timer-microchip-pit64b.c (13688B)
1// SPDX-License-Identifier: GPL-2.0 2/* 3 * 64-bit Periodic Interval Timer driver 4 * 5 * Copyright (C) 2019 Microchip Technology Inc. and its subsidiaries 6 * 7 * Author: Claudiu Beznea <claudiu.beznea@microchip.com> 8 */ 9 10#include <linux/clk.h> 11#include <linux/clockchips.h> 12#include <linux/interrupt.h> 13#include <linux/of_address.h> 14#include <linux/of_irq.h> 15#include <linux/sched_clock.h> 16#include <linux/slab.h> 17 18#define MCHP_PIT64B_CR 0x00 /* Control Register */ 19#define MCHP_PIT64B_CR_START BIT(0) 20#define MCHP_PIT64B_CR_SWRST BIT(8) 21 22#define MCHP_PIT64B_MR 0x04 /* Mode Register */ 23#define MCHP_PIT64B_MR_CONT BIT(0) 24#define MCHP_PIT64B_MR_ONE_SHOT (0) 25#define MCHP_PIT64B_MR_SGCLK BIT(3) 26#define MCHP_PIT64B_MR_PRES GENMASK(11, 8) 27 28#define MCHP_PIT64B_LSB_PR 0x08 /* LSB Period Register */ 29 30#define MCHP_PIT64B_MSB_PR 0x0C /* MSB Period Register */ 31 32#define MCHP_PIT64B_IER 0x10 /* Interrupt Enable Register */ 33#define MCHP_PIT64B_IER_PERIOD BIT(0) 34 35#define MCHP_PIT64B_ISR 0x1C /* Interrupt Status Register */ 36 37#define MCHP_PIT64B_TLSBR 0x20 /* Timer LSB Register */ 38 39#define MCHP_PIT64B_TMSBR 0x24 /* Timer MSB Register */ 40 41#define MCHP_PIT64B_PRES_MAX 0x10 42#define MCHP_PIT64B_LSBMASK GENMASK_ULL(31, 0) 43#define MCHP_PIT64B_PRES_TO_MODE(p) (MCHP_PIT64B_MR_PRES & ((p) << 8)) 44#define MCHP_PIT64B_MODE_TO_PRES(m) ((MCHP_PIT64B_MR_PRES & (m)) >> 8) 45#define MCHP_PIT64B_DEF_FREQ 5000000UL /* 5 MHz */ 46 47#define MCHP_PIT64B_NAME "pit64b" 48 49/** 50 * struct mchp_pit64b_timer - PIT64B timer data structure 51 * @base: base address of PIT64B hardware block 52 * @pclk: PIT64B's peripheral clock 53 * @gclk: PIT64B's generic clock 54 * @mode: precomputed value for mode register 55 */ 56struct mchp_pit64b_timer { 57 void __iomem *base; 58 struct clk *pclk; 59 struct clk *gclk; 60 u32 mode; 61}; 62 63/** 64 * mchp_pit64b_clkevt - PIT64B clockevent data structure 65 * @timer: PIT64B timer 66 * @clkevt: clockevent 67 */ 68struct mchp_pit64b_clkevt { 69 struct mchp_pit64b_timer timer; 70 struct clock_event_device clkevt; 71}; 72 73#define clkevt_to_mchp_pit64b_timer(x) \ 74 ((struct mchp_pit64b_timer *)container_of(x,\ 75 struct mchp_pit64b_clkevt, clkevt)) 76 77/** 78 * mchp_pit64b_clksrc - PIT64B clocksource data structure 79 * @timer: PIT64B timer 80 * @clksrc: clocksource 81 */ 82struct mchp_pit64b_clksrc { 83 struct mchp_pit64b_timer timer; 84 struct clocksource clksrc; 85}; 86 87#define clksrc_to_mchp_pit64b_timer(x) \ 88 ((struct mchp_pit64b_timer *)container_of(x,\ 89 struct mchp_pit64b_clksrc, clksrc)) 90 91/* Base address for clocksource timer. */ 92static void __iomem *mchp_pit64b_cs_base; 93/* Default cycles for clockevent timer. */ 94static u64 mchp_pit64b_ce_cycles; 95 96static inline u64 mchp_pit64b_cnt_read(void __iomem *base) 97{ 98 unsigned long flags; 99 u32 low, high; 100 101 raw_local_irq_save(flags); 102 103 /* 104 * When using a 64 bit period TLSB must be read first, followed by the 105 * read of TMSB. This sequence generates an atomic read of the 64 bit 106 * timer value whatever the lapse of time between the accesses. 