cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

cppc_cpufreq.c (26561B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 * CPPC (Collaborative Processor Performance Control) driver for
      4 * interfacing with the CPUfreq layer and governors. See
      5 * cppc_acpi.c for CPPC specific methods.
      6 *
      7 * (C) Copyright 2014, 2015 Linaro Ltd.
      8 * Author: Ashwin Chaugule <ashwin.chaugule@linaro.org>
      9 */
     10
     11#define pr_fmt(fmt)	"CPPC Cpufreq:"	fmt
     12
     13#include <linux/arch_topology.h>
     14#include <linux/kernel.h>
     15#include <linux/module.h>
     16#include <linux/delay.h>
     17#include <linux/cpu.h>
     18#include <linux/cpufreq.h>
     19#include <linux/dmi.h>
     20#include <linux/irq_work.h>
     21#include <linux/kthread.h>
     22#include <linux/time.h>
     23#include <linux/vmalloc.h>
     24#include <uapi/linux/sched/types.h>
     25
     26#include <asm/unaligned.h>
     27
     28#include <acpi/cppc_acpi.h>
     29
     30/* Minimum struct length needed for the DMI processor entry we want */
     31#define DMI_ENTRY_PROCESSOR_MIN_LENGTH	48
     32
     33/* Offset in the DMI processor structure for the max frequency */
     34#define DMI_PROCESSOR_MAX_SPEED		0x14
     35
     36/*
     37 * This list contains information parsed from per CPU ACPI _CPC and _PSD
     38 * structures: e.g. the highest and lowest supported performance, capabilities,
     39 * desired performance, level requested etc. Depending on the share_type, not
     40 * all CPUs will have an entry in the list.
     41 */
     42static LIST_HEAD(cpu_data_list);
     43
     44static bool boost_supported;
     45
     46struct cppc_workaround_oem_info {
     47	char oem_id[ACPI_OEM_ID_SIZE + 1];
     48	char oem_table_id[ACPI_OEM_TABLE_ID_SIZE + 1];
     49	u32 oem_revision;
     50};
     51
     52static struct cppc_workaround_oem_info wa_info[] = {
     53	{
     54		.oem_id		= "HISI  ",
     55		.oem_table_id	= "HIP07   ",
     56		.oem_revision	= 0,
     57	}, {
     58		.oem_id		= "HISI  ",
     59		.oem_table_id	= "HIP08   ",
     60		.oem_revision	= 0,
     61	}
     62};
     63
     64static struct cpufreq_driver cppc_cpufreq_driver;
     65
     66#ifdef CONFIG_ACPI_CPPC_CPUFREQ_FIE
     67
     68/* Frequency invariance support */
     69struct cppc_freq_invariance {
     70	int cpu;
     71	struct irq_work irq_work;
     72	struct kthread_work work;
     73	struct cppc_perf_fb_ctrs prev_perf_fb_ctrs;
     74	struct cppc_cpudata *cpu_data;
     75};
     76
     77static DEFINE_PER_CPU(struct cppc_freq_invariance, cppc_freq_inv);
     78static struct kthread_worker *kworker_fie;
     79
     80static unsigned int hisi_cppc_cpufreq_get_rate(unsigned int cpu);
     81static int cppc_perf_from_fbctrs(struct cppc_cpudata *cpu_data,
     82				 struct cppc_perf_fb_ctrs *fb_ctrs_t0,
     83				 struct cppc_perf_fb_ctrs *fb_ctrs_t1);
     84
     85/**
     86 * cppc_scale_freq_workfn - CPPC arch_freq_scale updater for frequency invariance
     87 * @work: The work item.
     88 *
     89 * The CPPC driver register itself with the topology core to provide its own
     90 * implementation (cppc_scale_freq_tick()) of topology_scale_freq_tick() which
     91 * gets called by the scheduler on every tick.
     92 *
     93 * Note that the arch specific counters have higher priority than CPPC counters,
     94 * if available, though the CPPC driver doesn't need to have any special
     95 * handling for that.
