cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

exynos_mct.c (16883B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/* linux/arch/arm/mach-exynos4/mct.c
      3 *
      4 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
      5 *		http://www.samsung.com
      6 *
      7 * Exynos4 MCT(Multi-Core Timer) support
      8*/
      9
     10#include <linux/interrupt.h>
     11#include <linux/irq.h>
     12#include <linux/err.h>
     13#include <linux/clk.h>
     14#include <linux/clockchips.h>
     15#include <linux/cpu.h>
     16#include <linux/delay.h>
     17#include <linux/percpu.h>
     18#include <linux/of.h>
     19#include <linux/of_irq.h>
     20#include <linux/of_address.h>
     21#include <linux/clocksource.h>
     22#include <linux/sched_clock.h>
     23
     24#define EXYNOS4_MCTREG(x)		(x)
     25#define EXYNOS4_MCT_G_CNT_L		EXYNOS4_MCTREG(0x100)
     26#define EXYNOS4_MCT_G_CNT_U		EXYNOS4_MCTREG(0x104)
     27#define EXYNOS4_MCT_G_CNT_WSTAT		EXYNOS4_MCTREG(0x110)
     28#define EXYNOS4_MCT_G_COMP0_L		EXYNOS4_MCTREG(0x200)
     29#define EXYNOS4_MCT_G_COMP0_U		EXYNOS4_MCTREG(0x204)
     30#define EXYNOS4_MCT_G_COMP0_ADD_INCR	EXYNOS4_MCTREG(0x208)
     31#define EXYNOS4_MCT_G_TCON		EXYNOS4_MCTREG(0x240)
     32#define EXYNOS4_MCT_G_INT_CSTAT		EXYNOS4_MCTREG(0x244)
     33#define EXYNOS4_MCT_G_INT_ENB		EXYNOS4_MCTREG(0x248)
     34#define EXYNOS4_MCT_G_WSTAT		EXYNOS4_MCTREG(0x24C)
     35#define _EXYNOS4_MCT_L_BASE		EXYNOS4_MCTREG(0x300)
     36#define EXYNOS4_MCT_L_BASE(x)		(_EXYNOS4_MCT_L_BASE + (0x100 * x))
     37#define EXYNOS4_MCT_L_MASK		(0xffffff00)
     38
     39#define MCT_L_TCNTB_OFFSET		(0x00)
     40#define MCT_L_ICNTB_OFFSET		(0x08)
     41#define MCT_L_TCON_OFFSET		(0x20)
     42#define MCT_L_INT_CSTAT_OFFSET		(0x30)
     43#define MCT_L_INT_ENB_OFFSET		(0x34)
     44#define MCT_L_WSTAT_OFFSET		(0x40)
     45#define MCT_G_TCON_START		(1 << 8)
     46#define MCT_G_TCON_COMP0_AUTO_INC	(1 << 1)
     47#define MCT_G_TCON_COMP0_ENABLE		(1 << 0)
     48#define MCT_L_TCON_INTERVAL_MODE	(1 << 2)
     49#define MCT_L_TCON_INT_START		(1 << 1)
     50#define MCT_L_TCON_TIMER_START		(1 << 0)
     51
     52#define TICK_BASE_CNT	1
     53
     54#ifdef CONFIG_ARM
     55/* Use values higher than ARM arch timer. See 6282edb72bed. */
     56#define MCT_CLKSOURCE_RATING		450
     57#define MCT_CLKEVENTS_RATING		500
     58#else
     59#define MCT_CLKSOURCE_RATING		350
     60#define MCT_CLKEVENTS_RATING		350
     61#endif
     62
     63/* There are four Global timers starting with 0 offset */
     64#define MCT_G0_IRQ	0
     65/* Local timers count starts after global timer count */
     66#define MCT_L0_IRQ	4
     67/* Max number of IRQ as per DT binding document */
     68#define MCT_NR_IRQS	20
     69
     70enum {
     71	MCT_INT_SPI,
     72	MCT_INT_PPI
     73};
     74
     75static void __iomem *reg_base;
     76static unsigned long clk_rate;
     77static unsigned int mct_int_type;
     78static int mct_irqs[MCT_NR_IRQS];
     79
     80struct mct_clock_event_device {
     81	struct clock_event_device evt;
     82	unsigned long base;
     83	/**
     84	 *  The length of the name must be adjusted if number of
     85	 *  local timer interrupts grow over two digits
     86	 */
     87	char name[11];
     88};
     89
     90static void exynos4_mct_write(unsigned int value, unsigned long offset)
     91{
     92	unsigned long stat_addr;
     93	u32 mask;
     94	u32 i;
     95
