CFG_PWM_ENABLE;
    591		dfll_writel(td, val, DFLL_OUTPUT_CFG);
    592		dfll_wmb(td);
    593	} else {
    594		ret = pinctrl_select_state(td->pwm_pin, td->pwm_disable_state);
    595		if (ret < 0)
    596			dev_warn(td->dev, "setting disable state failed\n");
    597
    598		val = dfll_readl(td, DFLL_OUTPUT_CFG);
    599		val &= ~DFLL_OUTPUT_CFG_PWM_ENABLE;
    600		dfll_writel(td, val, DFLL_OUTPUT_CFG);
    601		dfll_wmb(td);
    602	}
    603
    604	return 0;
    605}
    606
    607/**
    608 * dfll_set_force_output_value - set fixed value for force output
    609 * @td: DFLL instance
    610 * @out_val: value to force output
    611 *
    612 * Set the fixed value for force output, DFLL will output this value when
    613 * force output is enabled.
    614 */
    615static u32 dfll_set_force_output_value(struct tegra_dfll *td, u8 out_val)
    616{
    617	u32 val = dfll_readl(td, DFLL_OUTPUT_FORCE);
    618
    619	val = (val & DFLL_OUTPUT_FORCE_ENABLE) | (out_val & OUT_MASK);
    620	dfll_writel(td, val, DFLL_OUTPUT_FORCE);
    621	dfll_wmb(td);
    622
    623	return dfll_readl(td, DFLL_OUTPUT_FORCE);
    624}
    625
    626/**
    627 * dfll_set_force_output_enabled - enable/disable force output
    628 * @td: DFLL instance
    629 * @enable: whether to enable or disable the force output
    630 *
    631 * Set the enable control for fouce output with fixed value.
    632 */
    633static void dfll_set_force_output_enabled(struct tegra_dfll *td, bool enable)
    634{
    635	u32 val = dfll_readl(td, DFLL_OUTPUT_FORCE);
    636
    637	if (enable)
    638		val |= DFLL_OUTPUT_FORCE_ENABLE;
    639	else
    640		val &= ~DFLL_OUTPUT_FORCE_ENABLE;
    641
    642	dfll_writel(td, val, DFLL_OUTPUT_FORCE);
    643	dfll_wmb(td);
    644}
    645
    646/**
    647 * dfll_force_output - force output a fixed value
    648 * @td: DFLL instance
    649 * @out_sel: value to force output
    650 *
    651 * Set the fixed value for force output, DFLL will output this value.
    652 */
    653static int dfll_force_output(struct tegra_dfll *td, unsigned int out_sel)
    654{
    655	u32 val;
    656
    657	if (out_sel > OUT_MASK)
    658		return -EINVAL;
    659
    660	val = dfll_set_force_output_value(td, out_sel);
    661	if ((td->mode < DFLL_CLOSED_LOOP) &&
    662	    !(val & DFLL_OUTPUT_FORCE_ENABLE)) {
    663		dfll_set_force_output_enabled(td, true);
    664	}
    665
    666	return 0;
    667}
    668
    669/**
    670 * dfll_load_i2c_lut - load the voltage lookup table
    671 * @td: struct tegra_dfll *
    672 *
    673 * Load the voltage-to-PMIC register value lookup table into the DFLL
    674 * IP block memory. Look-up tables can be loaded at any time.
    675 */
    676static void dfll_load_i2c_lut(struct tegra_dfll *td)
    677{
    678	int i, lut_index;
    679	u32 val;
    680
    681	for (i = 0; i < MAX_DFLL_VOLTAGES; i++) {
    682		if (i < td->lut_min)
    683			lut_index = td->lut_min;
    684		else if (i > td->lut_max)
    685			lut_index = td->lut_max;
    686		else
    687			lut_index = i;
    688
    689		val = regulator_list_hardware_vsel(td->vdd_reg,
    690						     td->lut[lut_index]);
    691		__raw_writel(val, td->lut_base + i * 4);
    692	}
    693
    694	dfll_i2c_wmb(td);
    695}
    696
    697/**
    698 * dfll_init_i2c_if - set up the DFLL's DFLL-I2C interface
    699 * @td: DFLL instance
    700 *
    701 * During DFLL driver initialization, program the DFLL-I2C interface
    702 * with the PMU slave address, vdd register offset, and transfer mode.
    703 * This data is used by the DFLL to automatically construct I2C
    704 * voltage-set commands, which are then passed to the DFLL's internal
    705 * I2C controller.
    706 */
    707static void dfll_init_i2c_if(struct tegra_dfll *td)
    708{
    709	u32 val;
    710
    711	if (td->i2c_slave_addr > 0x7f) {
    712		val = td->i2c_slave_addr << DFLL_I2C_CFG_SLAVE_ADDR_SHIFT_10BIT;
    713		val |= DFLL_I2C_CFG_SLAVE_ADDR_10;
    714	} else {
    715		val = td->i2c_slave_addr << DFLL_I2C_CFG_SLAVE_ADDR_SHIFT_7BIT;
    716	}
    717	val |= DFLL_I2C_CFG_SIZE_MASK;
    718	val |= DFLL_I2C_CFG_ARB_ENABLE;
    719	dfll_i2c_writel(td, val, DFLL_I2C_CFG);
    720
    721	dfll_i2c_writel(td, td->i2c_reg, DFLL_I2C_VDD_REG_ADDR);
    722
    723	val = DIV_ROUND_UP(td->i2c_clk_rate, td->i2c_fs_rate * 8);
    724	BUG_ON(!val || (val > DFLL_I2C_CLK_DIVISOR_MASK));
    725	val = (val - 1) << DFLL_I2C_CLK_DIVISOR_FS_SHIFT;
    726
    727	/* default hs divisor just in case */
    728	val |= 1 << DFLL_I2C_CLK_DIVISOR_HS_SHIFT;
    729	__raw_writel(val, td->i2c_controller_base + DFLL_I2C_CLK_DIVISOR);
    730	dfll_i2c_wmb(td);
    731}
    732
    733/**
    734 * dfll_init_out_if - prepare DFLL-to-PMIC interface
    735 * @td: DFLL instance
    736 *
    737 * During DFLL driver initialization or resume from context loss,
    738 * disable the I2C command output to the PMIC, set safe voltage and
    739 * output limits, and disable and clear limit interrupts.
    740 */
    741static void dfll_init_out_if(struct tegra_dfll *td)
    742{
    743	u32 val;
    744
    745	td->lut_min = td->lut_bottom;
    746	td->lut_max = td->lut_size - 1;
    747	td->lut_safe = td->lut_min + (td->lut_min < td->lut_max ? 1 : 0);
    748
    749	/* clear DFLL_OUTPUT_CFG before setting new value */
    750	dfll_writel(td, 0, DFLL_OUTPUT_CFG);
    751	dfll_wmb(td);
    752
    753	val = (td->lut_safe << DFLL_OUTPUT_CFG_SAFE_SHIFT) |
    754	      (td->lut_max << DFLL_OUTPUT_CFG_MAX_SHIFT) |
    755	      (td->lut_min << DFLL_OUTPUT_CFG_MIN_SHIFT);
    756	dfll_writel(td, val, DFLL_OUTPUT_CFG);
    757	dfll_wmb(td);
    758
    759	dfll_writel(td, 0, DFLL_OUTPUT_FORCE);
    760	dfll_i2c_writel(td, 0, DFLL_INTR_EN);
    761	dfll_i2c_writel(td, DFLL_INTR_MAX_MASK | DFLL_INTR_MIN_MASK,
    762			DFLL_INTR_STS);
    763
    764	if (td->pmu_if == TEGRA_DFLL_PMU_PWM) {
    765		u32 vinit = td->reg_init_uV;
    766		int vstep = td->soc->alignment.step_uv;
    767		unsigned long vmin = td->lut_uv[0];
    768
    769		/* set initial voltage */
    770		if ((vinit >= vmin) && vstep) {
    771			unsigned int vsel;
    772
    773			vsel = DIV_ROUND_UP((vinit - vmin), vstep);
    774			dfll_force_output(td, vsel);
    775		}
    776	} else {
    777		dfll_load_i2c_lut(td);
    778		dfll_init_i2c_if(td);
    779	}
    780}
    781
    782/*
    783 * Set/get the DFLL's targeted output clock rate
    784 */
    785
    786/**
    787 * find_lut_index_for_rate - determine I2C LUT index for given DFLL rate
    788 * @td: DFLL instance
    789 * @rate: clock rate
    790 *
    791 * Determines the index of a I2C LUT entry for a voltage that approximately
    792 * produces the given DFLL clock rate. This is used when forcing a value
    793 * to the integrator during rate changes. Returns -ENOENT if a suitable
    794 * LUT index is not found.
