cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

hyperv_timer.c (15411B)


      1// SPDX-License-Identifier: GPL-2.0
      2
      3/*
      4 * Clocksource driver for the synthetic counter and timers
      5 * provided by the Hyper-V hypervisor to guest VMs, as described
      6 * in the Hyper-V Top Level Functional Spec (TLFS). This driver
      7 * is instruction set architecture independent.
      8 *
      9 * Copyright (C) 2019, Microsoft, Inc.
     10 *
     11 * Author:  Michael Kelley <mikelley@microsoft.com>
     12 */
     13
     14#include <linux/percpu.h>
     15#include <linux/cpumask.h>
     16#include <linux/clockchips.h>
     17#include <linux/clocksource.h>
     18#include <linux/sched_clock.h>
     19#include <linux/mm.h>
     20#include <linux/cpuhotplug.h>
     21#include <linux/interrupt.h>
     22#include <linux/irq.h>
     23#include <linux/acpi.h>
     24#include <clocksource/hyperv_timer.h>
     25#include <asm/hyperv-tlfs.h>
     26#include <asm/mshyperv.h>
     27
     28static struct clock_event_device __percpu *hv_clock_event;
     29static u64 hv_sched_clock_offset __ro_after_init;
     30
     31/*
     32 * If false, we're using the old mechanism for stimer0 interrupts
     33 * where it sends a VMbus message when it expires. The old
     34 * mechanism is used when running on older versions of Hyper-V
     35 * that don't support Direct Mode. While Hyper-V provides
     36 * four stimer's per CPU, Linux uses only stimer0.
     37 *
     38 * Because Direct Mode does not require processing a VMbus
     39 * message, stimer interrupts can be enabled earlier in the
     40 * process of booting a CPU, and consistent with when timer
     41 * interrupts are enabled for other clocksource drivers.
     42 * However, for legacy versions of Hyper-V when Direct Mode
     43 * is not enabled, setting up stimer interrupts must be
     44 * delayed until VMbus is initialized and can process the
     45 * interrupt message.
     46 */
     47static bool direct_mode_enabled;
     48
     49static int stimer0_irq = -1;
     50static int stimer0_message_sint;
     51static DEFINE_PER_CPU(long, stimer0_evt);
     52
     53/*
     54 * Common code for stimer0 interrupts coming via Direct Mode or
     55 * as a VMbus message.
     56 */
     57void hv_stimer0_isr(void)
     58{
     59	struct clock_event_device *ce;
     60
     61	ce = this_cpu_ptr(hv_clock_event);
     62	ce->event_handler(ce);
     63}
     64EXPORT_SYMBOL_GPL(hv_stimer0_isr);
     65
     66/*
     67 * stimer0 interrupt handler for architectures that support
     68 * per-cpu interrupts, which also implies Direct Mode.
     69 */
     70static irqreturn_t hv_stimer0_percpu_isr(int irq, void *dev_id)
     71{
     72	hv_stimer0_isr();
     73	return IRQ_HANDLED;
     74}
     75
     76static int hv_ce_set_next_event(unsigned long delta,
     77				struct clock_event_device *evt)
     78{
     79	u64 current_tick;
     80
     81	current_tick = hv_read_reference_counter();
     82	current_tick += delta;
     83	hv_set_register(HV_REGISTER_STIMER0_COUNT, current_tick);
     84	return 0;
     85}
     86
     87static int hv_ce_shutdown(struct clock_event_device *evt)
     88{
     89	hv_set_register(HV_REGISTER_STIMER0_COUNT, 0);
     90	hv_set_register(HV_REGISTER_STIMER0_CONFIG, 0);
     91	if (direct_mode_enabled && stimer0_irq >= 0)
     92		disable_percpu_irq(stimer0_irq);
     93
     94	return 0;
     95}
     96
     97static int hv_ce_set_oneshot(struct clock_event_device *evt)
     98{
     99	union hv_stimer_config timer_cfg;
    100
    101	timer_cfg.as_uint64 = 0;
    102	timer_cfg.enable = 1;
    103	timer_cfg.auto_enable = 1;
    104	if (direct_mode_enabled) {
    105		/*
    106		 * When it expires, the timer will directly interrupt
    107		 * on the specified hardware vector/IRQ.
    108		 */
    109		timer_cfg.direct_mode = 1;
    110		timer_cfg.apic_vector = HYPERV_STIMER0_VECTOR;
    111		if (stimer0_irq >= 0)
    112			enable_percpu_irq(stimer0_irq, IRQ_TYPE_NONE);
    113	} else {
    114		/*
    115		 * When it expires, the timer will generate a VMbus message,
    116		 * to be handled by the normal VMbus interrupt handler.
