cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

timer-atmel-tcb.c (13677B)


      1// SPDX-License-Identifier: GPL-2.0
      2#include <linux/init.h>
      3#include <linux/clocksource.h>
      4#include <linux/clockchips.h>
      5#include <linux/interrupt.h>
      6#include <linux/irq.h>
      7
      8#include <linux/clk.h>
      9#include <linux/delay.h>
     10#include <linux/err.h>
     11#include <linux/ioport.h>
     12#include <linux/io.h>
     13#include <linux/of_address.h>
     14#include <linux/of_irq.h>
     15#include <linux/sched_clock.h>
     16#include <linux/syscore_ops.h>
     17#include <soc/at91/atmel_tcb.h>
     18
     19
     20/*
     21 * We're configured to use a specific TC block, one that's not hooked
     22 * up to external hardware, to provide a time solution:
     23 *
     24 *   - Two channels combine to create a free-running 32 bit counter
     25 *     with a base rate of 5+ MHz, packaged as a clocksource (with
     26 *     resolution better than 200 nsec).
     27 *   - Some chips support 32 bit counter. A single channel is used for
     28 *     this 32 bit free-running counter. the second channel is not used.
     29 *
     30 *   - The third channel may be used to provide a clockevent source, used in
     31 *   either periodic or oneshot mode. For 16-bit counter its runs at 32 KiHZ,
     32 *   and can handle delays of up to two seconds. For 32-bit counters, it runs at
     33 *   the same rate as the clocksource
     34 *
     35 * REVISIT behavior during system suspend states... we should disable
     36 * all clocks and save the power.  Easily done for clockevent devices,
     37 * but clocksources won't necessarily get the needed notifications.
     38 * For deeper system sleep states, this will be mandatory...
     39 */
     40
     41static void __iomem *tcaddr;
     42static struct
     43{
     44	u32 cmr;
     45	u32 imr;
     46	u32 rc;
     47	bool clken;
     48} tcb_cache[3];
     49static u32 bmr_cache;
     50
     51static const u8 atmel_tcb_divisors[] = { 2, 8, 32, 128 };
     52
     53static u64 tc_get_cycles(struct clocksource *cs)
     54{
     55	unsigned long	flags;
     56	u32		lower, upper;
     57
     58	raw_local_irq_save(flags);
     59	do {
     60		upper = readl_relaxed(tcaddr + ATMEL_TC_REG(1, CV));
     61		lower = readl_relaxed(tcaddr + ATMEL_TC_REG(0, CV));
     62	} while (upper != readl_relaxed(tcaddr + ATMEL_TC_REG(1, CV)));
     63
     64	raw_local_irq_restore(flags);
     65	return (upper << 16) | lower;
     66}
     67
     68static u64 tc_get_cycles32(struct clocksource *cs)
     69{
     70	return readl_relaxed(tcaddr + ATMEL_TC_REG(0, CV));
     71}
     72
     73static void tc_clksrc_suspend(struct clocksource *cs)
     74{
     75	int i;
     76
     77	for (i = 0; i < ARRAY_SIZE(tcb_cache); i++) {
     78		tcb_cache[i].cmr = readl(tcaddr + ATMEL_TC_REG(i, CMR));
     79		tcb_cache[i].imr = readl(tcaddr + ATMEL_TC_REG(i, IMR));
     80		tcb_cache[i].rc = readl(tcaddr + ATMEL_TC_REG(i, RC));
     81		tcb_cache[i].clken = !!(readl(tcaddr + ATMEL_TC_REG(i, SR)) &
     82					ATMEL_TC_CLKSTA);
     83	}
     84
     85	bmr_cache = readl(tcaddr + ATMEL_TC_BMR);
     86}
     87
     88static void tc_clksrc_resume(struct clocksource *cs)
     89{
     90	int i;
     91
     92	for (i = 0; i < ARRAY_SIZE(tcb_cache); i++) {
     93		/* Restore registers for the channel, RA and RB are not used  */
     94		writel(tcb_cache[i].cmr, tcaddr + ATMEL_TC_REG(i, CMR));
     95		writel(tcb_cache[i].rc, tcaddr + ATMEL_TC_REG(i, RC));