    795 */
    796static int find_lut_index_for_rate(struct tegra_dfll *td, unsigned long rate)
    797{
    798	struct dev_pm_opp *opp;
    799	int i, align_step;
    800
    801	opp = dev_pm_opp_find_freq_ceil(td->soc->dev, &rate);
    802	if (IS_ERR(opp))
    803		return PTR_ERR(opp);
    804
    805	align_step = dev_pm_opp_get_voltage(opp) / td->soc->alignment.step_uv;
    806	dev_pm_opp_put(opp);
    807
    808	for (i = td->lut_bottom; i < td->lut_size; i++) {
    809		if ((td->lut_uv[i] / td->soc->alignment.step_uv) >= align_step)
    810			return i;
    811	}
    812
    813	return -ENOENT;
    814}
    815
    816/**
    817 * dfll_calculate_rate_request - calculate DFLL parameters for a given rate
    818 * @td: DFLL instance
    819 * @req: DFLL-rate-request structure
    820 * @rate: the desired DFLL rate
    821 *
    822 * Populate the DFLL-rate-request record @req fields with the scale_bits
    823 * and mult_bits fields, based on the target input rate. Returns 0 upon
    824 * success, or -EINVAL if the requested rate in req->rate is too high
    825 * or low for the DFLL to generate.
    826 */
    827static int dfll_calculate_rate_request(struct tegra_dfll *td,
    828				       struct dfll_rate_req *req,
    829				       unsigned long rate)
    830{
    831	u32 val;
    832
    833	/*
    834	 * If requested rate is below the minimum DVCO rate, active the scaler.
    835	 * In the future the DVCO minimum voltage should be selected based on
    836	 * chip temperature and the actual minimum rate should be calibrated
    837	 * at runtime.
    838	 */
    839	req->scale_bits = DFLL_FREQ_REQ_SCALE_MAX - 1;
    840	if (rate < td->dvco_rate_min) {
    841		int scale;
    842
    843		scale = DIV_ROUND_CLOSEST(rate / 1000 * DFLL_FREQ_REQ_SCALE_MAX,
    844					  td->dvco_rate_min / 1000);
    845		if (!scale) {
    846			dev_err(td->dev, "%s: Rate %lu is too low\n",
    847				__func__, rate);
    848			return -EINVAL;
    849		}
    850		req->scale_bits = scale - 1;
    851		rate = td->dvco_rate_min;
    852	}
    853
    854	/* Convert requested rate into frequency request and scale settings */
    855	val = DVCO_RATE_TO_MULT(rate, td->ref_rate);
    856	if (val > FREQ_MAX) {
    857		dev_err(td->dev, "%s: Rate %lu is above dfll range\n",
    858			__func__, rate);
    859		return -EINVAL;
    860	}
    861	req->mult_bits = val;
    862	req->dvco_target_rate = MULT_TO_DVCO_RATE(req->mult_bits, td->ref_rate);
    863	req->rate = dfll_scale_dvco_rate(req->scale_bits,
    864					 req->dvco_target_rate);
    865	req->lut_index = find_lut_index_for_rate(td, req->dvco_target_rate);
    866	if (req->lut_index < 0)
    867		return req->lut_index;
    868
    869	return 0;
    870}
    871
    872/**
    873 * dfll_set_frequency_request - start the frequency change operation
    874 * @td: DFLL instance
    875 * @req: rate request structure
    876 *
    877 * Tell the DFLL to try to change its output frequency to the
    878 * frequency represented by @req. DFLL must be in closed-loop mode.
    879 */
    880static void dfll_set_frequency_request(struct tegra_dfll *td,
    881				       struct dfll_rate_req *req)
    882{
    883	u32 val = 0;
    884	int force_val;
    885	int coef = 128; /* FIXME: td->cg_scale? */;
    886
    887	force_val = (req->lut_index - td->lut_safe) * coef / td->cg;
    888	force_val = clamp(force_val, FORCE_MIN, FORCE_MAX);
    889
    890	val |= req->mult_bits << DFLL_FREQ_REQ_MULT_SHIFT;
    891	val |= req->scale_bits << DFLL_FREQ_REQ_SCALE_SHIFT;
    892	val |= ((u32)force_val << DFLL_FREQ_REQ_FORCE_SHIFT) &
    893		DFLL_FREQ_REQ_FORCE_MASK;
    894	val |= DFLL_FREQ_REQ_FREQ_VALID | DFLL_FREQ_REQ_FORCE_ENABLE;
    895
    896	dfll_writel(td, val, DFLL_FREQ_REQ);
    897	dfll_wmb(td);
    898}
    899
    900/**
    901 * dfll_request_rate - set the next rate for the DFLL to tune to
    902 * @td: DFLL instance
    903 * @rate: clock rate to target
    904 *
    905 * Convert the requested clock rate @rate into the DFLL control logic
    906 * settings. In closed-loop mode, update new settings immediately to
    907 * adjust DFLL output rate accordingly. Otherwise, just save them
    908 * until the next switch to closed loop. Returns 0 upon success,
    909 * -EPERM if the DFLL driver has not yet been initialized, or -EINVAL
    910 * if @rate is outside the DFLL's tunable range.
    911 */
    912static int dfll_request_rate(struct tegra_dfll *td, unsigned long rate)
    913{
    914	int ret;
    915	struct dfll_rate_req req;
    916
    917	if (td->mode == DFLL_UNINITIALIZED) {
    918		dev_err(td->dev, "%s: Cannot set DFLL rate in %s mode\n",
    919			__func__, mode_name[td->mode]);
    920		return -EPERM;
    921	}
    922
    923	ret = dfll_calculate_rate_request(td, &req, rate);
    924	if (ret)
    925		return ret;
    926
    927	td->last_unrounded_rate = rate;
    928	td->last_req = req;
    929
    930	if (td->mode == DFLL_CLOSED_LOOP)
    931		dfll_set_frequency_request(td, &td->last_req);
    932
    933	return 0;
    934}
    935
    936/*
    937 * DFLL enable/disable & open-loop <-> closed-loop transitions
    938 */
    939
    940/**
    941 * dfll_disable - switch from open-loop mode to disabled mode
    942 * @td: DFLL instance
    943 *
    944 * Switch from OPEN_LOOP state to DISABLED state. Returns 0 upon success
    945 * or -EPERM if the DFLL is not currently in open-loop mode.
    946 */
    947static int dfll_disable(struct tegra_dfll *td)
    948{
    949	if (td->mode != DFLL_OPEN_LOOP) {
    950		dev_err(td->dev, "cannot disable DFLL in %s mode\n",
    951			mode_name[td->mode]);
    952		return -EINVAL;
    953	}
    954
    955	dfll_set_mode(td, DFLL_DISABLED);
    956	pm_runtime_put_sync(td->dev);
    957
    958	return 0;
    959}
    960
    961/**
    962 * dfll_enable - switch a disabled DFLL to open-loop mode
    963 * @td: DFLL instance
    964 *
    965 * Switch from DISABLED state to OPEN_LOOP state. Returns 0 upon success
    966 * or -EPERM if the DFLL is not currently disabled.