     96	writel_relaxed(value, reg_base + offset);
     97
     98	if (likely(offset >= EXYNOS4_MCT_L_BASE(0))) {
     99		stat_addr = (offset & EXYNOS4_MCT_L_MASK) + MCT_L_WSTAT_OFFSET;
    100		switch (offset & ~EXYNOS4_MCT_L_MASK) {
    101		case MCT_L_TCON_OFFSET:
    102			mask = 1 << 3;		/* L_TCON write status */
    103			break;
    104		case MCT_L_ICNTB_OFFSET:
    105			mask = 1 << 1;		/* L_ICNTB write status */
    106			break;
    107		case MCT_L_TCNTB_OFFSET:
    108			mask = 1 << 0;		/* L_TCNTB write status */
    109			break;
    110		default:
    111			return;
    112		}
    113	} else {
    114		switch (offset) {
    115		case EXYNOS4_MCT_G_TCON:
    116			stat_addr = EXYNOS4_MCT_G_WSTAT;
    117			mask = 1 << 16;		/* G_TCON write status */
    118			break;
    119		case EXYNOS4_MCT_G_COMP0_L:
    120			stat_addr = EXYNOS4_MCT_G_WSTAT;
    121			mask = 1 << 0;		/* G_COMP0_L write status */
    122			break;
    123		case EXYNOS4_MCT_G_COMP0_U:
    124			stat_addr = EXYNOS4_MCT_G_WSTAT;
    125			mask = 1 << 1;		/* G_COMP0_U write status */
    126			break;
    127		case EXYNOS4_MCT_G_COMP0_ADD_INCR:
    128			stat_addr = EXYNOS4_MCT_G_WSTAT;
    129			mask = 1 << 2;		/* G_COMP0_ADD_INCR w status */
    130			break;
    131		case EXYNOS4_MCT_G_CNT_L:
    132			stat_addr = EXYNOS4_MCT_G_CNT_WSTAT;
    133			mask = 1 << 0;		/* G_CNT_L write status */
    134			break;
    135		case EXYNOS4_MCT_G_CNT_U:
    136			stat_addr = EXYNOS4_MCT_G_CNT_WSTAT;
    137			mask = 1 << 1;		/* G_CNT_U write status */
    138			break;
    139		default:
    140			return;
    141		}
    142	}
    143
    144	/* Wait maximum 1 ms until written values are applied */
    145	for (i = 0; i < loops_per_jiffy / 1000 * HZ; i++)
    146		if (readl_relaxed(reg_base + stat_addr) & mask) {
    147			writel_relaxed(mask, reg_base + stat_addr);
    148			return;
    149		}
    150
    151	panic("MCT hangs after writing %d (offset:0x%lx)\n", value, offset);
    152}
    153
    154/* Clocksource handling */
    155static void exynos4_mct_frc_start(void)
    156{
    157	u32 reg;
    158
    159	reg = readl_relaxed(reg_base + EXYNOS4_MCT_G_TCON);
    160	reg |= MCT_G_TCON_START;
    161	exynos4_mct_write(reg, EXYNOS4_MCT_G_TCON);
    162}
    163
    164/**
    165 * exynos4_read_count_64 - Read all 64-bits of the global counter
    166 *
    167 * This will read all 64-bits of the global counter taking care to make sure
    168 * that the upper and lower half match.  Note that reading the MCT can be quite
    169 * slow (hundreds of nanoseconds) so you should use the 32-bit (lower half
    170 * only) version when possible.
    171 *
    172 * Returns the number of cycles in the global counter.
    173 */
    174static u64 exynos4_read_count_64(void)
    175{
    176	unsigned int lo, hi;
    177	u32 hi2 = readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_U);
    178
    179	do {
    180		hi = hi2;
    181		lo = readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_L);
    182		hi2 = readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_U);
    183	} while (hi != hi2);
    184
    185	return ((u64)hi << 32) | lo;
    186}
    187
    188/**
    189 * exynos4_read_count_32 - Read the lower 32-bits of the global counter
    190 *
    191 * This will read just the lower 32-bits of the global counter.  This is marked
    192 * as notrace so it can be used by the scheduler clock.
    193 *
    194 * Returns the number of cycles in the global counter (lower 32 bits).