    117		 */
    118		timer_cfg.direct_mode = 0;
    119		timer_cfg.sintx = stimer0_message_sint;
    120	}
    121	hv_set_register(HV_REGISTER_STIMER0_CONFIG, timer_cfg.as_uint64);
    122	return 0;
    123}
    124
    125/*
    126 * hv_stimer_init - Per-cpu initialization of the clockevent
    127 */
    128static int hv_stimer_init(unsigned int cpu)
    129{
    130	struct clock_event_device *ce;
    131
    132	if (!hv_clock_event)
    133		return 0;
    134
    135	ce = per_cpu_ptr(hv_clock_event, cpu);
    136	ce->name = "Hyper-V clockevent";
    137	ce->features = CLOCK_EVT_FEAT_ONESHOT;
    138	ce->cpumask = cpumask_of(cpu);
    139	ce->rating = 1000;
    140	ce->set_state_shutdown = hv_ce_shutdown;
    141	ce->set_state_oneshot = hv_ce_set_oneshot;
    142	ce->set_next_event = hv_ce_set_next_event;
    143
    144	clockevents_config_and_register(ce,
    145					HV_CLOCK_HZ,
    146					HV_MIN_DELTA_TICKS,
    147					HV_MAX_MAX_DELTA_TICKS);
    148	return 0;
    149}
    150
    151/*
    152 * hv_stimer_cleanup - Per-cpu cleanup of the clockevent
    153 */
    154int hv_stimer_cleanup(unsigned int cpu)
    155{
    156	struct clock_event_device *ce;
    157
    158	if (!hv_clock_event)
    159		return 0;
    160
    161	/*
    162	 * In the legacy case where Direct Mode is not enabled
    163	 * (which can only be on x86/64), stimer cleanup happens
    164	 * relatively early in the CPU offlining process. We
    165	 * must unbind the stimer-based clockevent device so
    166	 * that the LAPIC timer can take over until clockevents
    167	 * are no longer needed in the offlining process. Note
    168	 * that clockevents_unbind_device() eventually calls
    169	 * hv_ce_shutdown().
    170	 *
    171	 * The unbind should not be done when Direct Mode is
    172	 * enabled because we may be on an architecture where
    173	 * there are no other clockevent devices to fallback to.
    174	 */
    175	ce = per_cpu_ptr(hv_clock_event, cpu);
    176	if (direct_mode_enabled)
    177		hv_ce_shutdown(ce);
    178	else
    179		clockevents_unbind_device(ce, cpu);
    180
    181	return 0;
    182}
    183EXPORT_SYMBOL_GPL(hv_stimer_cleanup);
    184
    185/*
    186 * These placeholders are overridden by arch specific code on
    187 * architectures that need special setup of the stimer0 IRQ because
    188 * they don't support per-cpu IRQs (such as x86/x64).
    189 */
    190void __weak hv_setup_stimer0_handler(void (*handler)(void))
    191{
    192};
    193
    194void __weak hv_remove_stimer0_handler(void)
    195{
    196};
    197
    198/* Called only on architectures with per-cpu IRQs (i.e., not x86/x64) */
    199static int hv_setup_stimer0_irq(void)
    200{
    201	int ret;
    202
    203	ret = acpi_register_gsi(NULL, HYPERV_STIMER0_VECTOR,
    204			ACPI_EDGE_SENSITIVE, ACPI_ACTIVE_HIGH);
    205	if (ret < 0) {
    206		pr_err("Can't register Hyper-V stimer0 GSI. Error %d", ret);
    207		return ret;
    208	}
    209	stimer0_irq = ret;
    210
    211	ret = request_percpu_irq(stimer0_irq, hv_stimer0_percpu_isr,
    212		"Hyper-V stimer0", &stimer0_evt);
    213	if (ret) {
    214		pr_err("Can't request Hyper-V stimer0 IRQ %d. Error %d",
    215			stimer0_irq, ret);
    216		acpi_unregister_gsi(stimer0_irq);
    217		stimer0_irq = -1;
    218	}
    219	return ret;
    220}
    221
    222static void hv_remove_stimer0_irq(void)
    223{
    224	if (stimer0_irq == -1) {
    225		hv_remove_stimer0_handler();
    226	} else {
    227		free_percpu_irq(stimer0_irq, &stimer0_evt);
    228		acpi_unregister_gsi(stimer0_irq);
    229		stimer0_irq = -1;
    230	}
    231}
    232
    233/* hv_stimer_alloc - Global initialization of the clockevent and stimer0 */
    234int hv_stimer_alloc(bool have_percpu_irqs)
    235{
    236	int ret;
    237
    238	/*
    239	 * Synthetic timers are always available except on old versions of
    240	 * Hyper-V on x86.  In that case, return as error as Linux will use a
    241	 * clockevent based on emulated LAPIC timer hardware.