    967 */
    968static int dfll_enable(struct tegra_dfll *td)
    969{
    970	if (td->mode != DFLL_DISABLED) {
    971		dev_err(td->dev, "cannot enable DFLL in %s mode\n",
    972			mode_name[td->mode]);
    973		return -EPERM;
    974	}
    975
    976	pm_runtime_get_sync(td->dev);
    977	dfll_set_mode(td, DFLL_OPEN_LOOP);
    978
    979	return 0;
    980}
    981
    982/**
    983 * dfll_set_open_loop_config - prepare to switch to open-loop mode
    984 * @td: DFLL instance
    985 *
    986 * Prepare to switch the DFLL to open-loop mode. This switches the
    987 * DFLL to the low-voltage tuning range, ensures that I2C output
    988 * forcing is disabled, and disables the output clock rate scaler.
    989 * The DFLL's low-voltage tuning range parameters must be
    990 * characterized to keep the downstream device stable at any DVCO
    991 * input voltage. No return value.
    992 */
    993static void dfll_set_open_loop_config(struct tegra_dfll *td)
    994{
    995	u32 val;
    996
    997	/* always tune low (safe) in open loop */
    998	if (td->tune_range != DFLL_TUNE_LOW)
    999		dfll_tune_low(td);
   1000
   1001	val = dfll_readl(td, DFLL_FREQ_REQ);
   1002	val |= DFLL_FREQ_REQ_SCALE_MASK;
   1003	val &= ~DFLL_FREQ_REQ_FORCE_ENABLE;
   1004	dfll_writel(td, val, DFLL_FREQ_REQ);
   1005	dfll_wmb(td);
   1006}
   1007
   1008/**
   1009 * dfll_lock - switch from open-loop to closed-loop mode
   1010 * @td: DFLL instance
   1011 *
   1012 * Switch from OPEN_LOOP state to CLOSED_LOOP state. Returns 0 upon success,
   1013 * -EINVAL if the DFLL's target rate hasn't been set yet, or -EPERM if the
   1014 * DFLL is not currently in open-loop mode.
   1015 */
   1016static int dfll_lock(struct tegra_dfll *td)
   1017{
   1018	struct dfll_rate_req *req = &td->last_req;
   1019
   1020	switch (td->mode) {
   1021	case DFLL_CLOSED_LOOP:
   1022		return 0;
   1023
   1024	case DFLL_OPEN_LOOP:
   1025		if (req->rate == 0) {
   1026			dev_err(td->dev, "%s: Cannot lock DFLL at rate 0\n",
   1027				__func__);
   1028			return -EINVAL;
   1029		}
   1030
   1031		if (td->pmu_if == TEGRA_DFLL_PMU_PWM)
   1032			dfll_pwm_set_output_enabled(td, true);
   1033		else
   1034			dfll_i2c_set_output_enabled(td, true);
   1035
   1036		dfll_set_mode(td, DFLL_CLOSED_LOOP);
   1037		dfll_set_frequency_request(td, req);
   1038		dfll_set_force_output_enabled(td, false);
   1039		return 0;
   1040
   1041	default:
   1042		BUG_ON(td->mode > DFLL_CLOSED_LOOP);
   1043		dev_err(td->dev, "%s: Cannot lock DFLL in %s mode\n",
   1044			__func__, mode_name[td->mode]);
   1045		return -EPERM;
   1046	}
   1047}
   1048
   1049/**
   1050 * dfll_unlock - switch from closed-loop to open-loop mode
   1051 * @td: DFLL instance
   1052 *
   1053 * Switch from CLOSED_LOOP state to OPEN_LOOP state. Returns 0 upon success,
   1054 * or -EPERM if the DFLL is not currently in open-loop mode.
   1055 */
   1056static int dfll_unlock(struct tegra_dfll *td)
   1057{
   1058	switch (td->mode) {
   1059	case DFLL_CLOSED_LOOP:
   1060		dfll_set_open_loop_config(td);
   1061		dfll_set_mode(td, DFLL_OPEN_LOOP);
   1062		if (td->pmu_if == TEGRA_DFLL_PMU_PWM)
   1063			dfll_pwm_set_output_enabled(td, false);
   1064		else
   1065			dfll_i2c_set_output_enabled(td, false);
   1066		return 0;
   1067
   1068	case DFLL_OPEN_LOOP:
   1069		return 0;
   1070
   1071	default:
   1072		BUG_ON(td->mode > DFLL_CLOSED_LOOP);
   1073		dev_err(td->dev, "%s: Cannot unlock DFLL in %s mode\n",
   1074			__func__, mode_name[td->mode]);
   1075		return -EPERM;
   1076	}
   1077}
   1078
   1079/*
   1080 * Clock framework integration
   1081 *
   1082 * When the DFLL is being controlled by the CCF, always enter closed loop
   1083 * mode when the clk is enabled. This requires that a DFLL rate request
   1084 * has been set beforehand, which implies that a clk_set_rate() call is
   1085 * always required before a clk_enable().
   1086 */
   1087
   1088static int dfll_clk_is_enabled(struct clk_hw *hw)
   1089{
   1090	struct tegra_dfll *td = clk_hw_to_dfll(hw);
   1091
   1092	return dfll_is_running(td);
   1093}
   1094
   1095static int dfll_clk_enable(struct clk_hw *hw)
   1096{
   1097	struct tegra_dfll *td = clk_hw_to_dfll(hw);
   1098	int ret;
   1099
   1100	ret = dfll_enable(td);
   1101	if (ret)
   1102		return ret;
   1103
   1104	ret = dfll_lock(td);
   1105	if (ret)
   1106		dfll_disable(td);
   1107
   1108	return ret;
   1109}
   1110
   1111static void dfll_clk_disable(struct clk_hw *hw)
   1112{
   1113	struct tegra_dfll *td = clk_hw_to_dfll(hw);
   1114	int ret;
   1115
   1116	ret = dfll_unlock(td);
   1117	if (!ret)
   1118		dfll_disable(td);
   1119}
   1120
   1121static unsigned long dfll_clk_recalc_rate(struct clk_hw *hw,
   1122					  unsigned long parent_rate)
   1123{
   1124	struct tegra_dfll *td = clk_hw_to_dfll(hw);
   1125
   1126	return td->last_unrounded_rate;
   1127}
   1128
   1129/* Must use determine_rate since it allows for rates exceeding 2^31-1 */
   1130static int dfll_clk_determine_rate(struct clk_hw *hw,
   1131				   struct clk_rate_request *clk_req)
   1132{
   1133	struct tegra_dfll *td = clk_hw_to_dfll(hw);
   1134	struct dfll_rate_req req;
   1135	int ret;
   1136
   1137	ret = dfll_calculate_rate_request(td, &req, clk_req->rate);
   1138	if (ret)
   1139		return ret;
   1140
   1141	/*
   1142	 * Don't set the rounded rate, since it doesn't really matter as
   1143	 * the output rate will be voltage controlled anyway, and cpufreq
   1144	 * freaks out if any rounding happens.
   1145	 */
   1146
   1147	return 0;
   1148}
   1149
   1150static int dfll_clk_set_rate(struct clk_hw *hw, unsigned long rate,
   1151			     unsigned long parent_rate)
   1152{
   1153	struct tegra_dfll *td = clk_hw_to_dfll(hw);
   1154
   1155	return dfll_request_rate(td, rate);
   1156}
   1157
   1158static const struct clk_ops dfll_clk_ops = {
   1159	.is_enabled	= dfll_clk_is_enabled,
   1160	.enable		= dfll_clk_enable,
   1161	.disable	= dfll_clk_disable,
   1162	.recalc_rate	= dfll_clk_recalc_rate,
   1163	.determine_rate	= dfll_clk_determine_rate,
   1164	.set_rate	= dfll_clk_set_rate,
   1165};
   1166
   1167static struct clk_init_data dfll_clk_init_data = {
   1168	.ops		= &dfll_clk_ops,
   1169	.num_parents	= 0,
   1170};
   1171
   1172/**
   1173 * dfll_register_clk - register the DFLL output clock with the clock framework
   1174 * @td: DFLL instance
   1175 *
   1176 * Register the DFLL's output clock with the Linux clock framework and register
   1177 * the DFLL driver as an OF clock provider. Returns 0 upon success or -EINVAL
   1178 * or -ENOMEM upon failure.
