cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

sh_tmu.c (15106B)


      1// SPDX-License-Identifier: GPL-2.0
      2/*
      3 * SuperH Timer Support - TMU
      4 *
      5 *  Copyright (C) 2009 Magnus Damm
      6 */
      7
      8#include <linux/clk.h>
      9#include <linux/clockchips.h>
     10#include <linux/clocksource.h>
     11#include <linux/delay.h>
     12#include <linux/err.h>
     13#include <linux/init.h>
     14#include <linux/interrupt.h>
     15#include <linux/io.h>
     16#include <linux/ioport.h>
     17#include <linux/irq.h>
     18#include <linux/module.h>
     19#include <linux/of.h>
     20#include <linux/platform_device.h>
     21#include <linux/pm_domain.h>
     22#include <linux/pm_runtime.h>
     23#include <linux/sh_timer.h>
     24#include <linux/slab.h>
     25#include <linux/spinlock.h>
     26
     27#ifdef CONFIG_SUPERH
     28#include <asm/platform_early.h>
     29#endif
     30
     31enum sh_tmu_model {
     32	SH_TMU,
     33	SH_TMU_SH3,
     34};
     35
     36struct sh_tmu_device;
     37
     38struct sh_tmu_channel {
     39	struct sh_tmu_device *tmu;
     40	unsigned int index;
     41
     42	void __iomem *base;
     43	int irq;
     44
     45	unsigned long periodic;
     46	struct clock_event_device ced;
     47	struct clocksource cs;
     48	bool cs_enabled;
     49	unsigned int enable_count;
     50};
     51
     52struct sh_tmu_device {
     53	struct platform_device *pdev;
     54
     55	void __iomem *mapbase;
     56	struct clk *clk;
     57	unsigned long rate;
     58
     59	enum sh_tmu_model model;
     60
     61	raw_spinlock_t lock; /* Protect the shared start/stop register */
     62
     63	struct sh_tmu_channel *channels;
     64	unsigned int num_channels;
     65
     66	bool has_clockevent;
     67	bool has_clocksource;
     68};
     69
     70#define TSTR -1 /* shared register */
     71#define TCOR  0 /* channel register */
     72#define TCNT 1 /* channel register */
     73#define TCR 2 /* channel register */
     74
     75#define TCR_UNF			(1 << 8)
     76#define TCR_UNIE		(1 << 5)
     77#define TCR_TPSC_CLK4		(0 << 0)
     78#define TCR_TPSC_CLK16		(1 << 0)
     79#define TCR_TPSC_CLK64		(2 << 0)
     80#define TCR_TPSC_CLK256		(3 << 0)
     81#define TCR_TPSC_CLK1024	(4 << 0)
     82#define TCR_TPSC_MASK		(7 << 0)
     83
     84static inline unsigned long sh_tmu_read(struct sh_tmu_channel *ch, int reg_nr)
     85{
     86	unsigned long offs;
     87
     88	if (reg_nr == TSTR) {
     89		switch (ch->tmu->model) {
     90		case SH_TMU_SH3:
     91			return ioread8(ch->tmu->mapbase + 2);
     92		case SH_TMU:
     93			return ioread8(ch->tmu->mapbase + 4);
     94		}
     95	}
     96
     97	offs = reg_nr << 2;
     98
     99	if (reg_nr == TCR)
    100		return ioread16(ch->base + offs);
    101	else
    102		return ioread32(ch->base + offs);
    103}
    104
    105static inline void sh_tmu_write(struct sh_tmu_channel *ch, int reg_nr,
    106				unsigned long value)
    107{
    108	unsigned long offs;
    109
    110	if (reg_nr == TSTR) {
    111		switch (ch->tmu->model) {
    112		case SH_TMU_SH3:
    113			return iowrite8(value, ch->tmu->mapbase + 2);
    114		case SH_TMU:
    115			return iowrite8(value, ch->tmu->mapbase + 4);
    116		}
    117	}
    118
    119	offs = reg_nr << 2;
    120
    121	if (reg_nr == TCR)
    122		iowrite16(value, ch->base + offs);
