cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

arc_timer.c (9256B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 * Copyright (C) 2016-17 Synopsys, Inc. (www.synopsys.com)
      4 * Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com)
      5 */
      6
      7/* ARC700 has two 32bit independent prog Timers: TIMER0 and TIMER1, Each can be
      8 * programmed to go from @count to @limit and optionally interrupt.
      9 * We've designated TIMER0 for clockevents and TIMER1 for clocksource
     10 *
     11 * ARCv2 based HS38 cores have RTC (in-core) and GFRC (inside ARConnect/MCIP)
     12 * which are suitable for UP and SMP based clocksources respectively
     13 */
     14
     15#include <linux/interrupt.h>
     16#include <linux/bits.h>
     17#include <linux/clk.h>
     18#include <linux/clk-provider.h>
     19#include <linux/clocksource.h>
     20#include <linux/clockchips.h>
     21#include <linux/cpu.h>
     22#include <linux/of.h>
     23#include <linux/of_irq.h>
     24#include <linux/sched_clock.h>
     25
     26#include <soc/arc/timers.h>
     27#include <soc/arc/mcip.h>
     28
     29
     30static unsigned long arc_timer_freq;
     31
     32static int noinline arc_get_timer_clk(struct device_node *node)
     33{
     34	struct clk *clk;
     35	int ret;
     36
     37	clk = of_clk_get(node, 0);
     38	if (IS_ERR(clk)) {
     39		pr_err("timer missing clk\n");
     40		return PTR_ERR(clk);
     41	}
     42
     43	ret = clk_prepare_enable(clk);
     44	if (ret) {
     45		pr_err("Couldn't enable parent clk\n");
     46		return ret;
     47	}
     48
     49	arc_timer_freq = clk_get_rate(clk);
     50
     51	return 0;
     52}
     53
     54/********** Clock Source Device *********/
     55
     56#ifdef CONFIG_ARC_TIMERS_64BIT
     57
     58static u64 arc_read_gfrc(struct clocksource *cs)
     59{
     60	unsigned long flags;
     61	u32 l, h;
     62
     63	/*
     64	 * From a programming model pov, there seems to be just one instance of
     65	 * MCIP_CMD/MCIP_READBACK however micro-architecturally there's
     66	 * an instance PER ARC CORE (not per cluster), and there are dedicated
     67	 * hardware decode logic (per core) inside ARConnect to handle
     68	 * simultaneous read/write accesses from cores via those two registers.
     69	 * So several concurrent commands to ARConnect are OK if they are
     70	 * trying to access two different sub-components (like GFRC,
     71	 * inter-core interrupt, etc...). HW also supports simultaneously
     72	 * accessing GFRC by multiple cores.
     73	 * That's why it is safe to disable hard interrupts on the local CPU
     74	 * before access to GFRC instead of taking global MCIP spinlock
     75	 * defined in arch/arc/kernel/mcip.c
     76	 */
     77	local_irq_save(flags);
     78
     79	__mcip_cmd(CMD_GFRC_READ_LO, 0);
     80	l = read_aux_reg(ARC_REG_MCIP_READBACK);
     81
     82	__mcip_cmd(CMD_GFRC_READ_HI, 0);
     83	h = read_aux_reg(ARC_REG_MCIP_READBACK);
     84
     85	local_irq_restore(flags);
     86
     87	return (((u64)h) << 32) | l;
     88}
     89
     90static notrace u64 arc_gfrc_clock_read(void)
     91{
     92	return arc_read_gfrc(NULL);
     93}
     94
     95static struct clocksource arc_counter_gfrc = {
     96	.name   = "ARConnect GFRC",
     97	.rating = 400,
     98	.read   = arc_read_gfrc,
     99	.mask   = CLOCKSOURCE_MASK(64),
    100	.flags  = CLOCK_SOURCE_IS_CONTINUOUS,
    101};
    102
    103static int __init arc_cs_setup_gfrc(struct device_node *node)
    104{
    105	struct mcip_bcr mp;
    106	int ret;
    107
    108	READ_BCR(ARC_REG_MCIP_BCR, mp);
    109	if (!mp.gfrc) {
    110		pr_warn("Global-64-bit-Ctr clocksource not detected\n");
    111		return -ENXIO;
    112	}
    113
    114	ret = arc_get_timer_clk(node);
    115	if (ret)
    116		return ret;
    117
    118	sched_clock_register(arc_gfrc_clock_read, 64, arc_timer_freq);
    119