     96 *
     97 * On an invocation of cppc_scale_freq_tick(), we schedule an irq work (since we
     98 * reach here from hard-irq context), which then schedules a normal work item
     99 * and cppc_scale_freq_workfn() updates the per_cpu arch_freq_scale variable
    100 * based on the counter updates since the last tick.
    101 */
    102static void cppc_scale_freq_workfn(struct kthread_work *work)
    103{
    104	struct cppc_freq_invariance *cppc_fi;
    105	struct cppc_perf_fb_ctrs fb_ctrs = {0};
    106	struct cppc_cpudata *cpu_data;
    107	unsigned long local_freq_scale;
    108	u64 perf;
    109
    110	cppc_fi = container_of(work, struct cppc_freq_invariance, work);
    111	cpu_data = cppc_fi->cpu_data;
    112
    113	if (cppc_get_perf_ctrs(cppc_fi->cpu, &fb_ctrs)) {
    114		pr_warn("%s: failed to read perf counters\n", __func__);
    115		return;
    116	}
    117
    118	perf = cppc_perf_from_fbctrs(cpu_data, &cppc_fi->prev_perf_fb_ctrs,
    119				     &fb_ctrs);
    120	cppc_fi->prev_perf_fb_ctrs = fb_ctrs;
    121
    122	perf <<= SCHED_CAPACITY_SHIFT;
    123	local_freq_scale = div64_u64(perf, cpu_data->perf_caps.highest_perf);
    124
    125	/* This can happen due to counter's overflow */
    126	if (unlikely(local_freq_scale > 1024))
    127		local_freq_scale = 1024;
    128
    129	per_cpu(arch_freq_scale, cppc_fi->cpu) = local_freq_scale;
    130}
    131
    132static void cppc_irq_work(struct irq_work *irq_work)
    133{
    134	struct cppc_freq_invariance *cppc_fi;
    135
    136	cppc_fi = container_of(irq_work, struct cppc_freq_invariance, irq_work);
    137	kthread_queue_work(kworker_fie, &cppc_fi->work);
    138}
    139
    140static void cppc_scale_freq_tick(void)
    141{
    142	struct cppc_freq_invariance *cppc_fi = &per_cpu(cppc_freq_inv, smp_processor_id());
    143
    144	/*
    145	 * cppc_get_perf_ctrs() can potentially sleep, call that from the right
    146	 * context.
    147	 */
    148	irq_work_queue(&cppc_fi->irq_work);
    149}
    150
    151static struct scale_freq_data cppc_sftd = {
    152	.source = SCALE_FREQ_SOURCE_CPPC,
    153	.set_freq_scale = cppc_scale_freq_tick,
    154};
    155
    156static void cppc_cpufreq_cpu_fie_init(struct cpufreq_policy *policy)
    157{
    158	struct cppc_freq_invariance *cppc_fi;
    159	int cpu, ret;
    160
    161	if (cppc_cpufreq_driver.get == hisi_cppc_cpufreq_get_rate)
    162		return;
    163
    164	for_each_cpu(cpu, policy->cpus) {
    165		cppc_fi = &per_cpu(cppc_freq_inv, cpu);
    166		cppc_fi->cpu = cpu;
    167		cppc_fi->cpu_data = policy->driver_data;
    168		kthread_init_work(&cppc_fi->work, cppc_scale_freq_workfn);
    169		init_irq_work(&cppc_fi->irq_work, cppc_irq_work);
    170
    171		ret = cppc_get_perf_ctrs(cpu, &cppc_fi->prev_perf_fb_ctrs);
    172		if (ret) {
    173			pr_warn("%s: failed to read perf counters for cpu:%d: %d\n",
    174				__func__, cpu, ret);
    175
    176			/*
    177			 * Don't abort if the CPU was offline while the driver
    178			 * was getting registered.
    179			 */
    180			if (cpu_online(cpu))
    181				return;
    182		}
    183	}
    184
    185	/* Register for freq-invariance */
    186	topology_set_scale_freq_source(&cppc_sftd, policy->cpus);
    187}
    188
    189/*
    190 * We free all the resources on policy's removal and not on CPU removal as the
    191 * irq-work are per-cpu and the hotplug core takes care of flushing the pending
    192 * irq-works (hint: smpcfd_dying_cpu()) on CPU hotplug. Even if the kthread-work
    193 * fires on another CPU after the concerned CPU is removed, it won't harm.
