cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

timer-stm32.c (8628B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 * Copyright (C) Maxime Coquelin 2015
      4 * Author:  Maxime Coquelin <mcoquelin.stm32@gmail.com>
      5 *
      6 * Inspired by time-efm32.c from Uwe Kleine-Koenig
      7 */
      8
      9#include <linux/kernel.h>
     10#include <linux/clocksource.h>
     11#include <linux/clockchips.h>
     12#include <linux/delay.h>
     13#include <linux/irq.h>
     14#include <linux/interrupt.h>
     15#include <linux/of.h>
     16#include <linux/of_address.h>
     17#include <linux/of_irq.h>
     18#include <linux/clk.h>
     19#include <linux/reset.h>
     20#include <linux/sched_clock.h>
     21#include <linux/slab.h>
     22
     23#include "timer-of.h"
     24
     25#define TIM_CR1		0x00
     26#define TIM_DIER	0x0c
     27#define TIM_SR		0x10
     28#define TIM_EGR		0x14
     29#define TIM_CNT		0x24
     30#define TIM_PSC		0x28
     31#define TIM_ARR		0x2c
     32#define TIM_CCR1	0x34
     33
     34#define TIM_CR1_CEN	BIT(0)
     35#define TIM_CR1_UDIS	BIT(1)
     36#define TIM_CR1_OPM	BIT(3)
     37#define TIM_CR1_ARPE	BIT(7)
     38
     39#define TIM_DIER_UIE	BIT(0)
     40#define TIM_DIER_CC1IE	BIT(1)
     41
     42#define TIM_SR_UIF	BIT(0)
     43
     44#define TIM_EGR_UG	BIT(0)
     45
     46#define TIM_PSC_MAX	USHRT_MAX
     47#define TIM_PSC_CLKRATE	10000
     48
     49struct stm32_timer_private {
     50	int bits;
     51};
     52
     53/**
     54 * stm32_timer_of_bits_set - set accessor helper
     55 * @to: a timer_of structure pointer
     56 * @bits: the number of bits (16 or 32)
     57 *
     58 * Accessor helper to set the number of bits in the timer-of private
     59 * structure.
     60 *
     61 */
     62static void stm32_timer_of_bits_set(struct timer_of *to, int bits)
     63{
     64	struct stm32_timer_private *pd = to->private_data;
     65
     66	pd->bits = bits;
     67}
     68
     69/**
     70 * stm32_timer_of_bits_get - get accessor helper
     71 * @to: a timer_of structure pointer
     72 *
     73 * Accessor helper to get the number of bits in the timer-of private
     74 * structure.
     75 *
     76 * Returns an integer corresponding to the number of bits.
     77 */
     78static int stm32_timer_of_bits_get(struct timer_of *to)
     79{
     80	struct stm32_timer_private *pd = to->private_data;
     81
     82	return pd->bits;
     83}
     84
     85static void __iomem *stm32_timer_cnt __read_mostly;
     86
     87static u64 notrace stm32_read_sched_clock(void)
     88{
     89	return readl_relaxed(stm32_timer_cnt);
     90}
     91
     92static struct delay_timer stm32_timer_delay;
     93
     94static unsigned long stm32_read_delay(void)
     95{
     96	return readl_relaxed(stm32_timer_cnt);
     97}
     98
     99static void stm32_clock_event_disable(struct timer_of *to)
    100{
    101	writel_relaxed(0, timer_of_base(to) + TIM_DIER);
    102}
    103
    104/**
    105 * stm32_timer_start - Start the counter without event
    106 * @to: a timer_of structure pointer
    107 *
    108 * Start the timer in order to have the counter reset and start
    109 * incrementing but disable interrupt event when there is a counter
    110 * overflow. By default, the counter direction is used as upcounter.