   1179 */
   1180static int dfll_register_clk(struct tegra_dfll *td)
   1181{
   1182	int ret;
   1183
   1184	dfll_clk_init_data.name = td->output_clock_name;
   1185	td->dfll_clk_hw.init = &dfll_clk_init_data;
   1186
   1187	td->dfll_clk = clk_register(td->dev, &td->dfll_clk_hw);
   1188	if (IS_ERR(td->dfll_clk)) {
   1189		dev_err(td->dev, "DFLL clock registration error\n");
   1190		return -EINVAL;
   1191	}
   1192
   1193	ret = of_clk_add_provider(td->dev->of_node, of_clk_src_simple_get,
   1194				  td->dfll_clk);
   1195	if (ret) {
   1196		dev_err(td->dev, "of_clk_add_provider() failed\n");
   1197
   1198		clk_unregister(td->dfll_clk);
   1199		return ret;
   1200	}
   1201
   1202	return 0;
   1203}
   1204
   1205/**
   1206 * dfll_unregister_clk - unregister the DFLL output clock
   1207 * @td: DFLL instance
   1208 *
   1209 * Unregister the DFLL's output clock from the Linux clock framework
   1210 * and from clkdev. No return value.
   1211 */
   1212static void dfll_unregister_clk(struct tegra_dfll *td)
   1213{
   1214	of_clk_del_provider(td->dev->of_node);
   1215	clk_unregister(td->dfll_clk);
   1216	td->dfll_clk = NULL;
   1217}
   1218
   1219/*
   1220 * Debugfs interface
   1221 */
   1222
   1223#ifdef CONFIG_DEBUG_FS
   1224/*
   1225 * Monitor control
   1226 */
   1227
   1228/**
   1229 * dfll_calc_monitored_rate - convert DFLL_MONITOR_DATA_VAL rate into real freq
   1230 * @monitor_data: value read from the DFLL_MONITOR_DATA_VAL bitfield
   1231 * @ref_rate: DFLL reference clock rate
   1232 *
   1233 * Convert @monitor_data from DFLL_MONITOR_DATA_VAL units into cycles
   1234 * per second. Returns the converted value.
   1235 */
   1236static u64 dfll_calc_monitored_rate(u32 monitor_data,
   1237				    unsigned long ref_rate)
   1238{
   1239	return monitor_data * (ref_rate / REF_CLK_CYC_PER_DVCO_SAMPLE);
   1240}
   1241
   1242/**
   1243 * dfll_read_monitor_rate - return the DFLL's output rate from internal monitor
   1244 * @td: DFLL instance
   1245 *
   1246 * If the DFLL is enabled, return the last rate reported by the DFLL's
   1247 * internal monitoring hardware. This works in both open-loop and
   1248 * closed-loop mode, and takes the output scaler setting into account.
   1249 * Assumes that the monitor was programmed to monitor frequency before
   1250 * the sample period started. If the driver believes that the DFLL is
   1251 * currently uninitialized or disabled, it will return 0, since
   1252 * otherwise the DFLL monitor data register will return the last
   1253 * measured rate from when the DFLL was active.
   1254 */
   1255static u64 dfll_read_monitor_rate(struct tegra_dfll *td)
   1256{
   1257	u32 v, s;
   1258	u64 pre_scaler_rate, post_scaler_rate;
   1259
   1260	if (!dfll_is_running(td))
   1261		return 0;
   1262
   1263	v = dfll_readl(td, DFLL_MONITOR_DATA);
   1264	v = (v & DFLL_MONITOR_DATA_VAL_MASK) >> DFLL_MONITOR_DATA_VAL_SHIFT;
   1265	pre_scaler_rate = dfll_calc_monitored_rate(v, td->ref_rate);
   1266
   1267	s = dfll_readl(td, DFLL_FREQ_REQ);
   1268	s = (s & DFLL_FREQ_REQ_SCALE_MASK) >> DFLL_FREQ_REQ_SCALE_SHIFT;
   1269	post_scaler_rate = dfll_scale_dvco_rate(s, pre_scaler_rate);
   1270
   1271	return post_scaler_rate;
   1272}
   1273
   1274static int attr_enable_get(void *data, u64 *val)
   1275{
   1276	struct tegra_dfll *td = data;
   1277
   1278	*val = dfll_is_running(td);
   1279
   1280	return 0;
   1281}
   1282static int attr_enable_set(void *data, u64 val)
   1283{
   1284	struct tegra_dfll *td = data;
   1285
   1286	return val ? dfll_enable(td) : dfll_disable(td);
   1287}
   1288DEFINE_DEBUGFS_ATTRIBUTE(enable_fops, attr_enable_get, attr_enable_set,
   1289			 "%llu\n");
   1290
   1291static int attr_lock_get(void *data, u64 *val)
   1292{
   1293	struct tegra_dfll *td = data;
   1294
   1295	*val = (td->mode == DFLL_CLOSED_LOOP);
   1296
   1297	return 0;
   1298}
   1299static int attr_lock_set(void *data, u64 val)
   1300{
   1301	struct tegra_dfll *td = data;
   1302
   1303	return val ? dfll_lock(td) :  dfll_unlock(td);
   1304}
   1305DEFINE_DEBUGFS_ATTRIBUTE(lock_fops, attr_lock_get, attr_lock_set, "%llu\n");
   1306
   1307static int attr_rate_get(void *data, u64 *val)
   1308{
   1309	struct tegra_dfll *td = data;
   1310
   1311	*val = dfll_read_monitor_rate(td);
   1312
   1313	return 0;
   1314}
   1315
   1316static int attr_rate_set(void *data, u64 val)
   1317{
   1318	struct tegra_dfll *td = data;
   1319
   1320	return dfll_request_rate(td, val);
   1321}
   1322DEFINE_DEBUGFS_ATTRIBUTE(rate_fops, attr_rate_get, attr_rate_set, "%llu\n");
   1323
   1324static int attr_registers_show(struct seq_file *s, void *data)
   1325{
   1326	u32 val, offs;
   1327	struct tegra_dfll *td = s->private;
   1328
   1329	seq_puts(s, "CONTROL REGISTERS:\n");
   1330	for (offs = 0; offs <= DFLL_MONITOR_DATA; offs += 4) {
   1331		if (offs == DFLL_OUTPUT_CFG)
   1332			val = dfll_i2c_readl(td, offs);
   1333		else
   1334			val = dfll_readl(td, offs);
   1335		seq_printf(s, "[0x%02x] = 0x%08x\n", offs, val);
   1336	}
   1337
   1338	seq_puts(s, "\nI2C and INTR REGISTERS:\n");
   1339	for (offs = DFLL_I2C_CFG; offs <= DFLL_I2C_STS; offs += 4)
   1340		seq_printf(s, "[0x%02x] = 0x%08x\n", offs,
   1341			   dfll_i2c_readl(td, offs));
   1342	for (offs = DFLL_INTR_STS; offs <= DFLL_INTR_EN; offs += 4)
   1343		seq_printf(s, "[0x%02x] = 0x%08x\n", offs,
   1344			   dfll_i2c_readl(td, offs));
   1345
   1346	if (td->pmu_if == TEGRA_DFLL_PMU_I2C) {
   1347		seq_puts(s, "\nINTEGRATED I2C CONTROLLER REGISTERS:\n");
   1348		offs = DFLL_I2C_CLK_DIVISOR;
   1349		seq_printf(s, "[0x%02x] = 0x%08x\n", offs,
   1350			   __raw_readl(td->i2c_controller_base + offs));
   1351
   1352		seq_puts(s, "\nLUT:\n");
   1353		for (offs = 0; offs <  4 * MAX_DFLL_VOLTAGES; offs += 4)
   1354			seq_printf(s, "[0x%02x] = 0x%08x\n", offs,
   1355				   __raw_readl(td->lut_base + offs));
   1356	}
   1357
   1358	return 0;
   1359}
   1360
   1361DEFINE_SHOW_ATTRIBUTE(attr_registers);
   1362
   1363static void dfll_debug_init(struct tegra_dfll *td)
   1364{
   1365	struct dentry *root;
   1366
   1367	if (!td || (td->mode == DFLL_UNINITIALIZED))
   1368		return;
   1369
   1370	root = debugfs_create_dir("tegra_dfll_fcpu", NULL);
   1371	td->debugfs_dir = root;
   1372
   1373	debugfs_create_file_unsafe("enable", 0644, root, td,
   1374				   &enable_fops);
   1375	debugfs_create_file_unsafe("lock", 0444, root, td, &lock_fops);
   1376	debugfs_create_file_unsafe("rate", 0444, root, td, &rate_fops);
   1377	debugfs_create_file("registers", 0444, root, td, &attr_registers_fops);
   1378}
   1379
   1380#else
   1381static inline void dfll_debug_init(struct tegra_dfll *td) { }
   1382#endif /* CONFIG_DEBUG_FS */
   1383
   1384/*
   1385 * DFLL initialization
   1386 */
   1387
   1388/**
   1389 * dfll_set_default_params - program non-output related DFLL parameters
   1390 * @td: DFLL instance
   1391 *
   1392 * During DFLL driver initialization or resume from context loss,
   1393 * program parameters for the closed loop integrator, DVCO tuning,
   1394 * voltage droop control and monitor control.
