cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

nomadik-mtu.c (7507B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 * Copyright (C) 2008 STMicroelectronics
      4 * Copyright (C) 2010 Alessandro Rubini
      5 * Copyright (C) 2010 Linus Walleij for ST-Ericsson
      6 */
      7#include <linux/init.h>
      8#include <linux/interrupt.h>
      9#include <linux/irq.h>
     10#include <linux/io.h>
     11#include <linux/clockchips.h>
     12#include <linux/clocksource.h>
     13#include <linux/of_address.h>
     14#include <linux/of_irq.h>
     15#include <linux/of_platform.h>
     16#include <linux/clk.h>
     17#include <linux/jiffies.h>
     18#include <linux/delay.h>
     19#include <linux/err.h>
     20#include <linux/sched_clock.h>
     21#include <asm/mach/time.h>
     22
     23/*
     24 * The MTU device hosts four different counters, with 4 set of
     25 * registers. These are register names.
     26 */
     27
     28#define MTU_IMSC	0x00	/* Interrupt mask set/clear */
     29#define MTU_RIS		0x04	/* Raw interrupt status */
     30#define MTU_MIS		0x08	/* Masked interrupt status */
     31#define MTU_ICR		0x0C	/* Interrupt clear register */
     32
     33/* per-timer registers take 0..3 as argument */
     34#define MTU_LR(x)	(0x10 + 0x10 * (x) + 0x00)	/* Load value */
     35#define MTU_VAL(x)	(0x10 + 0x10 * (x) + 0x04)	/* Current value */
     36#define MTU_CR(x)	(0x10 + 0x10 * (x) + 0x08)	/* Control reg */
     37#define MTU_BGLR(x)	(0x10 + 0x10 * (x) + 0x0c)	/* At next overflow */
     38
     39/* bits for the control register */
     40#define MTU_CRn_ENA		0x80
     41#define MTU_CRn_PERIODIC	0x40	/* if 0 = free-running */
     42#define MTU_CRn_PRESCALE_MASK	0x0c
     43#define MTU_CRn_PRESCALE_1		0x00
     44#define MTU_CRn_PRESCALE_16		0x04
     45#define MTU_CRn_PRESCALE_256		0x08
     46#define MTU_CRn_32BITS		0x02
     47#define MTU_CRn_ONESHOT		0x01	/* if 0 = wraps reloading from BGLR*/
     48
     49/* Other registers are usual amba/primecell registers, currently not used */
     50#define MTU_ITCR	0xff0
     51#define MTU_ITOP	0xff4
     52
     53#define MTU_PERIPH_ID0	0xfe0
     54#define MTU_PERIPH_ID1	0xfe4
     55#define MTU_PERIPH_ID2	0xfe8
     56#define MTU_PERIPH_ID3	0xfeC
     57
     58#define MTU_PCELL0	0xff0
     59#define MTU_PCELL1	0xff4
     60#define MTU_PCELL2	0xff8
     61#define MTU_PCELL3	0xffC
     62
     63static void __iomem *mtu_base;
     64static bool clkevt_periodic;
     65static u32 clk_prescale;
     66static u32 nmdk_cycle;		/* write-once */
     67static struct delay_timer mtu_delay_timer;
     68
     69/*
     70 * Override the global weak sched_clock symbol with this
     71 * local implementation which uses the clocksource to get some
     72 * better resolution when scheduling the kernel.
