cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

sh_cmt.c (28962B)


      1// SPDX-License-Identifier: GPL-2.0
      2/*
      3 * SuperH Timer Support - CMT
      4 *
      5 *  Copyright (C) 2008 Magnus Damm
      6 */
      7
      8#include <linux/clk.h>
      9#include <linux/clockchips.h>
     10#include <linux/clocksource.h>
     11#include <linux/delay.h>
     12#include <linux/err.h>
     13#include <linux/init.h>
     14#include <linux/interrupt.h>
     15#include <linux/io.h>
     16#include <linux/ioport.h>
     17#include <linux/irq.h>
     18#include <linux/module.h>
     19#include <linux/of.h>
     20#include <linux/of_device.h>
     21#include <linux/platform_device.h>
     22#include <linux/pm_domain.h>
     23#include <linux/pm_runtime.h>
     24#include <linux/sh_timer.h>
     25#include <linux/slab.h>
     26#include <linux/spinlock.h>
     27
     28#ifdef CONFIG_SUPERH
     29#include <asm/platform_early.h>
     30#endif
     31
     32struct sh_cmt_device;
     33
     34/*
     35 * The CMT comes in 5 different identified flavours, depending not only on the
     36 * SoC but also on the particular instance. The following table lists the main
     37 * characteristics of those flavours.
     38 *
     39 *			16B	32B	32B-F	48B	R-Car Gen2
     40 * -----------------------------------------------------------------------------
     41 * Channels		2	1/4	1	6	2/8
     42 * Control Width	16	16	16	16	32
     43 * Counter Width	16	32	32	32/48	32/48
     44 * Shared Start/Stop	Y	Y	Y	Y	N
     45 *
     46 * The r8a73a4 / R-Car Gen2 version has a per-channel start/stop register
     47 * located in the channel registers block. All other versions have a shared
     48 * start/stop register located in the global space.
     49 *
     50 * Channels are indexed from 0 to N-1 in the documentation. The channel index
     51 * infers the start/stop bit position in the control register and the channel
     52 * registers block address. Some CMT instances have a subset of channels
     53 * available, in which case the index in the documentation doesn't match the
     54 * "real" index as implemented in hardware. This is for instance the case with
     55 * CMT0 on r8a7740, which is a 32-bit variant with a single channel numbered 0
     56 * in the documentation but using start/stop bit 5 and having its registers
     57 * block at 0x60.
     58 *
     59 * Similarly CMT0 on r8a73a4, r8a7790 and r8a7791, while implementing 32-bit
     60 * channels only, is a 48-bit gen2 CMT with the 48-bit channels unavailable.
     61 */
     62
     63enum sh_cmt_model {
     64	SH_CMT_16BIT,
     65	SH_CMT_32BIT,
     66	SH_CMT_48BIT,
     67	SH_CMT0_RCAR_GEN2,
     68	SH_CMT1_RCAR_GEN2,
     69};
     70
     71struct sh_cmt_info {
     72	enum sh_cmt_model model;
     73
     74	unsigned int channels_mask;
     75
     76	unsigned long width; /* 16 or 32 bit version of hardware block */
     77	u32 overflow_bit;
     78	u32 clear_bits;
     79
     80	/* callbacks for CMSTR and CMCSR access */
     81	u32 (*read_control)(void __iomem *base, unsigned long offs);
     82	void (*write_control)(void __iomem *base, unsigned long offs,
     83			      u32 value);
     84
     85	/* callbacks for CMCNT and CMCOR access */
     86	u32 (*read_count)(void __iomem *base, unsigned long offs);
     87	void (*write_count)(void __iomem *base, unsigned long offs, u32 value);
     88};
     89
     90struct sh_cmt_channel {
     91	struct sh_cmt_device *cmt;
     92
     93	unsigned int index;	/* Index in the documentation */
     94	unsigned int hwidx;	/* Real hardware index */
     95
     96	void __iomem *iostart;
     97	void __iomem *ioctrl;
     98
     99	unsigned int timer_bit;
    100	unsigned long flags;
    101	u32 match_value;
    102	u32 next_match_value;
    103	u32 max_match_value;
    104	raw_spinlock_t lock;
    105	struct clock_event_device ced;
    106	struct clocksource cs;
    107	u64 total_cycles;
    108	bool cs_enabled;
    109};
    110
    111struct sh_cmt_device {
    112	struct platform_device *pdev;
    113
    114	const struct sh_cmt_info *info;
    115
    116	void __iomem *mapbase;
    117	struct clk *clk;
    118	unsigned long rate;
    119
    120	raw_spinlock_t lock; /* Protect the shared start/stop register */
    121
    122	struct sh_cmt_channel *channels;
    123	unsigned int num_channels;
    124	unsigned int hw_channels;
    125
    126	bool has_clockevent;
    127	bool has_clocksource;
    128};
    129
    130#define SH_CMT16_CMCSR_CMF		(1 << 7)
    131#define SH_CMT16_CMCSR_CMIE		(1 << 6)
    132#define SH_CMT16_CMCSR_CKS8		(0 << 0)
    133#define SH_CMT16_CMCSR_CKS32		(1 << 0)
    134#define SH_CMT16_CMCSR_CKS128		(2 << 0)
    135#define SH_CMT16_CMCSR_CKS512		(3 << 0)