    242	 */
    243	if (!(ms_hyperv.features & HV_MSR_SYNTIMER_AVAILABLE))
    244		return -EINVAL;
    245
    246	hv_clock_event = alloc_percpu(struct clock_event_device);
    247	if (!hv_clock_event)
    248		return -ENOMEM;
    249
    250	direct_mode_enabled = ms_hyperv.misc_features &
    251			HV_STIMER_DIRECT_MODE_AVAILABLE;
    252
    253	/*
    254	 * If Direct Mode isn't enabled, the remainder of the initialization
    255	 * is done later by hv_stimer_legacy_init()
    256	 */
    257	if (!direct_mode_enabled)
    258		return 0;
    259
    260	if (have_percpu_irqs) {
    261		ret = hv_setup_stimer0_irq();
    262		if (ret)
    263			goto free_clock_event;
    264	} else {
    265		hv_setup_stimer0_handler(hv_stimer0_isr);
    266	}
    267
    268	/*
    269	 * Since we are in Direct Mode, stimer initialization
    270	 * can be done now with a CPUHP value in the same range
    271	 * as other clockevent devices.
    272	 */
    273	ret = cpuhp_setup_state(CPUHP_AP_HYPERV_TIMER_STARTING,
    274			"clockevents/hyperv/stimer:starting",
    275			hv_stimer_init, hv_stimer_cleanup);
    276	if (ret < 0) {
    277		hv_remove_stimer0_irq();
    278		goto free_clock_event;
    279	}
    280	return ret;
    281
    282free_clock_event:
    283	free_percpu(hv_clock_event);
    284	hv_clock_event = NULL;
    285	return ret;
    286}
    287EXPORT_SYMBOL_GPL(hv_stimer_alloc);
    288
    289/*
    290 * hv_stimer_legacy_init -- Called from the VMbus driver to handle
    291 * the case when Direct Mode is not enabled, and the stimer
    292 * must be initialized late in the CPU onlining process.
    293 *
    294 */
    295void hv_stimer_legacy_init(unsigned int cpu, int sint)
    296{
    297	if (direct_mode_enabled)
    298		return;
    299
    300	/*
    301	 * This function gets called by each vCPU, so setting the
    302	 * global stimer_message_sint value each time is conceptually
    303	 * not ideal, but the value passed in is always the same and
    304	 * it avoids introducing yet another interface into this
    305	 * clocksource driver just to set the sint in the legacy case.
    306	 */
    307	stimer0_message_sint = sint;
    308	(void)hv_stimer_init(cpu);
    309}
    310EXPORT_SYMBOL_GPL(hv_stimer_legacy_init);
    311
    312/*
    313 * hv_stimer_legacy_cleanup -- Called from the VMbus driver to
    314 * handle the case when Direct Mode is not enabled, and the
    315 * stimer must be cleaned up early in the CPU offlining
    316 * process.
    317 */
    318void hv_stimer_legacy_cleanup(unsigned int cpu)
    319{
    320	if (direct_mode_enabled)
    321		return;
    322	(void)hv_stimer_cleanup(cpu);
    323}
    324EXPORT_SYMBOL_GPL(hv_stimer_legacy_cleanup);
    325
    326/*
    327 * Do a global cleanup of clockevents for the cases of kexec and
    328 * vmbus exit
    329 */
    330void hv_stimer_global_cleanup(void)
    331{
    332	int	cpu;
    333
    334	/*
    335	 * hv_stime_legacy_cleanup() will stop the stimer if Direct
    336	 * Mode is not enabled, and fallback to the LAPIC timer.
    337	 */
    338	for_each_present_cpu(cpu) {
    339		hv_stimer_legacy_cleanup(cpu);
    340	}
    341
    342	if (!hv_clock_event)
    343		return;
    344
    345	if (direct_mode_enabled) {
    346		cpuhp_remove_state(CPUHP_AP_HYPERV_TIMER_STARTING);
    347		hv_remove_stimer0_irq();
    348		stimer0_irq = -1;
    349	}
    350	free_percpu(hv_clock_event);
    351	hv_clock_event = NULL;
    352
    353}
    354EXPORT_SYMBOL_GPL(hv_stimer_global_cleanup);
    355
    356/*
    357 * Code and definitions for the Hyper-V clocksources.  Two
    358 * clocksources are defined: one that reads the Hyper-V defined MSR, and
    359 * the other that uses the TSC reference page feature as defined in the
    360 * TLFS.  The MSR version is for compatibility with old versions of
    361 * Hyper-V and 32-bit x86.  The TSC reference page version is preferred.