     96		writel(0, tcaddr + ATMEL_TC_REG(i, RA));
     97		writel(0, tcaddr + ATMEL_TC_REG(i, RB));
     98		/* Disable all the interrupts */
     99		writel(0xff, tcaddr + ATMEL_TC_REG(i, IDR));
    100		/* Reenable interrupts that were enabled before suspending */
    101		writel(tcb_cache[i].imr, tcaddr + ATMEL_TC_REG(i, IER));
    102		/* Start the clock if it was used */
    103		if (tcb_cache[i].clken)
    104			writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(i, CCR));
    105	}
    106
    107	/* Dual channel, chain channels */
    108	writel(bmr_cache, tcaddr + ATMEL_TC_BMR);
    109	/* Finally, trigger all the channels*/
    110	writel(ATMEL_TC_SYNC, tcaddr + ATMEL_TC_BCR);
    111}
    112
    113static struct clocksource clksrc = {
    114	.rating         = 200,
    115	.read           = tc_get_cycles,
    116	.mask           = CLOCKSOURCE_MASK(32),
    117	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
    118	.suspend	= tc_clksrc_suspend,
    119	.resume		= tc_clksrc_resume,
    120};
    121
    122static u64 notrace tc_sched_clock_read(void)
    123{
    124	return tc_get_cycles(&clksrc);
    125}
    126
    127static u64 notrace tc_sched_clock_read32(void)
    128{
    129	return tc_get_cycles32(&clksrc);
    130}
    131
    132static struct delay_timer tc_delay_timer;
    133
    134static unsigned long tc_delay_timer_read(void)
    135{
    136	return tc_get_cycles(&clksrc);
    137}
    138
    139static unsigned long notrace tc_delay_timer_read32(void)
    140{
    141	return tc_get_cycles32(&clksrc);
    142}
    143
    144#ifdef CONFIG_GENERIC_CLOCKEVENTS
    145
    146struct tc_clkevt_device {
    147	struct clock_event_device	clkevt;
    148	struct clk			*clk;
    149	u32				rate;
    150	void __iomem			*regs;
    151};
    152
    153static struct tc_clkevt_device *to_tc_clkevt(struct clock_event_device *clkevt)
    154{
    155	return container_of(clkevt, struct tc_clkevt_device, clkevt);
    156}
    157
    158static u32 timer_clock;
    159
    160static int tc_shutdown(struct clock_event_device *d)
    161{
    162	struct tc_clkevt_device *tcd = to_tc_clkevt(d);
    163	void __iomem		*regs = tcd->regs;
    164
    165	writel(0xff, regs + ATMEL_TC_REG(2, IDR));
    166	writel(ATMEL_TC_CLKDIS, regs + ATMEL_TC_REG(2, CCR));
    167	if (!clockevent_state_detached(d))
    168		clk_disable(tcd->clk);
    169
    170	return 0;
    171}
    172
    173static int tc_set_oneshot(struct clock_event_device *d)
    174{
    175	struct tc_clkevt_device *tcd = to_tc_clkevt(d);
    176	void __iomem		*regs = tcd->regs;
    177
    178	if (clockevent_state_oneshot(d) || clockevent_state_periodic(d))
    179		tc_shutdown(d);
    180
    181	clk_enable(tcd->clk);
    182
    183	/* count up to RC, then irq and stop */
    184	writel(timer_clock | ATMEL_TC_CPCSTOP | ATMEL_TC_WAVE |
    185		     ATMEL_TC_WAVESEL_UP_AUTO, regs + ATMEL_TC_REG(2, CMR));
    186	writel(ATMEL_TC_CPCS, regs + ATMEL_TC_REG(2, IER));
    187
    188	/* set_next_event() configures and starts the timer */
    189	return 0;
    190}
    191
    192static int tc_set_periodic(struct clock_event_device *d)
    193{
    194	struct tc_clkevt_device *tcd = to_tc_clkevt(d);
    195	void __iomem		*regs = tcd->regs;
    196
    197	if (clockevent_state_oneshot(d) || clockevent_state_periodic(d))
    198		tc_shutdown(d);
    199
    200	/* By not making the gentime core emulate periodic mode on top
    201	 * of oneshot, we get lower overhead and improved accuracy.