    111 */
    112static void stm32_timer_start(struct timer_of *to)
    113{
    114	writel_relaxed(TIM_CR1_UDIS | TIM_CR1_CEN, timer_of_base(to) + TIM_CR1);
    115}
    116
    117static int stm32_clock_event_shutdown(struct clock_event_device *clkevt)
    118{
    119	struct timer_of *to = to_timer_of(clkevt);
    120
    121	stm32_clock_event_disable(to);
    122
    123	return 0;
    124}
    125
    126static int stm32_clock_event_set_next_event(unsigned long evt,
    127					    struct clock_event_device *clkevt)
    128{
    129	struct timer_of *to = to_timer_of(clkevt);
    130	unsigned long now, next;
    131
    132	next = readl_relaxed(timer_of_base(to) + TIM_CNT) + evt;
    133	writel_relaxed(next, timer_of_base(to) + TIM_CCR1);
    134	now = readl_relaxed(timer_of_base(to) + TIM_CNT);
    135
    136	if ((next - now) > evt)
    137		return -ETIME;
    138
    139	writel_relaxed(TIM_DIER_CC1IE, timer_of_base(to) + TIM_DIER);
    140
    141	return 0;
    142}
    143
    144static int stm32_clock_event_set_periodic(struct clock_event_device *clkevt)
    145{
    146	struct timer_of *to = to_timer_of(clkevt);
    147
    148	stm32_timer_start(to);
    149
    150	return stm32_clock_event_set_next_event(timer_of_period(to), clkevt);
    151}
    152
    153static int stm32_clock_event_set_oneshot(struct clock_event_device *clkevt)
    154{
    155	struct timer_of *to = to_timer_of(clkevt);
    156
    157	stm32_timer_start(to);
    158
    159	return 0;
    160}
    161
    162static irqreturn_t stm32_clock_event_handler(int irq, void *dev_id)
    163{
    164	struct clock_event_device *clkevt = (struct clock_event_device *)dev_id;
    165	struct timer_of *to = to_timer_of(clkevt);
    166
    167	writel_relaxed(0, timer_of_base(to) + TIM_SR);
    168
    169	if (clockevent_state_periodic(clkevt))
    170		stm32_clock_event_set_periodic(clkevt);
    171	else
    172		stm32_clock_event_shutdown(clkevt);
    173
    174	clkevt->event_handler(clkevt);
    175
    176	return IRQ_HANDLED;
    177}
    178
    179/**
    180 * stm32_timer_width - Sort out the timer width (32/16)
    181 * @to: a pointer to a timer-of structure
    182 *
    183 * Write the 32-bit max value and read/return the result. If the timer
    184 * is 32 bits wide, the result will be UINT_MAX, otherwise it will
    185 * be truncated by the 16-bit register to USHRT_MAX.
    186 *
    187 */
    188static void __init stm32_timer_set_width(struct timer_of *to)
    189{
    190	u32 width;
    191
    192	writel_relaxed(UINT_MAX, timer_of_base(to) + TIM_ARR);
    193
    194	width = readl_relaxed(timer_of_base(to) + TIM_ARR);
    195
    196	stm32_timer_of_bits_set(to, width == UINT_MAX ? 32 : 16);
    197}
    198
    199/**
    200 * stm32_timer_set_prescaler - Compute and set the prescaler register
    201 * @to: a pointer to a timer-of structure
    202 *
    203 * Depending on the timer width, compute the prescaler to always
    204 * target a 10MHz timer rate for 16 bits. 32-bit timers are
    205 * considered precise and long enough to not use the prescaler.
    206 */
    207static void __init stm32_timer_set_prescaler(struct timer_of *to)
    208{
    209	int prescaler = 1;
    210
    211	if (stm32_timer_of_bits_get(to) != 32) {
    212		prescaler = DIV_ROUND_CLOSEST(timer_of_rate(to),
    213					      TIM_PSC_CLKRATE);
    214		/*
    215		 * The prescaler register is an u16, the variable
    216		 * can't be greater than TIM_PSC_MAX, let's cap it in
    217		 * this case.
    218		 */
    219		prescaler = prescaler < TIM_PSC_MAX ? prescaler : TIM_PSC_MAX;
    220	}
    221
    222	writel_relaxed(prescaler - 1, timer_of_base(to) + TIM_PSC);
    223	writel_relaxed(TIM_EGR_UG, timer_of_base(to) + TIM_EGR);
    224	writel_relaxed(0, timer_of_base(to) + TIM_SR);
    225
    226	/* Adjust rate and period given the prescaler value */
    227	to->of_clk.rate = DIV_ROUND_CLOSEST(to->of_clk.rate, prescaler);
    228	to->of_clk.period = DIV_ROUND_UP(to->of_clk.rate, HZ);
    229}
    230
    231static int __init stm32_clocksource_init(struct timer_of *to)
    232{
    233        u32 bits = stm32_timer_of_bits_get(to);
    234	const char *name = to->np->full_name;
    235
    236	/*
    237	 * This driver allows to register several timers and relies on
    238	 * the generic time framework to select the right one.