    136#define SH_CMT16_CMCSR_CKS_MASK		(3 << 0)
    137
    138#define SH_CMT32_CMCSR_CMF		(1 << 15)
    139#define SH_CMT32_CMCSR_OVF		(1 << 14)
    140#define SH_CMT32_CMCSR_WRFLG		(1 << 13)
    141#define SH_CMT32_CMCSR_STTF		(1 << 12)
    142#define SH_CMT32_CMCSR_STPF		(1 << 11)
    143#define SH_CMT32_CMCSR_SSIE		(1 << 10)
    144#define SH_CMT32_CMCSR_CMS		(1 << 9)
    145#define SH_CMT32_CMCSR_CMM		(1 << 8)
    146#define SH_CMT32_CMCSR_CMTOUT_IE	(1 << 7)
    147#define SH_CMT32_CMCSR_CMR_NONE		(0 << 4)
    148#define SH_CMT32_CMCSR_CMR_DMA		(1 << 4)
    149#define SH_CMT32_CMCSR_CMR_IRQ		(2 << 4)
    150#define SH_CMT32_CMCSR_CMR_MASK		(3 << 4)
    151#define SH_CMT32_CMCSR_DBGIVD		(1 << 3)
    152#define SH_CMT32_CMCSR_CKS_RCLK8	(4 << 0)
    153#define SH_CMT32_CMCSR_CKS_RCLK32	(5 << 0)
    154#define SH_CMT32_CMCSR_CKS_RCLK128	(6 << 0)
    155#define SH_CMT32_CMCSR_CKS_RCLK1	(7 << 0)
    156#define SH_CMT32_CMCSR_CKS_MASK		(7 << 0)
    157
    158static u32 sh_cmt_read16(void __iomem *base, unsigned long offs)
    159{
    160	return ioread16(base + (offs << 1));
    161}
    162
    163static u32 sh_cmt_read32(void __iomem *base, unsigned long offs)
    164{
    165	return ioread32(base + (offs << 2));
    166}
    167
    168static void sh_cmt_write16(void __iomem *base, unsigned long offs, u32 value)
    169{
    170	iowrite16(value, base + (offs << 1));
    171}
    172
    173static void sh_cmt_write32(void __iomem *base, unsigned long offs, u32 value)
    174{
    175	iowrite32(value, base + (offs << 2));
    176}
    177
    178static const struct sh_cmt_info sh_cmt_info[] = {
    179	[SH_CMT_16BIT] = {
    180		.model = SH_CMT_16BIT,
    181		.width = 16,
    182		.overflow_bit = SH_CMT16_CMCSR_CMF,
    183		.clear_bits = ~SH_CMT16_CMCSR_CMF,
    184		.read_control = sh_cmt_read16,
    185		.write_control = sh_cmt_write16,
    186		.read_count = sh_cmt_read16,
    187		.write_count = sh_cmt_write16,
    188	},
    189	[SH_CMT_32BIT] = {
    190		.model = SH_CMT_32BIT,
    191		.width = 32,
    192		.overflow_bit = SH_CMT32_CMCSR_CMF,
    193		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
    194		.read_control = sh_cmt_read16,
    195		.write_control = sh_cmt_write16,
    196		.read_count = sh_cmt_read32,
    197		.write_count = sh_cmt_write32,
    198	},
    199	[SH_CMT_48BIT] = {
    200		.model = SH_CMT_48BIT,
    201		.channels_mask = 0x3f,
    202		.width = 32,
    203		.overflow_bit = SH_CMT32_CMCSR_CMF,
    204		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
    205		.read_control = sh_cmt_read32,
    206		.write_control = sh_cmt_write32,
    207		.read_count = sh_cmt_read32,
    208		.write_count = sh_cmt_write32,
    209	},
    210	[SH_CMT0_RCAR_GEN2] = {
    211		.model = SH_CMT0_RCAR_GEN2,
    212		.channels_mask = 0x60,
    213		.width = 32,
    214		.overflow_bit = SH_CMT32_CMCSR_CMF,
    215		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
    216		.read_control = sh_cmt_read32,
    217		.write_control = sh_cmt_write32,
    218		.read_count = sh_cmt_read32,
    219		.write_count = sh_cmt_write32,
    220	},
    221	[SH_CMT1_RCAR_GEN2] = {
    222		.model = SH_CMT1_RCAR_GEN2,
    223		.channels_mask = 0xff,
    224		.width = 32,
    225		.overflow_bit = SH_CMT32_CMCSR_CMF,
    226		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
    227		.read_control = sh_cmt_read32,
    228		.write_control = sh_cmt_write32,
    229		.read_count = sh_cmt_read32,
    230		.write_count = sh_cmt_write32,
    231	},
    232};
    233
    234#define CMCSR 0 /* channel register */
    235#define CMCNT 1 /* channel register */
    236#define CMCOR 2 /* channel register */
    237
    238#define CMCLKE	0x1000	/* CLK Enable Register (R-Car Gen2) */
    239
    240static inline u32 sh_cmt_read_cmstr(struct sh_cmt_channel *ch)
    241{
    242	if (ch->iostart)
    243		return ch->cmt->info->read_control(ch->iostart, 0);
    244	else
    245		return ch->cmt->info->read_control(ch->cmt->mapbase, 0);
    246}
    247
    248static inline void sh_cmt_write_cmstr(struct sh_cmt_channel *ch, u32 value)
    249{
    250	if (ch->iostart)
    251		ch->cmt->info->write_control(ch->iostart, 0, value);
    252	else
    253		ch->cmt->info->write_control(ch->cmt->mapbase, 0, value);
    254}
    255
    256static inline u32 sh_cmt_read_cmcsr(struct sh_cmt_channel *ch)
    257{
    258	return ch->cmt->info->read_control(ch->ioctrl, CMCSR);
    259}
    260
    261static inline void sh_cmt_write_cmcsr(struct sh_cmt_channel *ch, u32 value)
    262{
    263	ch->cmt->info->write_control(ch->ioctrl, CMCSR, value);
    264}
    265
    266static inline u32 sh_cmt_read_cmcnt(struct sh_cmt_channel *ch)
    267{
    268	return ch->cmt->info->read_count(ch->ioctrl, CMCNT);
    269}
    270