    194 *
    195 * We just need to make sure to remove them all on policy->exit().
    196 */
    197static void cppc_cpufreq_cpu_fie_exit(struct cpufreq_policy *policy)
    198{
    199	struct cppc_freq_invariance *cppc_fi;
    200	int cpu;
    201
    202	if (cppc_cpufreq_driver.get == hisi_cppc_cpufreq_get_rate)
    203		return;
    204
    205	/* policy->cpus will be empty here, use related_cpus instead */
    206	topology_clear_scale_freq_source(SCALE_FREQ_SOURCE_CPPC, policy->related_cpus);
    207
    208	for_each_cpu(cpu, policy->related_cpus) {
    209		cppc_fi = &per_cpu(cppc_freq_inv, cpu);
    210		irq_work_sync(&cppc_fi->irq_work);
    211		kthread_cancel_work_sync(&cppc_fi->work);
    212	}
    213}
    214
    215static void __init cppc_freq_invariance_init(void)
    216{
    217	struct sched_attr attr = {
    218		.size		= sizeof(struct sched_attr),
    219		.sched_policy	= SCHED_DEADLINE,
    220		.sched_nice	= 0,
    221		.sched_priority	= 0,
    222		/*
    223		 * Fake (unused) bandwidth; workaround to "fix"
    224		 * priority inheritance.
    225		 */
    226		.sched_runtime	= 1000000,
    227		.sched_deadline = 10000000,
    228		.sched_period	= 10000000,
    229	};
    230	int ret;
    231
    232	if (cppc_cpufreq_driver.get == hisi_cppc_cpufreq_get_rate)
    233		return;
    234
    235	kworker_fie = kthread_create_worker(0, "cppc_fie");
    236	if (IS_ERR(kworker_fie))
    237		return;
    238
    239	ret = sched_setattr_nocheck(kworker_fie->task, &attr);
    240	if (ret) {
    241		pr_warn("%s: failed to set SCHED_DEADLINE: %d\n", __func__,
    242			ret);
    243		kthread_destroy_worker(kworker_fie);
    244		return;
    245	}
    246}
    247
    248static void cppc_freq_invariance_exit(void)
    249{
    250	if (cppc_cpufreq_driver.get == hisi_cppc_cpufreq_get_rate)
    251		return;
    252
    253	kthread_destroy_worker(kworker_fie);
    254	kworker_fie = NULL;
    255}
    256
    257#else
    258static inline void cppc_cpufreq_cpu_fie_init(struct cpufreq_policy *policy)
    259{
    260}
    261
    262static inline void cppc_cpufreq_cpu_fie_exit(struct cpufreq_policy *policy)
    263{
    264}
    265
    266static inline void cppc_freq_invariance_init(void)
    267{
    268}
    269
    270static inline void cppc_freq_invariance_exit(void)
    271{
    272}
    273#endif /* CONFIG_ACPI_CPPC_CPUFREQ_FIE */
    274
    275/* Callback function used to retrieve the max frequency from DMI */
    276static void cppc_find_dmi_mhz(const struct dmi_header *dm, void *private)
    277{
    278	const u8 *dmi_data = (const u8 *)dm;
    279	u16 *mhz = (u16 *)private;
    280
    281	if (dm->type == DMI_ENTRY_PROCESSOR &&
    282	    dm->length >= DMI_ENTRY_PROCESSOR_MIN_LENGTH) {
    283		u16 val = (u16)get_unaligned((const u16 *)
    284				(dmi_data + DMI_PROCESSOR_MAX_SPEED));
    285		*mhz = val > *mhz ? val : *mhz;
    286	}
    287}
    288
    289/* Look up the max frequency in DMI */
    290static u64 cppc_get_dmi_max_khz(void)
    291{
    292	u16 mhz = 0;
    293
    294	dmi_walk(cppc_find_dmi_mhz, &mhz);
    295
    296	/*
    297	 * Real stupid fallback value, just in case there is no
    298	 * actual value set.
