exynos_mct.c (16883B)
1// SPDX-License-Identifier: GPL-2.0-only 2/* linux/arch/arm/mach-exynos4/mct.c 3 * 4 * Copyright (c) 2011 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com 6 * 7 * Exynos4 MCT(Multi-Core Timer) support 8*/ 9 10#include <linux/interrupt.h> 11#include <linux/irq.h> 12#include <linux/err.h> 13#include <linux/clk.h> 14#include <linux/clockchips.h> 15#include <linux/cpu.h> 16#include <linux/delay.h> 17#include <linux/percpu.h> 18#include <linux/of.h> 19#include <linux/of_irq.h> 20#include <linux/of_address.h> 21#include <linux/clocksource.h> 22#include <linux/sched_clock.h> 23 24#define EXYNOS4_MCTREG(x) (x) 25#define EXYNOS4_MCT_G_CNT_L EXYNOS4_MCTREG(0x100) 26#define EXYNOS4_MCT_G_CNT_U EXYNOS4_MCTREG(0x104) 27#define EXYNOS4_MCT_G_CNT_WSTAT EXYNOS4_MCTREG(0x110) 28#define EXYNOS4_MCT_G_COMP0_L EXYNOS4_MCTREG(0x200) 29#define EXYNOS4_MCT_G_COMP0_U EXYNOS4_MCTREG(0x204) 30#define EXYNOS4_MCT_G_COMP0_ADD_INCR EXYNOS4_MCTREG(0x208) 31#define EXYNOS4_MCT_G_TCON EXYNOS4_MCTREG(0x240) 32#define EXYNOS4_MCT_G_INT_CSTAT EXYNOS4_MCTREG(0x244) 33#define EXYNOS4_MCT_G_INT_ENB EXYNOS4_MCTREG(0x248) 34#define EXYNOS4_MCT_G_WSTAT EXYNOS4_MCTREG(0x24C) 35#define _EXYNOS4_MCT_L_BASE EXYNOS4_MCTREG(0x300) 36#define EXYNOS4_MCT_L_BASE(x) (_EXYNOS4_MCT_L_BASE + (0x100 * x)) 37#define EXYNOS4_MCT_L_MASK (0xffffff00) 38 39#define MCT_L_TCNTB_OFFSET (0x00) 40#define MCT_L_ICNTB_OFFSET (0x08) 41#define MCT_L_TCON_OFFSET (0x20) 42#define MCT_L_INT_CSTAT_OFFSET (0x30) 43#define MCT_L_INT_ENB_OFFSET (0x34) 44#define MCT_L_WSTAT_OFFSET (0x40) 45#define MCT_G_TCON_START (1 << 8) 46#define MCT_G_TCON_COMP0_AUTO_INC (1 << 1) 47#define MCT_G_TCON_COMP0_ENABLE (1 << 0) 48#define MCT_L_TCON_INTERVAL_MODE (1 << 2) 49#define MCT_L_TCON_INT_START (1 << 1) 50#define MCT_L_TCON_TIMER_START (1 << 0) 51 52#define TICK_BASE_CNT 1 53 54#ifdef CONFIG_ARM 55/* Use values higher than ARM arch timer. See 6282edb72bed. */ 56#define MCT_CLKSOURCE_RATING 450 57#define MCT_CLKEVENTS_RATING 500 58#else 59#define MCT_CLKSOURCE_RATING 350 60#define MCT_CLKEVENTS_RATING 350 61#endif 62 63/* There are four Global timers starting with 0 offset */ 64#define MCT_G0_IRQ 0 65/* Local timers count starts after global timer count */ 66#define MCT_L0_IRQ 4 67/* Max number of IRQ as per DT binding document */ 68#define MCT_NR_IRQS 20 69 70enum { 71 MCT_INT_SPI, 72 MCT_INT_PPI 73}; 74 75static void __iomem *reg_base; 76static unsigned long clk_rate; 77static unsigned int mct_int_type; 78static int mct_irqs[MCT_NR_IRQS]; 79 80struct mct_clock_event_device { 81 struct clock_event_device evt; 82 unsigned long base; 83 /** 84 * The length of the name must be adjusted if number of 85 * local timer interrupts grow over two digits 86 */ 87 char name[11]; 88}; 89 90static void exynos4_mct_write(unsigned int value, unsigned long offset) 91{ 92 unsigned long stat_addr; 93 u32 mask; 94 u32 i; 95 96 writel_relaxed(value, reg_base + offset); 97 98 if (likely(offset >= EXYNOS4_MCT_L_BASE(0))) { 99 stat_addr = (offset & EXYNOS4_MCT_L_MASK) + MCT_L_WSTAT_OFFSET; 100 switch (offset & ~EXYNOS4_MCT_L_MASK) { 101 case MCT_L_TCON_OFFSET: 102 mask = 1 << 3; /* L_TCON write status */ 103 break; 104 case MCT_L_ICNTB_OFFSET: 105 mask = 1 << 1; /* L_ICNTB write status */ 106 break; 107 case MCT_L_TCNTB_OFFSET: 108 mask = 1 << 0; /* L_TCNTB write status */ 109 break; 110 default: 111 return; 112 } 113 } else { 114 switch (offset) { 115 case EXYNOS4_MCT_G_TCON: 116 stat_addr = EXYNOS4_MCT_G_WSTAT; 117 mask = 1 << 16; /* G_TCON write status */ 118 break; 119 case EXYNOS4_MCT_G_COMP0_L: 120 stat_addr = EXYNOS4_MCT_G_WSTAT; 121 mask = 1 << 0; /* G_COMP0_L write status */ 122 break; 123 case EXYNOS4_MCT_G_COMP0_U: 124 stat_addr = EXYNOS4_MCT_G_WSTAT; 125 mask = 1 << 1; /* G_COMP0_U write status */ 126 break; 127 case EXYNOS4_MCT_G_COMP0_ADD_INCR: 128 stat_addr = EXYNOS4_MCT_G_WSTAT; 129 mask = 1 << 2; /* G_COMP0_ADD_INCR w status */ 130 break; 131 case EXYNOS4_MCT_G_CNT_L: 132 stat_addr = EXYNOS4_MCT_G_CNT_WSTAT; 133 mask = 1 << 0; /* G_CNT_L write status */ 134 break; 135 case EXYNOS4_MCT_G_CNT_U: 136 stat_addr = EXYNOS4_MCT_G_CNT_WSTAT; 137 mask = 1 << 1; /* G_CNT_U write status */ 138 break; 139 default: 140 return; 141 } 142 } 143 144 /* Wait maximum 1 ms until written values are applied */ 145 for (i = 0; i < loops_per_jiffy / 1000 * HZ; i++) 146 if (readl_relaxed(reg_base + stat_addr) & mask) { 147 writel_relaxed(mask, reg_base + stat_addr); 148 return; 149 } 150 151 panic("MCT hangs after writing %d (offset:0x%lx)\n", value, offset); 152} 153 154/* Clocksource handling */ 155static void exynos4_mct_frc_start(void) 156{ 157 u32 reg; 158 159 reg = readl_relaxed(reg_base + EXYNOS4_MCT_G_TCON); 160 reg |= MCT_G_TCON_START; 161 exynos4_mct_write(reg, EXYNOS4_MCT_G_TCON); 162} 163 164/** 165 * exynos4_read_count_64 - Read all 64-bits of the global counter 166 * 167 * This will read all 64-bits of the global counter taking care to make sure 168 * that the upper and lower half match. Note that reading the MCT can be quite 169 * slow (hundreds of nanoseconds) so you should use the 32-bit (lower half 170 * only) version when possible. 171 * 172 * Returns the number of cycles in the global counter. 173 */ 174static u64 exynos4_read_count_64(void) 175{ 176 unsigned int lo, hi; 177 u32 hi2 = readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_U); 178 179 do { 180 hi = hi2; 181 lo = readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_L); 182 hi2 = readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_U); 183 } while (hi != hi2); 184 185 return ((u64)hi << 32) | lo; 186} 187 188/** 189 * exynos4_read_count_32 - Read the lower 32-bits of the global counter 190 * 191 * This will read just the lower 32-bits of the global counter. This is marked 192 * as notrace so it can be used by the scheduler clock. 193 * 194 * Returns the number of cycles in the global counter (lower 32 bits). 