    271static inline void sh_cmt_write_cmcnt(struct sh_cmt_channel *ch, u32 value)
    272{
    273	ch->cmt->info->write_count(ch->ioctrl, CMCNT, value);
    274}
    275
    276static inline void sh_cmt_write_cmcor(struct sh_cmt_channel *ch, u32 value)
    277{
    278	ch->cmt->info->write_count(ch->ioctrl, CMCOR, value);
    279}
    280
    281static u32 sh_cmt_get_counter(struct sh_cmt_channel *ch, u32 *has_wrapped)
    282{
    283	u32 v1, v2, v3;
    284	u32 o1, o2;
    285
    286	o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
    287
    288	/* Make sure the timer value is stable. Stolen from acpi_pm.c */
    289	do {
    290		o2 = o1;
    291		v1 = sh_cmt_read_cmcnt(ch);
    292		v2 = sh_cmt_read_cmcnt(ch);
    293		v3 = sh_cmt_read_cmcnt(ch);
    294		o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
    295	} while (unlikely((o1 != o2) || (v1 > v2 && v1 < v3)
    296			  || (v2 > v3 && v2 < v1) || (v3 > v1 && v3 < v2)));
    297
    298	*has_wrapped = o1;
    299	return v2;
    300}
    301
    302static void sh_cmt_start_stop_ch(struct sh_cmt_channel *ch, int start)
    303{
    304	unsigned long flags;
    305	u32 value;
    306
    307	/* start stop register shared by multiple timer channels */
    308	raw_spin_lock_irqsave(&ch->cmt->lock, flags);
    309	value = sh_cmt_read_cmstr(ch);
    310
    311	if (start)
    312		value |= 1 << ch->timer_bit;
    313	else
    314		value &= ~(1 << ch->timer_bit);
    315
    316	sh_cmt_write_cmstr(ch, value);
    317	raw_spin_unlock_irqrestore(&ch->cmt->lock, flags);
    318}
    319
    320static int sh_cmt_enable(struct sh_cmt_channel *ch)
    321{
    322	int k, ret;
    323
    324	dev_pm_syscore_device(&ch->cmt->pdev->dev, true);
    325
    326	/* enable clock */
    327	ret = clk_enable(ch->cmt->clk);
    328	if (ret) {
    329		dev_err(&ch->cmt->pdev->dev, "ch%u: cannot enable clock\n",
    330			ch->index);
    331		goto err0;
    332	}
    333
    334	/* make sure channel is disabled */
    335	sh_cmt_start_stop_ch(ch, 0);
    336
    337	/* configure channel, periodic mode and maximum timeout */
    338	if (ch->cmt->info->width == 16) {
    339		sh_cmt_write_cmcsr(ch, SH_CMT16_CMCSR_CMIE |
    340				   SH_CMT16_CMCSR_CKS512);
    341	} else {
    342		u32 cmtout = ch->cmt->info->model <= SH_CMT_48BIT ?
    343			      SH_CMT32_CMCSR_CMTOUT_IE : 0;
    344		sh_cmt_write_cmcsr(ch, cmtout | SH_CMT32_CMCSR_CMM |
    345				   SH_CMT32_CMCSR_CMR_IRQ |
    346				   SH_CMT32_CMCSR_CKS_RCLK8);
    347	}
    348
    349	sh_cmt_write_cmcor(ch, 0xffffffff);
    350	sh_cmt_write_cmcnt(ch, 0);
    351
    352	/*
    353	 * According to the sh73a0 user's manual, as CMCNT can be operated
    354	 * only by the RCLK (Pseudo 32 kHz), there's one restriction on
    355	 * modifying CMCNT register; two RCLK cycles are necessary before
    356	 * this register is either read or any modification of the value
    357	 * it holds is reflected in the LSI's actual operation.
    358	 *
    359	 * While at it, we're supposed to clear out the CMCNT as of this
    360	 * moment, so make sure it's processed properly here.  This will
    361	 * take RCLKx2 at maximum.
    362	 */
    363	for (k = 0; k < 100; k++) {
    364		if (!sh_cmt_read_cmcnt(ch))
    365			break;
    366		udelay(1);
    367	}
    368
    369	if (sh_cmt_read_cmcnt(ch)) {
    370		dev_err(&ch->cmt->pdev->dev, "ch%u: cannot clear CMCNT\n",
    371			ch->index);
    372		ret = -ETIMEDOUT;
    373		goto err1;
    374	}
    375
    376	/* enable channel */
    377	sh_cmt_start_stop_ch(ch, 1);
    378	return 0;
    379 err1:
    380	/* stop clock */
    381	clk_disable(ch->cmt->clk);
    382
    383 err0:
    384	return ret;
    385}
    386
    387static void sh_cmt_disable(struct sh_cmt_channel *ch)
    388{
    389	/* disable channel */
    390	sh_cmt_start_stop_ch(ch, 0);
    391
    392	/* disable interrupts in CMT block */
    393	sh_cmt_write_cmcsr(ch, 0);
    394
    395	/* stop clock */
    396	clk_disable(ch->cmt->clk);
    397
    398	dev_pm_syscore_device(&ch->cmt->pdev->dev, false);
    399}
    400
    401/* private flags */
    402#define FLAG_CLOCKEVENT (1 << 0)
    403#define FLAG_CLOCKSOURCE (1 << 1)
    404#define FLAG_REPROGRAM (1 << 2)
    405#define FLAG_SKIPEVENT (1 << 3)
    406#define FLAG_IRQCONTEXT (1 << 4)
    407
    408static void sh_cmt_clock_event_program_verify(struct sh_cmt_channel *ch,
    409					      int absolute)
    410{
    411	u32 value = ch->next_match_value;
    412	u32 new_match;
    413	u32 delay = 0;
    414	u32 now = 0;
    415	u32 has_wrapped;
    416
    417	now = sh_cmt_get_counter(ch, &has_wrapped);
    418	ch->flags |= FLAG_REPROGRAM; /* force reprogram */
    419
    420	if (has_wrapped) {
    421		/* we're competing with the interrupt handler.
