s626.c (76639B)
1// SPDX-License-Identifier: GPL-2.0+ 2/* 3 * comedi/drivers/s626.c 4 * Sensoray s626 Comedi driver 5 * 6 * COMEDI - Linux Control and Measurement Device Interface 7 * Copyright (C) 2000 David A. Schleef <ds@schleef.org> 8 * 9 * Based on Sensoray Model 626 Linux driver Version 0.2 10 * Copyright (C) 2002-2004 Sensoray Co., Inc. 11 */ 12 13/* 14 * Driver: s626 15 * Description: Sensoray 626 driver 16 * Devices: [Sensoray] 626 (s626) 17 * Authors: Gianluca Palli <gpalli@deis.unibo.it>, 18 * Updated: Fri, 15 Feb 2008 10:28:42 +0000 19 * Status: experimental 20 21 * Configuration options: not applicable, uses PCI auto config 22 23 * INSN_CONFIG instructions: 24 * analog input: 25 * none 26 * 27 * analog output: 28 * none 29 * 30 * digital channel: 31 * s626 has 3 dio subdevices (2,3 and 4) each with 16 i/o channels 32 * supported configuration options: 33 * INSN_CONFIG_DIO_QUERY 34 * COMEDI_INPUT 35 * COMEDI_OUTPUT 36 * 37 * encoder: 38 * Every channel must be configured before reading. 39 * 40 * Example code 41 * 42 * insn.insn=INSN_CONFIG; //configuration instruction 43 * insn.n=1; //number of operation (must be 1) 44 * insn.data=&initialvalue; //initial value loaded into encoder 45 * //during configuration 46 * insn.subdev=5; //encoder subdevice 47 * insn.chanspec=CR_PACK(encoder_channel,0,AREF_OTHER); //encoder_channel 48 * //to configure 49 * 50 * comedi_do_insn(cf,&insn); //executing configuration 51 */ 52 53#include <linux/module.h> 54#include <linux/delay.h> 55#include <linux/interrupt.h> 56#include <linux/kernel.h> 57#include <linux/types.h> 58#include <linux/comedi/comedi_pci.h> 59 60#include "s626.h" 61 62struct s626_buffer_dma { 63 dma_addr_t physical_base; 64 void *logical_base; 65}; 66 67/** 68 * struct s626_private - Working data for s626 driver. 69 * @ai_cmd_running: non-zero if ai_cmd is running. 70 * @ai_sample_timer: time between samples in units of the timer. 71 * @ai_convert_count: conversion counter. 72 * @ai_convert_timer: time between conversion in units of the timer. 73 * @counter_int_enabs: counter interrupt enable mask for MISC2 register. 74 * @adc_items: number of items in ADC poll list. 75 * @rps_buf: DMA buffer used to hold ADC (RPS1) program. 76 * @ana_buf: DMA buffer used to receive ADC data and hold DAC data. 77 * @dac_wbuf: pointer to logical adrs of DMA buffer used to hold DAC data. 78 * @dacpol: image of DAC polarity register. 79 * @trim_setpoint: images of TrimDAC setpoints. 80 * @i2c_adrs: I2C device address for onboard EEPROM (board rev dependent) 81 */ 82struct s626_private { 83 u8 ai_cmd_running; 84 unsigned int ai_sample_timer; 85 int ai_convert_count; 86 unsigned int ai_convert_timer; 87 u16 counter_int_enabs; 88 u8 adc_items; 89 struct s626_buffer_dma rps_buf; 90 struct s626_buffer_dma ana_buf; 91 u32 *dac_wbuf; 92 u16 dacpol; 93 u8 trim_setpoint[12]; 94 u32 i2c_adrs; 95}; 96 97/* Counter overflow/index event flag masks for RDMISC2. */ 98#define S626_INDXMASK(C) (1 << (((C) > 2) ? ((C) * 2 - 1) : ((C) * 2 + 4))) 99#define S626_OVERMASK(C) (1 << (((C) > 2) ? ((C) * 2 + 5) : ((C) * 2 + 10))) 100 101/* 102 * Enable/disable a function or test status bit(s) that are accessed 103 * through Main Control Registers 1 or 2. 104 */ 105static void s626_mc_enable(struct comedi_device *dev, 106 unsigned int cmd, unsigned int reg) 107{ 108 unsigned int val = (cmd << 16) | cmd; 109 110 writel(val, dev->mmio + reg); 111} 112 113static void s626_mc_disable(struct comedi_device *dev, 114 unsigned int cmd, unsigned int reg) 115{ 116 writel(cmd << 16, dev->mmio + reg); 117} 118 119static bool s626_mc_test(struct comedi_device *dev, 120 unsigned int cmd, unsigned int reg) 121{ 122 unsigned int val; 123 124 val = readl(dev->mmio + reg); 125 126 return (val & cmd) ? true : false; 127} 128 129#define S626_BUGFIX_STREG(REGADRS) ((REGADRS) - 4) 130 131/* Write a time slot control record to TSL2. */ 132#define S626_VECTPORT(VECTNUM) (S626_P_TSL2 + ((VECTNUM) << 2)) 133 134static const struct comedi_lrange s626_range_table = { 135 2, { 136 BIP_RANGE(5), 137 BIP_RANGE(10) 138 } 139}; 140 141/* 142 * Execute a DEBI transfer. This must be called from within a critical section. 143 */ 144static void s626_debi_transfer(struct comedi_device *dev) 145{ 146 static const int timeout = 10000; 147 int i; 148 149 /* Initiate upload of shadow RAM to DEBI control register */ 150 s626_mc_enable(dev, S626_MC2_UPLD_DEBI, S626_P_MC2); 151 152 /* 153 * Wait for completion of upload from shadow RAM to 154 * DEBI control register. 155 */ 156 for (i = 0; i < timeout; i++) { 157 if (s626_mc_test(dev, S626_MC2_UPLD_DEBI, S626_P_MC2)) 158 break; 159 udelay(1); 160 } 161 if (i == timeout) 162 dev_err(dev->class_dev, 163 "Timeout while uploading to DEBI control register\n"); 164 165 /* Wait until DEBI transfer is done */ 166 for (i = 0; i < timeout; i++) { 167 if (!(readl(dev->mmio + S626_P_PSR) & S626_PSR_DEBI_S)) 168 break; 169 udelay(1); 170 } 171 if (i == timeout) 172 dev_err(dev->class_dev, "DEBI transfer timeout\n"); 173} 174 175/* 176 * Read a value from a gate array register. 177 */ 178static u16 s626_debi_read(struct comedi_device *dev, u16 addr) 179{ 180 /* Set up DEBI control register value in shadow RAM */ 181 writel(S626_DEBI_CMD_RDWORD | addr, dev->mmio + S626_P_DEBICMD); 182 183 /* Execute the DEBI transfer. */ 184 s626_debi_transfer(dev); 185 186 return readl(dev->mmio + S626_P_DEBIAD); 187} 188 189/* 190 * Write a value to a gate array register. 191 */ 192static void s626_debi_write(struct comedi_device *dev, u16 addr, 193 u16 wdata) 194{ 195 /* Set up DEBI control register value in shadow RAM */ 196 writel(S626_DEBI_CMD_WRWORD | addr, dev->mmio + S626_P_DEBICMD); 197 writel(wdata, dev->mmio + S626_P_DEBIAD); 198 199 /* Execute the DEBI transfer. */ 200 s626_debi_transfer(dev); 201} 202 203/* 204 * Replace the specified bits in a gate array register. Imports: mask 205 * specifies bits that are to be preserved, wdata is new value to be 206 * or'd with the masked original. 207 */ 208static void s626_debi_replace(struct comedi_device *dev, unsigned int addr, 209 unsigned int mask, unsigned int wdata) 210{ 211 unsigned int val; 212 213 addr &= 0xffff; 214 writel(S626_DEBI_CMD_RDWORD | addr, dev->mmio + S626_P_DEBICMD); 215 s626_debi_transfer(dev); 216 217 writel(S626_DEBI_CMD_WRWORD | addr, dev->mmio + S626_P_DEBICMD); 218 val = readl(dev->mmio + S626_P_DEBIAD); 219 val &= mask; 220 val |= wdata; 221 writel(val & 0xffff, dev->mmio + S626_P_DEBIAD); 222 s626_debi_transfer(dev); 223} 224 225/* ************** EEPROM ACCESS FUNCTIONS ************** */ 226 227static int s626_i2c_handshake_eoc(struct comedi_device *dev, 228 struct comedi_subdevice *s, 229 struct comedi_insn *insn, 230 unsigned long context) 231{ 232 bool status; 233 234 status = s626_mc_test(dev, S626_MC2_UPLD_IIC, S626_P_MC2); 235 if (status) 236 return 0; 237 return -EBUSY; 238} 239 240static int s626_i2c_handshake(struct comedi_device *dev, u32 val) 241{ 242 unsigned int ctrl; 243 int ret; 244 245 /* Write I2C command to I2C Transfer Control shadow register */ 246 writel(val, dev->mmio + S626_P_I2CCTRL); 247 248 /* 249 * Upload I2C shadow registers into working registers and 250 * wait for upload confirmation. 251 */ 252 s626_mc_enable(dev, S626_MC2_UPLD_IIC, S626_P_MC2); 253 ret = comedi_timeout(dev, NULL, NULL, s626_i2c_handshake_eoc, 0); 254 if (ret) 255 return ret; 256 257 /* Wait until I2C bus transfer is finished or an error occurs */ 258 do { 259 ctrl = readl(dev->mmio + S626_P_I2CCTRL); 260 } while ((ctrl & (S626_I2C_BUSY | S626_I2C_ERR)) == S626_I2C_BUSY); 261 262 /* Return non-zero if I2C error occurred */ 263 return ctrl & S626_I2C_ERR; 264} 265 266/* Read u8 from EEPROM. */ 267static u8 s626_i2c_read(struct comedi_device *dev, u8 addr) 268{ 269 struct s626_private *devpriv = dev->private; 270 271 /* 272 * Send EEPROM target address: 273 * Byte2 = I2C command: write to I2C EEPROM device. 274 * Byte1 = EEPROM internal target address. 275 * Byte0 = Not sent. 276 */ 277 if (s626_i2c_handshake(dev, S626_I2C_B2(S626_I2C_ATTRSTART, 278 devpriv->i2c_adrs) | 279 S626_I2C_B1(S626_I2C_ATTRSTOP, addr) | 280 S626_I2C_B0(S626_I2C_ATTRNOP, 0))) 281 /* Abort function and declare error if handshake failed. */ 282 return 0; 283 284 /* 285 * Execute EEPROM read: 286 * Byte2 = I2C command: read from I2C EEPROM device. 287 * Byte1 receives uint8_t from EEPROM. 288 * Byte0 = Not sent. 289 */ 290 if (s626_i2c_handshake(dev, S626_I2C_B2(S626_I2C_ATTRSTART, 291 (devpriv->i2c_adrs | 1)) | 292 S626_I2C_B1(S626_I2C_ATTRSTOP, 0) | 293 S626_I2C_B0(S626_I2C_ATTRNOP, 0))) 294 /* Abort function and declare error if handshake failed. */ 295 return 0; 296 297 return (readl(dev->mmio + S626_P_I2CCTRL) >> 16) & 0xff; 298} 299 300/* *********** DAC FUNCTIONS *********** */ 301 302/* TrimDac LogicalChan-to-PhysicalChan mapping table. */ 303static const u8 s626_trimchan[] = { 10, 9, 8, 3, 2, 7, 6, 1, 0, 5, 4 }; 304 305/* TrimDac LogicalChan-to-EepromAdrs mapping table. */ 306static const u8 s626_trimadrs[] = { 307 0x40, 0x41, 0x42, 0x50, 0x51, 0x52, 0x53, 0x60, 0x61, 0x62, 0x63 308}; 309 310enum { 311 s626_send_dac_wait_not_mc1_a2out, 312 s626_send_dac_wait_ssr_af2_out, 313 s626_send_dac_wait_fb_buffer2_msb_00, 314 s626_send_dac_wait_fb_buffer2_msb_ff 315}; 316 317static int s626_send_dac_eoc(struct comedi_device *dev, 318 struct comedi_subdevice *s, 319 struct comedi_insn *insn, 320 unsigned long context) 321{ 322 unsigned int status; 323 324 switch (context) { 325 case s626_send_dac_wait_not_mc1_a2out: 326 status = readl(dev->mmio + S626_P_MC1); 327 if (!(status & S626_MC1_A2OUT)) 328 return 0; 329 break; 330 case s626_send_dac_wait_ssr_af2_out: 331 status = readl(dev->mmio + S626_P_SSR); 332 if (status & S626_SSR_AF2_OUT) 333 return 0; 334 break; 335 case s626_send_dac_wait_fb_buffer2_msb_00: 336 status = readl(dev->mmio + S626_P_FB_BUFFER2); 337 if (!(status & 0xff000000)) 338 return 0; 339 break; 340 case s626_send_dac_wait_fb_buffer2_msb_ff: 341 status = readl(dev->mmio + S626_P_FB_BUFFER2); 342 if (status & 0xff000000) 343 return 0; 344 break; 345 default: 346 return -EINVAL; 347 } 348 return -EBUSY; 349} 350 351/* 352 * Private helper function: Transmit serial data to DAC via Audio 353 * channel 2. Assumes: (1) TSL2 slot records initialized, and (2) 354 * dacpol contains valid target image. 