   1395 */
   1396static void dfll_set_default_params(struct tegra_dfll *td)
   1397{
   1398	u32 val;
   1399
   1400	val = DIV_ROUND_UP(td->ref_rate, td->sample_rate * 32);
   1401	BUG_ON(val > DFLL_CONFIG_DIV_MASK);
   1402	dfll_writel(td, val, DFLL_CONFIG);
   1403
   1404	val = (td->force_mode << DFLL_PARAMS_FORCE_MODE_SHIFT) |
   1405		(td->cf << DFLL_PARAMS_CF_PARAM_SHIFT) |
   1406		(td->ci << DFLL_PARAMS_CI_PARAM_SHIFT) |
   1407		(td->cg << DFLL_PARAMS_CG_PARAM_SHIFT) |
   1408		(td->cg_scale ? DFLL_PARAMS_CG_SCALE : 0);
   1409	dfll_writel(td, val, DFLL_PARAMS);
   1410
   1411	dfll_tune_low(td);
   1412	dfll_writel(td, td->droop_ctrl, DFLL_DROOP_CTRL);
   1413	dfll_writel(td, DFLL_MONITOR_CTRL_FREQ, DFLL_MONITOR_CTRL);
   1414}
   1415
   1416/**
   1417 * dfll_init_clks - clk_get() the DFLL source clocks
   1418 * @td: DFLL instance
   1419 *
   1420 * Call clk_get() on the DFLL source clocks and save the pointers for later
   1421 * use. Returns 0 upon success or error (see devm_clk_get) if one or more
   1422 * of the clocks couldn't be looked up.
   1423 */
   1424static int dfll_init_clks(struct tegra_dfll *td)
   1425{
   1426	td->ref_clk = devm_clk_get(td->dev, "ref");
   1427	if (IS_ERR(td->ref_clk)) {
   1428		dev_err(td->dev, "missing ref clock\n");
   1429		return PTR_ERR(td->ref_clk);
   1430	}
   1431
   1432	td->soc_clk = devm_clk_get(td->dev, "soc");
   1433	if (IS_ERR(td->soc_clk)) {
   1434		dev_err(td->dev, "missing soc clock\n");
   1435		return PTR_ERR(td->soc_clk);
   1436	}
   1437
   1438	td->i2c_clk = devm_clk_get(td->dev, "i2c");
   1439	if (IS_ERR(td->i2c_clk)) {
   1440		dev_err(td->dev, "missing i2c clock\n");
   1441		return PTR_ERR(td->i2c_clk);
   1442	}
   1443	td->i2c_clk_rate = clk_get_rate(td->i2c_clk);
   1444
   1445	return 0;
   1446}
   1447
   1448/**
   1449 * dfll_init - Prepare the DFLL IP block for use
   1450 * @td: DFLL instance
   1451 *
   1452 * Do everything necessary to prepare the DFLL IP block for use. The
   1453 * DFLL will be left in DISABLED state. Called by dfll_probe().
   1454 * Returns 0 upon success, or passes along the error from whatever
   1455 * function returned it.
   1456 */
   1457static int dfll_init(struct tegra_dfll *td)
   1458{
   1459	int ret;
   1460
   1461	td->ref_rate = clk_get_rate(td->ref_clk);
   1462	if (td->ref_rate != REF_CLOCK_RATE) {
   1463		dev_err(td->dev, "unexpected ref clk rate %lu, expecting %lu",
   1464			td->ref_rate, REF_CLOCK_RATE);
   1465		return -EINVAL;
   1466	}
   1467
   1468	reset_control_deassert(td->dfll_rst);
   1469	reset_control_deassert(td->dvco_rst);
   1470
   1471	ret = clk_prepare(td->ref_clk);
   1472	if (ret) {
   1473		dev_err(td->dev, "failed to prepare ref_clk\n");
   1474		return ret;
   1475	}
   1476
   1477	ret = clk_prepare(td->soc_clk);
   1478	if (ret) {
   1479		dev_err(td->dev, "failed to prepare soc_clk\n");
   1480		goto di_err1;
   1481	}
   1482
   1483	ret = clk_prepare(td->i2c_clk);
   1484	if (ret) {
   1485		dev_err(td->dev, "failed to prepare i2c_clk\n");
   1486		goto di_err2;
   1487	}
   1488
   1489	td->last_unrounded_rate = 0;
   1490
   1491	pm_runtime_enable(td->dev);
   1492	pm_runtime_get_sync(td->dev);
   1493
   1494	dfll_set_mode(td, DFLL_DISABLED);
   1495	dfll_set_default_params(td);
   1496
   1497	if (td->soc->init_clock_trimmers)
   1498		td->soc->init_clock_trimmers();
   1499
   1500	dfll_set_open_loop_config(td);
   1501
   1502	dfll_init_out_if(td);
   1503
   1504	pm_runtime_put_sync(td->dev);
   1505
   1506	return 0;
   1507
   1508di_err2:
   1509	clk_unprepare(td->soc_clk);
   1510di_err1:
   1511	clk_unprepare(td->ref_clk);
   1512
   1513	reset_control_assert(td->dvco_rst);
   1514	reset_control_assert(td->dfll_rst);
   1515
   1516	return ret;
   1517}
   1518
   1519/**
   1520 * tegra_dfll_suspend - check DFLL is disabled
   1521 * @dev: DFLL instance
   1522 *
   1523 * DFLL clock should be disabled by the CPUFreq driver. So, make
   1524 * sure it is disabled and disable all clocks needed by the DFLL.
   1525 */
   1526int tegra_dfll_suspend(struct device *dev)
   1527{
   1528	struct tegra_dfll *td = dev_get_drvdata(dev);
   1529
   1530	if (dfll_is_running(td)) {
   1531		dev_err(td->dev, "DFLL still enabled while suspending\n");
   1532		return -EBUSY;
   1533	}
   1534
   1535	reset_control_assert(td->dvco_rst);
   1536	reset_control_assert(td->dfll_rst);
   1537
   1538	return 0;
   1539}
   1540EXPORT_SYMBOL(tegra_dfll_suspend);
   1541
   1542/**
   1543 * tegra_dfll_resume - reinitialize DFLL on resume
   1544 * @dev: DFLL instance
   1545 *
   1546 * DFLL is disabled and reset during suspend and resume.