    195 */
    196static u32 notrace exynos4_read_count_32(void)
    197{
    198	return readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_L);
    199}
    200
    201static u64 exynos4_frc_read(struct clocksource *cs)
    202{
    203	return exynos4_read_count_32();
    204}
    205
    206static void exynos4_frc_resume(struct clocksource *cs)
    207{
    208	exynos4_mct_frc_start();
    209}
    210
    211static struct clocksource mct_frc = {
    212	.name		= "mct-frc",
    213	.rating		= MCT_CLKSOURCE_RATING,
    214	.read		= exynos4_frc_read,
    215	.mask		= CLOCKSOURCE_MASK(32),
    216	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
    217	.resume		= exynos4_frc_resume,
    218};
    219
    220static u64 notrace exynos4_read_sched_clock(void)
    221{
    222	return exynos4_read_count_32();
    223}
    224
    225#if defined(CONFIG_ARM)
    226static struct delay_timer exynos4_delay_timer;
    227
    228static cycles_t exynos4_read_current_timer(void)
    229{
    230	BUILD_BUG_ON_MSG(sizeof(cycles_t) != sizeof(u32),
    231			 "cycles_t needs to move to 32-bit for ARM64 usage");
    232	return exynos4_read_count_32();
    233}
    234#endif
    235
    236static int __init exynos4_clocksource_init(void)
    237{
    238	exynos4_mct_frc_start();
    239
    240#if defined(CONFIG_ARM)
    241	exynos4_delay_timer.read_current_timer = &exynos4_read_current_timer;
    242	exynos4_delay_timer.freq = clk_rate;
    243	register_current_timer_delay(&exynos4_delay_timer);
    244#endif
    245
    246	if (clocksource_register_hz(&mct_frc, clk_rate))
    247		panic("%s: can't register clocksource\n", mct_frc.name);
    248
    249	sched_clock_register(exynos4_read_sched_clock, 32, clk_rate);
    250
    251	return 0;
    252}
    253
    254static void exynos4_mct_comp0_stop(void)
    255{
    256	unsigned int tcon;
    257
    258	tcon = readl_relaxed(reg_base + EXYNOS4_MCT_G_TCON);
    259	tcon &= ~(MCT_G_TCON_COMP0_ENABLE | MCT_G_TCON_COMP0_AUTO_INC);
    260
    261	exynos4_mct_write(tcon, EXYNOS4_MCT_G_TCON);
    262	exynos4_mct_write(0, EXYNOS4_MCT_G_INT_ENB);
    263}
    264
    265static void exynos4_mct_comp0_start(bool periodic, unsigned long cycles)
    266{
    267	unsigned int tcon;
    268	u64 comp_cycle;
    269
    270	tcon = readl_relaxed(reg_base + EXYNOS4_MCT_G_TCON);
    271
    272	if (periodic) {
    273		tcon |= MCT_G_TCON_COMP0_AUTO_INC;
    274		exynos4_mct_write(cycles, EXYNOS4_MCT_G_COMP0_ADD_INCR);
    275	}
    276
    277	comp_cycle = exynos4_read_count_64() + cycles;
    278	exynos4_mct_write((u32)comp_cycle, EXYNOS4_MCT_G_COMP0_L);
    279	exynos4_mct_write((u32)(comp_cycle >> 32), EXYNOS4_MCT_G_COMP0_U);
    280
    281	exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_ENB);
    282
    283	tcon |= MCT_G_TCON_COMP0_ENABLE;
    284	exynos4_mct_write(tcon , EXYNOS4_MCT_G_TCON);
    285}
    286
    287static int exynos4_comp_set_next_event(unsigned long cycles,
    288				       struct clock_event_device *evt)
    289{
    290	exynos4_mct_comp0_start(false, cycles);
    291
    292	return 0;
    293}
    294
    295static int mct_set_state_shutdown(struct clock_event_device *evt)
    296{
    297	exynos4_mct_comp0_stop();
    298	return 0;
    299}
    300
    301static int mct_set_state_periodic(struct clock_event_device *evt)
    302{
    303	unsigned long cycles_per_jiffy;
    304
    305	cycles_per_jiffy = (((unsigned long long)NSEC_PER_SEC / HZ * evt->mult)
    306			    >> evt->shift);
    307	exynos4_mct_comp0_stop();
    308	exynos4_mct_comp0_start(true, cycles_per_jiffy);
    309	return 0;
    310}
    311
    312static struct clock_event_device mct_comp_device = {
    313	.name			= "mct-comp",
    314	.features		= CLOCK_EVT_FEAT_PERIODIC |
    315				  CLOCK_EVT_FEAT_ONESHOT,
    316	.rating			= 250,
    317	.set_next_event		= exynos4_comp_set_next_event,
    318	.set_state_periodic	= mct_set_state_periodic,