    202	 */
    203	clk_enable(tcd->clk);
    204
    205	/* count up to RC, then irq and restart */
    206	writel(timer_clock | ATMEL_TC_WAVE | ATMEL_TC_WAVESEL_UP_AUTO,
    207		     regs + ATMEL_TC_REG(2, CMR));
    208	writel((tcd->rate + HZ / 2) / HZ, tcaddr + ATMEL_TC_REG(2, RC));
    209
    210	/* Enable clock and interrupts on RC compare */
    211	writel(ATMEL_TC_CPCS, regs + ATMEL_TC_REG(2, IER));
    212
    213	/* go go gadget! */
    214	writel(ATMEL_TC_CLKEN | ATMEL_TC_SWTRG, regs +
    215		     ATMEL_TC_REG(2, CCR));
    216	return 0;
    217}
    218
    219static int tc_next_event(unsigned long delta, struct clock_event_device *d)
    220{
    221	writel_relaxed(delta, tcaddr + ATMEL_TC_REG(2, RC));
    222
    223	/* go go gadget! */
    224	writel_relaxed(ATMEL_TC_CLKEN | ATMEL_TC_SWTRG,
    225			tcaddr + ATMEL_TC_REG(2, CCR));
    226	return 0;
    227}
    228
    229static struct tc_clkevt_device clkevt = {
    230	.clkevt	= {
    231		.features		= CLOCK_EVT_FEAT_PERIODIC |
    232					  CLOCK_EVT_FEAT_ONESHOT,
    233		/* Should be lower than at91rm9200's system timer */
    234		.rating			= 125,
    235		.set_next_event		= tc_next_event,
    236		.set_state_shutdown	= tc_shutdown,
    237		.set_state_periodic	= tc_set_periodic,
    238		.set_state_oneshot	= tc_set_oneshot,
    239	},
    240};
    241
    242static irqreturn_t ch2_irq(int irq, void *handle)
    243{
    244	struct tc_clkevt_device	*dev = handle;
    245	unsigned int		sr;
    246
    247	sr = readl_relaxed(dev->regs + ATMEL_TC_REG(2, SR));
    248	if (sr & ATMEL_TC_CPCS) {
    249		dev->clkevt.event_handler(&dev->clkevt);
    250		return IRQ_HANDLED;
    251	}
    252
    253	return IRQ_NONE;
    254}
    255
    256static int __init setup_clkevents(struct atmel_tc *tc, int divisor_idx)
    257{
    258	int ret;
    259	struct clk *t2_clk = tc->clk[2];
    260	int irq = tc->irq[2];
    261	int bits = tc->tcb_config->counter_width;
    262
    263	/* try to enable t2 clk to avoid future errors in mode change */
    264	ret = clk_prepare_enable(t2_clk);
    265	if (ret)
    266		return ret;
    267
    268	clkevt.regs = tc->regs;
    269	clkevt.clk = t2_clk;
    270
    271	if (bits == 32) {
    272		timer_clock = divisor_idx;
    273		clkevt.rate = clk_get_rate(t2_clk) / atmel_tcb_divisors[divisor_idx];
    274	} else {
    275		ret = clk_prepare_enable(tc->slow_clk);
    276		if (ret) {
    277			clk_disable_unprepare(t2_clk);
    278			return ret;
    279		}
    280
    281		clkevt.rate = clk_get_rate(tc->slow_clk);
    282		timer_clock = ATMEL_TC_TIMER_CLOCK5;
    283	}
    284
    285	clk_disable(t2_clk);
    286
    287	clkevt.clkevt.cpumask = cpumask_of(0);
    288
    289	ret = request_irq(irq, ch2_irq, IRQF_TIMER, "tc_clkevt", &clkevt);
    290	if (ret) {
    291		clk_unprepare(t2_clk);
    292		if (bits != 32)
    293			clk_disable_unprepare(tc->slow_clk);
    294		return ret;
    295	}
    296
    297	clockevents_config_and_register(&clkevt.clkevt, clkevt.rate, 1, BIT(bits) - 1);
    298
    299	return ret;
    300}
    301
    302#else /* !CONFIG_GENERIC_CLOCKEVENTS */
    303
    304static int __init setup_clkevents(struct atmel_tc *tc, int divisor_idx)
    305{
    306	/* NOTHING */
    307	return 0;
    308}
    309
    310#endif
    311
    312static void __init tcb_setup_dual_chan(struct atmel_tc *tc, int mck_divisor_idx)
    313{