355 */ 356static int s626_send_dac(struct comedi_device *dev, u32 val) 357{ 358 struct s626_private *devpriv = dev->private; 359 int ret; 360 361 /* START THE SERIAL CLOCK RUNNING ------------- */ 362 363 /* 364 * Assert DAC polarity control and enable gating of DAC serial clock 365 * and audio bit stream signals. At this point in time we must be 366 * assured of being in time slot 0. If we are not in slot 0, the 367 * serial clock and audio stream signals will be disabled; this is 368 * because the following s626_debi_write statement (which enables 369 * signals to be passed through the gate array) would execute before 370 * the trailing edge of WS1/WS3 (which turns off the signals), thus 371 * causing the signals to be inactive during the DAC write. 372 */ 373 s626_debi_write(dev, S626_LP_DACPOL, devpriv->dacpol); 374 375 /* TRANSFER OUTPUT DWORD VALUE INTO A2'S OUTPUT FIFO ---------------- */ 376 377 /* Copy DAC setpoint value to DAC's output DMA buffer. */ 378 /* writel(val, dev->mmio + (uint32_t)devpriv->dac_wbuf); */ 379 *devpriv->dac_wbuf = val; 380 381 /* 382 * Enable the output DMA transfer. This will cause the DMAC to copy 383 * the DAC's data value to A2's output FIFO. The DMA transfer will 384 * then immediately terminate because the protection address is 385 * reached upon transfer of the first DWORD value. 386 */ 387 s626_mc_enable(dev, S626_MC1_A2OUT, S626_P_MC1); 388 389 /* While the DMA transfer is executing ... */ 390 391 /* 392 * Reset Audio2 output FIFO's underflow flag (along with any 393 * other FIFO underflow/overflow flags). When set, this flag 394 * will indicate that we have emerged from slot 0. 395 */ 396 writel(S626_ISR_AFOU, dev->mmio + S626_P_ISR); 397 398 /* 399 * Wait for the DMA transfer to finish so that there will be data 400 * available in the FIFO when time slot 1 tries to transfer a DWORD 401 * from the FIFO to the output buffer register. We test for DMA 402 * Done by polling the DMAC enable flag; this flag is automatically 403 * cleared when the transfer has finished. 404 */ 405 ret = comedi_timeout(dev, NULL, NULL, s626_send_dac_eoc, 406 s626_send_dac_wait_not_mc1_a2out); 407 if (ret) { 408 dev_err(dev->class_dev, "DMA transfer timeout\n"); 409 return ret; 410 } 411 412 /* START THE OUTPUT STREAM TO THE TARGET DAC -------------------- */ 413 414 /* 415 * FIFO data is now available, so we enable execution of time slots 416 * 1 and higher by clearing the EOS flag in slot 0. Note that SD3 417 * will be shifted in and stored in FB_BUFFER2 for end-of-slot-list 418 * detection. 419 */ 420 writel(S626_XSD2 | S626_RSD3 | S626_SIB_A2, 421 dev->mmio + S626_VECTPORT(0)); 422 423 /* 424 * Wait for slot 1 to execute to ensure that the Packet will be 425 * transmitted. This is detected by polling the Audio2 output FIFO 426 * underflow flag, which will be set when slot 1 execution has 427 * finished transferring the DAC's data DWORD from the output FIFO 428 * to the output buffer register. 429 */ 430 ret = comedi_timeout(dev, NULL, NULL, s626_send_dac_eoc, 431 s626_send_dac_wait_ssr_af2_out); 432 if (ret) { 433 dev_err(dev->class_dev, 434 "TSL timeout waiting for slot 1 to execute\n"); 435 return ret; 436 } 437 438 /* 439 * Set up to trap execution at slot 0 when the TSL sequencer cycles 440 * back to slot 0 after executing the EOS in slot 5. Also, 441 * simultaneously shift out and in the 0x00 that is ALWAYS the value 442 * stored in the last byte to be shifted out of the FIFO's DWORD 443 * buffer register. 444 */ 445 writel(S626_XSD2 | S626_XFIFO_2 | S626_RSD2 | S626_SIB_A2 | S626_EOS, 446 dev->mmio + S626_VECTPORT(0)); 447 448 /* WAIT FOR THE TRANSACTION TO FINISH ----------------------- */ 449 450 /* 451 * Wait for the TSL to finish executing all time slots before 452 * exiting this function. We must do this so that the next DAC 453 * write doesn't start, thereby enabling clock/chip select signals: 454 * 455 * 1. Before the TSL sequence cycles back to slot 0, which disables 456 * the clock/cs signal gating and traps slot // list execution. 457 * we have not yet finished slot 5 then the clock/cs signals are 458 * still gated and we have not finished transmitting the stream. 459 * 460 * 2. While slots 2-5 are executing due to a late slot 0 trap. In 461 * this case, the slot sequence is currently repeating, but with 462 * clock/cs signals disabled. We must wait for slot 0 to trap 463 * execution before setting up the next DAC setpoint DMA transfer 464 * and enabling the clock/cs signals. To detect the end of slot 5, 465 * we test for the FB_BUFFER2 MSB contents to be equal to 0xFF. If 466 * the TSL has not yet finished executing slot 5 ... 467 */ 468 if (readl(dev->mmio + S626_P_FB_BUFFER2) & 0xff000000) { 469 /* 470 * The trap was set on time and we are still executing somewhere 471 * in slots 2-5, so we now wait for slot 0 to execute and trap 472 * TSL execution. This is detected when FB_BUFFER2 MSB changes 473 * from 0xFF to 0x00, which slot 0 causes to happen by shifting 474 * out/in on SD2 the 0x00 that is always referenced by slot 5. 475 */ 476 ret = comedi_timeout(dev, NULL, NULL, s626_send_dac_eoc, 477 s626_send_dac_wait_fb_buffer2_msb_00); 478 if (ret) { 479 dev_err(dev->class_dev, 480 "TSL timeout waiting for slot 0 to execute\n"); 481 return ret; 482 } 483 } 484 /* 485 * Either (1) we were too late setting the slot 0 trap; the TSL 486 * sequencer restarted slot 0 before we could set the EOS trap flag, 487 * or (2) we were not late and execution is now trapped at slot 0. 488 * In either case, we must now change slot 0 so that it will store 489 * value 0xFF (instead of 0x00) to FB_BUFFER2 next time it executes. 490 * In order to do this, we reprogram slot 0 so that it will shift in 491 * SD3, which is driven only by a pull-up resistor. 492 */ 493 writel(S626_RSD3 | S626_SIB_A2 | S626_EOS, 494 dev->mmio + S626_VECTPORT(0)); 495 496 /* 497 * Wait for slot 0 to execute, at which time the TSL is setup for 498 * the next DAC write. This is detected when FB_BUFFER2 MSB changes 499 * from 0x00 to 0xFF. 500 */ 501 ret = comedi_timeout(dev, NULL, NULL, s626_send_dac_eoc, 502 s626_send_dac_wait_fb_buffer2_msb_ff); 503 if (ret) { 504 dev_err(dev->class_dev, 505 "TSL timeout waiting for slot 0 to execute\n"); 506 return ret; 507 } 508 return 0; 509} 510 511/* 512 * Private helper function: Write setpoint to an application DAC channel. 513 */ 514static int s626_set_dac(struct comedi_device *dev, 515 u16 chan, int16_t dacdata) 516{ 517 struct s626_private *devpriv = dev->private; 518 u16 signmask; 519 u32 ws_image; 520 u32 val; 521 522 /* 523 * Adjust DAC data polarity and set up Polarity Control Register image. 524 */ 525 signmask = 1 << chan; 526 if (dacdata < 0) { 527 dacdata = -dacdata; 528 devpriv->dacpol |= signmask; 529 } else { 530 devpriv->dacpol &= ~signmask; 531 } 532 533 /* Limit DAC setpoint value to valid range. */ 534 if ((u16)dacdata > 0x1FFF) 535 dacdata = 0x1FFF; 536 537 /* 538 * Set up TSL2 records (aka "vectors") for DAC update. Vectors V2 539 * and V3 transmit the setpoint to the target DAC. V4 and V5 send 540 * data to a non-existent TrimDac channel just to keep the clock 541 * running after sending data to the target DAC. This is necessary 542 * to eliminate the clock glitch that would otherwise occur at the 543 * end of the target DAC's serial data stream. When the sequence 544 * restarts at V0 (after executing V5), the gate array automatically 545 * disables gating for the DAC clock and all DAC chip selects. 546 */ 547 548 /* Choose DAC chip select to be asserted */ 549 ws_image = (chan & 2) ? S626_WS1 : S626_WS2; 550 /* Slot 2: Transmit high data byte to target DAC */ 551 writel(S626_XSD2 | S626_XFIFO_1 | ws_image, 552 dev->mmio + S626_VECTPORT(2)); 553 /* Slot 3: Transmit low data byte to target DAC */ 554 writel(S626_XSD2 | S626_XFIFO_0 | ws_image, 555 dev->mmio + S626_VECTPORT(3)); 556 /* Slot 4: Transmit to non-existent TrimDac channel to keep clock */ 557 writel(S626_XSD2 | S626_XFIFO_3 | S626_WS3, 558 dev->mmio + S626_VECTPORT(4)); 559 /* Slot 5: running after writing target DAC's low data byte */ 560 writel(S626_XSD2 | S626_XFIFO_2 | S626_WS3 | S626_EOS, 561 dev->mmio + S626_VECTPORT(5)); 562 563 /* 564 * Construct and transmit target DAC's serial packet: 565 * (A10D DDDD), (DDDD DDDD), (0x0F), (0x00) where A is chan<0>, 566 * and D<12:0> is the DAC setpoint. Append a WORD value (that writes 567 * to a non-existent TrimDac channel) that serves to keep the clock 568 * running after the packet has been sent to the target DAC. 569 */ 570 val = 0x0F000000; /* Continue clock after target DAC data 571 * (write to non-existent trimdac). 572 */ 573 val |= 0x00004000; /* Address the two main dual-DAC devices 574 * (TSL's chip select enables target device). 575 */ 576 val |= ((u32)(chan & 1) << 15); /* Address the DAC channel 577 * within the device. 578 */ 579 val |= (u32)dacdata; /* Include DAC setpoint data. */ 580 return s626_send_dac(dev, val); 581} 582 583static int s626_write_trim_dac(struct comedi_device *dev, 584 u8 logical_chan, u8 dac_data) 585{ 586 struct s626_private *devpriv = dev->private; 587 u32 chan; 588 589 /* 590 * Save the new setpoint in case the application needs to read it back 591 * later. 592 */ 593 devpriv->trim_setpoint[logical_chan] = dac_data; 594 595 /* Map logical channel number to physical channel number. */ 596 chan = s626_trimchan[logical_chan]; 597 598 /* 599 * Set up TSL2 records for TrimDac write operation. All slots shift 600 * 0xFF in from pulled-up SD3 so that the end of the slot sequence 601 * can be detected. 602 */ 603 604 /* Slot 2: Send high uint8_t to target TrimDac */ 605 writel(S626_XSD2 | S626_XFIFO_1 | S626_WS3, 606 dev->mmio + S626_VECTPORT(2)); 607 /* Slot 3: Send low uint8_t to target TrimDac */ 608 writel(S626_XSD2 | S626_XFIFO_0 | S626_WS3, 609 dev->mmio + S626_VECTPORT(3)); 610 /* Slot 4: Send NOP high uint8_t to DAC0 to keep clock running */ 611 writel(S626_XSD2 | S626_XFIFO_3 | S626_WS1, 612 dev->mmio + S626_VECTPORT(4)); 613 /* Slot 5: Send NOP low uint8_t to DAC0 */ 614 writel(S626_XSD2 | S626_XFIFO_2 | S626_WS1 | S626_EOS, 615 dev->mmio + S626_VECTPORT(5)); 616 617 /* 618 * Construct and transmit target DAC's serial packet: 619 * (0000 AAAA), (DDDD DDDD), (0x00), (0x00) where A<3:0> is the 620 * DAC channel's address, and D<7:0> is the DAC setpoint. Append a 621 * WORD value (that writes a channel 0 NOP command to a non-existent 622 * main DAC channel) that serves to keep the clock running after the 623 * packet has been sent to the target DAC. 624 */ 625 626 /* 627 * Address the DAC channel within the trimdac device. 