    362 */
    363
    364static union {
    365	struct ms_hyperv_tsc_page page;
    366	u8 reserved[PAGE_SIZE];
    367} tsc_pg __aligned(PAGE_SIZE);
    368
    369struct ms_hyperv_tsc_page *hv_get_tsc_page(void)
    370{
    371	return &tsc_pg.page;
    372}
    373EXPORT_SYMBOL_GPL(hv_get_tsc_page);
    374
    375static u64 notrace read_hv_clock_tsc(void)
    376{
    377	u64 current_tick = hv_read_tsc_page(hv_get_tsc_page());
    378
    379	if (current_tick == U64_MAX)
    380		current_tick = hv_get_register(HV_REGISTER_TIME_REF_COUNT);
    381
    382	return current_tick;
    383}
    384
    385static u64 notrace read_hv_clock_tsc_cs(struct clocksource *arg)
    386{
    387	return read_hv_clock_tsc();
    388}
    389
    390static u64 notrace read_hv_sched_clock_tsc(void)
    391{
    392	return (read_hv_clock_tsc() - hv_sched_clock_offset) *
    393		(NSEC_PER_SEC / HV_CLOCK_HZ);
    394}
    395
    396static void suspend_hv_clock_tsc(struct clocksource *arg)
    397{
    398	u64 tsc_msr;
    399
    400	/* Disable the TSC page */
    401	tsc_msr = hv_get_register(HV_REGISTER_REFERENCE_TSC);
    402	tsc_msr &= ~BIT_ULL(0);
    403	hv_set_register(HV_REGISTER_REFERENCE_TSC, tsc_msr);
    404}
    405
    406
    407static void resume_hv_clock_tsc(struct clocksource *arg)
    408{
    409	phys_addr_t phys_addr = virt_to_phys(&tsc_pg);
    410	u64 tsc_msr;
    411
    412	/* Re-enable the TSC page */
    413	tsc_msr = hv_get_register(HV_REGISTER_REFERENCE_TSC);
    414	tsc_msr &= GENMASK_ULL(11, 0);
    415	tsc_msr |= BIT_ULL(0) | (u64)phys_addr;
    416	hv_set_register(HV_REGISTER_REFERENCE_TSC, tsc_msr);
    417}
    418
    419#ifdef HAVE_VDSO_CLOCKMODE_HVCLOCK
    420static int hv_cs_enable(struct clocksource *cs)
    421{
    422	vclocks_set_used(VDSO_CLOCKMODE_HVCLOCK);
    423	return 0;
    424}
    425#endif
    426
    427static struct clocksource hyperv_cs_tsc = {
    428	.name	= "hyperv_clocksource_tsc_page",
    429	.rating	= 500,
    430	.read	= read_hv_clock_tsc_cs,
    431	.mask	= CLOCKSOURCE_MASK(64),
    432	.flags	= CLOCK_SOURCE_IS_CONTINUOUS,
    433	.suspend= suspend_hv_clock_tsc,
    434	.resume	= resume_hv_clock_tsc,
    435#ifdef HAVE_VDSO_CLOCKMODE_HVCLOCK
    436	.enable = hv_cs_enable,
    437	.vdso_clock_mode = VDSO_CLOCKMODE_HVCLOCK,
    438#else
    439	.vdso_clock_mode = VDSO_CLOCKMODE_NONE,
    440#endif
    441};
    442
    443static u64 notrace read_hv_clock_msr(void)
    444{
    445	/*
    446	 * Read the partition counter to get the current tick count. This count
    447	 * is set to 0 when the partition is created and is incremented in
    448	 * 100 nanosecond units.
    449	 */
    450	return hv_get_register(HV_REGISTER_TIME_REF_COUNT);
    451}
    452
    453static u64 notrace read_hv_clock_msr_cs(struct clocksource *arg)
    454{
    455	return read_hv_clock_msr();
    456}
    457
    458static u64 notrace read_hv_sched_clock_msr(void)
    459{
    460	return (read_hv_clock_msr() - hv_sched_clock_offset) *
    461		(NSEC_PER_SEC / HV_CLOCK_HZ);
    462}
    463
    464static struct clocksource hyperv_cs_msr = {
    465	.name	= "hyperv_clocksource_msr",
    466	.rating	= 500,
    467	.read	= read_hv_clock_msr_cs,
    468	.mask	= CLOCKSOURCE_MASK(64),
    469	.flags	= CLOCK_SOURCE_IS_CONTINUOUS,
    470};
    471
    472/*
    473 * Reference to pv_ops must be inline so objtool
    474 * detection of noinstr violations can work correctly.