107 */ 108 low = readl_relaxed(base + MCHP_PIT64B_TLSBR); 109 high = readl_relaxed(base + MCHP_PIT64B_TMSBR); 110 111 raw_local_irq_restore(flags); 112 113 return (((u64)high << 32) | low); 114} 115 116static inline void mchp_pit64b_reset(struct mchp_pit64b_timer *timer, 117 u64 cycles, u32 mode, u32 irqs) 118{ 119 u32 low, high; 120 121 low = cycles & MCHP_PIT64B_LSBMASK; 122 high = cycles >> 32; 123 124 writel_relaxed(MCHP_PIT64B_CR_SWRST, timer->base + MCHP_PIT64B_CR); 125 writel_relaxed(mode | timer->mode, timer->base + MCHP_PIT64B_MR); 126 writel_relaxed(high, timer->base + MCHP_PIT64B_MSB_PR); 127 writel_relaxed(low, timer->base + MCHP_PIT64B_LSB_PR); 128 writel_relaxed(irqs, timer->base + MCHP_PIT64B_IER); 129 writel_relaxed(MCHP_PIT64B_CR_START, timer->base + MCHP_PIT64B_CR); 130} 131 132static void mchp_pit64b_suspend(struct mchp_pit64b_timer *timer) 133{ 134 writel_relaxed(MCHP_PIT64B_CR_SWRST, timer->base + MCHP_PIT64B_CR); 135 if (timer->mode & MCHP_PIT64B_MR_SGCLK) 136 clk_disable_unprepare(timer->gclk); 137 clk_disable_unprepare(timer->pclk); 138} 139 140static void mchp_pit64b_resume(struct mchp_pit64b_timer *timer) 141{ 142 clk_prepare_enable(timer->pclk); 143 if (timer->mode & MCHP_PIT64B_MR_SGCLK) 144 clk_prepare_enable(timer->gclk); 145} 146 147static void mchp_pit64b_clksrc_suspend(struct clocksource *cs) 148{ 149 struct mchp_pit64b_timer *timer = clksrc_to_mchp_pit64b_timer(cs); 150 151 mchp_pit64b_suspend(timer); 152} 153 154static void mchp_pit64b_clksrc_resume(struct clocksource *cs) 155{ 156 struct mchp_pit64b_timer *timer = clksrc_to_mchp_pit64b_timer(cs); 157 158 mchp_pit64b_resume(timer); 159 mchp_pit64b_reset(timer, ULLONG_MAX, MCHP_PIT64B_MR_CONT, 0); 160} 161 162static u64 mchp_pit64b_clksrc_read(struct clocksource *cs) 163{ 164 return mchp_pit64b_cnt_read(mchp_pit64b_cs_base); 165} 166 167static u64 notrace mchp_pit64b_sched_read_clk(void) 168{ 169 return mchp_pit64b_cnt_read(mchp_pit64b_cs_base); 170} 171 172static int mchp_pit64b_clkevt_shutdown(struct clock_event_device *cedev) 173{ 174 struct mchp_pit64b_timer *timer = clkevt_to_mchp_pit64b_timer(cedev); 175 176 writel_relaxed(MCHP_PIT64B_CR_SWRST, timer->base + MCHP_PIT64B_CR); 177 178 return 0; 179} 180 181static int mchp_pit64b_clkevt_set_periodic(struct clock_event_device *cedev) 182{ 183 struct mchp_pit64b_timer *timer = clkevt_to_mchp_pit64b_timer(cedev); 184 185 mchp_pit64b_reset(timer, mchp_pit64b_ce_cycles, MCHP_PIT64B_MR_CONT, 186 MCHP_PIT64B_IER_PERIOD); 187 188 return 0; 189} 190 191static int mchp_pit64b_clkevt_set_next_event(unsigned long evt, 192 struct clock_event_device *cedev) 193{ 194 struct mchp_pit64b_timer *timer = clkevt_to_mchp_pit64b_timer(cedev); 