628 * Include DAC setpoint data. 629 */ 630 return s626_send_dac(dev, (chan << 8) | dac_data); 631} 632 633static int s626_load_trim_dacs(struct comedi_device *dev) 634{ 635 u8 i; 636 int ret; 637 638 /* Copy TrimDac setpoint values from EEPROM to TrimDacs. */ 639 for (i = 0; i < ARRAY_SIZE(s626_trimchan); i++) { 640 ret = s626_write_trim_dac(dev, i, 641 s626_i2c_read(dev, s626_trimadrs[i])); 642 if (ret) 643 return ret; 644 } 645 return 0; 646} 647 648/* ****** COUNTER FUNCTIONS ******* */ 649 650/* 651 * All counter functions address a specific counter by means of the 652 * "Counter" argument, which is a logical counter number. The Counter 653 * argument may have any of the following legal values: 0=0A, 1=1A, 654 * 2=2A, 3=0B, 4=1B, 5=2B. 655 */ 656 657/* 658 * Return/set a counter pair's latch trigger source. 0: On read 659 * access, 1: A index latches A, 2: B index latches B, 3: A overflow 660 * latches B. 661 */ 662static void s626_set_latch_source(struct comedi_device *dev, 663 unsigned int chan, u16 value) 664{ 665 s626_debi_replace(dev, S626_LP_CRB(chan), 666 ~(S626_CRBMSK_INTCTRL | S626_CRBMSK_LATCHSRC), 667 S626_SET_CRB_LATCHSRC(value)); 668} 669 670/* 671 * Write value into counter preload register. 672 */ 673static void s626_preload(struct comedi_device *dev, 674 unsigned int chan, u32 value) 675{ 676 s626_debi_write(dev, S626_LP_CNTR(chan), value); 677 s626_debi_write(dev, S626_LP_CNTR(chan) + 2, value >> 16); 678} 679 680/* ****** PRIVATE COUNTER FUNCTIONS ****** */ 681 682/* 683 * Reset a counter's index and overflow event capture flags. 684 */ 685static void s626_reset_cap_flags(struct comedi_device *dev, 686 unsigned int chan) 687{ 688 u16 set; 689 690 set = S626_SET_CRB_INTRESETCMD(1); 691 if (chan < 3) 692 set |= S626_SET_CRB_INTRESET_A(1); 693 else 694 set |= S626_SET_CRB_INTRESET_B(1); 695 696 s626_debi_replace(dev, S626_LP_CRB(chan), ~S626_CRBMSK_INTCTRL, set); 697} 698 699/* 700 * Set the operating mode for the specified counter. The setup 701 * parameter is treated as a COUNTER_SETUP data type. The following 702 * parameters are programmable (all other parms are ignored): ClkMult, 703 * ClkPol, ClkEnab, IndexSrc, IndexPol, LoadSrc. 704 */ 705static void s626_set_mode_a(struct comedi_device *dev, 706 unsigned int chan, u16 setup, 707 u16 disable_int_src) 708{ 709 struct s626_private *devpriv = dev->private; 710 u16 cra; 711 u16 crb; 712 unsigned int cntsrc, clkmult, clkpol; 713 714 /* Initialize CRA and CRB images. */ 715 /* Preload trigger is passed through. */ 716 cra = S626_SET_CRA_LOADSRC_A(S626_GET_STD_LOADSRC(setup)); 717 /* IndexSrc is passed through. */ 718 cra |= S626_SET_CRA_INDXSRC_A(S626_GET_STD_INDXSRC(setup)); 719 720 /* Reset any pending CounterA event captures. */ 721 crb = S626_SET_CRB_INTRESETCMD(1) | S626_SET_CRB_INTRESET_A(1); 722 /* Clock enable is passed through. */ 723 crb |= S626_SET_CRB_CLKENAB_A(S626_GET_STD_CLKENAB(setup)); 724 725 /* Force IntSrc to Disabled if disable_int_src is asserted. */ 726 if (!disable_int_src) 727 cra |= S626_SET_CRA_INTSRC_A(S626_GET_STD_INTSRC(setup)); 728 729 /* Populate all mode-dependent attributes of CRA & CRB images. */ 730 clkpol = S626_GET_STD_CLKPOL(setup); 731 switch (S626_GET_STD_ENCMODE(setup)) { 732 case S626_ENCMODE_EXTENDER: /* Extender Mode: */ 733 /* Force to Timer mode (Extender valid only for B counters). */ 734 /* Fall through to case S626_ENCMODE_TIMER: */ 735 case S626_ENCMODE_TIMER: /* Timer Mode: */ 736 /* CntSrcA<1> selects system clock */ 737 cntsrc = S626_CNTSRC_SYSCLK; 738 /* Count direction (CntSrcA<0>) obtained from ClkPol. */ 739 cntsrc |= clkpol; 740 /* ClkPolA behaves as always-on clock enable. */ 741 clkpol = 1; 742 /* ClkMult must be 1x. */ 743 clkmult = S626_CLKMULT_1X; 744 break; 745 default: /* Counter Mode: */ 746 /* Select ENC_C and ENC_D as clock/direction inputs. */ 747 cntsrc = S626_CNTSRC_ENCODER; 748 /* Clock polarity is passed through. */ 749 /* Force multiplier to x1 if not legal, else pass through. */ 750 clkmult = S626_GET_STD_CLKMULT(setup); 751 if (clkmult == S626_CLKMULT_SPECIAL) 752 clkmult = S626_CLKMULT_1X; 753 break; 754 } 755 cra |= S626_SET_CRA_CNTSRC_A(cntsrc) | S626_SET_CRA_CLKPOL_A(clkpol) | 756 S626_SET_CRA_CLKMULT_A(clkmult); 757 758 /* 759 * Force positive index polarity if IndxSrc is software-driven only, 760 * otherwise pass it through. 761 */ 762 if (S626_GET_STD_INDXSRC(setup) != S626_INDXSRC_SOFT) 763 cra |= S626_SET_CRA_INDXPOL_A(S626_GET_STD_INDXPOL(setup)); 764 765 /* 766 * If IntSrc has been forced to Disabled, update the MISC2 interrupt 767 * enable mask to indicate the counter interrupt is disabled. 768 */ 769 if (disable_int_src) 770 devpriv->counter_int_enabs &= ~(S626_OVERMASK(chan) | 771 S626_INDXMASK(chan)); 772 773 /* 774 * While retaining CounterB and LatchSrc configurations, program the 775 * new counter operating mode. 776 */ 777 s626_debi_replace(dev, S626_LP_CRA(chan), 778 S626_CRAMSK_INDXSRC_B | S626_CRAMSK_CNTSRC_B, cra); 779 s626_debi_replace(dev, S626_LP_CRB(chan), 780 ~(S626_CRBMSK_INTCTRL | S626_CRBMSK_CLKENAB_A), crb); 781} 782 783static void s626_set_mode_b(struct comedi_device *dev, 784 unsigned int chan, u16 setup, 785 u16 disable_int_src) 786{ 787 struct s626_private *devpriv = dev->private; 788 u16 cra; 789 u16 crb; 790 unsigned int cntsrc, clkmult, clkpol; 791 792 /* Initialize CRA and CRB images. */ 793 /* IndexSrc is passed through. */ 794 cra = S626_SET_CRA_INDXSRC_B(S626_GET_STD_INDXSRC(setup)); 795 796 /* Reset event captures and disable interrupts. */ 797 crb = S626_SET_CRB_INTRESETCMD(1) | S626_SET_CRB_INTRESET_B(1); 798 /* Clock enable is passed through. */ 799 crb |= S626_SET_CRB_CLKENAB_B(S626_GET_STD_CLKENAB(setup)); 800 /* Preload trigger source is passed through. */ 801 crb |= S626_SET_CRB_LOADSRC_B(S626_GET_STD_LOADSRC(setup)); 802 803 /* Force IntSrc to Disabled if disable_int_src is asserted. */ 804 if (!disable_int_src) 805 crb |= S626_SET_CRB_INTSRC_B(S626_GET_STD_INTSRC(setup)); 806 807 /* Populate all mode-dependent attributes of CRA & CRB images. */ 808 clkpol = S626_GET_STD_CLKPOL(setup); 809 switch (S626_GET_STD_ENCMODE(setup)) { 810 case S626_ENCMODE_TIMER: /* Timer Mode: */ 811 /* CntSrcB<1> selects system clock */ 812 cntsrc = S626_CNTSRC_SYSCLK; 813 /* with direction (CntSrcB<0>) obtained from ClkPol. */ 814 cntsrc |= clkpol; 815 /* ClkPolB behaves as always-on clock enable. */ 816 clkpol = 1; 817 /* ClkMultB must be 1x. */ 818 clkmult = S626_CLKMULT_1X; 819 break; 820 case S626_ENCMODE_EXTENDER: /* Extender Mode: */ 821 /* CntSrcB source is OverflowA (same as "timer") */ 822 cntsrc = S626_CNTSRC_SYSCLK; 823 /* with direction obtained from ClkPol. */ 824 cntsrc |= clkpol; 825 /* ClkPolB controls IndexB -- always set to active. */ 826 clkpol = 1; 827 /* ClkMultB selects OverflowA as the clock source. */ 828 clkmult = S626_CLKMULT_SPECIAL; 829 break; 830 default: /* Counter Mode: */ 831 /* Select ENC_C and ENC_D as clock/direction inputs. */ 832 cntsrc = S626_CNTSRC_ENCODER; 833 /* ClkPol is passed through. */ 834 /* Force ClkMult to x1 if not legal, otherwise pass through. */ 835 clkmult = S626_GET_STD_CLKMULT(setup); 836 if (clkmult == S626_CLKMULT_SPECIAL) 837 clkmult = S626_CLKMULT_1X; 838 break; 839 } 840 cra |= S626_SET_CRA_CNTSRC_B(cntsrc); 841 crb |= S626_SET_CRB_CLKPOL_B(clkpol) | S626_SET_CRB_CLKMULT_B(clkmult); 842 843 /* 844 * Force positive index polarity if IndxSrc is software-driven only, 845 * otherwise pass it through. 846 */ 847 if (S626_GET_STD_INDXSRC(setup) != S626_INDXSRC_SOFT) 848 crb |= S626_SET_CRB_INDXPOL_B(S626_GET_STD_INDXPOL(setup)); 849 850 /* 851 * If IntSrc has been forced to Disabled, update the MISC2 interrupt 852 * enable mask to indicate the counter interrupt is disabled. 853 */ 854 if (disable_int_src) 855 devpriv->counter_int_enabs &= ~(S626_OVERMASK(chan) | 856 S626_INDXMASK(chan)); 857 858 /* 859 * While retaining CounterA and LatchSrc configurations, program the 860 * new counter operating mode. 861 */ 862 s626_debi_replace(dev, S626_LP_CRA(chan), 863 ~(S626_CRAMSK_INDXSRC_B | S626_CRAMSK_CNTSRC_B), cra); 864 s626_debi_replace(dev, S626_LP_CRB(chan), 865 S626_CRBMSK_CLKENAB_A | S626_CRBMSK_LATCHSRC, crb); 866} 867 868static void s626_set_mode(struct comedi_device *dev, 869 unsigned int chan, 870 u16 setup, u16 disable_int_src) 871{ 872 if (chan < 3) 873 s626_set_mode_a(dev, chan, setup, disable_int_src); 874 else 875 s626_set_mode_b(dev, chan, setup, disable_int_src); 876} 877 878/* 879 * Return/set a counter's enable. enab: 0=always enabled, 1=enabled by index. 880 */ 881static void s626_set_enable(struct comedi_device *dev, 882 unsigned int chan, u16 enab) 883{ 884 unsigned int mask = S626_CRBMSK_INTCTRL; 885 unsigned int set; 886 887 if (chan < 3) { 888 mask |= S626_CRBMSK_CLKENAB_A; 889 set = S626_SET_CRB_CLKENAB_A(enab); 890 } else { 891 mask |= S626_CRBMSK_CLKENAB_B; 892 set = S626_SET_CRB_CLKENAB_B(enab); 893 } 894 s626_debi_replace(dev, S626_LP_CRB(chan), ~mask, set); 895} 896 897/* 898 * Return/set the event that will trigger transfer of the preload 899 * register into the counter. 0=ThisCntr_Index, 1=ThisCntr_Overflow, 900 * 2=OverflowA (B counters only), 3=disabled. 901 */ 902static void s626_set_load_trig(struct comedi_device *dev, 903 unsigned int chan, u16 trig) 904{ 905 u16 reg; 906 u16 mask; 907 u16 set; 908 909 if (chan < 3) { 910 reg = S626_LP_CRA(chan); 911 mask = S626_CRAMSK_LOADSRC_A; 912 set = S626_SET_CRA_LOADSRC_A(trig); 913 } else { 914 reg = S626_LP_CRB(chan); 915 mask = S626_CRBMSK_LOADSRC_B | S626_CRBMSK_INTCTRL; 916 set = S626_SET_CRB_LOADSRC_B(trig); 917 } 918 s626_debi_replace(dev, reg, ~mask, set); 919} 920 921/* 922 * Return/set counter interrupt source and clear any captured 923 * index/overflow events. int_source: 0=Disabled, 1=OverflowOnly, 924 * 2=IndexOnly, 3=IndexAndOverflow. 