    120	return clocksource_register_hz(&arc_counter_gfrc, arc_timer_freq);
    121}
    122TIMER_OF_DECLARE(arc_gfrc, "snps,archs-timer-gfrc", arc_cs_setup_gfrc);
    123
    124#define AUX_RTC_CTRL	0x103
    125#define AUX_RTC_LOW	0x104
    126#define AUX_RTC_HIGH	0x105
    127
    128static u64 arc_read_rtc(struct clocksource *cs)
    129{
    130	unsigned long status;
    131	u32 l, h;
    132
    133	/*
    134	 * hardware has an internal state machine which tracks readout of
    135	 * low/high and updates the CTRL.status if
    136	 *  - interrupt/exception taken between the two reads
    137	 *  - high increments after low has been read
    138	 */
    139	do {
    140		l = read_aux_reg(AUX_RTC_LOW);
    141		h = read_aux_reg(AUX_RTC_HIGH);
    142		status = read_aux_reg(AUX_RTC_CTRL);
    143	} while (!(status & BIT(31)));
    144
    145	return (((u64)h) << 32) | l;
    146}
    147
    148static notrace u64 arc_rtc_clock_read(void)
    149{
    150	return arc_read_rtc(NULL);
    151}
    152
    153static struct clocksource arc_counter_rtc = {
    154	.name   = "ARCv2 RTC",
    155	.rating = 350,
    156	.read   = arc_read_rtc,
    157	.mask   = CLOCKSOURCE_MASK(64),
    158	.flags  = CLOCK_SOURCE_IS_CONTINUOUS,
    159};
    160
    161static int __init arc_cs_setup_rtc(struct device_node *node)
    162{
    163	struct bcr_timer timer;
    164	int ret;
    165
    166	READ_BCR(ARC_REG_TIMERS_BCR, timer);
    167	if (!timer.rtc) {
    168		pr_warn("Local-64-bit-Ctr clocksource not detected\n");
    169		return -ENXIO;
    170	}
    171
    172	/* Local to CPU hence not usable in SMP */
    173	if (IS_ENABLED(CONFIG_SMP)) {
    174		pr_warn("Local-64-bit-Ctr not usable in SMP\n");
    175		return -EINVAL;
    176	}
    177
    178	ret = arc_get_timer_clk(node);
    179	if (ret)
    180		return ret;
    181
    182	write_aux_reg(AUX_RTC_CTRL, 1);
    183
    184	sched_clock_register(arc_rtc_clock_read, 64, arc_timer_freq);
    185
    186	return clocksource_register_hz(&arc_counter_rtc, arc_timer_freq);
    187}
    188TIMER_OF_DECLARE(arc_rtc, "snps,archs-timer-rtc", arc_cs_setup_rtc);
    189
    190#endif
    191
    192/*
    193 * 32bit TIMER1 to keep counting monotonically and wraparound
    194 */
    195
    196static u64 arc_read_timer1(struct clocksource *cs)
    197{
    198	return (u64) read_aux_reg(ARC_REG_TIMER1_CNT);
    199}
    200
    201static notrace u64 arc_timer1_clock_read(void)
    202{
    203	return arc_read_timer1(NULL);
    204}
    205
    206static struct clocksource arc_counter_timer1 = {
    207	.name   = "ARC Timer1",
    208	.rating = 300,
    209	.read   = arc_read_timer1,
    210	.mask   = CLOCKSOURCE_MASK(32),
    211	.flags  = CLOCK_SOURCE_IS_CONTINUOUS,
    212};
    213
    214static int __init arc_cs_setup_timer1(struct device_node *node)
    215{
    216	int ret;
    217
    218	/* Local to CPU hence not usable in SMP */
    219	if (IS_ENABLED(CONFIG_SMP))
    220		return -EINVAL;
    221
    222	ret = arc_get_timer_clk(node);
    223	if (ret)
    224		return ret;
    225
    226	write_aux_reg(ARC_REG_TIMER1_LIMIT, ARC_TIMERN_MAX);
    227	write_aux_reg(ARC_REG_TIMER1_CNT, 0);
    228	write_aux_reg(ARC_REG_TIMER1_CTRL, ARC_TIMER_CTRL_NH);
    229
    230	sched_clock_register(arc_timer1_clock_read, 32, arc_timer_freq);
    231
    232	return clocksource_register_hz(&arc_counter_timer1, arc_timer_freq);
    233}
    234
    235/********** Clock Event Device *********/
    236
    237static int arc_timer_irq;
    238
    239/*
    240 * Arm the timer to interrupt after @cycles
    241 * The distinction for oneshot/periodic is done in arc_event_timer_ack() below
    242 */
    243static void arc_timer_event_setup(unsigned int cycles)
    244{
    245	write_aux_reg(ARC_REG_TIMER0_LIMIT, cycles);
    246	write_aux_reg(ARC_REG_TIMER0_CNT, 0);	/* start from 0 */
    247
    248	write_aux_reg(ARC_REG_TIMER0_CTRL, ARC_TIMER_CTRL_IE | ARC_TIMER_CTRL_NH);
    249}
    250
    251