    319	.set_state_shutdown	= mct_set_state_shutdown,
    320	.set_state_oneshot	= mct_set_state_shutdown,
    321	.set_state_oneshot_stopped = mct_set_state_shutdown,
    322	.tick_resume		= mct_set_state_shutdown,
    323};
    324
    325static irqreturn_t exynos4_mct_comp_isr(int irq, void *dev_id)
    326{
    327	struct clock_event_device *evt = dev_id;
    328
    329	exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_CSTAT);
    330
    331	evt->event_handler(evt);
    332
    333	return IRQ_HANDLED;
    334}
    335
    336static int exynos4_clockevent_init(void)
    337{
    338	mct_comp_device.cpumask = cpumask_of(0);
    339	clockevents_config_and_register(&mct_comp_device, clk_rate,
    340					0xf, 0xffffffff);
    341	if (request_irq(mct_irqs[MCT_G0_IRQ], exynos4_mct_comp_isr,
    342			IRQF_TIMER | IRQF_IRQPOLL, "mct_comp_irq",
    343			&mct_comp_device))
    344		pr_err("%s: request_irq() failed\n", "mct_comp_irq");
    345
    346	return 0;
    347}
    348
    349static DEFINE_PER_CPU(struct mct_clock_event_device, percpu_mct_tick);
    350
    351/* Clock event handling */
    352static void exynos4_mct_tick_stop(struct mct_clock_event_device *mevt)
    353{
    354	unsigned long tmp;
    355	unsigned long mask = MCT_L_TCON_INT_START | MCT_L_TCON_TIMER_START;
    356	unsigned long offset = mevt->base + MCT_L_TCON_OFFSET;
    357
    358	tmp = readl_relaxed(reg_base + offset);
    359	if (tmp & mask) {
    360		tmp &= ~mask;
    361		exynos4_mct_write(tmp, offset);
    362	}
    363}
    364
    365static void exynos4_mct_tick_start(unsigned long cycles,
    366				   struct mct_clock_event_device *mevt)
    367{
    368	unsigned long tmp;
    369
    370	exynos4_mct_tick_stop(mevt);
    371
    372	tmp = (1 << 31) | cycles;	/* MCT_L_UPDATE_ICNTB */
    373
    374	/* update interrupt count buffer */
    375	exynos4_mct_write(tmp, mevt->base + MCT_L_ICNTB_OFFSET);
    376
    377	/* enable MCT tick interrupt */
    378	exynos4_mct_write(0x1, mevt->base + MCT_L_INT_ENB_OFFSET);
    379
    380	tmp = readl_relaxed(reg_base + mevt->base + MCT_L_TCON_OFFSET);
    381	tmp |= MCT_L_TCON_INT_START | MCT_L_TCON_TIMER_START |
    382	       MCT_L_TCON_INTERVAL_MODE;
    383	exynos4_mct_write(tmp, mevt->base + MCT_L_TCON_OFFSET);
    384}
    385
    386static void exynos4_mct_tick_clear(struct mct_clock_event_device *mevt)
    387{
    388	/* Clear the MCT tick interrupt */
    389	if (readl_relaxed(reg_base + mevt->base + MCT_L_INT_CSTAT_OFFSET) & 1)
    390		exynos4_mct_write(0x1, mevt->base + MCT_L_INT_CSTAT_OFFSET);
    391}
    392
    393static int exynos4_tick_set_next_event(unsigned long cycles,
    394				       struct clock_event_device *evt)
    395{
    396	struct mct_clock_event_device *mevt;
    397
    398	mevt = container_of(evt, struct mct_clock_event_device, evt);
    399	exynos4_mct_tick_start(cycles, mevt);
    400	return 0;
    401}
    402
    403static int set_state_shutdown(struct clock_event_device *evt)
    404{
    405	struct mct_clock_event_device *mevt;
    406
    407	mevt = container_of(evt, struct mct_clock_event_device, evt);
    408	exynos4_mct_tick_stop(mevt);
    409	exynos4_mct_tick_clear(mevt);
    410	return 0;
    411}
    412
    413static int set_state_periodic(struct clock_event_device *evt)
    414{
    415	struct mct_clock_event_device *mevt;
    416	unsigned long cycles_per_jiffy;
    417
    418	mevt = container_of(evt, struct mct_clock_event_device, evt);
    419	cycles_per_jiffy = (((unsigned long long)NSEC_PER_SEC / HZ * evt->mult)
    420			    >> evt->shift);
    421	exynos4_mct_tick_stop(mevt);
    422	exynos4_mct_tick_start(cycles_per_jiffy, mevt);
    423	return 0;
    424}
    425
    426static irqreturn_t exynos4_mct_tick_isr(int irq, void *dev_id)
    427{
    428	struct mct_clock_event_device *mevt = dev_id;
    429	struct clock_event_device *evt = &mevt->evt;
    430
    431	/*
    432	 * This is for supporting oneshot mode.