925 */ 926static void s626_set_int_src(struct comedi_device *dev, 927 unsigned int chan, u16 int_source) 928{ 929 struct s626_private *devpriv = dev->private; 930 u16 cra_reg = S626_LP_CRA(chan); 931 u16 crb_reg = S626_LP_CRB(chan); 932 933 if (chan < 3) { 934 /* Reset any pending counter overflow or index captures */ 935 s626_debi_replace(dev, crb_reg, ~S626_CRBMSK_INTCTRL, 936 S626_SET_CRB_INTRESETCMD(1) | 937 S626_SET_CRB_INTRESET_A(1)); 938 939 /* Program counter interrupt source */ 940 s626_debi_replace(dev, cra_reg, ~S626_CRAMSK_INTSRC_A, 941 S626_SET_CRA_INTSRC_A(int_source)); 942 } else { 943 u16 crb; 944 945 /* Cache writeable CRB register image */ 946 crb = s626_debi_read(dev, crb_reg); 947 crb &= ~S626_CRBMSK_INTCTRL; 948 949 /* Reset any pending counter overflow or index captures */ 950 s626_debi_write(dev, crb_reg, 951 crb | S626_SET_CRB_INTRESETCMD(1) | 952 S626_SET_CRB_INTRESET_B(1)); 953 954 /* Program counter interrupt source */ 955 s626_debi_write(dev, crb_reg, 956 (crb & ~S626_CRBMSK_INTSRC_B) | 957 S626_SET_CRB_INTSRC_B(int_source)); 958 } 959 960 /* Update MISC2 interrupt enable mask. */ 961 devpriv->counter_int_enabs &= ~(S626_OVERMASK(chan) | 962 S626_INDXMASK(chan)); 963 switch (int_source) { 964 case 0: 965 default: 966 break; 967 case 1: 968 devpriv->counter_int_enabs |= S626_OVERMASK(chan); 969 break; 970 case 2: 971 devpriv->counter_int_enabs |= S626_INDXMASK(chan); 972 break; 973 case 3: 974 devpriv->counter_int_enabs |= (S626_OVERMASK(chan) | 975 S626_INDXMASK(chan)); 976 break; 977 } 978} 979 980/* 981 * Generate an index pulse. 982 */ 983static void s626_pulse_index(struct comedi_device *dev, 984 unsigned int chan) 985{ 986 if (chan < 3) { 987 u16 cra; 988 989 cra = s626_debi_read(dev, S626_LP_CRA(chan)); 990 991 /* Pulse index */ 992 s626_debi_write(dev, S626_LP_CRA(chan), 993 (cra ^ S626_CRAMSK_INDXPOL_A)); 994 s626_debi_write(dev, S626_LP_CRA(chan), cra); 995 } else { 996 u16 crb; 997 998 crb = s626_debi_read(dev, S626_LP_CRB(chan)); 999 crb &= ~S626_CRBMSK_INTCTRL; 1000 1001 /* Pulse index */ 1002 s626_debi_write(dev, S626_LP_CRB(chan), 1003 (crb ^ S626_CRBMSK_INDXPOL_B)); 1004 s626_debi_write(dev, S626_LP_CRB(chan), crb); 1005 } 1006} 1007 1008static unsigned int s626_ai_reg_to_uint(unsigned int data) 1009{ 1010 return ((data >> 18) & 0x3fff) ^ 0x2000; 1011} 1012 1013static int s626_dio_set_irq(struct comedi_device *dev, unsigned int chan) 1014{ 1015 unsigned int group = chan / 16; 1016 unsigned int mask = 1 << (chan - (16 * group)); 1017 unsigned int status; 1018 1019 /* set channel to capture positive edge */ 1020 status = s626_debi_read(dev, S626_LP_RDEDGSEL(group)); 1021 s626_debi_write(dev, S626_LP_WREDGSEL(group), mask | status); 1022 1023 /* enable interrupt on selected channel */ 1024 status = s626_debi_read(dev, S626_LP_RDINTSEL(group)); 1025 s626_debi_write(dev, S626_LP_WRINTSEL(group), mask | status); 1026 1027 /* enable edge capture write command */ 1028 s626_debi_write(dev, S626_LP_MISC1, S626_MISC1_EDCAP); 1029 1030 /* enable edge capture on selected channel */ 1031 status = s626_debi_read(dev, S626_LP_RDCAPSEL(group)); 1032 s626_debi_write(dev, S626_LP_WRCAPSEL(group), mask | status); 1033 1034 return 0; 1035} 1036 1037static int s626_dio_reset_irq(struct comedi_device *dev, unsigned int group, 1038 unsigned int mask) 1039{ 1040 /* disable edge capture write command */ 1041 s626_debi_write(dev, S626_LP_MISC1, S626_MISC1_NOEDCAP); 1042 1043 /* enable edge capture on selected channel */ 1044 s626_debi_write(dev, S626_LP_WRCAPSEL(group), mask); 1045 1046 return 0; 1047} 1048 1049static int s626_dio_clear_irq(struct comedi_device *dev) 1050{ 1051 unsigned int group; 1052 1053 /* disable edge capture write command */ 1054 s626_debi_write(dev, S626_LP_MISC1, S626_MISC1_NOEDCAP); 1055 1056 /* clear all dio pending events and interrupt */ 1057 for (group = 0; group < S626_DIO_BANKS; group++) 1058 s626_debi_write(dev, S626_LP_WRCAPSEL(group), 0xffff); 1059 1060 return 0; 1061} 1062 1063static void s626_handle_dio_interrupt(struct comedi_device *dev, 1064 u16 irqbit, u8 group) 1065{ 1066 struct s626_private *devpriv = dev->private; 1067 struct comedi_subdevice *s = dev->read_subdev; 1068 struct comedi_cmd *cmd = &s->async->cmd; 1069 1070 s626_dio_reset_irq(dev, group, irqbit); 1071 1072 if (devpriv->ai_cmd_running) { 1073 /* check if interrupt is an ai acquisition start trigger */ 1074 if ((irqbit >> (cmd->start_arg - (16 * group))) == 1 && 1075 cmd->start_src == TRIG_EXT) { 1076 /* Start executing the RPS program */ 1077 s626_mc_enable(dev, S626_MC1_ERPS1, S626_P_MC1); 1078 1079 if (cmd->scan_begin_src == TRIG_EXT) 1080 s626_dio_set_irq(dev, cmd->scan_begin_arg); 1081 } 1082 if ((irqbit >> (cmd->scan_begin_arg - (16 * group))) == 1 && 1083 cmd->scan_begin_src == TRIG_EXT) { 1084 /* Trigger ADC scan loop start */ 1085 s626_mc_enable(dev, S626_MC2_ADC_RPS, S626_P_MC2); 1086 1087 if (cmd->convert_src == TRIG_EXT) { 1088 devpriv->ai_convert_count = cmd->chanlist_len; 1089 1090 s626_dio_set_irq(dev, cmd->convert_arg); 1091 } 1092 1093 if (cmd->convert_src == TRIG_TIMER) { 1094 devpriv->ai_convert_count = cmd->chanlist_len; 1095 s626_set_enable(dev, 5, S626_CLKENAB_ALWAYS); 1096 } 1097 } 1098 if ((irqbit >> (cmd->convert_arg - (16 * group))) == 1 && 1099 cmd->convert_src == TRIG_EXT) { 1100 /* Trigger ADC scan loop start */ 1101 s626_mc_enable(dev, S626_MC2_ADC_RPS, S626_P_MC2); 1102 1103 devpriv->ai_convert_count--; 1104 if (devpriv->ai_convert_count > 0) 1105 s626_dio_set_irq(dev, cmd->convert_arg); 1106 } 1107 } 1108} 1109 1110static void s626_check_dio_interrupts(struct comedi_device *dev) 1111{ 1112 u16 irqbit; 1113 u8 group; 1114 1115 for (group = 0; group < S626_DIO_BANKS; group++) { 1116 /* read interrupt type */ 1117 irqbit = s626_debi_read(dev, S626_LP_RDCAPFLG(group)); 1118 1119 /* check if interrupt is generated from dio channels */ 1120 if (irqbit) { 1121 s626_handle_dio_interrupt(dev, irqbit, group); 1122 return; 1123 } 1124 } 1125} 1126 1127static void s626_check_counter_interrupts(struct comedi_device *dev) 1128{ 1129 struct s626_private *devpriv = dev->private; 1130 struct comedi_subdevice *s = dev->read_subdev; 1131 struct comedi_async *async = s->async; 1132 struct comedi_cmd *cmd = &async->cmd; 1133 u16 irqbit; 1134 1135 /* read interrupt type */ 1136 irqbit = s626_debi_read(dev, S626_LP_RDMISC2); 1137 1138 /* check interrupt on counters */ 1139 if (irqbit & S626_IRQ_COINT1A) { 1140 /* clear interrupt capture flag */ 1141 s626_reset_cap_flags(dev, 0); 1142 } 1143 if (irqbit & S626_IRQ_COINT2A) { 1144 /* clear interrupt capture flag */ 1145 s626_reset_cap_flags(dev, 1); 1146 } 1147 if (irqbit & S626_IRQ_COINT3A) { 1148 /* clear interrupt capture flag */ 1149 s626_reset_cap_flags(dev, 2); 1150 } 1151 if (irqbit & S626_IRQ_COINT1B) { 1152 /* clear interrupt capture flag */ 1153 s626_reset_cap_flags(dev, 3); 1154 } 1155 if (irqbit & S626_IRQ_COINT2B) { 1156 /* clear interrupt capture flag */ 1157 s626_reset_cap_flags(dev, 4); 1158 1159 if (devpriv->ai_convert_count > 0) { 1160 devpriv->ai_convert_count--; 1161 if (devpriv->ai_convert_count == 0) 1162 s626_set_enable(dev, 4, S626_CLKENAB_INDEX); 1163 1164 if (cmd->convert_src == TRIG_TIMER) { 1165 /* Trigger ADC scan loop start */ 1166 s626_mc_enable(dev, S626_MC2_ADC_RPS, 1167 S626_P_MC2); 1168 } 1169 } 1170 } 1171 if (irqbit & S626_IRQ_COINT3B) { 1172 /* clear interrupt capture flag */ 1173 s626_reset_cap_flags(dev, 5); 1174 1175 if (cmd->scan_begin_src == TRIG_TIMER) { 1176 /* Trigger ADC scan loop start */ 1177 s626_mc_enable(dev, S626_MC2_ADC_RPS, S626_P_MC2); 1178 } 1179 1180 if (cmd->convert_src == TRIG_TIMER) { 1181 devpriv->ai_convert_count = cmd->chanlist_len; 1182 s626_set_enable(dev, 4, S626_CLKENAB_ALWAYS); 1183 } 1184 } 1185} 1186 1187static bool s626_handle_eos_interrupt(struct comedi_device *dev) 1188{ 1189 struct s626_private *devpriv = dev->private; 1190 struct comedi_subdevice *s = dev->read_subdev; 1191 struct comedi_async *async = s->async; 1192 struct comedi_cmd *cmd = &async->cmd; 1193 /* 1194 * Init ptr to DMA buffer that holds new ADC data. We skip the 1195 * first uint16_t in the buffer because it contains junk data 1196 * from the final ADC of the previous poll list scan. 1197 */ 1198 u32 *readaddr = (u32 *)devpriv->ana_buf.logical_base + 1; 1199 int i; 1200 1201 /* get the data and hand it over to comedi */ 1202 for (i = 0; i < cmd->chanlist_len; i++) { 1203 unsigned short tempdata; 1204 1205 /* 1206 * Convert ADC data to 16-bit integer values and copy 1207 * to application buffer. 1208 */ 1209 tempdata = s626_ai_reg_to_uint(*readaddr); 1210 readaddr++; 1211 1212 comedi_buf_write_samples(s, &tempdata, 1); 1213 } 1214 1215 if (cmd->stop_src == TRIG_COUNT && async->scans_done >= cmd->stop_arg) 1216 async->events |= COMEDI_CB_EOA; 1217 1218 if (async->events & COMEDI_CB_CANCEL_MASK) 1219 devpriv->ai_cmd_running = 0; 1220 1221 if (devpriv->ai_cmd_running && cmd->scan_begin_src == TRIG_EXT) 1222 s626_dio_set_irq(dev, cmd->scan_begin_arg); 1223 1224 comedi_handle_events(dev, s); 1225 1226 return !devpriv->ai_cmd_running; 1227} 1228 1229static irqreturn_t s626_irq_handler(int irq, void *d) 1230{ 1231 struct comedi_device *dev = d; 1232 unsigned long flags; 1233 u32 irqtype, irqstatus; 1234 1235 if (!dev->attached) 1236 return IRQ_NONE; 1237 /* lock to avoid race with comedi_poll */ 1238 spin_lock_irqsave(&dev->spinlock, flags); 1239 1240 /* save interrupt enable register state */ 1241 irqstatus = readl(dev->mmio + S626_P_IER); 1242 1243 /* read interrupt type */ 1244 irqtype = readl(dev->mmio + S626_P_ISR); 1245 1246 /* disable master interrupt */ 1247 writel(0, dev->mmio + S626_P_IER); 1248 1249 /* clear interrupt */ 1250 writel(irqtype, dev->mmio + S626_P_ISR); 1251 1252 switch (irqtype) { 1253 case S626_IRQ_RPS1: /* end_of_scan occurs */ 1254 if (s626_handle_eos_interrupt(dev)) 1255 irqstatus = 0; 1256 break; 1257 case S626_IRQ_GPIO3: /* check dio and counter interrupt */ 1258 /* s626_dio_clear_irq(dev); */ 1259 s626_check_dio_interrupts(dev); 1260 s626_check_counter_interrupts(dev); 1261 break; 1262 } 1263 1264 /* enable interrupt */ 1265 writel(irqstatus, dev->mmio + S626_P_IER); 1266 1267 spin_unlock_irqrestore(&dev->spinlock, flags); 1268 return IRQ_HANDLED; 1269} 1270 1271/* 1272 * This function builds the RPS program for hardware driven acquisition. 1273 */ 1274static void s626_reset_adc(struct comedi_device *dev, u8 *ppl) 1275{ 1276 struct s626_private *devpriv = dev->private; 1277 struct comedi_subdevice *s = dev->read_subdev; 1278 struct comedi_cmd *cmd = &s->async->cmd; 1279 u32 *rps; 1280 u32 jmp_adrs; 1281 u16 i; 1282 u16 n; 1283 u32 local_ppl; 1284 1285 /* Stop RPS program in case it is currently running */ 1286 s626_mc_disable(dev, S626_MC1_ERPS1, S626_P_MC1); 1287 1288 /* Set starting logical address to write RPS commands. */ 1289 rps = (u32 *)devpriv->rps_buf.logical_base; 1290 1291 /* Initialize RPS instruction pointer */ 1292 writel((u32)devpriv->rps_buf.physical_base, 1293 dev->mmio + S626_P_RPSADDR1); 1294 1295 /* Construct RPS program in rps_buf DMA buffer */ 1296 if (cmd->scan_begin_src != TRIG_FOLLOW) { 1297 /* Wait for Start trigger. */ 1298 *rps++ = S626_RPS_PAUSE | S626_RPS_SIGADC; 1299 *rps++ = S626_RPS_CLRSIGNAL | S626_RPS_SIGADC; 1300 } 1301 1302 /* 1303 * SAA7146 BUG WORKAROUND Do a dummy DEBI Write. This is necessary 1304 * because the first RPS DEBI Write following a non-RPS DEBI write 1305 * seems to always fail. If we don't do this dummy write, the ADC 1306 * gain might not be set to the value required for the first slot in 1307 * the poll list; the ADC gain would instead remain unchanged from 1308 * the previously programmed value. 