    422		 *  -> let the interrupt handler reprogram the timer.
    423		 *  -> interrupt number two handles the event.
    424		 */
    425		ch->flags |= FLAG_SKIPEVENT;
    426		return;
    427	}
    428
    429	if (absolute)
    430		now = 0;
    431
    432	do {
    433		/* reprogram the timer hardware,
    434		 * but don't save the new match value yet.
    435		 */
    436		new_match = now + value + delay;
    437		if (new_match > ch->max_match_value)
    438			new_match = ch->max_match_value;
    439
    440		sh_cmt_write_cmcor(ch, new_match);
    441
    442		now = sh_cmt_get_counter(ch, &has_wrapped);
    443		if (has_wrapped && (new_match > ch->match_value)) {
    444			/* we are changing to a greater match value,
    445			 * so this wrap must be caused by the counter
    446			 * matching the old value.
    447			 * -> first interrupt reprograms the timer.
    448			 * -> interrupt number two handles the event.
    449			 */
    450			ch->flags |= FLAG_SKIPEVENT;
    451			break;
    452		}
    453
    454		if (has_wrapped) {
    455			/* we are changing to a smaller match value,
    456			 * so the wrap must be caused by the counter
    457			 * matching the new value.
    458			 * -> save programmed match value.
    459			 * -> let isr handle the event.
    460			 */
    461			ch->match_value = new_match;
    462			break;
    463		}
    464
    465		/* be safe: verify hardware settings */
    466		if (now < new_match) {
    467			/* timer value is below match value, all good.
    468			 * this makes sure we won't miss any match events.
    469			 * -> save programmed match value.
    470			 * -> let isr handle the event.
    471			 */
    472			ch->match_value = new_match;
    473			break;
    474		}
    475
    476		/* the counter has reached a value greater
    477		 * than our new match value. and since the
    478		 * has_wrapped flag isn't set we must have
    479		 * programmed a too close event.
    480		 * -> increase delay and retry.
    481		 */
    482		if (delay)
    483			delay <<= 1;
    484		else
    485			delay = 1;
    486
    487		if (!delay)
    488			dev_warn(&ch->cmt->pdev->dev, "ch%u: too long delay\n",
    489				 ch->index);
    490
    491	} while (delay);
    492}
    493
    494static void __sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
    495{
    496	if (delta > ch->max_match_value)
    497		dev_warn(&ch->cmt->pdev->dev, "ch%u: delta out of range\n",
    498			 ch->index);
    499
    500	ch->next_match_value = delta;
    501	sh_cmt_clock_event_program_verify(ch, 0);
    502}
    503
    504static void sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
    505{
    506	unsigned long flags;
    507
    508	raw_spin_lock_irqsave(&ch->lock, flags);
    509	__sh_cmt_set_next(ch, delta);
    510	raw_spin_unlock_irqrestore(&ch->lock, flags);
    511}
    512
    513static irqreturn_t sh_cmt_interrupt(int irq, void *dev_id)
    514{
    515	struct sh_cmt_channel *ch = dev_id;
    516
    517	/* clear flags */
    518	sh_cmt_write_cmcsr(ch, sh_cmt_read_cmcsr(ch) &
    519			   ch->cmt->info->clear_bits);
    520
    521	/* update clock source counter to begin with if enabled
    522	 * the wrap flag should be cleared by the timer specific
    523	 * isr before we end up here.