    299	 */
    300	mhz = mhz ? mhz : 1;
    301
    302	return (1000 * mhz);
    303}
    304
    305/*
    306 * If CPPC lowest_freq and nominal_freq registers are exposed then we can
    307 * use them to convert perf to freq and vice versa. The conversion is
    308 * extrapolated as an affine function passing by the 2 points:
    309 *  - (Low perf, Low freq)
    310 *  - (Nominal perf, Nominal perf)
    311 */
    312static unsigned int cppc_cpufreq_perf_to_khz(struct cppc_cpudata *cpu_data,
    313					     unsigned int perf)
    314{
    315	struct cppc_perf_caps *caps = &cpu_data->perf_caps;
    316	s64 retval, offset = 0;
    317	static u64 max_khz;
    318	u64 mul, div;
    319
    320	if (caps->lowest_freq && caps->nominal_freq) {
    321		mul = caps->nominal_freq - caps->lowest_freq;
    322		div = caps->nominal_perf - caps->lowest_perf;
    323		offset = caps->nominal_freq - div64_u64(caps->nominal_perf * mul, div);
    324	} else {
    325		if (!max_khz)
    326			max_khz = cppc_get_dmi_max_khz();
    327		mul = max_khz;
    328		div = caps->highest_perf;
    329	}
    330
    331	retval = offset + div64_u64(perf * mul, div);
    332	if (retval >= 0)
    333		return retval;
    334	return 0;
    335}
    336
    337static unsigned int cppc_cpufreq_khz_to_perf(struct cppc_cpudata *cpu_data,
    338					     unsigned int freq)
    339{
    340	struct cppc_perf_caps *caps = &cpu_data->perf_caps;
    341	s64 retval, offset = 0;
    342	static u64 max_khz;
    343	u64  mul, div;
    344
    345	if (caps->lowest_freq && caps->nominal_freq) {
    346		mul = caps->nominal_perf - caps->lowest_perf;
    347		div = caps->nominal_freq - caps->lowest_freq;
    348		offset = caps->nominal_perf - div64_u64(caps->nominal_freq * mul, div);
    349	} else {
    350		if (!max_khz)
    351			max_khz = cppc_get_dmi_max_khz();
    352		mul = caps->highest_perf;
    353		div = max_khz;
    354	}
    355
    356	retval = offset + div64_u64(freq * mul, div);
    357	if (retval >= 0)
    358		return retval;
    359	return 0;
    360}
    361
    362static int cppc_cpufreq_set_target(struct cpufreq_policy *policy,
    363				   unsigned int target_freq,
    364				   unsigned int relation)
    365
    366{
    367	struct cppc_cpudata *cpu_data = policy->driver_data;
    368	unsigned int cpu = policy->cpu;
    369	struct cpufreq_freqs freqs;
    370	u32 desired_perf;
    371	int ret = 0;
    372
    373	desired_perf = cppc_cpufreq_khz_to_perf(cpu_data, target_freq);
    374	/* Return if it is exactly the same perf */
    375	if (desired_perf == cpu_data->perf_ctrls.desired_perf)
    376		return ret;
    377
    378	cpu_data->perf_ctrls.desired_perf = desired_perf;
    379	freqs.old = policy->cur;
    380	freqs.new = target_freq;
    381
    382	cpufreq_freq_transition_begin(policy, &freqs);
    383	ret = cppc_set_perf(cpu, &cpu_data->perf_ctrls);
    384	cpufreq_freq_transition_end(policy, &freqs, ret != 0);
    385
    386	if (ret)
    387		pr_debug("Failed to set target on CPU:%d. ret:%d\n",
    388			 cpu, ret);
    389
    390	return ret;
    391}
    392
    393static unsigned int cppc_cpufreq_fast_switch(struct cpufreq_policy *policy,
    394					      unsigned int target_freq)
    395{
    396	struct cppc_cpudata *cpu_data = policy->driver_data;
    397	unsigned int cpu = policy->cpu;
    398	u32 desired_perf;
    399	int ret;
    400
    401	desired_perf = cppc_cpufreq_khz_to_perf(cpu_data, target_freq);
    402	cpu_data->perf_ctrls.desired_perf = desired_perf;