1309 */ 1310 /* Write DEBI Write command and address to shadow RAM. */ 1311 *rps++ = S626_RPS_LDREG | (S626_P_DEBICMD >> 2); 1312 *rps++ = S626_DEBI_CMD_WRWORD | S626_LP_GSEL; 1313 *rps++ = S626_RPS_LDREG | (S626_P_DEBIAD >> 2); 1314 /* Write DEBI immediate data to shadow RAM: */ 1315 *rps++ = S626_GSEL_BIPOLAR5V; /* arbitrary immediate data value. */ 1316 *rps++ = S626_RPS_CLRSIGNAL | S626_RPS_DEBI; 1317 /* Reset "shadow RAM uploaded" flag. */ 1318 /* Invoke shadow RAM upload. */ 1319 *rps++ = S626_RPS_UPLOAD | S626_RPS_DEBI; 1320 /* Wait for shadow upload to finish. */ 1321 *rps++ = S626_RPS_PAUSE | S626_RPS_DEBI; 1322 1323 /* 1324 * Digitize all slots in the poll list. This is implemented as a 1325 * for loop to limit the slot count to 16 in case the application 1326 * forgot to set the S626_EOPL flag in the final slot. 1327 */ 1328 for (devpriv->adc_items = 0; devpriv->adc_items < 16; 1329 devpriv->adc_items++) { 1330 /* 1331 * Convert application's poll list item to private board class 1332 * format. Each app poll list item is an uint8_t with form 1333 * (EOPL,x,x,RANGE,CHAN<3:0>), where RANGE code indicates 0 = 1334 * +-10V, 1 = +-5V, and EOPL = End of Poll List marker. 1335 */ 1336 local_ppl = (*ppl << 8) | (*ppl & 0x10 ? S626_GSEL_BIPOLAR5V : 1337 S626_GSEL_BIPOLAR10V); 1338 1339 /* Switch ADC analog gain. */ 1340 /* Write DEBI command and address to shadow RAM. */ 1341 *rps++ = S626_RPS_LDREG | (S626_P_DEBICMD >> 2); 1342 *rps++ = S626_DEBI_CMD_WRWORD | S626_LP_GSEL; 1343 /* Write DEBI immediate data to shadow RAM. */ 1344 *rps++ = S626_RPS_LDREG | (S626_P_DEBIAD >> 2); 1345 *rps++ = local_ppl; 1346 /* Reset "shadow RAM uploaded" flag. */ 1347 *rps++ = S626_RPS_CLRSIGNAL | S626_RPS_DEBI; 1348 /* Invoke shadow RAM upload. */ 1349 *rps++ = S626_RPS_UPLOAD | S626_RPS_DEBI; 1350 /* Wait for shadow upload to finish. */ 1351 *rps++ = S626_RPS_PAUSE | S626_RPS_DEBI; 1352 /* Select ADC analog input channel. */ 1353 *rps++ = S626_RPS_LDREG | (S626_P_DEBICMD >> 2); 1354 /* Write DEBI command and address to shadow RAM. */ 1355 *rps++ = S626_DEBI_CMD_WRWORD | S626_LP_ISEL; 1356 *rps++ = S626_RPS_LDREG | (S626_P_DEBIAD >> 2); 1357 /* Write DEBI immediate data to shadow RAM. */ 1358 *rps++ = local_ppl; 1359 /* Reset "shadow RAM uploaded" flag. */ 1360 *rps++ = S626_RPS_CLRSIGNAL | S626_RPS_DEBI; 1361 /* Invoke shadow RAM upload. */ 1362 *rps++ = S626_RPS_UPLOAD | S626_RPS_DEBI; 1363 /* Wait for shadow upload to finish. */ 1364 *rps++ = S626_RPS_PAUSE | S626_RPS_DEBI; 1365 1366 /* 1367 * Delay at least 10 microseconds for analog input settling. 1368 * Instead of padding with NOPs, we use S626_RPS_JUMP 1369 * instructions here; this allows us to produce a longer delay 1370 * than is possible with NOPs because each S626_RPS_JUMP 1371 * flushes the RPS' instruction prefetch pipeline. 1372 */ 1373 jmp_adrs = 1374 (u32)devpriv->rps_buf.physical_base + 1375 (u32)((unsigned long)rps - 1376 (unsigned long)devpriv->rps_buf.logical_base); 1377 for (i = 0; i < (10 * S626_RPSCLK_PER_US / 2); i++) { 1378 jmp_adrs += 8; /* Repeat to implement time delay: */ 1379 /* Jump to next RPS instruction. */ 1380 *rps++ = S626_RPS_JUMP; 1381 *rps++ = jmp_adrs; 1382 } 1383 1384 if (cmd->convert_src != TRIG_NOW) { 1385 /* Wait for Start trigger. */ 1386 *rps++ = S626_RPS_PAUSE | S626_RPS_SIGADC; 1387 *rps++ = S626_RPS_CLRSIGNAL | S626_RPS_SIGADC; 1388 } 1389 /* Start ADC by pulsing GPIO1. */ 1390 /* Begin ADC Start pulse. */ 1391 *rps++ = S626_RPS_LDREG | (S626_P_GPIO >> 2); 1392 *rps++ = S626_GPIO_BASE | S626_GPIO1_LO; 1393 *rps++ = S626_RPS_NOP; 1394 /* VERSION 2.03 CHANGE: STRETCH OUT ADC START PULSE. */ 1395 /* End ADC Start pulse. */ 1396 *rps++ = S626_RPS_LDREG | (S626_P_GPIO >> 2); 1397 *rps++ = S626_GPIO_BASE | S626_GPIO1_HI; 1398 /* 1399 * Wait for ADC to complete (GPIO2 is asserted high when ADC not 1400 * busy) and for data from previous conversion to shift into FB 1401 * BUFFER 1 register. 1402 */ 1403 /* Wait for ADC done. */ 1404 *rps++ = S626_RPS_PAUSE | S626_RPS_GPIO2; 1405 1406 /* Transfer ADC data from FB BUFFER 1 register to DMA buffer. */ 1407 *rps++ = S626_RPS_STREG | 1408 (S626_BUGFIX_STREG(S626_P_FB_BUFFER1) >> 2); 1409 *rps++ = (u32)devpriv->ana_buf.physical_base + 1410 (devpriv->adc_items << 2); 1411 1412 /* 1413 * If this slot's EndOfPollList flag is set, all channels have 1414 * now been processed. 1415 */ 1416 if (*ppl++ & S626_EOPL) { 1417 devpriv->adc_items++; /* Adjust poll list item count. */ 1418 break; /* Exit poll list processing loop. */ 1419 } 1420 } 1421 1422 /* 1423 * VERSION 2.01 CHANGE: DELAY CHANGED FROM 250NS to 2US. Allow the 1424 * ADC to stabilize for 2 microseconds before starting the final 1425 * (dummy) conversion. This delay is necessary to allow sufficient 1426 * time between last conversion finished and the start of the dummy 1427 * conversion. Without this delay, the last conversion's data value 1428 * is sometimes set to the previous conversion's data value. 1429 */ 1430 for (n = 0; n < (2 * S626_RPSCLK_PER_US); n++) 1431 *rps++ = S626_RPS_NOP; 1432 1433 /* 1434 * Start a dummy conversion to cause the data from the last 1435 * conversion of interest to be shifted in. 1436 */ 1437 /* Begin ADC Start pulse. */ 1438 *rps++ = S626_RPS_LDREG | (S626_P_GPIO >> 2); 1439 *rps++ = S626_GPIO_BASE | S626_GPIO1_LO; 1440 *rps++ = S626_RPS_NOP; 1441 /* VERSION 2.03 CHANGE: STRETCH OUT ADC START PULSE. */ 1442 *rps++ = S626_RPS_LDREG | (S626_P_GPIO >> 2); /* End ADC Start pulse. */ 1443 *rps++ = S626_GPIO_BASE | S626_GPIO1_HI; 1444 1445 /* 1446 * Wait for the data from the last conversion of interest to arrive 1447 * in FB BUFFER 1 register. 1448 */ 1449 *rps++ = S626_RPS_PAUSE | S626_RPS_GPIO2; /* Wait for ADC done. */ 1450 1451 /* Transfer final ADC data from FB BUFFER 1 register to DMA buffer. */ 1452 *rps++ = S626_RPS_STREG | (S626_BUGFIX_STREG(S626_P_FB_BUFFER1) >> 2); 1453 *rps++ = (u32)devpriv->ana_buf.physical_base + 1454 (devpriv->adc_items << 2); 1455 1456 /* Indicate ADC scan loop is finished. */ 1457 /* Signal ReadADC() that scan is done. */ 1458 /* *rps++= S626_RPS_CLRSIGNAL | S626_RPS_SIGADC; */ 1459 1460 /* invoke interrupt */ 1461 if (devpriv->ai_cmd_running == 1) 1462 *rps++ = S626_RPS_IRQ; 1463 1464 /* Restart RPS program at its beginning. */ 1465 *rps++ = S626_RPS_JUMP; /* Branch to start of RPS program. */ 1466 *rps++ = (u32)devpriv->rps_buf.physical_base; 1467 1468 /* End of RPS program build */ 1469} 1470 1471static int s626_ai_eoc(struct comedi_device *dev, 1472 struct comedi_subdevice *s, 1473 struct comedi_insn *insn, 1474 unsigned long context) 1475{ 1476 unsigned int status; 1477 1478 status = readl(dev->mmio + S626_P_PSR); 1479 if (status & S626_PSR_GPIO2) 1480 return 0; 1481 return -EBUSY; 1482} 1483 1484static int s626_ai_insn_read(struct comedi_device *dev, 1485 struct comedi_subdevice *s, 1486 struct comedi_insn *insn, 1487 unsigned int *data) 1488{ 1489 u16 chan = CR_CHAN(insn->chanspec); 1490 u16 range = CR_RANGE(insn->chanspec); 1491 u16 adc_spec = 0; 1492 u32 gpio_image; 1493 u32 tmp; 1494 int ret; 1495 int n; 1496 1497 /* 1498 * Convert application's ADC specification into form 1499 * appropriate for register programming. 1500 */ 1501 if (range == 0) 1502 adc_spec = (chan << 8) | (S626_GSEL_BIPOLAR5V); 1503 else 1504 adc_spec = (chan << 8) | (S626_GSEL_BIPOLAR10V); 1505 1506 /* Switch ADC analog gain. */ 1507 s626_debi_write(dev, S626_LP_GSEL, adc_spec); /* Set gain. */ 1508 1509 /* Select ADC analog input channel. */ 1510 s626_debi_write(dev, S626_LP_ISEL, adc_spec); /* Select channel. */ 1511 1512 for (n = 0; n < insn->n; n++) { 1513 /* Delay 10 microseconds for analog input settling. */ 1514 usleep_range(10, 20); 1515 1516 /* Start ADC by pulsing GPIO1 low */ 1517 gpio_image = readl(dev->mmio + S626_P_GPIO); 1518 /* Assert ADC Start command */ 1519 writel(gpio_image & ~S626_GPIO1_HI, dev->mmio + S626_P_GPIO); 1520 /* and stretch it out */ 1521 writel(gpio_image & ~S626_GPIO1_HI, dev->mmio + S626_P_GPIO); 1522 writel(gpio_image & ~S626_GPIO1_HI, dev->mmio + S626_P_GPIO); 1523 /* Negate ADC Start command */ 1524 writel(gpio_image | S626_GPIO1_HI, dev->mmio + S626_P_GPIO); 1525 1526 /* 1527 * Wait for ADC to complete (GPIO2 is asserted high when 1528 * ADC not busy) and for data from previous conversion to 1529 * shift into FB BUFFER 1 register. 1530 */ 1531 1532 /* Wait for ADC done */ 1533 ret = comedi_timeout(dev, s, insn, s626_ai_eoc, 0); 1534 if (ret) 1535 return ret; 1536 1537 /* Fetch ADC data */ 1538 if (n != 0) { 1539 tmp = readl(dev->mmio + S626_P_FB_BUFFER1); 1540 data[n - 1] = s626_ai_reg_to_uint(tmp); 1541 } 1542 1543 /* 1544 * Allow the ADC to stabilize for 4 microseconds before 1545 * starting the next (final) conversion. This delay is 1546 * necessary to allow sufficient time between last 1547 * conversion finished and the start of the next 1548 * conversion. Without this delay, the last conversion's 1549 * data value is sometimes set to the previous 1550 * conversion's data value. 