195 196 mchp_pit64b_reset(timer, evt, MCHP_PIT64B_MR_ONE_SHOT, 197 MCHP_PIT64B_IER_PERIOD); 198 199 return 0; 200} 201 202static void mchp_pit64b_clkevt_suspend(struct clock_event_device *cedev) 203{ 204 struct mchp_pit64b_timer *timer = clkevt_to_mchp_pit64b_timer(cedev); 205 206 mchp_pit64b_suspend(timer); 207} 208 209static void mchp_pit64b_clkevt_resume(struct clock_event_device *cedev) 210{ 211 struct mchp_pit64b_timer *timer = clkevt_to_mchp_pit64b_timer(cedev); 212 213 mchp_pit64b_resume(timer); 214} 215 216static irqreturn_t mchp_pit64b_interrupt(int irq, void *dev_id) 217{ 218 struct mchp_pit64b_clkevt *irq_data = dev_id; 219 220 /* Need to clear the interrupt. */ 221 readl_relaxed(irq_data->timer.base + MCHP_PIT64B_ISR); 222 223 irq_data->clkevt.event_handler(&irq_data->clkevt); 224 225 return IRQ_HANDLED; 226} 227 228static void __init mchp_pit64b_pres_compute(u32 *pres, u32 clk_rate, 229 u32 max_rate) 230{ 231 u32 tmp; 232 233 for (*pres = 0; *pres < MCHP_PIT64B_PRES_MAX; (*pres)++) { 234 tmp = clk_rate / (*pres + 1); 235 if (tmp <= max_rate) 236 break; 237 } 238 239 /* Use the biggest prescaler if we didn't match one. */ 240 if (*pres == MCHP_PIT64B_PRES_MAX) 241 *pres = MCHP_PIT64B_PRES_MAX - 1; 242} 243 244/** 245 * mchp_pit64b_init_mode - prepare PIT64B mode register value to be used at 246 * runtime; this includes prescaler and SGCLK bit 247 * 248 * PIT64B timer may be fed by gclk or pclk. When gclk is used its rate has to 249 * be at least 3 times lower that pclk's rate. pclk rate is fixed, gclk rate 250 * could be changed via clock APIs. The chosen clock (pclk or gclk) could be 251 * divided by the internal PIT64B's divider. 252 * 253 * This function, first tries to use GCLK by requesting the desired rate from 254 * PMC and then using the internal PIT64B prescaler, if any, to reach the 255 * requested rate. If PCLK/GCLK < 3 (condition requested by PIT64B hardware) 256 * then the function falls back on using PCLK as clock source for PIT64B timer 257 * choosing the highest prescaler in case it doesn't locate one to match the 258 * requested frequency. 259 * 260 * Below is presented the PIT64B block in relation with PMC: 261 * 262 * PIT64B 263 * PMC +------------------------------------+ 264 * +----+ | +-----+ | 265 * | |-->gclk -->|-->| | +---------+ +-----+ | 266 * | | | | MUX |--->| Divider |->|timer| | 267 * | |-->pclk -->|-->| | +---------+ +-----+ | 268 * +----+ | +-----+ | 269 * | ^ | 270 * | sel | 271 * +------------------------------------+ 272 * 273 * Where: 274 * - gclk rate <= pclk rate/3 275 * - gclk rate could be requested from PMC 276 * - pclk rate is fixed (cannot be requested from PMC) 277 */ 278static int __init mchp_pit64b_init_mode(struct mchp_pit64b_timer *timer, 279 unsigned long max_rate) 280{ 281 unsigned long pclk_rate, diff = 0, best_diff = ULONG_MAX; 282 long gclk_round = 0; 283 u32 pres, best_pres = 0; 284 285 pclk_rate = clk_get_rate(timer->pclk); 