    123	else
    124		iowrite32(value, ch->base + offs);
    125}
    126
    127static void sh_tmu_start_stop_ch(struct sh_tmu_channel *ch, int start)
    128{
    129	unsigned long flags, value;
    130
    131	/* start stop register shared by multiple timer channels */
    132	raw_spin_lock_irqsave(&ch->tmu->lock, flags);
    133	value = sh_tmu_read(ch, TSTR);
    134
    135	if (start)
    136		value |= 1 << ch->index;
    137	else
    138		value &= ~(1 << ch->index);
    139
    140	sh_tmu_write(ch, TSTR, value);
    141	raw_spin_unlock_irqrestore(&ch->tmu->lock, flags);
    142}
    143
    144static int __sh_tmu_enable(struct sh_tmu_channel *ch)
    145{
    146	int ret;
    147
    148	/* enable clock */
    149	ret = clk_enable(ch->tmu->clk);
    150	if (ret) {
    151		dev_err(&ch->tmu->pdev->dev, "ch%u: cannot enable clock\n",
    152			ch->index);
    153		return ret;
    154	}
    155
    156	/* make sure channel is disabled */
    157	sh_tmu_start_stop_ch(ch, 0);
    158
    159	/* maximum timeout */
    160	sh_tmu_write(ch, TCOR, 0xffffffff);
    161	sh_tmu_write(ch, TCNT, 0xffffffff);
    162
    163	/* configure channel to parent clock / 4, irq off */
    164	sh_tmu_write(ch, TCR, TCR_TPSC_CLK4);
    165
    166	/* enable channel */
    167	sh_tmu_start_stop_ch(ch, 1);
    168
    169	return 0;
    170}
    171
    172static int sh_tmu_enable(struct sh_tmu_channel *ch)
    173{
    174	if (ch->enable_count++ > 0)
    175		return 0;
    176
    177	pm_runtime_get_sync(&ch->tmu->pdev->dev);
    178	dev_pm_syscore_device(&ch->tmu->pdev->dev, true);
    179
    180	return __sh_tmu_enable(ch);
    181}
    182
    183static void __sh_tmu_disable(struct sh_tmu_channel *ch)
    184{
    185	/* disable channel */
    186	sh_tmu_start_stop_ch(ch, 0);
    187
    188	/* disable interrupts in TMU block */
    189	sh_tmu_write(ch, TCR, TCR_TPSC_CLK4);
    190
    191	/* stop clock */
    192	clk_disable(ch->tmu->clk);
    193}
    194
    195static void sh_tmu_disable(struct sh_tmu_channel *ch)
    196{
    197	if (WARN_ON(ch->enable_count == 0))
    198		return;
    199
    200	if (--ch->enable_count > 0)
    201		return;
    202
    203	__sh_tmu_disable(ch);
    204
    205	dev_pm_syscore_device(&ch->tmu->pdev->dev, false);
    206	pm_runtime_put(&ch->tmu->pdev->dev);
    207}
    208
    209static void sh_tmu_set_next(struct sh_tmu_channel *ch, unsigned long delta,
    210			    int periodic)
    211{
    212	/* stop timer */
    213	sh_tmu_start_stop_ch(ch, 0);
    214
    215	/* acknowledge interrupt */
    216	sh_tmu_read(ch, TCR);
    217
    218	/* enable interrupt */
    219	sh_tmu_write(ch, TCR, TCR_UNIE | TCR_TPSC_CLK4);
    220
    221	/* reload delta value in case of periodic timer */
    222	if (periodic)
    223		sh_tmu_write(ch, TCOR, delta);
    224	else
    225		sh_tmu_write(ch, TCOR, 0xffffffff);
    226
    227	sh_tmu_write(ch, TCNT, delta);
    228
    229	/* start timer */
    230	sh_tmu_start_stop_ch(ch, 1);
    231}
    232
    233static irqreturn_t sh_tmu_interrupt(int irq, void *dev_id)
    234{
    235	struct sh_tmu_channel *ch = dev_id;
    236
    237	/* disable or acknowledge interrupt */
    238	if (clockevent_state_oneshot(&ch->ced))
    239		sh_tmu_write(ch, TCR, TCR_TPSC_CLK4);
    240	else
    241		sh_tmu_write(ch, TCR, TCR_UNIE | TCR_TPSC_CLK4);
    242
    243	/* notify clockevent layer */