    314	/* channel 0:  waveform mode, input mclk/8, clock TIOA0 on overflow */
    315	writel(mck_divisor_idx			/* likely divide-by-8 */
    316			| ATMEL_TC_WAVE
    317			| ATMEL_TC_WAVESEL_UP		/* free-run */
    318			| ATMEL_TC_ACPA_SET		/* TIOA0 rises at 0 */
    319			| ATMEL_TC_ACPC_CLEAR,		/* (duty cycle 50%) */
    320			tcaddr + ATMEL_TC_REG(0, CMR));
    321	writel(0x0000, tcaddr + ATMEL_TC_REG(0, RA));
    322	writel(0x8000, tcaddr + ATMEL_TC_REG(0, RC));
    323	writel(0xff, tcaddr + ATMEL_TC_REG(0, IDR));	/* no irqs */
    324	writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(0, CCR));
    325
    326	/* channel 1:  waveform mode, input TIOA0 */
    327	writel(ATMEL_TC_XC1			/* input: TIOA0 */
    328			| ATMEL_TC_WAVE
    329			| ATMEL_TC_WAVESEL_UP,		/* free-run */
    330			tcaddr + ATMEL_TC_REG(1, CMR));
    331	writel(0xff, tcaddr + ATMEL_TC_REG(1, IDR));	/* no irqs */
    332	writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(1, CCR));
    333
    334	/* chain channel 0 to channel 1*/
    335	writel(ATMEL_TC_TC1XC1S_TIOA0, tcaddr + ATMEL_TC_BMR);
    336	/* then reset all the timers */
    337	writel(ATMEL_TC_SYNC, tcaddr + ATMEL_TC_BCR);
    338}
    339
    340static void __init tcb_setup_single_chan(struct atmel_tc *tc, int mck_divisor_idx)
    341{
    342	/* channel 0:  waveform mode, input mclk/8 */
    343	writel(mck_divisor_idx			/* likely divide-by-8 */
    344			| ATMEL_TC_WAVE
    345			| ATMEL_TC_WAVESEL_UP,		/* free-run */
    346			tcaddr + ATMEL_TC_REG(0, CMR));
    347	writel(0xff, tcaddr + ATMEL_TC_REG(0, IDR));	/* no irqs */
    348	writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(0, CCR));
    349
    350	/* then reset all the timers */
    351	writel(ATMEL_TC_SYNC, tcaddr + ATMEL_TC_BCR);
    352}
    353
    354static struct atmel_tcb_config tcb_rm9200_config = {
    355	.counter_width = 16,
    356};
    357
    358static struct atmel_tcb_config tcb_sam9x5_config = {
    359	.counter_width = 32,
    360};
    361
    362static struct atmel_tcb_config tcb_sama5d2_config = {
    363	.counter_width = 32,
    364	.has_gclk = 1,
    365};
    366
    367static const struct of_device_id atmel_tcb_of_match[] = {
    368	{ .compatible = "atmel,at91rm9200-tcb", .data = &tcb_rm9200_config, },
    369	{ .compatible = "atmel,at91sam9x5-tcb", .data = &tcb_sam9x5_config, },
    370	{ .compatible = "atmel,sama5d2-tcb", .data = &tcb_sama5d2_config, },
    371	{ /* sentinel */ }
    372};
    373
    374static int __init tcb_clksrc_init(struct device_node *node)
    375{
    376	struct atmel_tc tc;
    377	struct clk *t0_clk;
    378	const struct of_device_id *match;
    379	u64 (*tc_sched_clock)(void);
    380	u32 rate, divided_rate = 0;
    381	int best_divisor_idx = -1;
    382	int bits;
    383	int i;
    384	int ret;
    385
    386	/* Protect against multiple calls */
    387	if (tcaddr)
    388		return 0;
    389
    390	tc.regs = of_iomap(node->parent, 0);
    391	if (!tc.regs)
    392		return -ENXIO;
    393
    394	t0_clk = of_clk_get_by_name(node->parent, "t0_clk");
    395	if (IS_ERR(t0_clk))
    396		return PTR_ERR(t0_clk);
    397
    398	tc.slow_clk = of_clk_get_by_name(node->parent, "slow_clk");
    399	if (IS_ERR(tc.slow_clk))
    400		return PTR_ERR(tc.slow_clk);
    401
    402	tc.clk[0] = t0_clk;
    403	tc.clk[1] = of_clk_get_by_name(node->parent, "t1_clk");
    404	if (IS_ERR(tc.clk[1]))
    405		tc.clk[1] = t0_clk;