    433	 * Mct would generate interrupt periodically
    434	 * without explicit stopping.
    435	 */
    436	if (!clockevent_state_periodic(&mevt->evt))
    437		exynos4_mct_tick_stop(mevt);
    438
    439	exynos4_mct_tick_clear(mevt);
    440
    441	evt->event_handler(evt);
    442
    443	return IRQ_HANDLED;
    444}
    445
    446static int exynos4_mct_starting_cpu(unsigned int cpu)
    447{
    448	struct mct_clock_event_device *mevt =
    449		per_cpu_ptr(&percpu_mct_tick, cpu);
    450	struct clock_event_device *evt = &mevt->evt;
    451
    452	mevt->base = EXYNOS4_MCT_L_BASE(cpu);
    453	snprintf(mevt->name, sizeof(mevt->name), "mct_tick%d", cpu);
    454
    455	evt->name = mevt->name;
    456	evt->cpumask = cpumask_of(cpu);
    457	evt->set_next_event = exynos4_tick_set_next_event;
    458	evt->set_state_periodic = set_state_periodic;
    459	evt->set_state_shutdown = set_state_shutdown;
    460	evt->set_state_oneshot = set_state_shutdown;
    461	evt->set_state_oneshot_stopped = set_state_shutdown;
    462	evt->tick_resume = set_state_shutdown;
    463	evt->features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT |
    464			CLOCK_EVT_FEAT_PERCPU;
    465	evt->rating = MCT_CLKEVENTS_RATING;
    466
    467	exynos4_mct_write(TICK_BASE_CNT, mevt->base + MCT_L_TCNTB_OFFSET);
    468
    469	if (mct_int_type == MCT_INT_SPI) {
    470
    471		if (evt->irq == -1)
    472			return -EIO;
    473
    474		irq_force_affinity(evt->irq, cpumask_of(cpu));
    475		enable_irq(evt->irq);
    476	} else {
    477		enable_percpu_irq(mct_irqs[MCT_L0_IRQ], 0);
    478	}
    479	clockevents_config_and_register(evt, clk_rate / (TICK_BASE_CNT + 1),
    480					0xf, 0x7fffffff);
    481
    482	return 0;
    483}
    484
    485static int exynos4_mct_dying_cpu(unsigned int cpu)
    486{
    487	struct mct_clock_event_device *mevt =
    488		per_cpu_ptr(&percpu_mct_tick, cpu);
    489	struct clock_event_device *evt = &mevt->evt;
    490
    491	evt->set_state_shutdown(evt);
    492	if (mct_int_type == MCT_INT_SPI) {
    493		if (evt->irq != -1)
    494			disable_irq_nosync(evt->irq);
    495		exynos4_mct_write(0x1, mevt->base + MCT_L_INT_CSTAT_OFFSET);
    496	} else {
    497		disable_percpu_irq(mct_irqs[MCT_L0_IRQ]);
    498	}
    499	return 0;
    500}
    501
    502static int __init exynos4_timer_resources(struct device_node *np)
    503{
    504	struct clk *mct_clk, *tick_clk;
    505
    506	reg_base = of_iomap(np, 0);
    507	if (!reg_base)
    508		panic("%s: unable to ioremap mct address space\n", __func__);
    509
    510	tick_clk = of_clk_get_by_name(np, "fin_pll");
    511	if (IS_ERR(tick_clk))
    512		panic("%s: unable to determine tick clock rate\n", __func__);
    513	clk_rate = clk_get_rate(tick_clk);
    514
    515	mct_clk = of_clk_get_by_name(np, "mct");
    516	if (IS_ERR(mct_clk))
    517		panic("%s: unable to retrieve mct clock instance\n", __func__);
    518	clk_prepare_enable(mct_clk);
    519
    520	return 0;
    521}
    522
    523static int __init exynos4_timer_interrupts(struct device_node *np,
    524					   unsigned int int_type)
    525{
    526	int nr_irqs, i, err, cpu;
    527
    528	mct_int_type = int_type;
    529
    530	/* This driver uses only one global timer interrupt */
    531	mct_irqs[MCT_G0_IRQ] = irq_of_parse_and_map(np, MCT_G0_IRQ);
    532
    533	/*
    534	 * Find out the number of local irqs specified. The local
    535	 * timer irqs are specified after the four global timer
    536	 * irqs are specified.