    524	 */
    525	if (ch->flags & FLAG_CLOCKSOURCE)
    526		ch->total_cycles += ch->match_value + 1;
    527
    528	if (!(ch->flags & FLAG_REPROGRAM))
    529		ch->next_match_value = ch->max_match_value;
    530
    531	ch->flags |= FLAG_IRQCONTEXT;
    532
    533	if (ch->flags & FLAG_CLOCKEVENT) {
    534		if (!(ch->flags & FLAG_SKIPEVENT)) {
    535			if (clockevent_state_oneshot(&ch->ced)) {
    536				ch->next_match_value = ch->max_match_value;
    537				ch->flags |= FLAG_REPROGRAM;
    538			}
    539
    540			ch->ced.event_handler(&ch->ced);
    541		}
    542	}
    543
    544	ch->flags &= ~FLAG_SKIPEVENT;
    545
    546	if (ch->flags & FLAG_REPROGRAM) {
    547		ch->flags &= ~FLAG_REPROGRAM;
    548		sh_cmt_clock_event_program_verify(ch, 1);
    549
    550		if (ch->flags & FLAG_CLOCKEVENT)
    551			if ((clockevent_state_shutdown(&ch->ced))
    552			    || (ch->match_value == ch->next_match_value))
    553				ch->flags &= ~FLAG_REPROGRAM;
    554	}
    555
    556	ch->flags &= ~FLAG_IRQCONTEXT;
    557
    558	return IRQ_HANDLED;
    559}
    560
    561static int sh_cmt_start(struct sh_cmt_channel *ch, unsigned long flag)
    562{
    563	int ret = 0;
    564	unsigned long flags;
    565
    566	if (flag & FLAG_CLOCKSOURCE)
    567		pm_runtime_get_sync(&ch->cmt->pdev->dev);
    568
    569	raw_spin_lock_irqsave(&ch->lock, flags);
    570
    571	if (!(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE))) {
    572		if (flag & FLAG_CLOCKEVENT)
    573			pm_runtime_get_sync(&ch->cmt->pdev->dev);
    574		ret = sh_cmt_enable(ch);
    575	}
    576
    577	if (ret)
    578		goto out;
    579	ch->flags |= flag;
    580
    581	/* setup timeout if no clockevent */
    582	if (ch->cmt->num_channels == 1 &&
    583	    flag == FLAG_CLOCKSOURCE && (!(ch->flags & FLAG_CLOCKEVENT)))
    584		__sh_cmt_set_next(ch, ch->max_match_value);
    585 out:
    586	raw_spin_unlock_irqrestore(&ch->lock, flags);
    587
    588	return ret;
    589}
    590
    591static void sh_cmt_stop(struct sh_cmt_channel *ch, unsigned long flag)
    592{
    593	unsigned long flags;
    594	unsigned long f;
    595
    596	raw_spin_lock_irqsave(&ch->lock, flags);
    597
    598	f = ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE);
    599	ch->flags &= ~flag;
    600
    601	if (f && !(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE))) {
    602		sh_cmt_disable(ch);
    603		if (flag & FLAG_CLOCKEVENT)
    604			pm_runtime_put(&ch->cmt->pdev->dev);
    605	}
    606
    607	/* adjust the timeout to maximum if only clocksource left */
    608	if ((flag == FLAG_CLOCKEVENT) && (ch->flags & FLAG_CLOCKSOURCE))
    609		__sh_cmt_set_next(ch, ch->max_match_value);
    610
    611	raw_spin_unlock_irqrestore(&ch->lock, flags);
    612
    613	if (flag & FLAG_CLOCKSOURCE)
    614		pm_runtime_put(&ch->cmt->pdev->dev);
    615}
    616
    617static struct sh_cmt_channel *cs_to_sh_cmt(struct clocksource *cs)
    618{
    619	return container_of(cs, struct sh_cmt_channel, cs);
    620}
    621
    622static u64 sh_cmt_clocksource_read(struct clocksource *cs)
    623{
    624	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
    625	u32 has_wrapped;
    626
    627	if (ch->cmt->num_channels == 1) {
    628		unsigned long flags;
    629		u64 value;
    630		u32 raw;
    631
    632		raw_spin_lock_irqsave(&ch->lock, flags);
    633		value = ch->total_cycles;
    634		raw = sh_cmt_get_counter(ch, &has_wrapped);
    635
    636		if (unlikely(has_wrapped))
    637			raw += ch->match_value + 1;
    638		raw_spin_unlock_irqrestore(&ch->lock, flags);
    639
    640		return value + raw;
    641	}
    642
    643	return sh_cmt_get_counter(ch, &has_wrapped);
    644}
    645
    646static int sh_cmt_clocksource_enable(struct clocksource *cs)
    647{
    648	int ret;
    649	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
    650
    651	WARN_ON(ch->cs_enabled);
    652
    653	ch->total_cycles = 0;
    654
    655	ret = sh_cmt_start(ch, FLAG_CLOCKSOURCE);
    656	if (!ret)
    657		ch->cs_enabled = true;
    658
    659	return ret;
    660}
    661
    662static void sh_cmt_clocksource_disable(struct clocksource *cs)
    663{
    664	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
    665
    666	WARN_ON(!ch->cs_enabled);
    667
    668	sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
    669	ch->cs_enabled = false;
    670}
    671
    672static void sh_cmt_clocksource_suspend(struct clocksource *cs)
    673{
    674	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
    675
    676	if (!ch->cs_enabled)
    677		return;
    678
    679	sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
    680	dev_pm_genpd_suspend(&ch->cmt->pdev->dev);
    681}
    682
    683static void sh_cmt_clocksource_resume(struct clocksource *cs)
    684{
    685	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
    686
    687	if (!ch->cs_enabled)
    688		return;
    689
    690	dev_pm_genpd_resume(&ch->cmt->pdev->dev);
    691	sh_cmt_start(ch, FLAG_CLOCKSOURCE);
    692}
    693
    694static int sh_cmt_register_clocksource(struct sh_cmt_channel *ch,
    695				       const char *name)
    696{
    697	struct clocksource *cs = &ch->cs;
    698
    699	cs->name = name;
    700	cs->rating = 125;
    701	cs->read = sh_cmt_clocksource_read;
    702	cs->enable = sh_cmt_clocksource_enable;
    703	cs->disable = sh_cmt_clocksource_disable;
    704	cs->suspend = sh_cmt_clocksource_suspend;
    705	cs->resume = sh_cmt_clocksource_resume;
    706	cs->mask = CLOCKSOURCE_MASK(ch->cmt->info->width);
    707	cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;
    708