    403	ret = cppc_set_perf(cpu, &cpu_data->perf_ctrls);
    404
    405	if (ret) {
    406		pr_debug("Failed to set target on CPU:%d. ret:%d\n",
    407			 cpu, ret);
    408		return 0;
    409	}
    410
    411	return target_freq;
    412}
    413
    414static int cppc_verify_policy(struct cpufreq_policy_data *policy)
    415{
    416	cpufreq_verify_within_cpu_limits(policy);
    417	return 0;
    418}
    419
    420/*
    421 * The PCC subspace describes the rate at which platform can accept commands
    422 * on the shared PCC channel (including READs which do not count towards freq
    423 * transition requests), so ideally we need to use the PCC values as a fallback
    424 * if we don't have a platform specific transition_delay_us
    425 */
    426#ifdef CONFIG_ARM64
    427#include <asm/cputype.h>
    428
    429static unsigned int cppc_cpufreq_get_transition_delay_us(unsigned int cpu)
    430{
    431	unsigned long implementor = read_cpuid_implementor();
    432	unsigned long part_num = read_cpuid_part_number();
    433
    434	switch (implementor) {
    435	case ARM_CPU_IMP_QCOM:
    436		switch (part_num) {
    437		case QCOM_CPU_PART_FALKOR_V1:
    438		case QCOM_CPU_PART_FALKOR:
    439			return 10000;
    440		}
    441	}
    442	return cppc_get_transition_latency(cpu) / NSEC_PER_USEC;
    443}
    444#else
    445static unsigned int cppc_cpufreq_get_transition_delay_us(unsigned int cpu)
    446{
    447	return cppc_get_transition_latency(cpu) / NSEC_PER_USEC;
    448}
    449#endif
    450
    451#if defined(CONFIG_ARM64) && defined(CONFIG_ENERGY_MODEL)
    452
    453static DEFINE_PER_CPU(unsigned int, efficiency_class);
    454static void cppc_cpufreq_register_em(struct cpufreq_policy *policy);
    455
    456/* Create an artificial performance state every CPPC_EM_CAP_STEP capacity unit. */
    457#define CPPC_EM_CAP_STEP	(20)
    458/* Increase the cost value by CPPC_EM_COST_STEP every performance state. */
    459#define CPPC_EM_COST_STEP	(1)
    460/* Add a cost gap correspnding to the energy of 4 CPUs. */
    461#define CPPC_EM_COST_GAP	(4 * SCHED_CAPACITY_SCALE * CPPC_EM_COST_STEP \
    462				/ CPPC_EM_CAP_STEP)
    463
    464static unsigned int get_perf_level_count(struct cpufreq_policy *policy)
    465{
    466	struct cppc_perf_caps *perf_caps;
    467	unsigned int min_cap, max_cap;
    468	struct cppc_cpudata *cpu_data;
    469	int cpu = policy->cpu;
    470
    471	cpu_data = policy->driver_data;
    472	perf_caps = &cpu_data->perf_caps;
    473	max_cap = arch_scale_cpu_capacity(cpu);
    474	min_cap = div_u64(max_cap * perf_caps->lowest_perf, perf_caps->highest_perf);
    475	if ((min_cap == 0) || (max_cap < min_cap))
    476		return 0;
    477	return 1 + max_cap / CPPC_EM_CAP_STEP - min_cap / CPPC_EM_CAP_STEP;
    478}
    479
    480/*
    481 * The cost is defined as:
    482 *   cost = power * max_frequency / frequency
    483 */
    484static inline unsigned long compute_cost(int cpu, int step)
    485{
    486	return CPPC_EM_COST_GAP * per_cpu(efficiency_class, cpu) +
    487			step * CPPC_EM_COST_STEP;
    488}
    489
    490static int cppc_get_cpu_power(struct device *cpu_dev,
    491		unsigned long *power, unsigned long *KHz)
    492{
    493	unsigned long perf_step, perf_prev, perf, perf_check;
    494	unsigned int min_step, max_step, step, step_check;
    495	unsigned long prev_freq = *KHz;
    496	unsigned int min_cap, max_cap;
    497	struct cpufreq_policy *policy;
    498
    499	struct cppc_perf_caps *perf_caps;