1551 */ 1552 udelay(4); 1553 } 1554 1555 /* 1556 * Start a dummy conversion to cause the data from the 1557 * previous conversion to be shifted in. 1558 */ 1559 gpio_image = readl(dev->mmio + S626_P_GPIO); 1560 /* Assert ADC Start command */ 1561 writel(gpio_image & ~S626_GPIO1_HI, dev->mmio + S626_P_GPIO); 1562 /* and stretch it out */ 1563 writel(gpio_image & ~S626_GPIO1_HI, dev->mmio + S626_P_GPIO); 1564 writel(gpio_image & ~S626_GPIO1_HI, dev->mmio + S626_P_GPIO); 1565 /* Negate ADC Start command */ 1566 writel(gpio_image | S626_GPIO1_HI, dev->mmio + S626_P_GPIO); 1567 1568 /* Wait for the data to arrive in FB BUFFER 1 register. */ 1569 1570 /* Wait for ADC done */ 1571 ret = comedi_timeout(dev, s, insn, s626_ai_eoc, 0); 1572 if (ret) 1573 return ret; 1574 1575 /* Fetch ADC data from audio interface's input shift register. */ 1576 1577 /* Fetch ADC data */ 1578 if (n != 0) { 1579 tmp = readl(dev->mmio + S626_P_FB_BUFFER1); 1580 data[n - 1] = s626_ai_reg_to_uint(tmp); 1581 } 1582 1583 return n; 1584} 1585 1586static int s626_ai_load_polllist(u8 *ppl, struct comedi_cmd *cmd) 1587{ 1588 int n; 1589 1590 for (n = 0; n < cmd->chanlist_len; n++) { 1591 if (CR_RANGE(cmd->chanlist[n]) == 0) 1592 ppl[n] = CR_CHAN(cmd->chanlist[n]) | S626_RANGE_5V; 1593 else 1594 ppl[n] = CR_CHAN(cmd->chanlist[n]) | S626_RANGE_10V; 1595 } 1596 if (n != 0) 1597 ppl[n - 1] |= S626_EOPL; 1598 1599 return n; 1600} 1601 1602static int s626_ai_inttrig(struct comedi_device *dev, 1603 struct comedi_subdevice *s, 1604 unsigned int trig_num) 1605{ 1606 struct comedi_cmd *cmd = &s->async->cmd; 1607 1608 if (trig_num != cmd->start_arg) 1609 return -EINVAL; 1610 1611 /* Start executing the RPS program */ 1612 s626_mc_enable(dev, S626_MC1_ERPS1, S626_P_MC1); 1613 1614 s->async->inttrig = NULL; 1615 1616 return 1; 1617} 1618 1619/* 1620 * This function doesn't require a particular form, this is just what 1621 * happens to be used in some of the drivers. It should convert ns 1622 * nanoseconds to a counter value suitable for programming the device. 1623 * Also, it should adjust ns so that it cooresponds to the actual time 1624 * that the device will use. 1625 */ 1626static int s626_ns_to_timer(unsigned int *nanosec, unsigned int flags) 1627{ 1628 int divider, base; 1629 1630 base = 500; /* 2MHz internal clock */ 1631 1632 switch (flags & CMDF_ROUND_MASK) { 1633 case CMDF_ROUND_NEAREST: 1634 default: 1635 divider = DIV_ROUND_CLOSEST(*nanosec, base); 1636 break; 1637 case CMDF_ROUND_DOWN: 1638 divider = (*nanosec) / base; 1639 break; 1640 case CMDF_ROUND_UP: 1641 divider = DIV_ROUND_UP(*nanosec, base); 1642 break; 1643 } 1644 1645 *nanosec = base * divider; 1646 return divider - 1; 1647} 1648 1649static void s626_timer_load(struct comedi_device *dev, 1650 unsigned int chan, int tick) 1651{ 1652 u16 setup = 1653 /* Preload upon index. */ 1654 S626_SET_STD_LOADSRC(S626_LOADSRC_INDX) | 1655 /* Disable hardware index. */ 1656 S626_SET_STD_INDXSRC(S626_INDXSRC_SOFT) | 1657 /* Operating mode is Timer. */ 1658 S626_SET_STD_ENCMODE(S626_ENCMODE_TIMER) | 1659 /* Count direction is Down. */ 1660 S626_SET_STD_CLKPOL(S626_CNTDIR_DOWN) | 1661 /* Clock multiplier is 1x. */ 1662 S626_SET_STD_CLKMULT(S626_CLKMULT_1X) | 1663 /* Enabled by index */ 1664 S626_SET_STD_CLKENAB(S626_CLKENAB_INDEX); 1665 u16 value_latchsrc = S626_LATCHSRC_A_INDXA; 1666 /* uint16_t enab = S626_CLKENAB_ALWAYS; */ 1667 1668 s626_set_mode(dev, chan, setup, false); 1669 1670 /* Set the preload register */ 1671 s626_preload(dev, chan, tick); 1672 1673 /* 1674 * Software index pulse forces the preload register to load 1675 * into the counter 1676 */ 1677 s626_set_load_trig(dev, chan, 0); 1678 s626_pulse_index(dev, chan); 1679 1680 /* set reload on counter overflow */ 1681 s626_set_load_trig(dev, chan, 1); 1682 1683 /* set interrupt on overflow */ 1684 s626_set_int_src(dev, chan, S626_INTSRC_OVER); 1685 1686 s626_set_latch_source(dev, chan, value_latchsrc); 1687 /* s626_set_enable(dev, chan, (uint16_t)(enab != 0)); */ 1688} 1689 1690/* TO COMPLETE */ 1691static int s626_ai_cmd(struct comedi_device *dev, struct comedi_subdevice *s) 1692{ 1693 struct s626_private *devpriv = dev->private; 1694 u8 ppl[16]; 1695 struct comedi_cmd *cmd = &s->async->cmd; 1696 int tick; 1697 1698 if (devpriv->ai_cmd_running) { 1699 dev_err(dev->class_dev, 1700 "%s: Another ai_cmd is running\n", __func__); 1701 return -EBUSY; 1702 } 1703 /* disable interrupt */ 1704 writel(0, dev->mmio + S626_P_IER); 1705 1706 /* clear interrupt request */ 1707 writel(S626_IRQ_RPS1 | S626_IRQ_GPIO3, dev->mmio + S626_P_ISR); 1708 1709 /* clear any pending interrupt */ 1710 s626_dio_clear_irq(dev); 1711 /* s626_enc_clear_irq(dev); */ 1712 1713 /* reset ai_cmd_running flag */ 1714 devpriv->ai_cmd_running = 0; 1715 1716 s626_ai_load_polllist(ppl, cmd); 1717 devpriv->ai_cmd_running = 1; 1718 devpriv->ai_convert_count = 0; 1719 1720 switch (cmd->scan_begin_src) { 1721 case TRIG_FOLLOW: 1722 break; 1723 case TRIG_TIMER: 1724 /* 1725 * set a counter to generate adc trigger at scan_begin_arg 1726 * interval 1727 */ 1728 tick = s626_ns_to_timer(&cmd->scan_begin_arg, cmd->flags); 1729 1730 /* load timer value and enable interrupt */ 1731 s626_timer_load(dev, 5, tick); 1732 s626_set_enable(dev, 5, S626_CLKENAB_ALWAYS); 1733 break; 1734 case TRIG_EXT: 1735 /* set the digital line and interrupt for scan trigger */ 1736 if (cmd->start_src != TRIG_EXT) 1737 s626_dio_set_irq(dev, cmd->scan_begin_arg); 1738 break; 1739 } 1740 1741 switch (cmd->convert_src) { 1742 case TRIG_NOW: 1743 break; 1744 case TRIG_TIMER: 1745 /* 1746 * set a counter to generate adc trigger at convert_arg 1747 * interval 1748 */ 1749 tick = s626_ns_to_timer(&cmd->convert_arg, cmd->flags); 1750 1751 /* load timer value and enable interrupt */ 1752 s626_timer_load(dev, 4, tick); 1753 s626_set_enable(dev, 4, S626_CLKENAB_INDEX); 1754 break; 1755 case TRIG_EXT: 1756 /* set the digital line and interrupt for convert trigger */ 1757 if (cmd->scan_begin_src != TRIG_EXT && 1758 cmd->start_src == TRIG_EXT) 1759 s626_dio_set_irq(dev, cmd->convert_arg); 1760 break; 1761 } 1762 1763 s626_reset_adc(dev, ppl); 1764 1765 switch (cmd->start_src) { 1766 case TRIG_NOW: 1767 /* Trigger ADC scan loop start */ 1768 /* s626_mc_enable(dev, S626_MC2_ADC_RPS, S626_P_MC2); */ 1769 1770 /* Start executing the RPS program */ 1771 s626_mc_enable(dev, S626_MC1_ERPS1, S626_P_MC1); 1772 s->async->inttrig = NULL; 1773 break; 1774 case TRIG_EXT: 1775 /* configure DIO channel for acquisition trigger */ 1776 s626_dio_set_irq(dev, cmd->start_arg); 1777 s->async->inttrig = NULL; 1778 break; 1779 case TRIG_INT: 1780 s->async->inttrig = s626_ai_inttrig; 1781 break; 1782 } 1783 1784 /* enable interrupt */ 1785 writel(S626_IRQ_GPIO3 | S626_IRQ_RPS1, dev->mmio + S626_P_IER); 1786 1787 return 0; 1788} 1789 1790static int s626_ai_cmdtest(struct comedi_device *dev, 1791 struct comedi_subdevice *s, struct comedi_cmd *cmd) 1792{ 1793 int err = 0; 1794 unsigned int arg; 1795 1796 /* Step 1 : check if triggers are trivially valid */ 1797 1798 err |= comedi_check_trigger_src(&cmd->start_src, 1799 TRIG_NOW | TRIG_INT | TRIG_EXT); 1800 err |= comedi_check_trigger_src(&cmd->scan_begin_src, 1801 TRIG_TIMER | TRIG_EXT | TRIG_FOLLOW); 1802 err |= comedi_check_trigger_src(&cmd->convert_src, 1803 TRIG_TIMER | TRIG_EXT | TRIG_NOW); 1804 err |= comedi_check_trigger_src(&cmd->scan_end_src, TRIG_COUNT); 1805 err |= comedi_check_trigger_src(&cmd->stop_src, TRIG_COUNT | TRIG_NONE); 1806 1807 if (err) 1808 return 1; 1809 1810 /* Step 2a : make sure trigger sources are unique */ 1811 1812 err |= comedi_check_trigger_is_unique(cmd->start_src); 1813 err |= comedi_check_trigger_is_unique(cmd->scan_begin_src); 1814 err |= comedi_check_trigger_is_unique(cmd->convert_src); 1815 err |= comedi_check_trigger_is_unique(cmd->stop_src); 1816 1817 /* Step 2b : and mutually compatible */ 1818 1819 if (err) 1820 return 2; 1821 1822 /* Step 3: check if arguments are trivially valid */ 1823 1824 switch (cmd->start_src) { 1825 case TRIG_NOW: 1826 case TRIG_INT: 1827 err |= comedi_check_trigger_arg_is(&cmd->start_arg, 0); 1828 break; 1829 case TRIG_EXT: 1830 err |= comedi_check_trigger_arg_max(&cmd->start_arg, 39); 1831 break; 1832 } 1833 1834 if (cmd->scan_begin_src == TRIG_EXT) 1835 err |= comedi_check_trigger_arg_max(&cmd->scan_begin_arg, 39); 1836 if (cmd->convert_src == TRIG_EXT) 1837 err |= comedi_check_trigger_arg_max(&cmd->convert_arg, 39); 1838 1839#define S626_MAX_SPEED 200000 /* in nanoseconds */ 1840#define S626_MIN_SPEED 2000000000 /* in nanoseconds */ 1841 1842 if (cmd->scan_begin_src == TRIG_TIMER) { 1843 err |= comedi_check_trigger_arg_min(&cmd->scan_begin_arg, 1844 S626_MAX_SPEED); 1845 err |= comedi_check_trigger_arg_max(&cmd->scan_begin_arg, 1846 S626_MIN_SPEED); 1847 } else { 1848 /* 1849 * external trigger 1850 * should be level/edge, hi/lo specification here 1851 * should specify multiple external triggers 1852 * err |= comedi_check_trigger_arg_max(&cmd->scan_begin_arg, 9); 1853 */ 1854 } 1855 if (cmd->convert_src == TRIG_TIMER) { 1856 err |= comedi_check_trigger_arg_min(&cmd->convert_arg, 1857 S626_MAX_SPEED); 1858 err |= comedi_check_trigger_arg_max(&cmd->convert_arg, 1859 S626_MIN_SPEED); 1860 } else { 1861 /* 1862 * external trigger - see above 1863 * err |= comedi_check_trigger_arg_max(&cmd->scan_begin_arg, 9); 1864 */ 1865 } 1866 1867 err |= comedi_check_trigger_arg_is(&cmd->scan_end_arg, 1868 cmd->chanlist_len); 1869 1870 if (cmd->stop_src == TRIG_COUNT) 1871 err |= comedi_check_trigger_arg_min(&cmd->stop_arg, 1); 1872 else /* TRIG_NONE */ 1873 err |= comedi_check_trigger_arg_is(&cmd->stop_arg, 0); 1874 1875 if (err) 1876 return 3; 1877 1878 /* step 4: fix up any arguments */ 1879 1880 if (cmd->scan_begin_src == TRIG_TIMER) { 1881 arg = cmd->scan_begin_arg; 1882 s626_ns_to_timer(&arg, cmd->flags); 1883 err |= comedi_check_trigger_arg_is(&cmd->scan_begin_arg, arg); 1884 } 1885 1886 if (cmd->convert_src == TRIG_TIMER) { 1887 arg = cmd->convert_arg; 1888 s626_ns_to_timer(&arg, cmd->flags); 1889 err |= comedi_check_trigger_arg_is(&cmd->convert_arg, arg); 1890 1891 if (cmd->scan_begin_src == TRIG_TIMER) { 1892 arg = cmd->convert_arg * cmd->scan_end_arg; 1893 err |= comedi_check_trigger_arg_min( 1894 &cmd->scan_begin_arg, arg); 1895 } 1896 } 1897 1898 if (err) 1899 return 4; 1900 1901 return 0; 1902} 1903 1904static int s626_ai_cancel(struct comedi_device *dev, struct comedi_subdevice *s) 1905{ 1906 struct s626_private *devpriv = dev->private; 1907 1908 /* Stop RPS program in case it is currently running */ 1909 s626_mc_disable(dev, S626_MC1_ERPS1, S626_P_MC1); 1910 1911 /* disable master interrupt */ 1912 writel(0, dev->mmio + S626_P_IER); 1913 1914 devpriv->ai_cmd_running = 0; 1915 1916 return 0; 1917} 1918 1919static int s626_ao_insn_write(struct comedi_device *dev, 1920 struct comedi_subdevice *s, 1921 struct comedi_insn *insn, 1922 unsigned int *data) 1923{ 1924 unsigned int chan = CR_CHAN(insn->chanspec); 1925 int i; 1926 1927 for (i = 0; i < insn->n; i++) { 1928 s16 dacdata = (s16)data[i]; 1929 int ret; 1930 1931 dacdata -= (0x1fff); 1932 1933 ret = s626_set_dac(dev, chan, dacdata); 1934 if (ret) 1935 return ret; 1936 1937 s->readback[chan] = data[i]; 1938 } 1939 1940 return insn->n; 1941} 1942 1943/* *************** DIGITAL I/O FUNCTIONS *************** */ 1944 1945/* 1946 * All DIO functions address a group of DIO channels by means of 1947 * "group" argument. group may be 0, 1 or 2, which correspond to DIO 1948 * ports A, B and C, respectively. 