     73 */
     74static u64 notrace nomadik_read_sched_clock(void)
     75{
     76	if (unlikely(!mtu_base))
     77		return 0;
     78
     79	return -readl(mtu_base + MTU_VAL(0));
     80}
     81
     82static unsigned long nmdk_timer_read_current_timer(void)
     83{
     84	return ~readl_relaxed(mtu_base + MTU_VAL(0));
     85}
     86
     87/* Clockevent device: use one-shot mode */
     88static int nmdk_clkevt_next(unsigned long evt, struct clock_event_device *ev)
     89{
     90	writel(1 << 1, mtu_base + MTU_IMSC);
     91	writel(evt, mtu_base + MTU_LR(1));
     92	/* Load highest value, enable device, enable interrupts */
     93	writel(MTU_CRn_ONESHOT | clk_prescale |
     94	       MTU_CRn_32BITS | MTU_CRn_ENA,
     95	       mtu_base + MTU_CR(1));
     96
     97	return 0;
     98}
     99
    100static void nmdk_clkevt_reset(void)
    101{
    102	if (clkevt_periodic) {
    103		/* Timer: configure load and background-load, and fire it up */
    104		writel(nmdk_cycle, mtu_base + MTU_LR(1));
    105		writel(nmdk_cycle, mtu_base + MTU_BGLR(1));
    106
    107		writel(MTU_CRn_PERIODIC | clk_prescale |
    108		       MTU_CRn_32BITS | MTU_CRn_ENA,
    109		       mtu_base + MTU_CR(1));
    110		writel(1 << 1, mtu_base + MTU_IMSC);
    111	} else {
    112		/* Generate an interrupt to start the clockevent again */
    113		(void) nmdk_clkevt_next(nmdk_cycle, NULL);
    114	}
    115}
    116
    117static int nmdk_clkevt_shutdown(struct clock_event_device *evt)
    118{
    119	writel(0, mtu_base + MTU_IMSC);
    120	/* disable timer */
    121	writel(0, mtu_base + MTU_CR(1));
    122	/* load some high default value */
    123	writel(0xffffffff, mtu_base + MTU_LR(1));
    124	return 0;
    125}
    126
    127static int nmdk_clkevt_set_oneshot(struct clock_event_device *evt)
    128{
    129	clkevt_periodic = false;
    130	return 0;
    131}
    132
    133static int nmdk_clkevt_set_periodic(struct clock_event_device *evt)
    134{
    135	clkevt_periodic = true;
    136	nmdk_clkevt_reset();
    137	return 0;
    138}
    139
    140static void nmdk_clksrc_reset(void)
    141{
    142	/* Disable */
    143	writel(0, mtu_base + MTU_CR(0));
    144
    145	/* ClockSource: configure load and background-load, and fire it up */
    146	writel(nmdk_cycle, mtu_base + MTU_LR(0));
    147	writel(nmdk_cycle, mtu_base + MTU_BGLR(0));
    148
    149	writel(clk_prescale | MTU_CRn_32BITS | MTU_CRn_ENA,
    150	       mtu_base + MTU_CR(0));
    151}
    152
    153static void nmdk_clkevt_resume(struct clock_event_device *cedev)
    154{
    155	nmdk_clkevt_reset();
    156	nmdk_clksrc_reset();
    157}
    158
    159static struct clock_event_device nmdk_clkevt = {
    160	.name			= "mtu_1",
    161	.features		= CLOCK_EVT_FEAT_ONESHOT |
    162				  CLOCK_EVT_FEAT_PERIODIC |
    163				  CLOCK_EVT_FEAT_DYNIRQ,
    164	.rating			= 200,
    165	.set_state_shutdown	= nmdk_clkevt_shutdown,
    166	.set_state_periodic	= nmdk_clkevt_set_periodic,
    167	.set_state_oneshot	= nmdk_clkevt_set_oneshot,
    168	.set_next_event		= nmdk_clkevt_next,
    169	.resume			= nmdk_clkevt_resume,
    170};
    171
    172/*
    173 * IRQ Handler for timer 1 of the MTU block.