    500	struct cppc_cpudata *cpu_data;
    501
    502	policy = cpufreq_cpu_get_raw(cpu_dev->id);
    503	cpu_data = policy->driver_data;
    504	perf_caps = &cpu_data->perf_caps;
    505	max_cap = arch_scale_cpu_capacity(cpu_dev->id);
    506	min_cap = div_u64(max_cap * perf_caps->lowest_perf,
    507			perf_caps->highest_perf);
    508
    509	perf_step = CPPC_EM_CAP_STEP * perf_caps->highest_perf / max_cap;
    510	min_step = min_cap / CPPC_EM_CAP_STEP;
    511	max_step = max_cap / CPPC_EM_CAP_STEP;
    512
    513	perf_prev = cppc_cpufreq_khz_to_perf(cpu_data, *KHz);
    514	step = perf_prev / perf_step;
    515
    516	if (step > max_step)
    517		return -EINVAL;
    518
    519	if (min_step == max_step) {
    520		step = max_step;
    521		perf = perf_caps->highest_perf;
    522	} else if (step < min_step) {
    523		step = min_step;
    524		perf = perf_caps->lowest_perf;
    525	} else {
    526		step++;
    527		if (step == max_step)
    528			perf = perf_caps->highest_perf;
    529		else
    530			perf = step * perf_step;
    531	}
    532
    533	*KHz = cppc_cpufreq_perf_to_khz(cpu_data, perf);
    534	perf_check = cppc_cpufreq_khz_to_perf(cpu_data, *KHz);
    535	step_check = perf_check / perf_step;
    536
    537	/*
    538	 * To avoid bad integer approximation, check that new frequency value
    539	 * increased and that the new frequency will be converted to the
    540	 * desired step value.
    541	 */
    542	while ((*KHz == prev_freq) || (step_check != step)) {
    543		perf++;
    544		*KHz = cppc_cpufreq_perf_to_khz(cpu_data, perf);
    545		perf_check = cppc_cpufreq_khz_to_perf(cpu_data, *KHz);
    546		step_check = perf_check / perf_step;
    547	}
    548
    549	/*
    550	 * With an artificial EM, only the cost value is used. Still the power
    551	 * is populated such as 0 < power < EM_MAX_POWER. This allows to add
    552	 * more sense to the artificial performance states.
    553	 */
    554	*power = compute_cost(cpu_dev->id, step);
    555
    556	return 0;
    557}
    558
    559static int cppc_get_cpu_cost(struct device *cpu_dev, unsigned long KHz,
    560		unsigned long *cost)
    561{
    562	unsigned long perf_step, perf_prev;
    563	struct cppc_perf_caps *perf_caps;
    564	struct cpufreq_policy *policy;
    565	struct cppc_cpudata *cpu_data;
    566	unsigned int max_cap;
    567	int step;
    568
    569	policy = cpufreq_cpu_get_raw(cpu_dev->id);
    570	cpu_data = policy->driver_data;
    571	perf_caps = &cpu_data->perf_caps;
    572	max_cap = arch_scale_cpu_capacity(cpu_dev->id);
    573
    574	perf_prev = cppc_cpufreq_khz_to_perf(cpu_data, KHz);
    575	perf_step = CPPC_EM_CAP_STEP * perf_caps->highest_perf / max_cap;
    576	step = perf_prev / perf_step;
    577
    578	*cost = compute_cost(cpu_dev->id, step);
    579
    580	return 0;
    581}
    582
    583static int populate_efficiency_class(void)
    584{
    585	struct acpi_madt_generic_interrupt *gicc;
    586	DECLARE_BITMAP(used_classes, 256) = {};
    587	int class, cpu, index;
    588
    589	for_each_possible_cpu(cpu) {
    590		gicc = acpi_cpu_get_madt_gicc(cpu);
    591		class = gicc->efficiency_class;
    592		bitmap_set(used_classes, class, 1);
    593	}
    594
    595	if (bitmap_weight(used_classes, 256) <= 1) {
    596		pr_debug("Efficiency classes are all equal (=%d). "
    597			"No EM registered", class);
    598		return -EINVAL;
    599	}
    600
    601	/*
    602	 * Squeeze efficiency class values on [0:#efficiency_class-1].