1949 */ 1950 1951static void s626_dio_init(struct comedi_device *dev) 1952{ 1953 u16 group; 1954 1955 /* Prepare to treat writes to WRCapSel as capture disables. */ 1956 s626_debi_write(dev, S626_LP_MISC1, S626_MISC1_NOEDCAP); 1957 1958 /* For each group of sixteen channels ... */ 1959 for (group = 0; group < S626_DIO_BANKS; group++) { 1960 /* Disable all interrupts */ 1961 s626_debi_write(dev, S626_LP_WRINTSEL(group), 0); 1962 /* Disable all event captures */ 1963 s626_debi_write(dev, S626_LP_WRCAPSEL(group), 0xffff); 1964 /* Init all DIOs to default edge polarity */ 1965 s626_debi_write(dev, S626_LP_WREDGSEL(group), 0); 1966 /* Program all outputs to inactive state */ 1967 s626_debi_write(dev, S626_LP_WRDOUT(group), 0); 1968 } 1969} 1970 1971static int s626_dio_insn_bits(struct comedi_device *dev, 1972 struct comedi_subdevice *s, 1973 struct comedi_insn *insn, 1974 unsigned int *data) 1975{ 1976 unsigned long group = (unsigned long)s->private; 1977 1978 if (comedi_dio_update_state(s, data)) 1979 s626_debi_write(dev, S626_LP_WRDOUT(group), s->state); 1980 1981 data[1] = s626_debi_read(dev, S626_LP_RDDIN(group)); 1982 1983 return insn->n; 1984} 1985 1986static int s626_dio_insn_config(struct comedi_device *dev, 1987 struct comedi_subdevice *s, 1988 struct comedi_insn *insn, 1989 unsigned int *data) 1990{ 1991 unsigned long group = (unsigned long)s->private; 1992 int ret; 1993 1994 ret = comedi_dio_insn_config(dev, s, insn, data, 0); 1995 if (ret) 1996 return ret; 1997 1998 s626_debi_write(dev, S626_LP_WRDOUT(group), s->io_bits); 1999 2000 return insn->n; 2001} 2002 2003/* 2004 * Now this function initializes the value of the counter (data[0]) 2005 * and set the subdevice. To complete with trigger and interrupt 2006 * configuration. 2007 * 2008 * FIXME: data[0] is supposed to be an INSN_CONFIG_xxx constant indicating 2009 * what is being configured, but this function appears to be using data[0] 2010 * as a variable. 2011 */ 2012static int s626_enc_insn_config(struct comedi_device *dev, 2013 struct comedi_subdevice *s, 2014 struct comedi_insn *insn, unsigned int *data) 2015{ 2016 unsigned int chan = CR_CHAN(insn->chanspec); 2017 u16 setup = 2018 /* Preload upon index. */ 2019 S626_SET_STD_LOADSRC(S626_LOADSRC_INDX) | 2020 /* Disable hardware index. */ 2021 S626_SET_STD_INDXSRC(S626_INDXSRC_SOFT) | 2022 /* Operating mode is Counter. */ 2023 S626_SET_STD_ENCMODE(S626_ENCMODE_COUNTER) | 2024 /* Active high clock. */ 2025 S626_SET_STD_CLKPOL(S626_CLKPOL_POS) | 2026 /* Clock multiplier is 1x. */ 2027 S626_SET_STD_CLKMULT(S626_CLKMULT_1X) | 2028 /* Enabled by index */ 2029 S626_SET_STD_CLKENAB(S626_CLKENAB_INDEX); 2030 /* uint16_t disable_int_src = true; */ 2031 /* uint32_t Preloadvalue; //Counter initial value */ 2032 u16 value_latchsrc = S626_LATCHSRC_AB_READ; 2033 u16 enab = S626_CLKENAB_ALWAYS; 2034 2035 /* (data==NULL) ? (Preloadvalue=0) : (Preloadvalue=data[0]); */ 2036 2037 s626_set_mode(dev, chan, setup, true); 2038 s626_preload(dev, chan, data[0]); 2039 s626_pulse_index(dev, chan); 2040 s626_set_latch_source(dev, chan, value_latchsrc); 2041 s626_set_enable(dev, chan, (enab != 0)); 2042 2043 return insn->n; 2044} 2045 2046static int s626_enc_insn_read(struct comedi_device *dev, 2047 struct comedi_subdevice *s, 2048 struct comedi_insn *insn, 2049 unsigned int *data) 2050{ 2051 unsigned int chan = CR_CHAN(insn->chanspec); 2052 u16 cntr_latch_reg = S626_LP_CNTR(chan); 2053 int i; 2054 2055 for (i = 0; i < insn->n; i++) { 2056 unsigned int val; 2057 2058 /* 2059 * Read the counter's output latch LSW/MSW. 2060 * Latches on LSW read. 2061 */ 2062 val = s626_debi_read(dev, cntr_latch_reg); 2063 val |= (s626_debi_read(dev, cntr_latch_reg + 2) << 16); 2064 data[i] = val; 2065 } 2066 2067 return insn->n; 2068} 2069 2070static int s626_enc_insn_write(struct comedi_device *dev, 2071 struct comedi_subdevice *s, 2072 struct comedi_insn *insn, unsigned int *data) 2073{ 2074 unsigned int chan = CR_CHAN(insn->chanspec); 2075 2076 /* Set the preload register */ 2077 s626_preload(dev, chan, data[0]); 2078 2079 /* 2080 * Software index pulse forces the preload register to load 2081 * into the counter 2082 */ 2083 s626_set_load_trig(dev, chan, 0); 2084 s626_pulse_index(dev, chan); 2085 s626_set_load_trig(dev, chan, 2); 2086 2087 return 1; 2088} 2089 2090static void s626_write_misc2(struct comedi_device *dev, u16 new_image) 2091{ 2092 s626_debi_write(dev, S626_LP_MISC1, S626_MISC1_WENABLE); 2093 s626_debi_write(dev, S626_LP_WRMISC2, new_image); 2094 s626_debi_write(dev, S626_LP_MISC1, S626_MISC1_WDISABLE); 2095} 2096 2097static void s626_counters_init(struct comedi_device *dev) 2098{ 2099 int chan; 2100 u16 setup = 2101 /* Preload upon index. */ 2102 S626_SET_STD_LOADSRC(S626_LOADSRC_INDX) | 2103 /* Disable hardware index. */ 2104 S626_SET_STD_INDXSRC(S626_INDXSRC_SOFT) | 2105 /* Operating mode is counter. */ 2106 S626_SET_STD_ENCMODE(S626_ENCMODE_COUNTER) | 2107 /* Active high clock. */ 2108 S626_SET_STD_CLKPOL(S626_CLKPOL_POS) | 2109 /* Clock multiplier is 1x. */ 2110 S626_SET_STD_CLKMULT(S626_CLKMULT_1X) | 2111 /* Enabled by index */ 2112 S626_SET_STD_CLKENAB(S626_CLKENAB_INDEX); 2113 2114 /* 2115 * Disable all counter interrupts and clear any captured counter events. 2116 */ 2117 for (chan = 0; chan < S626_ENCODER_CHANNELS; chan++) { 2118 s626_set_mode(dev, chan, setup, true); 2119 s626_set_int_src(dev, chan, 0); 2120 s626_reset_cap_flags(dev, chan); 2121 s626_set_enable(dev, chan, S626_CLKENAB_ALWAYS); 2122 } 2123} 2124 2125static int s626_allocate_dma_buffers(struct comedi_device *dev) 2126{ 2127 struct pci_dev *pcidev = comedi_to_pci_dev(dev); 2128 struct s626_private *devpriv = dev->private; 2129 void *addr; 2130 dma_addr_t appdma; 2131 2132 addr = dma_alloc_coherent(&pcidev->dev, S626_DMABUF_SIZE, &appdma, 2133 GFP_KERNEL); 2134 if (!addr) 2135 return -ENOMEM; 2136 devpriv->ana_buf.logical_base = addr; 2137 devpriv->ana_buf.physical_base = appdma; 2138 2139 addr = dma_alloc_coherent(&pcidev->dev, S626_DMABUF_SIZE, &appdma, 2140 GFP_KERNEL); 2141 if (!addr) 2142 return -ENOMEM; 2143 devpriv->rps_buf.logical_base = addr; 2144 devpriv->rps_buf.physical_base = appdma; 2145 2146 return 0; 2147} 2148 2149static void s626_free_dma_buffers(struct comedi_device *dev) 2150{ 2151 struct pci_dev *pcidev = comedi_to_pci_dev(dev); 2152 struct s626_private *devpriv = dev->private; 2153 2154 if (!devpriv) 2155 return; 2156 2157 if (devpriv->rps_buf.logical_base) 2158 dma_free_coherent(&pcidev->dev, S626_DMABUF_SIZE, 2159 devpriv->rps_buf.logical_base, 2160 devpriv->rps_buf.physical_base); 2161 if (devpriv->ana_buf.logical_base) 2162 dma_free_coherent(&pcidev->dev, S626_DMABUF_SIZE, 2163 devpriv->ana_buf.logical_base, 2164 devpriv->ana_buf.physical_base); 2165} 2166 2167static int s626_initialize(struct comedi_device *dev) 2168{ 2169 struct s626_private *devpriv = dev->private; 2170 dma_addr_t phys_buf; 2171 u16 chan; 2172 int i; 2173 int ret; 2174 2175 /* Enable DEBI and audio pins, enable I2C interface */ 2176 s626_mc_enable(dev, S626_MC1_DEBI | S626_MC1_AUDIO | S626_MC1_I2C, 2177 S626_P_MC1); 2178 2179 /* 2180 * Configure DEBI operating mode 2181 * 2182 * Local bus is 16 bits wide 2183 * Declare DEBI transfer timeout interval 2184 * Set up byte lane steering 2185 * Intel-compatible local bus (DEBI never times out) 2186 */ 2187 writel(S626_DEBI_CFG_SLAVE16 | 2188 (S626_DEBI_TOUT << S626_DEBI_CFG_TOUT_BIT) | S626_DEBI_SWAP | 2189 S626_DEBI_CFG_INTEL, dev->mmio + S626_P_DEBICFG); 2190 2191 /* Disable MMU paging */ 2192 writel(S626_DEBI_PAGE_DISABLE, dev->mmio + S626_P_DEBIPAGE); 2193 2194 /* Init GPIO so that ADC Start* is negated */ 2195 writel(S626_GPIO_BASE | S626_GPIO1_HI, dev->mmio + S626_P_GPIO); 2196 2197 /* I2C device address for onboard eeprom (revb) */ 2198 devpriv->i2c_adrs = 0xA0; 2199 2200 /* 2201 * Issue an I2C ABORT command to halt any I2C 2202 * operation in progress and reset BUSY flag. 2203 */ 2204 writel(S626_I2C_CLKSEL | S626_I2C_ABORT, 2205 dev->mmio + S626_P_I2CSTAT); 2206 s626_mc_enable(dev, S626_MC2_UPLD_IIC, S626_P_MC2); 2207 ret = comedi_timeout(dev, NULL, NULL, s626_i2c_handshake_eoc, 0); 2208 if (ret) 2209 return ret; 2210 2211 /* 2212 * Per SAA7146 data sheet, write to STATUS 2213 * reg twice to reset all I2C error flags. 2214 */ 2215 for (i = 0; i < 2; i++) { 2216 writel(S626_I2C_CLKSEL, dev->mmio + S626_P_I2CSTAT); 2217 s626_mc_enable(dev, S626_MC2_UPLD_IIC, S626_P_MC2); 2218 ret = comedi_timeout(dev, NULL, 2219 NULL, s626_i2c_handshake_eoc, 0); 2220 if (ret) 2221 return ret; 2222 } 2223 2224 /* 2225 * Init audio interface functional attributes: set DAC/ADC 2226 * serial clock rates, invert DAC serial clock so that 2227 * DAC data setup times are satisfied, enable DAC serial 2228 * clock out. 2229 */ 2230 writel(S626_ACON2_INIT, dev->mmio + S626_P_ACON2); 2231 2232 /* 2233 * Set up TSL1 slot list, which is used to control the 2234 * accumulation of ADC data: S626_RSD1 = shift data in on SD1. 2235 * S626_SIB_A1 = store data uint8_t at next available location 2236 * in FB BUFFER1 register. 2237 */ 2238 writel(S626_RSD1 | S626_SIB_A1, dev->mmio + S626_P_TSL1); 2239 writel(S626_RSD1 | S626_SIB_A1 | S626_EOS, 2240 dev->mmio + S626_P_TSL1 + 4); 2241 2242 /* Enable TSL1 slot list so that it executes all the time */ 2243 writel(S626_ACON1_ADCSTART, dev->mmio + S626_P_ACON1); 2244 2245 /* 2246 * Initialize RPS registers used for ADC 2247 */ 2248 2249 /* Physical start of RPS program */ 2250 writel((u32)devpriv->rps_buf.physical_base, 2251 dev->mmio + S626_P_RPSADDR1); 2252 /* RPS program performs no explicit mem writes */ 2253 writel(0, dev->mmio + S626_P_RPSPAGE1); 2254 /* Disable RPS timeouts */ 2255 writel(0, dev->mmio + S626_P_RPS1_TOUT); 2256 2257#if 0 2258 /* 2259 * SAA7146 BUG WORKAROUND 2260 * 2261 * Initialize SAA7146 ADC interface to a known state by 2262 * invoking ADCs until FB BUFFER 1 register shows that it 2263 * is correctly receiving ADC data. This is necessary 2264 * because the SAA7146 ADC interface does not start up in 2265 * a defined state after a PCI reset. 