    174 */
    175static irqreturn_t nmdk_timer_interrupt(int irq, void *dev_id)
    176{
    177	struct clock_event_device *evdev = dev_id;
    178
    179	writel(1 << 1, mtu_base + MTU_ICR); /* Interrupt clear reg */
    180	evdev->event_handler(evdev);
    181	return IRQ_HANDLED;
    182}
    183
    184static int __init nmdk_timer_init(void __iomem *base, int irq,
    185				   struct clk *pclk, struct clk *clk)
    186{
    187	unsigned long rate;
    188	int ret;
    189	int min_ticks;
    190
    191	mtu_base = base;
    192
    193	BUG_ON(clk_prepare_enable(pclk));
    194	BUG_ON(clk_prepare_enable(clk));
    195
    196	/*
    197	 * Tick rate is 2.4MHz for Nomadik and 2.4Mhz, 100MHz or 133 MHz
    198	 * for ux500, and in one specific Ux500 case 32768 Hz.
    199	 *
    200	 * Use a divide-by-16 counter if the tick rate is more than 32MHz.
    201	 * At 32 MHz, the timer (with 32 bit counter) can be programmed
    202	 * to wake-up at a max 127s a head in time. Dividing a 2.4 MHz timer
    203	 * with 16 gives too low timer resolution.
    204	 */
    205	rate = clk_get_rate(clk);
    206	if (rate > 32000000) {
    207		rate /= 16;
    208		clk_prescale = MTU_CRn_PRESCALE_16;
    209	} else {
    210		clk_prescale = MTU_CRn_PRESCALE_1;
    211	}
    212
    213	/* Cycles for periodic mode */
    214	nmdk_cycle = DIV_ROUND_CLOSEST(rate, HZ);
    215
    216
    217	/* Timer 0 is the free running clocksource */
    218	nmdk_clksrc_reset();
    219
    220	ret = clocksource_mmio_init(mtu_base + MTU_VAL(0), "mtu_0",
    221				    rate, 200, 32, clocksource_mmio_readl_down);
    222	if (ret) {
    223		pr_err("timer: failed to initialize clock source %s\n", "mtu_0");
    224		return ret;
    225	}
    226
    227	sched_clock_register(nomadik_read_sched_clock, 32, rate);
    228
    229	/* Timer 1 is used for events, register irq and clockevents */
    230	if (request_irq(irq, nmdk_timer_interrupt, IRQF_TIMER,
    231			"Nomadik Timer Tick", &nmdk_clkevt))
    232		pr_err("%s: request_irq() failed\n", "Nomadik Timer Tick");
    233	nmdk_clkevt.cpumask = cpumask_of(0);
    234	nmdk_clkevt.irq = irq;
    235	if (rate < 100000)
    236		min_ticks = 5;
    237	else
    238		min_ticks = 2;
    239	clockevents_config_and_register(&nmdk_clkevt, rate, min_ticks,
    240					0xffffffffU);
    241
    242	mtu_delay_timer.read_current_timer = &nmdk_timer_read_current_timer;
    243	mtu_delay_timer.freq = rate;
    244	register_current_timer_delay(&mtu_delay_timer);
    245
    246	return 0;
    247}
    248
    249static int __init nmdk_timer_of_init(struct device_node *node)
    250{
    251	struct clk *pclk;
    252	struct clk *clk;
    253	void __iomem *base;
    254	int irq;
    255
    256	base = of_iomap(node, 0);
    257	if (!base) {
    258		pr_err("Can't remap registers\n");
    259		return -ENXIO;
    260	}
    261
    262	pclk = of_clk_get_by_name(node, "apb_pclk");
    263	if (IS_ERR(pclk)) {
    264		pr_err("could not get apb_pclk\n");
    265		return PTR_ERR(pclk);
    266	}
    267
    268	clk = of_clk_get_by_name(node, "timclk");
    269	if (IS_ERR(clk)) {
    270		pr_err("could not get timclk\n");
    271		return PTR_ERR(clk);
    272	}
    273
    274	irq = irq_of_parse_and_map(node, 0);
    275	if (irq <= 0) {
    276		pr_err("Can't parse IRQ\n");
    277		return -EINVAL;
    278	}
    279
    280	return nmdk_timer_init(base, irq, pclk, clk);
    281}
    282TIMER_OF_DECLARE(nomadik_mtu, "st,nomadik-mtu",
    283		       nmdk_timer_of_init);