    709	dev_info(&ch->cmt->pdev->dev, "ch%u: used as clock source\n",
    710		 ch->index);
    711
    712	clocksource_register_hz(cs, ch->cmt->rate);
    713	return 0;
    714}
    715
    716static struct sh_cmt_channel *ced_to_sh_cmt(struct clock_event_device *ced)
    717{
    718	return container_of(ced, struct sh_cmt_channel, ced);
    719}
    720
    721static void sh_cmt_clock_event_start(struct sh_cmt_channel *ch, int periodic)
    722{
    723	sh_cmt_start(ch, FLAG_CLOCKEVENT);
    724
    725	if (periodic)
    726		sh_cmt_set_next(ch, ((ch->cmt->rate + HZ/2) / HZ) - 1);
    727	else
    728		sh_cmt_set_next(ch, ch->max_match_value);
    729}
    730
    731static int sh_cmt_clock_event_shutdown(struct clock_event_device *ced)
    732{
    733	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
    734
    735	sh_cmt_stop(ch, FLAG_CLOCKEVENT);
    736	return 0;
    737}
    738
    739static int sh_cmt_clock_event_set_state(struct clock_event_device *ced,
    740					int periodic)
    741{
    742	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
    743
    744	/* deal with old setting first */
    745	if (clockevent_state_oneshot(ced) || clockevent_state_periodic(ced))
    746		sh_cmt_stop(ch, FLAG_CLOCKEVENT);
    747
    748	dev_info(&ch->cmt->pdev->dev, "ch%u: used for %s clock events\n",
    749		 ch->index, periodic ? "periodic" : "oneshot");
    750	sh_cmt_clock_event_start(ch, periodic);
    751	return 0;
    752}
    753
    754static int sh_cmt_clock_event_set_oneshot(struct clock_event_device *ced)
    755{
    756	return sh_cmt_clock_event_set_state(ced, 0);
    757}
    758
    759static int sh_cmt_clock_event_set_periodic(struct clock_event_device *ced)
    760{
    761	return sh_cmt_clock_event_set_state(ced, 1);
    762}
    763
    764static int sh_cmt_clock_event_next(unsigned long delta,
    765				   struct clock_event_device *ced)
    766{
    767	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
    768
    769	BUG_ON(!clockevent_state_oneshot(ced));
    770	if (likely(ch->flags & FLAG_IRQCONTEXT))
    771		ch->next_match_value = delta - 1;
    772	else
    773		sh_cmt_set_next(ch, delta - 1);
    774
    775	return 0;
    776}
    777
    778static void sh_cmt_clock_event_suspend(struct clock_event_device *ced)
    779{
    780	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
    781
    782	dev_pm_genpd_suspend(&ch->cmt->pdev->dev);
    783	clk_unprepare(ch->cmt->clk);
    784}
    785
    786static void sh_cmt_clock_event_resume(struct clock_event_device *ced)
    787{
    788	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
    789
    790	clk_prepare(ch->cmt->clk);
    791	dev_pm_genpd_resume(&ch->cmt->pdev->dev);
    792}
    793
    794static int sh_cmt_register_clockevent(struct sh_cmt_channel *ch,
    795				      const char *name)
    796{
    797	struct clock_event_device *ced = &ch->ced;
    798	int irq;
    799	int ret;
    800
    801	irq = platform_get_irq(ch->cmt->pdev, ch->index);
    802	if (irq < 0)
    803		return irq;
    804
    805	ret = request_irq(irq, sh_cmt_interrupt,
    806			  IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING,
    807			  dev_name(&ch->cmt->pdev->dev), ch);
    808	if (ret) {
    809		dev_err(&ch->cmt->pdev->dev, "ch%u: failed to request irq %d\n",
    810			ch->index, irq);
    811		return ret;
    812	}
    813
    814	ced->name = name;
    815	ced->features = CLOCK_EVT_FEAT_PERIODIC;
    816	ced->features |= CLOCK_EVT_FEAT_ONESHOT;
    817	ced->rating = 125;
    818	ced->cpumask = cpu_possible_mask;
    819	ced->set_next_event = sh_cmt_clock_event_next;
    820	ced->set_state_shutdown = sh_cmt_clock_event_shutdown;
    821	ced->set_state_periodic = sh_cmt_clock_event_set_periodic;
    822	ced->set_state_oneshot = sh_cmt_clock_event_set_oneshot;
    823	ced->suspend = sh_cmt_clock_event_suspend;
    824	ced->resume = sh_cmt_clock_event_resume;
    825
    826	/* TODO: calculate good shift from rate and counter bit width */
    827	ced->shift = 32;
    828	ced->mult = div_sc(ch->cmt->rate, NSEC_PER_SEC, ced->shift);
    829	ced->max_delta_ns = clockevent_delta2ns(ch->max_match_value, ced);
    830	ced->max_delta_ticks = ch->max_match_value;
    831	ced->min_delta_ns = clockevent_delta2ns(0x1f, ced);
    832	ced->min_delta_ticks = 0x1f;
    833
    834	dev_info(&ch->cmt->pdev->dev, "ch%u: used for clock events\n",
    835		 ch->index);
    836	clockevents_register_device(ced);
    837
    838	return 0;
    839}
    840
    841static int sh_cmt_register(struct sh_cmt_channel *ch, const char *name,
    842			   bool clockevent, bool clocksource)
    843{
    844	int ret;
    845
    846	if (clockevent) {
    847		ch->cmt->has_clockevent = true;
    848		ret = sh_cmt_register_clockevent(ch, name);
    849		if (ret < 0)
    850			return ret;
    851	}
    852
    853	if (clocksource) {
    854		ch->cmt->has_clocksource = true;
    855		sh_cmt_register_clocksource(ch, name);
    856	}
    857
    858	return 0;
    859}
    860
    861static int sh_cmt_setup_channel(struct sh_cmt_channel *ch, unsigned int index,
    862				unsigned int hwidx, bool clockevent,
    863				bool clocksource, struct sh_cmt_device *cmt)
    864{
    865	u32 value;
    866	int ret;
    867
    868	/* Skip unused channels. */
    869	if (!clockevent && !clocksource)
    870		return 0;
    871
    872	ch->cmt = cmt;
    873	ch->index = index;
    874	ch->hwidx = hwidx;
    875	ch->timer_bit = hwidx;
    876
    877	/*
    878	 * Compute the address of the channel control register block. For the
    879	 * timers with a per-channel start/stop register, compute its address
    880	 * as well.