2266 */ 2267 { 2268 struct comedi_subdevice *s = dev->read_subdev; 2269 u8 poll_list; 2270 u16 adc_data; 2271 u16 start_val; 2272 u16 index; 2273 unsigned int data[16]; 2274 2275 /* Create a simple polling list for analog input channel 0 */ 2276 poll_list = S626_EOPL; 2277 s626_reset_adc(dev, &poll_list); 2278 2279 /* Get initial ADC value */ 2280 s626_ai_rinsn(dev, s, NULL, data); 2281 start_val = data[0]; 2282 2283 /* 2284 * VERSION 2.01 CHANGE: TIMEOUT ADDED TO PREVENT HANGED 2285 * EXECUTION. 2286 * 2287 * Invoke ADCs until the new ADC value differs from the initial 2288 * value or a timeout occurs. The timeout protects against the 2289 * possibility that the driver is restarting and the ADC data is 2290 * a fixed value resulting from the applied ADC analog input 2291 * being unusually quiet or at the rail. 2292 */ 2293 for (index = 0; index < 500; index++) { 2294 s626_ai_rinsn(dev, s, NULL, data); 2295 adc_data = data[0]; 2296 if (adc_data != start_val) 2297 break; 2298 } 2299 } 2300#endif /* SAA7146 BUG WORKAROUND */ 2301 2302 /* 2303 * Initialize the DAC interface 2304 */ 2305 2306 /* 2307 * Init Audio2's output DMAC attributes: 2308 * burst length = 1 DWORD 2309 * threshold = 1 DWORD. 2310 */ 2311 writel(0, dev->mmio + S626_P_PCI_BT_A); 2312 2313 /* 2314 * Init Audio2's output DMA physical addresses. The protection 2315 * address is set to 1 DWORD past the base address so that a 2316 * single DWORD will be transferred each time a DMA transfer is 2317 * enabled. 2318 */ 2319 phys_buf = devpriv->ana_buf.physical_base + 2320 (S626_DAC_WDMABUF_OS * sizeof(u32)); 2321 writel((u32)phys_buf, dev->mmio + S626_P_BASEA2_OUT); 2322 writel((u32)(phys_buf + sizeof(u32)), 2323 dev->mmio + S626_P_PROTA2_OUT); 2324 2325 /* 2326 * Cache Audio2's output DMA buffer logical address. This is 2327 * where DAC data is buffered for A2 output DMA transfers. 2328 */ 2329 devpriv->dac_wbuf = (u32 *)devpriv->ana_buf.logical_base + 2330 S626_DAC_WDMABUF_OS; 2331 2332 /* 2333 * Audio2's output channels does not use paging. The 2334 * protection violation handling bit is set so that the 2335 * DMAC will automatically halt and its PCI address pointer 2336 * will be reset when the protection address is reached. 2337 */ 2338 writel(8, dev->mmio + S626_P_PAGEA2_OUT); 2339 2340 /* 2341 * Initialize time slot list 2 (TSL2), which is used to control 2342 * the clock generation for and serialization of data to be sent 2343 * to the DAC devices. Slot 0 is a NOP that is used to trap TSL 2344 * execution; this permits other slots to be safely modified 2345 * without first turning off the TSL sequencer (which is 2346 * apparently impossible to do). Also, SD3 (which is driven by a 2347 * pull-up resistor) is shifted in and stored to the MSB of 2348 * FB_BUFFER2 to be used as evidence that the slot sequence has 2349 * not yet finished executing. 2350 */ 2351 2352 /* Slot 0: Trap TSL execution, shift 0xFF into FB_BUFFER2 */ 2353 writel(S626_XSD2 | S626_RSD3 | S626_SIB_A2 | S626_EOS, 2354 dev->mmio + S626_VECTPORT(0)); 2355 2356 /* 2357 * Initialize slot 1, which is constant. Slot 1 causes a 2358 * DWORD to be transferred from audio channel 2's output FIFO 2359 * to the FIFO's output buffer so that it can be serialized 2360 * and sent to the DAC during subsequent slots. All remaining 2361 * slots are dynamically populated as required by the target 2362 * DAC device. 2363 */ 2364 2365 /* Slot 1: Fetch DWORD from Audio2's output FIFO */ 2366 writel(S626_LF_A2, dev->mmio + S626_VECTPORT(1)); 2367 2368 /* Start DAC's audio interface (TSL2) running */ 2369 writel(S626_ACON1_DACSTART, dev->mmio + S626_P_ACON1); 2370 2371 /* 2372 * Init Trim DACs to calibrated values. Do it twice because the 2373 * SAA7146 audio channel does not always reset properly and 2374 * sometimes causes the first few TrimDAC writes to malfunction. 2375 */ 2376 s626_load_trim_dacs(dev); 2377 ret = s626_load_trim_dacs(dev); 2378 if (ret) 2379 return ret; 2380 2381 /* 2382 * Manually init all gate array hardware in case this is a soft 2383 * reset (we have no way of determining whether this is a warm 2384 * or cold start). This is necessary because the gate array will 2385 * reset only in response to a PCI hard reset; there is no soft 2386 * reset function. 2387 */ 2388 2389 /* 2390 * Init all DAC outputs to 0V and init all DAC setpoint and 2391 * polarity images. 2392 */ 2393 for (chan = 0; chan < S626_DAC_CHANNELS; chan++) { 2394 ret = s626_set_dac(dev, chan, 0); 2395 if (ret) 2396 return ret; 2397 } 2398 2399 /* Init counters */ 2400 s626_counters_init(dev); 2401 2402 /* 2403 * Without modifying the state of the Battery Backup enab, disable 2404 * the watchdog timer, set DIO channels 0-5 to operate in the 2405 * standard DIO (vs. counter overflow) mode, disable the battery 2406 * charger, and reset the watchdog interval selector to zero. 2407 */ 2408 s626_write_misc2(dev, (s626_debi_read(dev, S626_LP_RDMISC2) & 2409 S626_MISC2_BATT_ENABLE)); 2410 2411 /* Initialize the digital I/O subsystem */ 2412 s626_dio_init(dev); 2413 2414 return 0; 2415} 2416 2417static int s626_auto_attach(struct comedi_device *dev, 2418 unsigned long context_unused) 2419{ 2420 struct pci_dev *pcidev = comedi_to_pci_dev(dev); 2421 struct s626_private *devpriv; 2422 struct comedi_subdevice *s; 2423 int ret; 2424 2425 devpriv = comedi_alloc_devpriv(dev, sizeof(*devpriv)); 2426 if (!devpriv) 2427 return -ENOMEM; 2428 2429 ret = comedi_pci_enable(dev); 2430 if (ret) 2431 return ret; 2432 2433 dev->mmio = pci_ioremap_bar(pcidev, 0); 2434 if (!dev->mmio) 2435 return -ENOMEM; 2436 2437 /* disable master interrupt */ 2438 writel(0, dev->mmio + S626_P_IER); 2439 2440 /* soft reset */ 2441 writel(S626_MC1_SOFT_RESET, dev->mmio + S626_P_MC1); 2442 2443 /* DMA FIXME DMA// */ 2444 2445 ret = s626_allocate_dma_buffers(dev); 2446 if (ret) 2447 return ret; 2448 2449 if (pcidev->irq) { 2450 ret = request_irq(pcidev->irq, s626_irq_handler, IRQF_SHARED, 2451 dev->board_name, dev); 2452 2453 if (ret == 0) 2454 dev->irq = pcidev->irq; 2455 } 2456 2457 ret = comedi_alloc_subdevices(dev, 6); 2458 if (ret) 2459 return ret; 2460 2461 s = &dev->subdevices[0]; 2462 /* analog input subdevice */ 2463 s->type = COMEDI_SUBD_AI; 2464 s->subdev_flags = SDF_READABLE | SDF_DIFF; 2465 s->n_chan = S626_ADC_CHANNELS; 2466 s->maxdata = 0x3fff; 2467 s->range_table = &s626_range_table; 2468 s->len_chanlist = S626_ADC_CHANNELS; 2469 s->insn_read = s626_ai_insn_read; 2470 if (dev->irq) { 2471 dev->read_subdev = s; 2472 s->subdev_flags |= SDF_CMD_READ; 2473 s->do_cmd = s626_ai_cmd; 2474 s->do_cmdtest = s626_ai_cmdtest; 2475 s->cancel = s626_ai_cancel; 2476 } 2477 2478 s = &dev->subdevices[1]; 2479 /* analog output subdevice */ 2480 s->type = COMEDI_SUBD_AO; 2481 s->subdev_flags = SDF_WRITABLE | SDF_READABLE; 2482 s->n_chan = S626_DAC_CHANNELS; 2483 s->maxdata = 0x3fff; 2484 s->range_table = &range_bipolar10; 2485 s->insn_write = s626_ao_insn_write; 2486 2487 ret = comedi_alloc_subdev_readback(s); 2488 if (ret) 2489 return ret; 2490 2491 s = &dev->subdevices[2]; 2492 /* digital I/O subdevice */ 2493 s->type = COMEDI_SUBD_DIO; 2494 s->subdev_flags = SDF_WRITABLE | SDF_READABLE; 2495 s->n_chan = 16; 2496 s->maxdata = 1; 2497 s->io_bits = 0xffff; 2498 s->private = (void *)0; /* DIO group 0 */ 2499 s->range_table = &range_digital; 2500 s->insn_config = s626_dio_insn_config; 2501 s->insn_bits = s626_dio_insn_bits; 2502 2503 s = &dev->subdevices[3]; 2504 /* digital I/O subdevice */ 2505 s->type = COMEDI_SUBD_DIO; 2506 s->subdev_flags = SDF_WRITABLE | SDF_READABLE; 2507 s->n_chan = 16; 2508 s->maxdata = 1; 2509 s->io_bits = 0xffff; 2510 s->private = (void *)1; /* DIO group 1 */ 2511 s->range_table = &range_digital; 2512 s->insn_config = s626_dio_insn_config; 2513 s->insn_bits = s626_dio_insn_bits; 2514 2515 s = &dev->subdevices[4]; 2516 /* digital I/O subdevice */ 2517 s->type = COMEDI_SUBD_DIO; 2518 s->subdev_flags = SDF_WRITABLE | SDF_READABLE; 2519 s->n_chan = 16; 2520 s->maxdata = 1; 2521 s->io_bits = 0xffff; 2522 s->private = (void *)2; /* DIO group 2 */ 2523 s->range_table = &range_digital; 2524 s->insn_config = s626_dio_insn_config; 2525 s->insn_bits = s626_dio_insn_bits; 2526 2527 s = &dev->subdevices[5]; 2528 /* encoder (counter) subdevice */ 2529 s->type = COMEDI_SUBD_COUNTER; 2530 s->subdev_flags = SDF_WRITABLE | SDF_READABLE | SDF_LSAMPL; 2531 s->n_chan = S626_ENCODER_CHANNELS; 2532 s->maxdata = 0xffffff; 2533 s->range_table = &range_unknown; 2534 s->insn_config = s626_enc_insn_config; 2535 s->insn_read = s626_enc_insn_read; 2536 s->insn_write = s626_enc_insn_write; 2537 2538 return s626_initialize(dev); 2539} 2540 2541static void s626_detach(struct comedi_device *dev) 2542{ 2543 struct s626_private *devpriv = dev->private; 2544 2545 if (devpriv) { 2546 /* stop ai_command */ 2547 devpriv->ai_cmd_running = 0; 2548 2549 if (dev->mmio) { 2550 /* interrupt mask */ 2551 /* Disable master interrupt */ 2552 writel(0, dev->mmio + S626_P_IER); 2553 /* Clear board's IRQ status flag */ 2554 writel(S626_IRQ_GPIO3 | S626_IRQ_RPS1, 2555 dev->mmio + S626_P_ISR); 2556 2557 /* Disable the watchdog timer and battery charger. */ 2558 s626_write_misc2(dev, 0); 2559 2560 /* Close all interfaces on 7146 device */ 2561 writel(S626_MC1_SHUTDOWN, dev->mmio + S626_P_MC1); 2562 writel(S626_ACON1_BASE, dev->mmio + S626_P_ACON1); 2563 } 2564 } 2565 comedi_pci_detach(dev); 2566 s626_free_dma_buffers(dev); 2567} 2568 2569static struct comedi_driver s626_driver = { 2570 .driver_name = "s626", 2571 .module = THIS_MODULE, 2572 .auto_attach = s626_auto_attach, 2573 .detach = s626_detach, 2574}; 2575 2576static int s626_pci_probe(struct pci_dev *dev, 2577 const struct pci_device_id *id) 2578{ 2579 return comedi_pci_auto_config(dev, &s626_driver, id->driver_data); 2580} 2581 2582/* 2583 * For devices with vendor:device id == 0x1131:0x7146 you must specify 2584 * also subvendor:subdevice ids, because otherwise it will conflict with 2585 * Philips SAA7146 media/dvb based cards. 2586 */ 2587static const struct pci_device_id s626_pci_table[] = { 2588 { PCI_DEVICE_SUB(PCI_VENDOR_ID_PHILIPS, PCI_DEVICE_ID_PHILIPS_SAA7146, 2589 0x6000, 0x0272) }, 2590 { 0 } 2591}; 2592MODULE_DEVICE_TABLE(pci, s626_pci_table); 2593 2594static struct pci_driver s626_pci_driver = { 2595 .name = "s626", 2596 .id_table = s626_pci_table, 2597 .probe = s626_pci_probe, 2598 .remove = comedi_pci_auto_unconfig, 2599}; 2600module_comedi_pci_driver(s626_driver, s626_pci_driver); 2601 2602MODULE_AUTHOR("Gianluca Palli <gpalli@deis.unibo.it>"); 2603MODULE_DESCRIPTION("Sensoray 626 Comedi driver module"); 2604MODULE_LICENSE("GPL");