    244	ch->ced.event_handler(&ch->ced);
    245	return IRQ_HANDLED;
    246}
    247
    248static struct sh_tmu_channel *cs_to_sh_tmu(struct clocksource *cs)
    249{
    250	return container_of(cs, struct sh_tmu_channel, cs);
    251}
    252
    253static u64 sh_tmu_clocksource_read(struct clocksource *cs)
    254{
    255	struct sh_tmu_channel *ch = cs_to_sh_tmu(cs);
    256
    257	return sh_tmu_read(ch, TCNT) ^ 0xffffffff;
    258}
    259
    260static int sh_tmu_clocksource_enable(struct clocksource *cs)
    261{
    262	struct sh_tmu_channel *ch = cs_to_sh_tmu(cs);
    263	int ret;
    264
    265	if (WARN_ON(ch->cs_enabled))
    266		return 0;
    267
    268	ret = sh_tmu_enable(ch);
    269	if (!ret)
    270		ch->cs_enabled = true;
    271
    272	return ret;
    273}
    274
    275static void sh_tmu_clocksource_disable(struct clocksource *cs)
    276{
    277	struct sh_tmu_channel *ch = cs_to_sh_tmu(cs);
    278
    279	if (WARN_ON(!ch->cs_enabled))
    280		return;
    281
    282	sh_tmu_disable(ch);
    283	ch->cs_enabled = false;
    284}
    285
    286static void sh_tmu_clocksource_suspend(struct clocksource *cs)
    287{
    288	struct sh_tmu_channel *ch = cs_to_sh_tmu(cs);
    289
    290	if (!ch->cs_enabled)
    291		return;
    292
    293	if (--ch->enable_count == 0) {
    294		__sh_tmu_disable(ch);
    295		dev_pm_genpd_suspend(&ch->tmu->pdev->dev);
    296	}
    297}
    298
    299static void sh_tmu_clocksource_resume(struct clocksource *cs)
    300{
    301	struct sh_tmu_channel *ch = cs_to_sh_tmu(cs);
    302
    303	if (!ch->cs_enabled)
    304		return;
    305
    306	if (ch->enable_count++ == 0) {
    307		dev_pm_genpd_resume(&ch->tmu->pdev->dev);
    308		__sh_tmu_enable(ch);
    309	}
    310}
    311
    312static int sh_tmu_register_clocksource(struct sh_tmu_channel *ch,
    313				       const char *name)
    314{
    315	struct clocksource *cs = &ch->cs;
    316
    317	cs->name = name;
    318	cs->rating = 200;
    319	cs->read = sh_tmu_clocksource_read;
    320	cs->enable = sh_tmu_clocksource_enable;
    321	cs->disable = sh_tmu_clocksource_disable;
    322	cs->suspend = sh_tmu_clocksource_suspend;
    323	cs->resume = sh_tmu_clocksource_resume;
    324	cs->mask = CLOCKSOURCE_MASK(32);
    325	cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;
    326
    327	dev_info(&ch->tmu->pdev->dev, "ch%u: used as clock source\n",
    328		 ch->index);
    329
    330	clocksource_register_hz(cs, ch->tmu->rate);
    331	return 0;
    332}
    333
    334static struct sh_tmu_channel *ced_to_sh_tmu(struct clock_event_device *ced)
    335{
    336	return container_of(ced, struct sh_tmu_channel, ced);
    337}
    338
    339static void sh_tmu_clock_event_start(struct sh_tmu_channel *ch, int periodic)
    340{
    341	sh_tmu_enable(ch);
    342
    343	if (periodic) {
    344		ch->periodic = (ch->tmu->rate + HZ/2) / HZ;
    345		sh_tmu_set_next(ch, ch->periodic, 1);
    346	}
    347}
    348
    349static int sh_tmu_clock_event_shutdown(struct clock_event_device *ced)
    350{
    351	struct sh_tmu_channel *ch = ced_to_sh_tmu(ced);
    352
    353	if (clockevent_state_oneshot(ced) || clockevent_state_periodic(ced))
    354		sh_tmu_disable(ch);
    355	return 0;
    356}
    357
    358static int sh_tmu_clock_event_set_state(struct clock_event_device *ced,
    359					int periodic)
    360{
    361	struct sh_tmu_channel *ch = ced_to_sh_tmu(ced);