195 */ 196static u32 notrace exynos4_read_count_32(void) 197{ 198 return readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_L); 199} 200 201static u64 exynos4_frc_read(struct clocksource *cs) 202{ 203 return exynos4_read_count_32(); 204} 205 206static void exynos4_frc_resume(struct clocksource *cs) 207{ 208 exynos4_mct_frc_start(); 209} 210 211static struct clocksource mct_frc = { 212 .name = "mct-frc", 213 .rating = MCT_CLKSOURCE_RATING, 214 .read = exynos4_frc_read, 215 .mask = CLOCKSOURCE_MASK(32), 216 .flags = CLOCK_SOURCE_IS_CONTINUOUS, 217 .resume = exynos4_frc_resume, 218}; 219 220static u64 notrace exynos4_read_sched_clock(void) 221{ 222 return exynos4_read_count_32(); 223} 224 225#if defined(CONFIG_ARM) 226static struct delay_timer exynos4_delay_timer; 227 228static cycles_t exynos4_read_current_timer(void) 229{ 230 BUILD_BUG_ON_MSG(sizeof(cycles_t) != sizeof(u32), 231 "cycles_t needs to move to 32-bit for ARM64 usage"); 232 return exynos4_read_count_32(); 233} 234#endif 235 236static int __init exynos4_clocksource_init(void) 237{ 238 exynos4_mct_frc_start(); 239 240#if defined(CONFIG_ARM) 241 exynos4_delay_timer.read_current_timer = &exynos4_read_current_timer; 242 exynos4_delay_timer.freq = clk_rate; 243 register_current_timer_delay(&exynos4_delay_timer); 244#endif 245 246 if (clocksource_register_hz(&mct_frc, clk_rate)) 247 panic("%s: can't register clocksource\n", mct_frc.name); 248 249 sched_clock_register(exynos4_read_sched_clock, 32, clk_rate); 250 251 return 0; 252} 253 254static void exynos4_mct_comp0_stop(void) 255{ 256 unsigned int tcon; 257 258 tcon = readl_relaxed(reg_base + EXYNOS4_MCT_G_TCON); 259 tcon &= ~(MCT_G_TCON_COMP0_ENABLE | MCT_G_TCON_COMP0_AUTO_INC); 260 261 exynos4_mct_write(tcon, EXYNOS4_MCT_G_TCON); 262 exynos4_mct_write(0, EXYNOS4_MCT_G_INT_ENB); 263} 264 265static void exynos4_mct_comp0_start(bool periodic, unsigned long cycles) 266{ 267 unsigned int tcon; 268 u64 comp_cycle; 269 270 tcon = readl_relaxed(reg_base + EXYNOS4_MCT_G_TCON); 271 272 if (periodic) { 273 tcon |= MCT_G_TCON_COMP0_AUTO_INC; 274 exynos4_mct_write(cycles, EXYNOS4_MCT_G_COMP0_ADD_INCR); 275 } 276 277 comp_cycle = exynos4_read_count_64() + cycles; 278 exynos4_mct_write((u32)comp_cycle, EXYNOS4_MCT_G_COMP0_L); 279 exynos4_mct_write((u32)(comp_cycle >> 32), EXYNOS4_MCT_G_COMP0_U); 280 281 exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_ENB); 282 283 tcon |= MCT_G_TCON_COMP0_ENABLE; 284 exynos4_mct_write(tcon , EXYNOS4_MCT_G_TCON); 285} 286 287static int exynos4_comp_set_next_event(unsigned long cycles, 288 struct clock_event_device *evt) 289{ 290 exynos4_mct_comp0_start(false, cycles); 291 292 return 0; 293} 294 295static int mct_set_state_shutdown(struct clock_event_device *evt) 296{ 297 exynos4_mct_comp0_stop(); 298 return 0; 299} 300 301static int mct_set_state_periodic(struct clock_event_device *evt) 302{ 303 unsigned long cycles_per_jiffy; 304 305 cycles_per_jiffy = (((unsigned long long)NSEC_PER_SEC / HZ * evt->mult) 306 >> evt->shift); 307 exynos4_mct_comp0_stop(); 308 exynos4_mct_comp0_start(true, cycles_per_jiffy); 309 return 0; 310} 311 312static struct clock_event_device mct_comp_device = { 313 .name = "mct-comp", 314 .features = CLOCK_EVT_FEAT_PERIODIC | 315 CLOCK_EVT_FEAT_ONESHOT, 316 .rating = 250, 317 .set_next_event = exynos4_comp_set_next_event, 318 .set_state_periodic = mct_set_state_periodic, 319 .set_state_shutdown = mct_set_state_shutdown, 320 .set_state_oneshot = mct_set_state_shutdown, 321 .set_state_oneshot_stopped = mct_set_state_shutdown, 322 .tick_resume = mct_set_state_shutdown, 323}; 324 325static irqreturn_t exynos4_mct_comp_isr(int irq, void *dev_id) 326{ 327 struct clock_event_device *evt = dev_id; 328 329 exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_CSTAT); 330 331 evt->event_handler(evt); 332 333 return IRQ_HANDLED; 334} 335 336static int exynos4_clockevent_init(void) 337{ 338 mct_comp_device.cpumask = cpumask_of(0); 339 clockevents_config_and_register(&mct_comp_device, clk_rate, 340 0xf, 0xffffffff); 341 if (request_irq(mct_irqs[MCT_G0_IRQ], exynos4_mct_comp_isr, 342 IRQF_TIMER | IRQF_IRQPOLL, "mct_comp_irq", 343 &mct_comp_device)) 344 pr_err("%s: request_irq() failed\n", "mct_comp_irq"); 345 346 return 0; 347} 348 349static DEFINE_PER_CPU(struct mct_clock_event_device, percpu_mct_tick); 350 351/* Clock event handling */ 352static void exynos4_mct_tick_stop(struct mct_clock_event_device *mevt) 353{ 354 unsigned long tmp; 355 unsigned long mask = MCT_L_TCON_INT_START | MCT_L_TCON_TIMER_START; 356 unsigned long offset = mevt->base + MCT_L_TCON_OFFSET; 357 358 tmp = readl_relaxed(reg_base + offset); 359 if (tmp & mask) { 360 tmp &= ~mask; 361 exynos4_mct_write(tmp, offset); 362 } 363} 364 365static void exynos4_mct_tick_start(unsigned long cycles, 366 struct mct_clock_event_device *mevt) 367{ 368 unsigned long tmp; 369 370 exynos4_mct_tick_stop(mevt); 371 372 tmp = (1 << 31) | cycles; /* MCT_L_UPDATE_ICNTB */ 373 374 /* update interrupt count buffer */ 375 exynos4_mct_write(tmp, mevt->base + MCT_L_ICNTB_OFFSET); 376 377 /* enable MCT tick interrupt */ 378 exynos4_mct_write(0x1, mevt->base + MCT_L_INT_ENB_OFFSET); 379 380 tmp = readl_relaxed(reg_base + mevt->base + MCT_L_TCON_OFFSET); 381 tmp |= MCT_L_TCON_INT_START | MCT_L_TCON_TIMER_START | 382 MCT_L_TCON_INTERVAL_MODE; 383 exynos4_mct_write(tmp, mevt->base + MCT_L_TCON_OFFSET); 384} 385 386static void exynos4_mct_tick_clear(struct mct_clock_event_device *mevt) 387{ 388 /* Clear the MCT tick interrupt */ 389 if (readl_relaxed(reg_base + mevt->base + MCT_L_INT_CSTAT_OFFSET) & 1) 390 exynos4_mct_write(0x1, mevt->base + MCT_L_INT_CSTAT_OFFSET); 391} 392 393static int exynos4_tick_set_next_event(unsigned long cycles, 394 struct clock_event_device *evt) 395{ 396 struct mct_clock_event_device *mevt; 397 398 mevt = container_of(evt, struct mct_clock_event_device, evt); 399 exynos4_mct_tick_start(cycles, mevt); 400 return 0; 401} 402 403static int set_state_shutdown(struct clock_event_device *evt) 404{ 405 struct mct_clock_event_device *mevt; 406 407 mevt = container_of(evt, struct mct_clock_event_device, evt); 408 exynos4_mct_tick_stop(mevt); 409 exynos4_mct_tick_clear(mevt); 410 return 0; 411} 412 413static int set_state_periodic(struct clock_event_device *evt) 414{ 415 struct mct_clock_event_device *mevt; 416 unsigned long cycles_per_jiffy; 