    537	 */
    538	nr_irqs = of_irq_count(np);
    539	if (nr_irqs > ARRAY_SIZE(mct_irqs)) {
    540		pr_err("exynos-mct: too many (%d) interrupts configured in DT\n",
    541			nr_irqs);
    542		nr_irqs = ARRAY_SIZE(mct_irqs);
    543	}
    544	for (i = MCT_L0_IRQ; i < nr_irqs; i++)
    545		mct_irqs[i] = irq_of_parse_and_map(np, i);
    546
    547	if (mct_int_type == MCT_INT_PPI) {
    548
    549		err = request_percpu_irq(mct_irqs[MCT_L0_IRQ],
    550					 exynos4_mct_tick_isr, "MCT",
    551					 &percpu_mct_tick);
    552		WARN(err, "MCT: can't request IRQ %d (%d)\n",
    553		     mct_irqs[MCT_L0_IRQ], err);
    554	} else {
    555		for_each_possible_cpu(cpu) {
    556			int mct_irq;
    557			struct mct_clock_event_device *pcpu_mevt =
    558				per_cpu_ptr(&percpu_mct_tick, cpu);
    559
    560			pcpu_mevt->evt.irq = -1;
    561			if (MCT_L0_IRQ + cpu >= ARRAY_SIZE(mct_irqs))
    562				break;
    563			mct_irq = mct_irqs[MCT_L0_IRQ + cpu];
    564
    565			irq_set_status_flags(mct_irq, IRQ_NOAUTOEN);
    566			if (request_irq(mct_irq,
    567					exynos4_mct_tick_isr,
    568					IRQF_TIMER | IRQF_NOBALANCING,
    569					pcpu_mevt->name, pcpu_mevt)) {
    570				pr_err("exynos-mct: cannot register IRQ (cpu%d)\n",
    571									cpu);
    572
    573				continue;
    574			}
    575			pcpu_mevt->evt.irq = mct_irq;
    576		}
    577	}
    578
    579	/* Install hotplug callbacks which configure the timer on this CPU */
    580	err = cpuhp_setup_state(CPUHP_AP_EXYNOS4_MCT_TIMER_STARTING,
    581				"clockevents/exynos4/mct_timer:starting",
    582				exynos4_mct_starting_cpu,
    583				exynos4_mct_dying_cpu);
    584	if (err)
    585		goto out_irq;
    586
    587	return 0;
    588
    589out_irq:
    590	if (mct_int_type == MCT_INT_PPI) {
    591		free_percpu_irq(mct_irqs[MCT_L0_IRQ], &percpu_mct_tick);
    592	} else {
    593		for_each_possible_cpu(cpu) {
    594			struct mct_clock_event_device *pcpu_mevt =
    595				per_cpu_ptr(&percpu_mct_tick, cpu);
    596
    597			if (pcpu_mevt->evt.irq != -1) {
    598				free_irq(pcpu_mevt->evt.irq, pcpu_mevt);
    599				pcpu_mevt->evt.irq = -1;
    600			}
    601		}
    602	}
    603	return err;
    604}
    605
    606static int __init mct_init_dt(struct device_node *np, unsigned int int_type)
    607{
    608	int ret;
    609
    610	ret = exynos4_timer_resources(np);
    611	if (ret)
    612		return ret;
    613
    614	ret = exynos4_timer_interrupts(np, int_type);
    615	if (ret)
    616		return ret;
    617
    618	ret = exynos4_clocksource_init();
    619	if (ret)
    620		return ret;
    621
    622	return exynos4_clockevent_init();
    623}
    624
    625
    626static int __init mct_init_spi(struct device_node *np)
    627{
    628	return mct_init_dt(np, MCT_INT_SPI);
    629}
    630
    631static int __init mct_init_ppi(struct device_node *np)
    632{
    633	return mct_init_dt(np, MCT_INT_PPI);
    634}
    635TIMER_OF_DECLARE(exynos4210, "samsung,exynos4210-mct", mct_init_spi);
    636TIMER_OF_DECLARE(exynos4412, "samsung,exynos4412-mct", mct_init_ppi);