    362
    363	/* deal with old setting first */
    364	if (clockevent_state_oneshot(ced) || clockevent_state_periodic(ced))
    365		sh_tmu_disable(ch);
    366
    367	dev_info(&ch->tmu->pdev->dev, "ch%u: used for %s clock events\n",
    368		 ch->index, periodic ? "periodic" : "oneshot");
    369	sh_tmu_clock_event_start(ch, periodic);
    370	return 0;
    371}
    372
    373static int sh_tmu_clock_event_set_oneshot(struct clock_event_device *ced)
    374{
    375	return sh_tmu_clock_event_set_state(ced, 0);
    376}
    377
    378static int sh_tmu_clock_event_set_periodic(struct clock_event_device *ced)
    379{
    380	return sh_tmu_clock_event_set_state(ced, 1);
    381}
    382
    383static int sh_tmu_clock_event_next(unsigned long delta,
    384				   struct clock_event_device *ced)
    385{
    386	struct sh_tmu_channel *ch = ced_to_sh_tmu(ced);
    387
    388	BUG_ON(!clockevent_state_oneshot(ced));
    389
    390	/* program new delta value */
    391	sh_tmu_set_next(ch, delta, 0);
    392	return 0;
    393}
    394
    395static void sh_tmu_clock_event_suspend(struct clock_event_device *ced)
    396{
    397	dev_pm_genpd_suspend(&ced_to_sh_tmu(ced)->tmu->pdev->dev);
    398}
    399
    400static void sh_tmu_clock_event_resume(struct clock_event_device *ced)
    401{
    402	dev_pm_genpd_resume(&ced_to_sh_tmu(ced)->tmu->pdev->dev);
    403}
    404
    405static void sh_tmu_register_clockevent(struct sh_tmu_channel *ch,
    406				       const char *name)
    407{
    408	struct clock_event_device *ced = &ch->ced;
    409	int ret;
    410
    411	ced->name = name;
    412	ced->features = CLOCK_EVT_FEAT_PERIODIC;
    413	ced->features |= CLOCK_EVT_FEAT_ONESHOT;
    414	ced->rating = 200;
    415	ced->cpumask = cpu_possible_mask;
    416	ced->set_next_event = sh_tmu_clock_event_next;
    417	ced->set_state_shutdown = sh_tmu_clock_event_shutdown;
    418	ced->set_state_periodic = sh_tmu_clock_event_set_periodic;
    419	ced->set_state_oneshot = sh_tmu_clock_event_set_oneshot;
    420	ced->suspend = sh_tmu_clock_event_suspend;
    421	ced->resume = sh_tmu_clock_event_resume;
    422
    423	dev_info(&ch->tmu->pdev->dev, "ch%u: used for clock events\n",
    424		 ch->index);
    425
    426	clockevents_config_and_register(ced, ch->tmu->rate, 0x300, 0xffffffff);
    427
    428	ret = request_irq(ch->irq, sh_tmu_interrupt,
    429			  IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING,
    430			  dev_name(&ch->tmu->pdev->dev), ch);
    431	if (ret) {
    432		dev_err(&ch->tmu->pdev->dev, "ch%u: failed to request irq %d\n",
    433			ch->index, ch->irq);
    434		return;
    435	}
    436}
    437
    438static int sh_tmu_register(struct sh_tmu_channel *ch, const char *name,
    439			   bool clockevent, bool clocksource)
    440{
    441	if (clockevent) {
    442		ch->tmu->has_clockevent = true;
    443		sh_tmu_register_clockevent(ch, name);
    444	} else if (clocksource) {
    445		ch->tmu->has_clocksource = true;
    446		sh_tmu_register_clocksource(ch, name);
    447	}
    448
    449	return 0;
    450}
    451
    452static int sh_tmu_channel_setup(struct sh_tmu_channel *ch, unsigned int index,
    453				bool clockevent, bool clocksource,
    454				struct sh_tmu_device *tmu)
    455{
    456	/* Skip unused channels. */
    457	if (!clockevent && !clocksource)
    458		return 0;
    459
    460	ch->tmu = tmu;