417 418 mevt = container_of(evt, struct mct_clock_event_device, evt); 419 cycles_per_jiffy = (((unsigned long long)NSEC_PER_SEC / HZ * evt->mult) 420 >> evt->shift); 421 exynos4_mct_tick_stop(mevt); 422 exynos4_mct_tick_start(cycles_per_jiffy, mevt); 423 return 0; 424} 425 426static irqreturn_t exynos4_mct_tick_isr(int irq, void *dev_id) 427{ 428 struct mct_clock_event_device *mevt = dev_id; 429 struct clock_event_device *evt = &mevt->evt; 430 431 /* 432 * This is for supporting oneshot mode. 433 * Mct would generate interrupt periodically 434 * without explicit stopping. 435 */ 436 if (!clockevent_state_periodic(&mevt->evt)) 437 exynos4_mct_tick_stop(mevt); 438 439 exynos4_mct_tick_clear(mevt); 440 441 evt->event_handler(evt); 442 443 return IRQ_HANDLED; 444} 445 446static int exynos4_mct_starting_cpu(unsigned int cpu) 447{ 448 struct mct_clock_event_device *mevt = 449 per_cpu_ptr(&percpu_mct_tick, cpu); 450 struct clock_event_device *evt = &mevt->evt; 451 452 mevt->base = EXYNOS4_MCT_L_BASE(cpu); 453 snprintf(mevt->name, sizeof(mevt->name), "mct_tick%d", cpu); 454 455 evt->name = mevt->name; 456 evt->cpumask = cpumask_of(cpu); 457 evt->set_next_event = exynos4_tick_set_next_event; 458 evt->set_state_periodic = set_state_periodic; 459 evt->set_state_shutdown = set_state_shutdown; 460 evt->set_state_oneshot = set_state_shutdown; 461 evt->set_state_oneshot_stopped = set_state_shutdown; 462 evt->tick_resume = set_state_shutdown; 463 evt->features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT | 464 CLOCK_EVT_FEAT_PERCPU; 465 evt->rating = MCT_CLKEVENTS_RATING; 466 467 exynos4_mct_write(TICK_BASE_CNT, mevt->base + MCT_L_TCNTB_OFFSET); 468 469 if (mct_int_type == MCT_INT_SPI) { 470 471 if (evt->irq == -1) 472 return -EIO; 473 474 irq_force_affinity(evt->irq, cpumask_of(cpu)); 475 enable_irq(evt->irq); 476 } else { 477 enable_percpu_irq(mct_irqs[MCT_L0_IRQ], 0); 478 } 479 clockevents_config_and_register(evt, clk_rate / (TICK_BASE_CNT + 1), 480 0xf, 0x7fffffff); 481 482 return 0; 483} 484 485static int exynos4_mct_dying_cpu(unsigned int cpu) 486{ 487 struct mct_clock_event_device *mevt = 488 per_cpu_ptr(&percpu_mct_tick, cpu); 489 struct clock_event_device *evt = &mevt->evt; 490 491 evt->set_state_shutdown(evt); 492 if (mct_int_type == MCT_INT_SPI) { 493 if (evt->irq != -1) 494 disable_irq_nosync(evt->irq); 495 exynos4_mct_write(0x1, mevt->base + MCT_L_INT_CSTAT_OFFSET); 496 } else { 497 disable_percpu_irq(mct_irqs[MCT_L0_IRQ]); 498 } 499 return 0; 500} 501 502static int __init exynos4_timer_resources(struct device_node *np) 503{ 504 struct clk *mct_clk, *tick_clk; 505 506 reg_base = of_iomap(np, 0); 507 if (!reg_base) 508 panic("%s: unable to ioremap mct address space\n", __func__); 509 510 tick_clk = of_clk_get_by_name(np, "fin_pll"); 511 if (IS_ERR(tick_clk)) 512 panic("%s: unable to determine tick clock rate\n", __func__); 513 clk_rate = clk_get_rate(tick_clk); 514 515 mct_clk = of_clk_get_by_name(np, "mct"); 516 if (IS_ERR(mct_clk)) 517 panic("%s: unable to retrieve mct clock instance\n", __func__); 518 