   1547 * So, reinitialize the DFLL IP block back for use.
   1548 * DFLL clock is enabled later in closed loop mode by CPUFreq
   1549 * driver before switching its clock source to DFLL output.
   1550 */
   1551int tegra_dfll_resume(struct device *dev)
   1552{
   1553	struct tegra_dfll *td = dev_get_drvdata(dev);
   1554
   1555	reset_control_deassert(td->dfll_rst);
   1556	reset_control_deassert(td->dvco_rst);
   1557
   1558	pm_runtime_get_sync(td->dev);
   1559
   1560	dfll_set_mode(td, DFLL_DISABLED);
   1561	dfll_set_default_params(td);
   1562
   1563	if (td->soc->init_clock_trimmers)
   1564		td->soc->init_clock_trimmers();
   1565
   1566	dfll_set_open_loop_config(td);
   1567
   1568	dfll_init_out_if(td);
   1569
   1570	pm_runtime_put_sync(td->dev);
   1571
   1572	return 0;
   1573}
   1574EXPORT_SYMBOL(tegra_dfll_resume);
   1575
   1576/*
   1577 * DT data fetch
   1578 */
   1579
   1580/*
   1581 * Find a PMIC voltage register-to-voltage mapping for the given voltage.
   1582 * An exact voltage match is required.
   1583 */
   1584static int find_vdd_map_entry_exact(struct tegra_dfll *td, int uV)
   1585{
   1586	int i, n_voltages, reg_uV,reg_volt_id, align_step;
   1587
   1588	if (WARN_ON(td->pmu_if == TEGRA_DFLL_PMU_PWM))
   1589		return -EINVAL;
   1590
   1591	align_step = uV / td->soc->alignment.step_uv;
   1592	n_voltages = regulator_count_voltages(td->vdd_reg);
   1593	for (i = 0; i < n_voltages; i++) {
   1594		reg_uV = regulator_list_voltage(td->vdd_reg, i);
   1595		if (reg_uV < 0)
   1596			break;
   1597
   1598		reg_volt_id = reg_uV / td->soc->alignment.step_uv;
   1599
   1600		if (align_step == reg_volt_id)
   1601			return i;
   1602	}
   1603
   1604	dev_err(td->dev, "no voltage map entry for %d uV\n", uV);
   1605	return -EINVAL;
   1606}
   1607
   1608/*
   1609 * Find a PMIC voltage register-to-voltage mapping for the given voltage,
   1610 * rounding up to the closest supported voltage.
   1611 * */
   1612static int find_vdd_map_entry_min(struct tegra_dfll *td, int uV)
   1613{
   1614	int i, n_voltages, reg_uV, reg_volt_id, align_step;
   1615
   1616	if (WARN_ON(td->pmu_if == TEGRA_DFLL_PMU_PWM))
   1617		return -EINVAL;
   1618
   1619	align_step = uV / td->soc->alignment.step_uv;
   1620	n_voltages = regulator_count_voltages(td->vdd_reg);
   1621	for (i = 0; i < n_voltages; i++) {
   1622		reg_uV = regulator_list_voltage(td->vdd_reg, i);
   1623		if (reg_uV < 0)
   1624			break;
   1625
   1626		reg_volt_id = reg_uV / td->soc->alignment.step_uv;
   1627
   1628		if (align_step <= reg_volt_id)
   1629			return i;
   1630	}
   1631
   1632	dev_err(td->dev, "no voltage map entry rounding to %d uV\n", uV);
   1633	return -EINVAL;
   1634}
   1635
   1636/*
   1637 * dfll_build_pwm_lut - build the PWM regulator lookup table
   1638 * @td: DFLL instance
   1639 * @v_max: Vmax from OPP table
   1640 *
   1641 * Look-up table in h/w is ignored when PWM is used as DFLL interface to PMIC.
   1642 * In this case closed loop output is controlling duty cycle directly. The s/w
   1643 * look-up that maps PWM duty cycle to voltage is still built by this function.
   1644 */
   1645static int dfll_build_pwm_lut(struct tegra_dfll *td, unsigned long v_max)
   1646{
   1647	int i;
   1648	unsigned long rate, reg_volt;
   1649	u8 lut_bottom = MAX_DFLL_VOLTAGES;
   1650	int v_min = td->soc->cvb->min_millivolts * 1000;
   1651
   1652	for (i = 0; i < MAX_DFLL_VOLTAGES; i++) {
   1653		reg_volt = td->lut_uv[i];
   1654
   1655		/* since opp voltage is exact mv */
   1656		reg_volt = (reg_volt / 1000) * 1000;
   1657		if (reg_volt > v_max)
   1658			break;
   1659
   1660		td->lut[i] = i;
   1661		if ((lut_bottom == MAX_DFLL_VOLTAGES) && (reg_volt >= v_min))
   1662			lut_bottom = i;
   1663	}
   1664
   1665	/* determine voltage boundaries */
   1666	td->lut_size = i;
   1667	if ((lut_bottom == MAX_DFLL_VOLTAGES) ||
   1668	    (lut_bottom + 1 >= td->lut_size)) {
   1669		dev_err(td->dev, "no voltage above DFLL minimum %d mV\n",
   1670			td->soc->cvb->min_millivolts);
   1671		return -EINVAL;
   1672	}
   1673	td->lut_bottom = lut_bottom;
   1674
   1675	/* determine rate boundaries */
   1676	rate = get_dvco_rate_below(td, td->lut_bottom);
   1677	if (!rate) {
   1678		dev_err(td->dev, "no opp below DFLL minimum voltage %d mV\n",
   1679			td->soc->cvb->min_millivolts);
   1680		return -EINVAL;
   1681	}
   1682	td->dvco_rate_min = rate;
   1683
   1684	return 0;
   1685}
   1686
   1687/**
   1688 * dfll_build_i2c_lut - build the I2C voltage register lookup table
   1689 * @td: DFLL instance
   1690 * @v_max: Vmax from OPP table
   1691 *
   1692 * The DFLL hardware has 33 bytes of look-up table RAM that must be filled with
   1693 * PMIC voltage register values that span the entire DFLL operating range.
   1694 * This function builds the look-up table based on the OPP table provided by
   1695 * the soc-specific platform driver (td->soc->opp_dev) and the PMIC
   1696 * register-to-voltage mapping queried from the regulator framework.
   1697 *
   1698 * On success, fills in td->lut and returns 0, or -err on failure.