    406	tc.clk[2] = of_clk_get_by_name(node->parent, "t2_clk");
    407	if (IS_ERR(tc.clk[2]))
    408		tc.clk[2] = t0_clk;
    409
    410	tc.irq[2] = of_irq_get(node->parent, 2);
    411	if (tc.irq[2] <= 0) {
    412		tc.irq[2] = of_irq_get(node->parent, 0);
    413		if (tc.irq[2] <= 0)
    414			return -EINVAL;
    415	}
    416
    417	match = of_match_node(atmel_tcb_of_match, node->parent);
    418	if (!match)
    419		return -ENODEV;
    420
    421	tc.tcb_config = match->data;
    422	bits = tc.tcb_config->counter_width;
    423
    424	for (i = 0; i < ARRAY_SIZE(tc.irq); i++)
    425		writel(ATMEL_TC_ALL_IRQ, tc.regs + ATMEL_TC_REG(i, IDR));
    426
    427	ret = clk_prepare_enable(t0_clk);
    428	if (ret) {
    429		pr_debug("can't enable T0 clk\n");
    430		return ret;
    431	}
    432
    433	/* How fast will we be counting?  Pick something over 5 MHz.  */
    434	rate = (u32) clk_get_rate(t0_clk);
    435	i = 0;
    436	if (tc.tcb_config->has_gclk)
    437		i = 1;
    438	for (; i < ARRAY_SIZE(atmel_tcb_divisors); i++) {
    439		unsigned divisor = atmel_tcb_divisors[i];
    440		unsigned tmp;
    441
    442		tmp = rate / divisor;
    443		pr_debug("TC: %u / %-3u [%d] --> %u\n", rate, divisor, i, tmp);
    444		if ((best_divisor_idx >= 0) && (tmp < 5 * 1000 * 1000))
    445			break;
    446		divided_rate = tmp;
    447		best_divisor_idx = i;
    448	}
    449
    450	clksrc.name = kbasename(node->parent->full_name);
    451	clkevt.clkevt.name = kbasename(node->parent->full_name);
    452	pr_debug("%s at %d.%03d MHz\n", clksrc.name, divided_rate / 1000000,
    453			((divided_rate % 1000000) + 500) / 1000);
    454
    455	tcaddr = tc.regs;
    456
    457	if (bits == 32) {
    458		/* use appropriate function to read 32 bit counter */
    459		clksrc.read = tc_get_cycles32;
    460		/* setup only channel 0 */
    461		tcb_setup_single_chan(&tc, best_divisor_idx);
    462		tc_sched_clock = tc_sched_clock_read32;
    463		tc_delay_timer.read_current_timer = tc_delay_timer_read32;
    464	} else {
    465		/* we have three clocks no matter what the
    466		 * underlying platform supports.
    467		 */
    468		ret = clk_prepare_enable(tc.clk[1]);
    469		if (ret) {
    470			pr_debug("can't enable T1 clk\n");
    471			goto err_disable_t0;
    472		}
    473		/* setup both channel 0 & 1 */
    474		tcb_setup_dual_chan(&tc, best_divisor_idx);
    475		tc_sched_clock = tc_sched_clock_read;
    476		tc_delay_timer.read_current_timer = tc_delay_timer_read;
    477	}
    478
    479	/* and away we go! */
    480	ret = clocksource_register_hz(&clksrc, divided_rate);
    481	if (ret)
    482		goto err_disable_t1;
    483
    484	/* channel 2:  periodic and oneshot timer support */
    485	ret = setup_clkevents(&tc, best_divisor_idx);
    486	if (ret)
    487		goto err_unregister_clksrc;
    488
    489	sched_clock_register(tc_sched_clock, 32, divided_rate);
    490
    491	tc_delay_timer.freq = divided_rate;
    492	register_current_timer_delay(&tc_delay_timer);
    493
    494	return 0;
    495
    496err_unregister_clksrc:
    497	clocksource_unregister(&clksrc);
    498
    499err_disable_t1:
    500	if (bits != 32)
    501		clk_disable_unprepare(tc.clk[1]);
    502
    503err_disable_t0:
    504	clk_disable_unprepare(t0_clk);
    505
    506	tcaddr = NULL;
    507
    508	return ret;
    509}
    510TIMER_OF_DECLARE(atmel_tcb_clksrc, "atmel,tcb-timer", tcb_clksrc_init);