    881	 */
    882	switch (cmt->info->model) {
    883	case SH_CMT_16BIT:
    884		ch->ioctrl = cmt->mapbase + 2 + ch->hwidx * 6;
    885		break;
    886	case SH_CMT_32BIT:
    887	case SH_CMT_48BIT:
    888		ch->ioctrl = cmt->mapbase + 0x10 + ch->hwidx * 0x10;
    889		break;
    890	case SH_CMT0_RCAR_GEN2:
    891	case SH_CMT1_RCAR_GEN2:
    892		ch->iostart = cmt->mapbase + ch->hwidx * 0x100;
    893		ch->ioctrl = ch->iostart + 0x10;
    894		ch->timer_bit = 0;
    895
    896		/* Enable the clock supply to the channel */
    897		value = ioread32(cmt->mapbase + CMCLKE);
    898		value |= BIT(hwidx);
    899		iowrite32(value, cmt->mapbase + CMCLKE);
    900		break;
    901	}
    902
    903	if (cmt->info->width == (sizeof(ch->max_match_value) * 8))
    904		ch->max_match_value = ~0;
    905	else
    906		ch->max_match_value = (1 << cmt->info->width) - 1;
    907
    908	ch->match_value = ch->max_match_value;
    909	raw_spin_lock_init(&ch->lock);
    910
    911	ret = sh_cmt_register(ch, dev_name(&cmt->pdev->dev),
    912			      clockevent, clocksource);
    913	if (ret) {
    914		dev_err(&cmt->pdev->dev, "ch%u: registration failed\n",
    915			ch->index);
    916		return ret;
    917	}
    918	ch->cs_enabled = false;
    919
    920	return 0;
    921}
    922
    923static int sh_cmt_map_memory(struct sh_cmt_device *cmt)
    924{
    925	struct resource *mem;
    926
    927	mem = platform_get_resource(cmt->pdev, IORESOURCE_MEM, 0);
    928	if (!mem) {
    929		dev_err(&cmt->pdev->dev, "failed to get I/O memory\n");
    930		return -ENXIO;
    931	}
    932
    933	cmt->mapbase = ioremap(mem->start, resource_size(mem));
    934	if (cmt->mapbase == NULL) {
    935		dev_err(&cmt->pdev->dev, "failed to remap I/O memory\n");
    936		return -ENXIO;
    937	}
    938
    939	return 0;
    940}
    941
    942static const struct platform_device_id sh_cmt_id_table[] = {
    943	{ "sh-cmt-16", (kernel_ulong_t)&sh_cmt_info[SH_CMT_16BIT] },
    944	{ "sh-cmt-32", (kernel_ulong_t)&sh_cmt_info[SH_CMT_32BIT] },
    945	{ }
    946};
    947MODULE_DEVICE_TABLE(platform, sh_cmt_id_table);
    948
    949static const struct of_device_id sh_cmt_of_table[] __maybe_unused = {
    950	{
    951		/* deprecated, preserved for backward compatibility */
    952		.compatible = "renesas,cmt-48",
    953		.data = &sh_cmt_info[SH_CMT_48BIT]
    954	},
    955	{
    956		/* deprecated, preserved for backward compatibility */
    957		.compatible = "renesas,cmt-48-gen2",
    958		.data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
    959	},
    960	{
    961		.compatible = "renesas,r8a7740-cmt1",
    962		.data = &sh_cmt_info[SH_CMT_48BIT]
    963	},
    964	{
    965		.compatible = "renesas,sh73a0-cmt1",
    966		.data = &sh_cmt_info[SH_CMT_48BIT]
    967	},
    968	{
    969		.compatible = "renesas,rcar-gen2-cmt0",
    970		.data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
    971	},
    972	{
    973		.compatible = "renesas,rcar-gen2-cmt1",
    974		.data = &sh_cmt_info[SH_CMT1_RCAR_GEN2]
    975	},
    976	{
    977		.compatible = "renesas,rcar-gen3-cmt0",
    978		.data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
    979	},
    980	{
    981		.compatible = "renesas,rcar-gen3-cmt1",
    982		.data = &sh_cmt_info[SH_CMT1_RCAR_GEN2]
    983	},
    984	{ }
    985};
    986MODULE_DEVICE_TABLE(of, sh_cmt_of_table);
    987
    988static int sh_cmt_setup(struct sh_cmt_device *cmt, struct platform_device *pdev)
    989{
    990	unsigned int mask;
    991	unsigned int i;
    992	int ret;
    993
    994	cmt->pdev = pdev;
    995	raw_spin_lock_init(&cmt->lock);
    996
    997	if (IS_ENABLED(CONFIG_OF) && pdev->dev.of_node) {
    998		cmt->info = of_device_get_match_data(&pdev->dev);
    999		cmt->hw_channels = cmt->info->channels_mask;
   1000	} else if (pdev->dev.platform_data) {
   1001		struct sh_timer_config *cfg = pdev->dev.platform_data;
   1002		const struct platform_device_id *id = pdev->id_entry;
   1003
   1004		cmt->info = (const struct sh_cmt_info *)id->driver_data;
   1005		cmt->hw_channels = cfg->channels_mask;
   1006	} else {