    239	 * However, nothing allows to do the same for the
    240	 * sched_clock. We are not interested in a sched_clock for the
    241	 * 16-bit timers but only for the 32-bit one, so if no 32-bit
    242	 * timer is registered yet, we select this 32-bit timer as a
    243	 * sched_clock.
    244	 */
    245	if (bits == 32 && !stm32_timer_cnt) {
    246
    247		/*
    248		 * Start immediately the counter as we will be using
    249		 * it right after.
    250		 */
    251		stm32_timer_start(to);
    252
    253		stm32_timer_cnt = timer_of_base(to) + TIM_CNT;
    254		sched_clock_register(stm32_read_sched_clock, bits, timer_of_rate(to));
    255		pr_info("%s: STM32 sched_clock registered\n", name);
    256
    257		stm32_timer_delay.read_current_timer = stm32_read_delay;
    258		stm32_timer_delay.freq = timer_of_rate(to);
    259		register_current_timer_delay(&stm32_timer_delay);
    260		pr_info("%s: STM32 delay timer registered\n", name);
    261	}
    262
    263	return clocksource_mmio_init(timer_of_base(to) + TIM_CNT, name,
    264				     timer_of_rate(to), bits == 32 ? 250 : 100,
    265				     bits, clocksource_mmio_readl_up);
    266}
    267
    268static void __init stm32_clockevent_init(struct timer_of *to)
    269{
    270	u32 bits = stm32_timer_of_bits_get(to);
    271
    272	to->clkevt.name = to->np->full_name;
    273	to->clkevt.features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT;
    274	to->clkevt.set_state_shutdown = stm32_clock_event_shutdown;
    275	to->clkevt.set_state_periodic = stm32_clock_event_set_periodic;
    276	to->clkevt.set_state_oneshot = stm32_clock_event_set_oneshot;
    277	to->clkevt.tick_resume = stm32_clock_event_shutdown;
    278	to->clkevt.set_next_event = stm32_clock_event_set_next_event;
    279	to->clkevt.rating = bits == 32 ? 250 : 100;
    280
    281	clockevents_config_and_register(&to->clkevt, timer_of_rate(to), 0x1,
    282					(1 <<  bits) - 1);
    283
    284	pr_info("%pOF: STM32 clockevent driver initialized (%d bits)\n",
    285		to->np, bits);
    286}
    287
    288static int __init stm32_timer_init(struct device_node *node)
    289{
    290	struct reset_control *rstc;
    291	struct timer_of *to;
    292	int ret;
    293
    294	to = kzalloc(sizeof(*to), GFP_KERNEL);
    295	if (!to)
    296		return -ENOMEM;
    297
    298	to->flags = TIMER_OF_IRQ | TIMER_OF_CLOCK | TIMER_OF_BASE;
    299	to->of_irq.handler = stm32_clock_event_handler;
    300
    301	ret = timer_of_init(node, to);
    302	if (ret)
    303		goto err;
    304
    305	to->private_data = kzalloc(sizeof(struct stm32_timer_private),
    306				   GFP_KERNEL);
    307	if (!to->private_data) {
    308		ret = -ENOMEM;
    309		goto deinit;
    310	}
    311
    312	rstc = of_reset_control_get(node, NULL);
    313	if (!IS_ERR(rstc)) {
    314		reset_control_assert(rstc);
    315		reset_control_deassert(rstc);
    316	}
    317
    318	stm32_timer_set_width(to);
    319
    320	stm32_timer_set_prescaler(to);
    321
    322	ret = stm32_clocksource_init(to);
    323	if (ret)
    324		goto deinit;
    325
    326	stm32_clockevent_init(to);
    327	return 0;
    328
    329deinit:
    330	timer_of_cleanup(to);
    331err:
    332	kfree(to);
    333	return ret;
    334}
    335
    336TIMER_OF_DECLARE(stm32, "st,stm32-timer", stm32_timer_init);