    252static int arc_clkevent_set_next_event(unsigned long delta,
    253				       struct clock_event_device *dev)
    254{
    255	arc_timer_event_setup(delta);
    256	return 0;
    257}
    258
    259static int arc_clkevent_set_periodic(struct clock_event_device *dev)
    260{
    261	/*
    262	 * At X Hz, 1 sec = 1000ms -> X cycles;
    263	 *		      10ms -> X / 100 cycles
    264	 */
    265	arc_timer_event_setup(arc_timer_freq / HZ);
    266	return 0;
    267}
    268
    269static DEFINE_PER_CPU(struct clock_event_device, arc_clockevent_device) = {
    270	.name			= "ARC Timer0",
    271	.features		= CLOCK_EVT_FEAT_ONESHOT |
    272				  CLOCK_EVT_FEAT_PERIODIC,
    273	.rating			= 300,
    274	.set_next_event		= arc_clkevent_set_next_event,
    275	.set_state_periodic	= arc_clkevent_set_periodic,
    276};
    277
    278static irqreturn_t timer_irq_handler(int irq, void *dev_id)
    279{
    280	/*
    281	 * Note that generic IRQ core could have passed @evt for @dev_id if
    282	 * irq_set_chip_and_handler() asked for handle_percpu_devid_irq()
    283	 */
    284	struct clock_event_device *evt = this_cpu_ptr(&arc_clockevent_device);
    285	int irq_reenable = clockevent_state_periodic(evt);
    286
    287	/*
    288	 * 1. ACK the interrupt
    289	 *    - For ARC700, any write to CTRL reg ACKs it, so just rewrite
    290	 *      Count when [N]ot [H]alted bit.
    291	 *    - For HS3x, it is a bit subtle. On taken count-down interrupt,
    292	 *      IP bit [3] is set, which needs to be cleared for ACK'ing.
    293	 *      The write below can only update the other two bits, hence
    294	 *      explicitly clears IP bit
    295	 * 2. Re-arm interrupt if periodic by writing to IE bit [0]
    296	 */
    297	write_aux_reg(ARC_REG_TIMER0_CTRL, irq_reenable | ARC_TIMER_CTRL_NH);
    298
    299	evt->event_handler(evt);
    300
    301	return IRQ_HANDLED;
    302}
    303
    304
    305static int arc_timer_starting_cpu(unsigned int cpu)
    306{
    307	struct clock_event_device *evt = this_cpu_ptr(&arc_clockevent_device);
    308
    309	evt->cpumask = cpumask_of(smp_processor_id());
    310
    311	clockevents_config_and_register(evt, arc_timer_freq, 0, ARC_TIMERN_MAX);
    312	enable_percpu_irq(arc_timer_irq, 0);
    313	return 0;
    314}
    315
    316static int arc_timer_dying_cpu(unsigned int cpu)
    317{
    318	disable_percpu_irq(arc_timer_irq);
    319	return 0;
    320}
    321
    322/*
    323 * clockevent setup for boot CPU
    324 */
    325static int __init arc_clockevent_setup(struct device_node *node)
    326{
    327	struct clock_event_device *evt = this_cpu_ptr(&arc_clockevent_device);
    328	int ret;
    329
    330	arc_timer_irq = irq_of_parse_and_map(node, 0);
    331	if (arc_timer_irq <= 0) {
    332		pr_err("clockevent: missing irq\n");
    333		return -EINVAL;
    334	}
    335
    336	ret = arc_get_timer_clk(node);
    337	if (ret)
    338		return ret;
    339
    340	/* Needs apriori irq_set_percpu_devid() done in intc map function */
    341	ret = request_percpu_irq(arc_timer_irq, timer_irq_handler,
    342				 "Timer0 (per-cpu-tick)", evt);
    343	if (ret) {
    344		pr_err("clockevent: unable to request irq\n");
    345		return ret;
    346	}
    347
    348	ret = cpuhp_setup_state(CPUHP_AP_ARC_TIMER_STARTING,
    349				"clockevents/arc/timer:starting",
    350				arc_timer_starting_cpu,
    351				arc_timer_dying_cpu);
    352	if (ret) {
    353		pr_err("Failed to setup hotplug state\n");
    354		return ret;
    355	}
    356	return 0;
    357}
    358
    359static int __init arc_of_timer_init(struct device_node *np)
    360{
    361	static int init_count = 0;
    362	int ret;
    363
    364	if (!init_count) {
    365		init_count = 1;
    366		ret = arc_clockevent_setup(np);
    367	} else {
    368		ret = arc_cs_setup_timer1(np);
    369	}
    370
    371	return ret;
    372}
    373TIMER_OF_DECLARE(arc_clkevt, "snps,arc-timer", arc_of_timer_init);