   1699 */
   1700static int dfll_build_i2c_lut(struct tegra_dfll *td, unsigned long v_max)
   1701{
   1702	unsigned long rate, v, v_opp;
   1703	int ret = -EINVAL;
   1704	int j, selector, lut;
   1705
   1706	v = td->soc->cvb->min_millivolts * 1000;
   1707	lut = find_vdd_map_entry_exact(td, v);
   1708	if (lut < 0)
   1709		goto out;
   1710	td->lut[0] = lut;
   1711	td->lut_bottom = 0;
   1712
   1713	for (j = 1, rate = 0; ; rate++) {
   1714		struct dev_pm_opp *opp;
   1715
   1716		opp = dev_pm_opp_find_freq_ceil(td->soc->dev, &rate);
   1717		if (IS_ERR(opp))
   1718			break;
   1719		v_opp = dev_pm_opp_get_voltage(opp);
   1720
   1721		if (v_opp <= td->soc->cvb->min_millivolts * 1000)
   1722			td->dvco_rate_min = dev_pm_opp_get_freq(opp);
   1723
   1724		dev_pm_opp_put(opp);
   1725
   1726		for (;;) {
   1727			v += max(1UL, (v_max - v) / (MAX_DFLL_VOLTAGES - j));
   1728			if (v >= v_opp)
   1729				break;
   1730
   1731			selector = find_vdd_map_entry_min(td, v);
   1732			if (selector < 0)
   1733				goto out;
   1734			if (selector != td->lut[j - 1])
   1735				td->lut[j++] = selector;
   1736		}
   1737
   1738		v = (j == MAX_DFLL_VOLTAGES - 1) ? v_max : v_opp;
   1739		selector = find_vdd_map_entry_exact(td, v);
   1740		if (selector < 0)
   1741			goto out;
   1742		if (selector != td->lut[j - 1])
   1743			td->lut[j++] = selector;
   1744
   1745		if (v >= v_max)
   1746			break;
   1747	}
   1748	td->lut_size = j;
   1749
   1750	if (!td->dvco_rate_min)
   1751		dev_err(td->dev, "no opp above DFLL minimum voltage %d mV\n",
   1752			td->soc->cvb->min_millivolts);
   1753	else {
   1754		ret = 0;
   1755		for (j = 0; j < td->lut_size; j++)
   1756			td->lut_uv[j] =
   1757				regulator_list_voltage(td->vdd_reg,
   1758						       td->lut[j]);
   1759	}
   1760
   1761out:
   1762	return ret;
   1763}
   1764
   1765static int dfll_build_lut(struct tegra_dfll *td)
   1766{
   1767	unsigned long rate, v_max;
   1768	struct dev_pm_opp *opp;
   1769
   1770	rate = ULONG_MAX;
   1771	opp = dev_pm_opp_find_freq_floor(td->soc->dev, &rate);
   1772	if (IS_ERR(opp)) {
   1773		dev_err(td->dev, "couldn't get vmax opp, empty opp table?\n");
   1774		return -EINVAL;
   1775	}
   1776	v_max = dev_pm_opp_get_voltage(opp);
   1777	dev_pm_opp_put(opp);
   1778
   1779	if (td->pmu_if == TEGRA_DFLL_PMU_PWM)
   1780		return dfll_build_pwm_lut(td, v_max);
   1781	else
   1782		return dfll_build_i2c_lut(td, v_max);
   1783}
   1784
   1785/**
   1786 * read_dt_param - helper function for reading required parameters from the DT
   1787 * @td: DFLL instance
   1788 * @param: DT property name
   1789 * @dest: output pointer for the value read
   1790 *
   1791 * Read a required numeric parameter from the DFLL device node, or complain
   1792 * if the property doesn't exist. Returns a boolean indicating success for
   1793 * easy chaining of multiple calls to this function.
   1794 */
   1795static bool read_dt_param(struct tegra_dfll *td, const char *param, u32 *dest)
   1796{
   1797	int err = of_property_read_u32(td->dev->of_node, param, dest);
   1798
   1799	if (err < 0) {
   1800		dev_err(td->dev, "failed to read DT parameter %s: %d\n",
   1801			param, err);
   1802		return false;
   1803	}
   1804
   1805	return true;
   1806}
   1807
   1808/**
   1809 * dfll_fetch_i2c_params - query PMIC I2C params from DT & regulator subsystem
   1810 * @td: DFLL instance
   1811 *
   1812 * Read all the parameters required for operation in I2C mode. The parameters
   1813 * can originate from the device tree or the regulator subsystem.
   1814 * Returns 0 on success or -err on failure.
   1815 */
   1816static int dfll_fetch_i2c_params(struct tegra_dfll *td)
   1817{
   1818	struct regmap *regmap;
   1819	struct device *i2c_dev;
   1820	struct i2c_client *i2c_client;
   1821	int vsel_reg, vsel_mask;
   1822	int ret;
   1823
   1824	if (!read_dt_param(td, "nvidia,i2c-fs-rate", &td->i2c_fs_rate))
   1825		return -EINVAL;
   1826
   1827	regmap = regulator_get_regmap(td->vdd_reg);
   1828	i2c_dev = regmap_get_device(regmap);
   1829	i2c_client = to_i2c_client(i2c_dev);
   1830
   1831	td->i2c_slave_addr = i2c_client->addr;
   1832
   1833	ret = regulator_get_hardware_vsel_register(td->vdd_reg,
   1834						   &vsel_reg,
   1835						   &vsel_mask);
   1836	if (ret < 0) {
   1837		dev_err(td->dev,
   1838			"regulator unsuitable for DFLL I2C operation\n");
   1839		return -EINVAL;
   1840	}
   1841	td->i2c_reg = vsel_reg;
   1842
   1843	return 0;
   1844}
   1845
   1846static int dfll_fetch_pwm_params(struct tegra_dfll *td)
   1847{
   1848	int ret, i;
   1849	u32 pwm_period;
   1850
   1851	if (!td->soc->alignment.step_uv || !td->soc->alignment.offset_uv) {
   1852		dev_err(td->dev,
   1853			"Missing step or alignment info for PWM regulator");
   1854		return -EINVAL;
   1855	}
   1856	for (i = 0; i < MAX_DFLL_VOLTAGES; i++)
   1857		td->lut_uv[i] = td->soc->alignment.offset_uv +
   1858				i * td->soc->alignment.step_uv;
   1859
   1860	ret = read_dt_param(td, "nvidia,pwm-tristate-microvolts",
   1861			    &td->reg_init_uV);
   1862	if (!ret) {
   1863		dev_err(td->dev, "couldn't get initialized voltage\n");
   1864		return -EINVAL;
   1865	}
   1866
   1867	ret = read_dt_param(td, "nvidia,pwm-period-nanoseconds", &pwm_period);
   1868	if (!ret) {
   1869		dev_err(td->dev, "couldn't get PWM period\n");
   1870		return -EINVAL;
   1871	}
   1872	td->pwm_rate = (NSEC_PER_SEC / pwm_period) * (MAX_DFLL_VOLTAGES - 1);
   1873
   1874	td->pwm_pin = devm_pinctrl_get(td->dev);
   1875	if (IS_ERR(td->pwm_pin)) {
   1876		dev_err(td->dev, "DT: missing pinctrl device\n");
   1877		return PTR_ERR(td->pwm_pin);
   1878	}
   1879
   1880	td->pwm_enable_state = pinctrl_lookup_state(td->pwm_pin,
   1881						    "dvfs_pwm_enable");
   1882	if (IS_ERR(td->pwm_enable_state)) {
   1883		dev_err(td->dev, "DT: missing pwm enabled state\n");
   1884		return PTR_ERR(td->pwm_enable_state);
   1885	}
   1886
   1887	td->pwm_disable_state = pinctrl_lookup_state(td->pwm_pin,
   1888						     "dvfs_pwm_disable");
   1889	if (IS_ERR(td->pwm_disable_state)) {
   1890		dev_err(td->dev, "DT: missing pwm disabled state\n");
   1891		return PTR_ERR(td->pwm_disable_state);
   1892	}
   1893
   1894	return 0;
   1895}
   1896
   1897/**
   1898 * dfll_fetch_common_params - read DFLL parameters from the device tree
   1899 * @td: DFLL instance
   1900 *
   1901 * Read all the DT parameters that are common to both I2C and PWM operation.
   1902 * Returns 0 on success or -EINVAL on any failure.