286 if (!pclk_rate) 287 return -EINVAL; 288 289 timer->mode = 0; 290 291 /* Try using GCLK. */ 292 gclk_round = clk_round_rate(timer->gclk, max_rate); 293 if (gclk_round < 0) 294 goto pclk; 295 296 if (pclk_rate / gclk_round < 3) 297 goto pclk; 298 299 mchp_pit64b_pres_compute(&pres, gclk_round, max_rate); 300 best_diff = abs(gclk_round / (pres + 1) - max_rate); 301 best_pres = pres; 302 303 if (!best_diff) { 304 timer->mode |= MCHP_PIT64B_MR_SGCLK; 305 clk_set_rate(timer->gclk, gclk_round); 306 goto done; 307 } 308 309pclk: 310 /* Check if requested rate could be obtained using PCLK. */ 311 mchp_pit64b_pres_compute(&pres, pclk_rate, max_rate); 312 diff = abs(pclk_rate / (pres + 1) - max_rate); 313 314 if (best_diff > diff) { 315 /* Use PCLK. */ 316 best_pres = pres; 317 } else { 318 /* Use GCLK. */ 319 timer->mode |= MCHP_PIT64B_MR_SGCLK; 320 clk_set_rate(timer->gclk, gclk_round); 321 } 322 323done: 324 timer->mode |= MCHP_PIT64B_PRES_TO_MODE(best_pres); 325 326 pr_info("PIT64B: using clk=%s with prescaler %u, freq=%lu [Hz]\n", 327 timer->mode & MCHP_PIT64B_MR_SGCLK ? "gclk" : "pclk", best_pres, 328 timer->mode & MCHP_PIT64B_MR_SGCLK ? 329 gclk_round / (best_pres + 1) : pclk_rate / (best_pres + 1)); 330 331 return 0; 332} 333 334static int __init mchp_pit64b_init_clksrc(struct mchp_pit64b_timer *timer, 335 u32 clk_rate) 336{ 337 struct mchp_pit64b_clksrc *cs; 338 int ret; 339 340 cs = kzalloc(sizeof(*cs), GFP_KERNEL); 341 if (!cs) 342 return -ENOMEM; 343 344 mchp_pit64b_reset(timer, ULLONG_MAX, MCHP_PIT64B_MR_CONT, 0); 345 346 mchp_pit64b_cs_base = timer->base; 347 348 cs->timer.base = timer->base; 349 cs->timer.pclk = timer->pclk; 350 cs->timer.gclk = timer->gclk; 351 cs->timer.mode = timer->mode; 352 cs->clksrc.name = MCHP_PIT64B_NAME; 353 cs->clksrc.mask = CLOCKSOURCE_MASK(64); 354 cs->clksrc.flags = CLOCK_SOURCE_IS_CONTINUOUS; 355 cs->clksrc.rating = 210; 356 cs->clksrc.read = mchp_pit64b_clksrc_read; 357 cs->clksrc.suspend = mchp_pit64b_clksrc_suspend; 358 cs->clksrc.resume = mchp_pit64b_clksrc_resume; 359 360 ret = clocksource_register_hz(&cs->clksrc, clk_rate); 361 if (ret) { 362 pr_debug("clksrc: Failed to register PIT64B clocksource!\n"); 363 364 /* Stop timer. */ 365 writel_relaxed(MCHP_PIT64B_CR_SWRST, 366 timer->base + MCHP_PIT64B_CR); 367 kfree(cs); 368 369 return ret; 370 } 371 372 sched_clock_register(mchp_pit64b_sched_read_clk, 64, clk_rate); 373 374 return 0; 375} 376 377static int __init mchp_pit64b_init_clkevt(struct mchp_pit64b_timer *timer, 378 u32 clk_rate, u32 irq) 379{ 380 struct mchp_pit64b_clkevt *ce; 381 int ret; 382 383 ce = kzalloc(sizeof(*ce), GFP_KERNEL); 384 if (!ce) 385 return -ENOMEM; 386 387 mchp_pit64b_ce_cycles = DIV_ROUND_CLOSEST(clk_rate, HZ); 388 389 ce->timer.base = timer->base; 390 ce->timer.pclk = timer->pclk; 391 ce->timer.gclk = timer->gclk; 392 ce->timer.mode = timer->mode; 393 ce->clkevt.name = MCHP_PIT64B_NAME; 394 ce->clkevt.features = CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_PERIODIC; 395 ce->clkevt.rating = 150; 396 ce->clkevt.set_state_shutdown = mchp_pit64b_clkevt_shutdown; 397 ce->clkevt.set_state_periodic = mchp_pit64b_clkevt_set_periodic; 398 ce->clkevt.set_next_event = mchp_pit64b_clkevt_set_next_event; 399 ce->clkevt.suspend = mchp_pit64b_clkevt_suspend; 400 ce->clkevt.resume = mchp_pit64b_clkevt_resume; 401 ce->clkevt.cpumask = cpumask_of(0); 402 ce->clkevt.irq = irq; 403 404 ret = request_irq(irq, mchp_pit64b_interrupt, IRQF_TIMER, 405 "pit64b_tick", ce); 406 if (ret) { 407 pr_debug("clkevt: Failed to setup PIT64B IRQ\n"); 408 kfree(ce); 409 return ret; 410 } 411 412 clockevents_config_and_register(&ce->clkevt, clk_rate, 1, ULONG_MAX); 413 414 return 0; 415} 416 417static int __init mchp_pit64b_dt_init_timer(struct device_node *node, 418 bool clkevt) 419{ 420 struct mchp_pit64b_timer timer; 421 unsigned long clk_rate; 422 u32 irq = 0; 423 int ret; 424 425 /* Parse DT node. */ 426 timer.pclk = of_clk_get_by_name(node, "pclk"); 427 if (IS_ERR(timer.pclk)) 428 return PTR_ERR(timer.pclk); 429 430 timer.gclk = of_clk_get_by_name(node, "gclk"); 431 if (IS_ERR(timer.gclk)) 432 return PTR_ERR(timer.gclk); 433 434 timer.base = of_iomap(node, 0); 435 if (!timer.base) 436 return -ENXIO; 437 438 if (clkevt) { 439 irq = irq_of_parse_and_map(node, 0); 440 if (!irq) { 441 ret = -ENODEV; 442 goto io_unmap; 443 } 444 } 445 446 /* Initialize mode (prescaler + SGCK bit). To be used at runtime. */ 447 ret = mchp_pit64b_init_mode(&timer, MCHP_PIT64B_DEF_FREQ); 448 if (ret) 449 goto irq_unmap; 450 451 ret = clk_prepare_enable(timer.pclk); 452 if (ret) 453 goto irq_unmap; 454 455 if (timer.mode & MCHP_PIT64B_MR_SGCLK) { 456 ret = clk_prepare_enable(timer.gclk); 457 if (ret) 458 goto pclk_unprepare; 459 460 clk_rate = clk_get_rate(timer.gclk); 461 } else { 462 clk_rate = clk_get_rate(timer.pclk); 463 } 464 clk_rate = clk_rate / (MCHP_PIT64B_MODE_TO_PRES(timer.mode) + 1); 465 466 if (clkevt) 467 ret = mchp_pit64b_init_clkevt(&timer, clk_rate, irq); 468 else 469 ret = mchp_pit64b_init_clksrc(&timer, clk_rate); 470 471 if (ret) 472 goto gclk_unprepare; 473 474 return 0; 475 476gclk_unprepare: 477 if (timer.mode & MCHP_PIT64B_MR_SGCLK) 478 clk_disable_unprepare(timer.gclk); 479pclk_unprepare: 480 clk_disable_unprepare(timer.pclk); 481irq_unmap: 482 irq_dispose_mapping(irq); 483io_unmap: 484 iounmap(timer.base); 485 486 return ret; 487} 488 489static int __init mchp_pit64b_dt_init(struct device_node *node) 490{ 491 static int inits; 492 493 switch (inits++) { 494 case 0: 495 /* 1st request, register clockevent. */ 496 return mchp_pit64b_dt_init_timer(node, true); 497 case 1: 498 /* 2nd request, register clocksource. */ 499 return mchp_pit64b_dt_init_timer(node, false); 500 } 501 502 /* The rest, don't care. */ 503 return -EINVAL; 504} 505 506TIMER_OF_DECLARE(mchp_pit64b, "microchip,sam9x60-pit64b", mchp_pit64b_dt_init);