   1007		dev_err(&cmt->pdev->dev, "missing platform data\n");
   1008		return -ENXIO;
   1009	}
   1010
   1011	/* Get hold of clock. */
   1012	cmt->clk = clk_get(&cmt->pdev->dev, "fck");
   1013	if (IS_ERR(cmt->clk)) {
   1014		dev_err(&cmt->pdev->dev, "cannot get clock\n");
   1015		return PTR_ERR(cmt->clk);
   1016	}
   1017
   1018	ret = clk_prepare(cmt->clk);
   1019	if (ret < 0)
   1020		goto err_clk_put;
   1021
   1022	/* Determine clock rate. */
   1023	ret = clk_enable(cmt->clk);
   1024	if (ret < 0)
   1025		goto err_clk_unprepare;
   1026
   1027	if (cmt->info->width == 16)
   1028		cmt->rate = clk_get_rate(cmt->clk) / 512;
   1029	else
   1030		cmt->rate = clk_get_rate(cmt->clk) / 8;
   1031
   1032	/* Map the memory resource(s). */
   1033	ret = sh_cmt_map_memory(cmt);
   1034	if (ret < 0)
   1035		goto err_clk_disable;
   1036
   1037	/* Allocate and setup the channels. */
   1038	cmt->num_channels = hweight8(cmt->hw_channels);
   1039	cmt->channels = kcalloc(cmt->num_channels, sizeof(*cmt->channels),
   1040				GFP_KERNEL);
   1041	if (cmt->channels == NULL) {
   1042		ret = -ENOMEM;
   1043		goto err_unmap;
   1044	}
   1045
   1046	/*
   1047	 * Use the first channel as a clock event device and the second channel
   1048	 * as a clock source. If only one channel is available use it for both.
   1049	 */
   1050	for (i = 0, mask = cmt->hw_channels; i < cmt->num_channels; ++i) {
   1051		unsigned int hwidx = ffs(mask) - 1;
   1052		bool clocksource = i == 1 || cmt->num_channels == 1;
   1053		bool clockevent = i == 0;
   1054
   1055		ret = sh_cmt_setup_channel(&cmt->channels[i], i, hwidx,
   1056					   clockevent, clocksource, cmt);
   1057		if (ret < 0)
   1058			goto err_unmap;
   1059
   1060		mask &= ~(1 << hwidx);
   1061	}
   1062
   1063	clk_disable(cmt->clk);
   1064
   1065	platform_set_drvdata(pdev, cmt);
   1066
   1067	return 0;
   1068
   1069err_unmap:
   1070	kfree(cmt->channels);
   1071	iounmap(cmt->mapbase);
   1072err_clk_disable:
   1073	clk_disable(cmt->clk);
   1074err_clk_unprepare:
   1075	clk_unprepare(cmt->clk);
   1076err_clk_put:
   1077	clk_put(cmt->clk);
   1078	return ret;
   1079}
   1080
   1081static int sh_cmt_probe(struct platform_device *pdev)
   1082{
   1083	struct sh_cmt_device *cmt = platform_get_drvdata(pdev);
   1084	int ret;
   1085
   1086	if (!is_sh_early_platform_device(pdev)) {
   1087		pm_runtime_set_active(&pdev->dev);
   1088		pm_runtime_enable(&pdev->dev);
   1089	}
   1090
   1091	if (cmt) {
   1092		dev_info(&pdev->dev, "kept as earlytimer\n");
   1093		goto out;
   1094	}
   1095
   1096	cmt = kzalloc(sizeof(*cmt), GFP_KERNEL);
   1097	if (cmt == NULL)
   1098		return -ENOMEM;
   1099
   1100	ret = sh_cmt_setup(cmt, pdev);
   1101	if (ret) {
   1102		kfree(cmt);
   1103		pm_runtime_idle(&pdev->dev);
   1104		return ret;
   1105	}
   1106	if (is_sh_early_platform_device(pdev))
   1107		return 0;
   1108
   1109 out:
   1110	if (cmt->has_clockevent || cmt->has_clocksource)
   1111		pm_runtime_irq_safe(&pdev->dev);
   1112	else
   1113		pm_runtime_idle(&pdev->dev);
   1114
   1115	return 0;
   1116}
   1117
   1118static int sh_cmt_remove(struct platform_device *pdev)
   1119{
   1120	return -EBUSY; /* cannot unregister clockevent and clocksource */
   1121}
   1122
   1123static struct platform_driver sh_cmt_device_driver = {
   1124	.probe		= sh_cmt_probe,
   1125	.remove		= sh_cmt_remove,
   1126	.driver		= {
   1127		.name	= "sh_cmt",
   1128		.of_match_table = of_match_ptr(sh_cmt_of_table),
   1129	},
   1130	.id_table	= sh_cmt_id_table,
   1131};
   1132
   1133static int __init sh_cmt_init(void)
   1134{
   1135	return platform_driver_register(&sh_cmt_device_driver);
   1136}
   1137
   1138static void __exit sh_cmt_exit(void)
   1139{
   1140	platform_driver_unregister(&sh_cmt_device_driver);
   1141}
   1142
   1143#ifdef CONFIG_SUPERH
   1144sh_early_platform_init("earlytimer", &sh_cmt_device_driver);
   1145#endif
   1146
   1147subsys_initcall(sh_cmt_init);
   1148module_exit(sh_cmt_exit);
   1149
   1150MODULE_AUTHOR("Magnus Damm");
   1151MODULE_DESCRIPTION("SuperH CMT Timer Driver");
   1152MODULE_LICENSE("GPL v2");