   1903 */
   1904static int dfll_fetch_common_params(struct tegra_dfll *td)
   1905{
   1906	bool ok = true;
   1907
   1908	ok &= read_dt_param(td, "nvidia,droop-ctrl", &td->droop_ctrl);
   1909	ok &= read_dt_param(td, "nvidia,sample-rate", &td->sample_rate);
   1910	ok &= read_dt_param(td, "nvidia,force-mode", &td->force_mode);
   1911	ok &= read_dt_param(td, "nvidia,cf", &td->cf);
   1912	ok &= read_dt_param(td, "nvidia,ci", &td->ci);
   1913	ok &= read_dt_param(td, "nvidia,cg", &td->cg);
   1914	td->cg_scale = of_property_read_bool(td->dev->of_node,
   1915					     "nvidia,cg-scale");
   1916
   1917	if (of_property_read_string(td->dev->of_node, "clock-output-names",
   1918				    &td->output_clock_name)) {
   1919		dev_err(td->dev, "missing clock-output-names property\n");
   1920		ok = false;
   1921	}
   1922
   1923	return ok ? 0 : -EINVAL;
   1924}
   1925
   1926/*
   1927 * API exported to per-SoC platform drivers
   1928 */
   1929
   1930/**
   1931 * tegra_dfll_register - probe a Tegra DFLL device
   1932 * @pdev: DFLL platform_device *
   1933 * @soc: Per-SoC integration and characterization data for this DFLL instance
   1934 *
   1935 * Probe and initialize a DFLL device instance. Intended to be called
   1936 * by a SoC-specific shim driver that passes in per-SoC integration
   1937 * and configuration data via @soc. Returns 0 on success or -err on failure.
   1938 */
   1939int tegra_dfll_register(struct platform_device *pdev,
   1940			struct tegra_dfll_soc_data *soc)
   1941{
   1942	struct resource *mem;
   1943	struct tegra_dfll *td;
   1944	int ret;
   1945
   1946	if (!soc) {
   1947		dev_err(&pdev->dev, "no tegra_dfll_soc_data provided\n");
   1948		return -EINVAL;
   1949	}
   1950
   1951	td = devm_kzalloc(&pdev->dev, sizeof(*td), GFP_KERNEL);
   1952	if (!td)
   1953		return -ENOMEM;
   1954	td->dev = &pdev->dev;
   1955	platform_set_drvdata(pdev, td);
   1956
   1957	td->soc = soc;
   1958
   1959	td->dfll_rst = devm_reset_control_get_optional(td->dev, "dfll");
   1960	if (IS_ERR(td->dfll_rst)) {
   1961		dev_err(td->dev, "couldn't get dfll reset\n");
   1962		return PTR_ERR(td->dfll_rst);
   1963	}
   1964
   1965	td->dvco_rst = devm_reset_control_get(td->dev, "dvco");
   1966	if (IS_ERR(td->dvco_rst)) {
   1967		dev_err(td->dev, "couldn't get dvco reset\n");
   1968		return PTR_ERR(td->dvco_rst);
   1969	}
   1970
   1971	ret = dfll_fetch_common_params(td);
   1972	if (ret) {
   1973		dev_err(td->dev, "couldn't parse device tree parameters\n");
   1974		return ret;
   1975	}
   1976
   1977	if (of_property_read_bool(td->dev->of_node, "nvidia,pwm-to-pmic")) {
   1978		td->pmu_if = TEGRA_DFLL_PMU_PWM;
   1979		ret = dfll_fetch_pwm_params(td);
   1980	} else  {
   1981		td->vdd_reg = devm_regulator_get(td->dev, "vdd-cpu");
   1982		if (IS_ERR(td->vdd_reg)) {
   1983			dev_err(td->dev, "couldn't get vdd_cpu regulator\n");
   1984			return PTR_ERR(td->vdd_reg);
   1985		}
   1986		td->pmu_if = TEGRA_DFLL_PMU_I2C;
   1987		ret = dfll_fetch_i2c_params(td);
   1988	}
   1989	if (ret)
   1990		return ret;
   1991
   1992	ret = dfll_build_lut(td);
   1993	if (ret) {
   1994		dev_err(td->dev, "couldn't build LUT\n");
   1995		return ret;
   1996	}
   1997
   1998	mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
   1999	if (!mem) {
   2000		dev_err(td->dev, "no control register resource\n");
   2001		return -ENODEV;
   2002	}
   2003
   2004	td->base = devm_ioremap(td->dev, mem->start, resource_size(mem));
   2005	if (!td->base) {
   2006		dev_err(td->dev, "couldn't ioremap DFLL control registers\n");
   2007		return -ENODEV;
   2008	}
   2009
   2010	mem = platform_get_resource(pdev, IORESOURCE_MEM, 1);
   2011	if (!mem) {
   2012		dev_err(td->dev, "no i2c_base resource\n");
   2013		return -ENODEV;
   2014	}
   2015
   2016	td->i2c_base = devm_ioremap(td->dev, mem->start, resource_size(mem));
   2017	if (!td->i2c_base) {
   2018		dev_err(td->dev, "couldn't ioremap i2c_base resource\n");
   2019		return -ENODEV;
   2020	}
   2021
   2022	mem = platform_get_resource(pdev, IORESOURCE_MEM, 2);
   2023	if (!mem) {
   2024		dev_err(td->dev, "no i2c_controller_base resource\n");
   2025		return -ENODEV;
   2026	}
   2027
   2028	td->i2c_controller_base = devm_ioremap(td->dev, mem->start,
   2029					       resource_size(mem));
   2030	if (!td->i2c_controller_base) {
   2031		dev_err(td->dev,
   2032			"couldn't ioremap i2c_controller_base resource\n");
   2033		return -ENODEV;
   2034	}
   2035
   2036	mem = platform_get_resource(pdev, IORESOURCE_MEM, 3);
   2037	if (!mem) {
   2038		dev_err(td->dev, "no lut_base resource\n");
   2039		return -ENODEV;
   2040	}
   2041
   2042	td->lut_base = devm_ioremap(td->dev, mem->start, resource_size(mem));
   2043	if (!td->lut_base) {
   2044		dev_err(td->dev,
   2045			"couldn't ioremap lut_base resource\n");
   2046		return -ENODEV;
   2047	}
   2048
   2049	ret = dfll_init_clks(td);
   2050	if (ret) {
   2051		dev_err(&pdev->dev, "DFLL clock init error\n");
   2052		return ret;
   2053	}
   2054
   2055	/* Enable the clocks and set the device up */
   2056	ret = dfll_init(td);
   2057	if (ret)
   2058		return ret;
   2059
   2060	ret = dfll_register_clk(td);
   2061	if (ret) {
   2062		dev_err(&pdev->dev, "DFLL clk registration failed\n");
   2063		return ret;
   2064	}
   2065
   2066	dfll_debug_init(td);
   2067
   2068	return 0;
   2069}
   2070EXPORT_SYMBOL(tegra_dfll_register);
   2071
   2072/**
   2073 * tegra_dfll_unregister - release all of the DFLL driver resources for a device
   2074 * @pdev: DFLL platform_device *
   2075 *
   2076 * Unbind this driver from the DFLL hardware device represented by
   2077 * @pdev. The DFLL must be disabled for this to succeed. Returns a
   2078 * soc pointer upon success or -EBUSY if the DFLL is still active.
   2079 */
   2080struct tegra_dfll_soc_data *tegra_dfll_unregister(struct platform_device *pdev)
   2081{
   2082	struct tegra_dfll *td = platform_get_drvdata(pdev);
   2083
   2084	/* Try to prevent removal while the DFLL is active */
   2085	if (td->mode != DFLL_DISABLED) {
   2086		dev_err(&pdev->dev,
   2087			"must disable DFLL before removing driver\n");
   2088		return ERR_PTR(-EBUSY);
   2089	}
   2090
   2091	debugfs_remove_recursive(td->debugfs_dir);
   2092
   2093	dfll_unregister_clk(td);
   2094	pm_runtime_disable(&pdev->dev);
   2095
   2096	clk_unprepare(td->ref_clk);
   2097	clk_unprepare(td->soc_clk);
   2098	clk_unprepare(td->i2c_clk);
   2099
   2100	reset_control_assert(td->dvco_rst);
   2101	reset_control_assert(td->dfll_rst);
   2102
   2103	return td->soc;
   2104}
   2105EXPORT_SYMBOL(tegra_dfll_unregister);