    461	ch->index = index;
    462
    463	if (tmu->model == SH_TMU_SH3)
    464		ch->base = tmu->mapbase + 4 + ch->index * 12;
    465	else
    466		ch->base = tmu->mapbase + 8 + ch->index * 12;
    467
    468	ch->irq = platform_get_irq(tmu->pdev, index);
    469	if (ch->irq < 0)
    470		return ch->irq;
    471
    472	ch->cs_enabled = false;
    473	ch->enable_count = 0;
    474
    475	return sh_tmu_register(ch, dev_name(&tmu->pdev->dev),
    476			       clockevent, clocksource);
    477}
    478
    479static int sh_tmu_map_memory(struct sh_tmu_device *tmu)
    480{
    481	struct resource *res;
    482
    483	res = platform_get_resource(tmu->pdev, IORESOURCE_MEM, 0);
    484	if (!res) {
    485		dev_err(&tmu->pdev->dev, "failed to get I/O memory\n");
    486		return -ENXIO;
    487	}
    488
    489	tmu->mapbase = ioremap(res->start, resource_size(res));
    490	if (tmu->mapbase == NULL)
    491		return -ENXIO;
    492
    493	return 0;
    494}
    495
    496static int sh_tmu_parse_dt(struct sh_tmu_device *tmu)
    497{
    498	struct device_node *np = tmu->pdev->dev.of_node;
    499
    500	tmu->model = SH_TMU;
    501	tmu->num_channels = 3;
    502
    503	of_property_read_u32(np, "#renesas,channels", &tmu->num_channels);
    504
    505	if (tmu->num_channels != 2 && tmu->num_channels != 3) {
    506		dev_err(&tmu->pdev->dev, "invalid number of channels %u\n",
    507			tmu->num_channels);
    508		return -EINVAL;
    509	}
    510
    511	return 0;
    512}
    513
    514static int sh_tmu_setup(struct sh_tmu_device *tmu, struct platform_device *pdev)
    515{
    516	unsigned int i;
    517	int ret;
    518
    519	tmu->pdev = pdev;
    520
    521	raw_spin_lock_init(&tmu->lock);
    522
    523	if (IS_ENABLED(CONFIG_OF) && pdev->dev.of_node) {
    524		ret = sh_tmu_parse_dt(tmu);
    525		if (ret < 0)
    526			return ret;
    527	} else if (pdev->dev.platform_data) {
    528		const struct platform_device_id *id = pdev->id_entry;
    529		struct sh_timer_config *cfg = pdev->dev.platform_data;
    530
    531		tmu->model = id->driver_data;
    532		tmu->num_channels = hweight8(cfg->channels_mask);
    533	} else {
    534		dev_err(&tmu->pdev->dev, "missing platform data\n");
    535		return -ENXIO;
    536	}
    537
    538	/* Get hold of clock. */
    539	tmu->clk = clk_get(&tmu->pdev->dev, "fck");
    540	if (IS_ERR(tmu->clk)) {
    541		dev_err(&tmu->pdev->dev, "cannot get clock\n");
    542		return PTR_ERR(tmu->clk);
    543	}
    544
    545	ret = clk_prepare(tmu->clk);
    546	if (ret < 0)
    547		goto err_clk_put;
    548
    549	/* Determine clock rate. */
    550	ret = clk_enable(tmu->clk);
    551	if (ret < 0)
    552		goto err_clk_unprepare;
    553
    554	tmu->rate = clk_get_rate(tmu->clk) / 4;
    555	clk_disable(tmu->clk);
    556
    557	/* Map the memory resource. */
    558	ret = sh_tmu_map_memory(tmu);
    559	if (ret < 0) {
    560		dev_err(&tmu->pdev->dev, "failed to remap I/O memory\n");
    561		goto err_clk_unprepare;
    562	}
    563
    564	/* Allocate and setup the channels. */
    565	tmu->channels = kcalloc(tmu->num_channels, sizeof(*tmu->channels),
    566				GFP_KERNEL);
    567	if (tmu->channels == NULL) {
    568		ret = -ENOMEM;
    569		goto err_unmap;
    570	}
    571
    572	/*
    573	 * Use the first channel as a clock event device and the second channel
    574	 * as a clock source.