    475 */
    476#ifdef CONFIG_GENERIC_SCHED_CLOCK
    477static __always_inline void hv_setup_sched_clock(void *sched_clock)
    478{
    479	/*
    480	 * We're on an architecture with generic sched clock (not x86/x64).
    481	 * The Hyper-V sched clock read function returns nanoseconds, not
    482	 * the normal 100ns units of the Hyper-V synthetic clock.
    483	 */
    484	sched_clock_register(sched_clock, 64, NSEC_PER_SEC);
    485}
    486#elif defined CONFIG_PARAVIRT
    487static __always_inline void hv_setup_sched_clock(void *sched_clock)
    488{
    489	/* We're on x86/x64 *and* using PV ops */
    490	paravirt_set_sched_clock(sched_clock);
    491}
    492#else /* !CONFIG_GENERIC_SCHED_CLOCK && !CONFIG_PARAVIRT */
    493static __always_inline void hv_setup_sched_clock(void *sched_clock) {}
    494#endif /* CONFIG_GENERIC_SCHED_CLOCK */
    495
    496static bool __init hv_init_tsc_clocksource(void)
    497{
    498	u64		tsc_msr;
    499	phys_addr_t	phys_addr;
    500
    501	if (!(ms_hyperv.features & HV_MSR_REFERENCE_TSC_AVAILABLE))
    502		return false;
    503
    504	if (hv_root_partition)
    505		return false;
    506
    507	/*
    508	 * If Hyper-V offers TSC_INVARIANT, then the virtualized TSC correctly
    509	 * handles frequency and offset changes due to live migration,
    510	 * pause/resume, and other VM management operations.  So lower the
    511	 * Hyper-V Reference TSC rating, causing the generic TSC to be used.
    512	 * TSC_INVARIANT is not offered on ARM64, so the Hyper-V Reference
    513	 * TSC will be preferred over the virtualized ARM64 arch counter.
    514	 * While the Hyper-V MSR clocksource won't be used since the
    515	 * Reference TSC clocksource is present, change its rating as
    516	 * well for consistency.
    517	 */
    518	if (ms_hyperv.features & HV_ACCESS_TSC_INVARIANT) {
    519		hyperv_cs_tsc.rating = 250;
    520		hyperv_cs_msr.rating = 250;
    521	}
    522
    523	hv_read_reference_counter = read_hv_clock_tsc;
    524	phys_addr = virt_to_phys(hv_get_tsc_page());
    525
    526	/*
    527	 * The Hyper-V TLFS specifies to preserve the value of reserved
    528	 * bits in registers. So read the existing value, preserve the
    529	 * low order 12 bits, and add in the guest physical address
    530	 * (which already has at least the low 12 bits set to zero since
    531	 * it is page aligned). Also set the "enable" bit, which is bit 0.
    532	 */
    533	tsc_msr = hv_get_register(HV_REGISTER_REFERENCE_TSC);
    534	tsc_msr &= GENMASK_ULL(11, 0);
    535	tsc_msr = tsc_msr | 0x1 | (u64)phys_addr;
    536	hv_set_register(HV_REGISTER_REFERENCE_TSC, tsc_msr);
    537
    538	clocksource_register_hz(&hyperv_cs_tsc, NSEC_PER_SEC/100);
    539
    540	hv_sched_clock_offset = hv_read_reference_counter();
    541	hv_setup_sched_clock(read_hv_sched_clock_tsc);
    542
    543	return true;
    544}
    545
    546void __init hv_init_clocksource(void)
    547{
    548	/*
    549	 * Try to set up the TSC page clocksource. If it succeeds, we're
    550	 * done. Otherwise, set up the MSR clocksource.  At least one of
    551	 * these will always be available except on very old versions of
    552	 * Hyper-V on x86.  In that case we won't have a Hyper-V
    553	 * clocksource, but Linux will still run with a clocksource based
    554	 * on the emulated PIT or LAPIC timer.
    555	 */
    556	if (hv_init_tsc_clocksource())
    557		return;
    558
    559	if (!(ms_hyperv.features & HV_MSR_TIME_REF_COUNT_AVAILABLE))
    560		return;
    561
    562	hv_read_reference_counter = read_hv_clock_msr;
    563	clocksource_register_hz(&hyperv_cs_msr, NSEC_PER_SEC/100);
    564
    565	hv_sched_clock_offset = hv_read_reference_counter();
    566	hv_setup_sched_clock(read_hv_sched_clock_msr);
    567}