clk_prepare_enable(mct_clk); 519 520 return 0; 521} 522 523static int __init exynos4_timer_interrupts(struct device_node *np, 524 unsigned int int_type) 525{ 526 int nr_irqs, i, err, cpu; 527 528 mct_int_type = int_type; 529 530 /* This driver uses only one global timer interrupt */ 531 mct_irqs[MCT_G0_IRQ] = irq_of_parse_and_map(np, MCT_G0_IRQ); 532 533 /* 534 * Find out the number of local irqs specified. The local 535 * timer irqs are specified after the four global timer 536 * irqs are specified. 537 */ 538 nr_irqs = of_irq_count(np); 539 if (nr_irqs > ARRAY_SIZE(mct_irqs)) { 540 pr_err("exynos-mct: too many (%d) interrupts configured in DT\n", 541 nr_irqs); 542 nr_irqs = ARRAY_SIZE(mct_irqs); 543 } 544 for (i = MCT_L0_IRQ; i < nr_irqs; i++) 545 mct_irqs[i] = irq_of_parse_and_map(np, i); 546 547 if (mct_int_type == MCT_INT_PPI) { 548 549 err = request_percpu_irq(mct_irqs[MCT_L0_IRQ], 550 exynos4_mct_tick_isr, "MCT", 551 &percpu_mct_tick); 552 WARN(err, "MCT: can't request IRQ %d (%d)\n", 553 mct_irqs[MCT_L0_IRQ], err); 554 } else { 555 for_each_possible_cpu(cpu) { 556 int mct_irq; 557 struct mct_clock_event_device *pcpu_mevt = 558 per_cpu_ptr(&percpu_mct_tick, cpu); 559 560 pcpu_mevt->evt.irq = -1; 561 if (MCT_L0_IRQ + cpu >= ARRAY_SIZE(mct_irqs)) 562 break; 563 mct_irq = mct_irqs[MCT_L0_IRQ + cpu]; 564 565 irq_set_status_flags(mct_irq, IRQ_NOAUTOEN); 566 if (request_irq(mct_irq, 567 exynos4_mct_tick_isr, 568 IRQF_TIMER | IRQF_NOBALANCING, 569 pcpu_mevt->name, pcpu_mevt)) { 570 pr_err("exynos-mct: cannot register IRQ (cpu%d)\n", 571 cpu); 572 573 continue; 574 } 575 pcpu_mevt->evt.irq = mct_irq; 576 } 577 } 578 579 /* Install hotplug callbacks which configure the timer on this CPU */ 580 err = cpuhp_setup_state(CPUHP_AP_EXYNOS4_MCT_TIMER_STARTING, 581 "clockevents/exynos4/mct_timer:starting", 582 exynos4_mct_starting_cpu, 583 exynos4_mct_dying_cpu); 584 if (err) 585 goto out_irq; 586 587 return 0; 588 589out_irq: 590 if (mct_int_type == MCT_INT_PPI) { 591 free_percpu_irq(mct_irqs[MCT_L0_IRQ], &percpu_mct_tick); 592 } else { 593 for_each_possible_cpu(cpu) { 594 struct mct_clock_event_device *pcpu_mevt = 595 per_cpu_ptr(&percpu_mct_tick, cpu); 596 597 if (pcpu_mevt->evt.irq != -1) { 598 free_irq(pcpu_mevt->evt.irq, pcpu_mevt); 599 pcpu_mevt->evt.irq = -1; 600 } 601 } 602 } 603 return err; 604} 605 606static int __init mct_init_dt(struct device_node *np, unsigned int int_type) 607{ 608 int ret; 609 610 ret = exynos4_timer_resources(np); 611 if (ret) 612 return ret; 613 614 ret = exynos4_timer_interrupts(np, int_type); 615 if (ret) 616 return ret; 617 618 ret = exynos4_clocksource_init(); 619 if (ret) 620 return ret; 621 622 return exynos4_clockevent_init(); 623} 624 625 626static int __init mct_init_spi(struct device_node *np) 627{ 628 return mct_init_dt(np, MCT_INT_SPI); 629} 630 631static int __init mct_init_ppi(struct device_node *np) 632{ 633 return mct_init_dt(np, MCT_INT_PPI); 634} 635TIMER_OF_DECLARE(exynos4210, "samsung,exynos4210-mct", mct_init_spi); 636TIMER_OF_DECLARE(exynos4412, "samsung,exynos4412-mct", mct_init_ppi);