    575	 */
    576	for (i = 0; i < tmu->num_channels; ++i) {
    577		ret = sh_tmu_channel_setup(&tmu->channels[i], i,
    578					   i == 0, i == 1, tmu);
    579		if (ret < 0)
    580			goto err_unmap;
    581	}
    582
    583	platform_set_drvdata(pdev, tmu);
    584
    585	return 0;
    586
    587err_unmap:
    588	kfree(tmu->channels);
    589	iounmap(tmu->mapbase);
    590err_clk_unprepare:
    591	clk_unprepare(tmu->clk);
    592err_clk_put:
    593	clk_put(tmu->clk);
    594	return ret;
    595}
    596
    597static int sh_tmu_probe(struct platform_device *pdev)
    598{
    599	struct sh_tmu_device *tmu = platform_get_drvdata(pdev);
    600	int ret;
    601
    602	if (!is_sh_early_platform_device(pdev)) {
    603		pm_runtime_set_active(&pdev->dev);
    604		pm_runtime_enable(&pdev->dev);
    605	}
    606
    607	if (tmu) {
    608		dev_info(&pdev->dev, "kept as earlytimer\n");
    609		goto out;
    610	}
    611
    612	tmu = kzalloc(sizeof(*tmu), GFP_KERNEL);
    613	if (tmu == NULL)
    614		return -ENOMEM;
    615
    616	ret = sh_tmu_setup(tmu, pdev);
    617	if (ret) {
    618		kfree(tmu);
    619		pm_runtime_idle(&pdev->dev);
    620		return ret;
    621	}
    622
    623	if (is_sh_early_platform_device(pdev))
    624		return 0;
    625
    626 out:
    627	if (tmu->has_clockevent || tmu->has_clocksource)
    628		pm_runtime_irq_safe(&pdev->dev);
    629	else
    630		pm_runtime_idle(&pdev->dev);
    631
    632	return 0;
    633}
    634
    635static int sh_tmu_remove(struct platform_device *pdev)
    636{
    637	return -EBUSY; /* cannot unregister clockevent and clocksource */
    638}
    639
    640static const struct platform_device_id sh_tmu_id_table[] = {
    641	{ "sh-tmu", SH_TMU },
    642	{ "sh-tmu-sh3", SH_TMU_SH3 },
    643	{ }
    644};
    645MODULE_DEVICE_TABLE(platform, sh_tmu_id_table);
    646
    647static const struct of_device_id sh_tmu_of_table[] __maybe_unused = {
    648	{ .compatible = "renesas,tmu" },
    649	{ }
    650};
    651MODULE_DEVICE_TABLE(of, sh_tmu_of_table);
    652
    653static struct platform_driver sh_tmu_device_driver = {
    654	.probe		= sh_tmu_probe,
    655	.remove		= sh_tmu_remove,
    656	.driver		= {
    657		.name	= "sh_tmu",
    658		.of_match_table = of_match_ptr(sh_tmu_of_table),
    659	},
    660	.id_table	= sh_tmu_id_table,
    661};
    662
    663static int __init sh_tmu_init(void)
    664{
    665	return platform_driver_register(&sh_tmu_device_driver);
    666}
    667
    668static void __exit sh_tmu_exit(void)
    669{
    670	platform_driver_unregister(&sh_tmu_device_driver);
    671}
    672
    673#ifdef CONFIG_SUPERH
    674sh_early_platform_init("earlytimer", &sh_tmu_device_driver);
    675#endif
    676
    677subsys_initcall(sh_tmu_init);
    678module_exit(sh_tmu_exit);
    679
    680MODULE_AUTHOR("Magnus Damm");
    681MODULE_DESCRIPTION("SuperH TMU Timer Driver");
    682MODULE_LICENSE("GPL v2");