    603	 * Values are per spec in [0:255].
    604	 */
    605	index = 0;
    606	for_each_set_bit(class, used_classes, 256) {
    607		for_each_possible_cpu(cpu) {
    608			gicc = acpi_cpu_get_madt_gicc(cpu);
    609			if (gicc->efficiency_class == class)
    610				per_cpu(efficiency_class, cpu) = index;
    611		}
    612		index++;
    613	}
    614	cppc_cpufreq_driver.register_em = cppc_cpufreq_register_em;
    615
    616	return 0;
    617}
    618
    619static void cppc_cpufreq_register_em(struct cpufreq_policy *policy)
    620{
    621	struct cppc_cpudata *cpu_data;
    622	struct em_data_callback em_cb =
    623		EM_ADV_DATA_CB(cppc_get_cpu_power, cppc_get_cpu_cost);
    624
    625	cpu_data = policy->driver_data;
    626	em_dev_register_perf_domain(get_cpu_device(policy->cpu),
    627			get_perf_level_count(policy), &em_cb,
    628			cpu_data->shared_cpu_map, 0);
    629}
    630
    631#else
    632static int populate_efficiency_class(void)
    633{
    634	return 0;
    635}
    636#endif
    637
    638static struct cppc_cpudata *cppc_cpufreq_get_cpu_data(unsigned int cpu)
    639{
    640	struct cppc_cpudata *cpu_data;
    641	int ret;
    642
    643	cpu_data = kzalloc(sizeof(struct cppc_cpudata), GFP_KERNEL);
    644	if (!cpu_data)
    645		goto out;
    646
    647	if (!zalloc_cpumask_var(&cpu_data->shared_cpu_map, GFP_KERNEL))
    648		goto free_cpu;
    649
    650	ret = acpi_get_psd_map(cpu, cpu_data);
    651	if (ret) {
    652		pr_debug("Err parsing CPU%d PSD data: ret:%d\n", cpu, ret);
    653		goto free_mask;
    654	}
    655
    656	ret = cppc_get_perf_caps(cpu, &cpu_data->perf_caps);
    657	if (ret) {
    658		pr_debug("Err reading CPU%d perf caps: ret:%d\n", cpu, ret);
    659		goto free_mask;
    660	}
    661
    662	/* Convert the lowest and nominal freq from MHz to KHz */
    663	cpu_data->perf_caps.lowest_freq *= 1000;
    664	cpu_data->perf_caps.nominal_freq *= 1000;
    665
    666	list_add(&cpu_data->node, &cpu_data_list);
    667
    668	return cpu_data;
    669
    670free_mask:
    671	free_cpumask_var(cpu_data->shared_cpu_map);
    672free_cpu:
    673	kfree(cpu_data);
    674out:
    675	return NULL;
    676}
    677
    678static void cppc_cpufreq_put_cpu_data(struct cpufreq_policy *policy)
    679{
    680	struct cppc_cpudata *cpu_data = policy->driver_data;
    681
    682	list_del(&cpu_data->node);
    683	free_cpumask_var(cpu_data->shared_cpu_map);
    684	kfree(cpu_data);
    685	policy->driver_data = NULL;
    686}
    687
    688static int cppc_cpufreq_cpu_init(struct cpufreq_policy *policy)
    689{
    690	unsigned int cpu = policy->cpu;
    691	struct cppc_cpudata *cpu_data;
    692	struct cppc_perf_caps *caps;
    693	int ret;
    694
    695	cpu_data = cppc_cpufreq_get_cpu_data(cpu);
    696	if (!cpu_data) {
    697		pr_err("Error in acquiring _CPC/_PSD data for CPU%d.\n", cpu);
    698		return -ENODEV;
    699	}
    700	caps = &cpu_data->perf_caps;
    701	policy->driver_data = cpu_data;
    702
    703	/*
    704	 * Set min to lowest nonlinear perf to avoid any efficiency penalty (see
    705	 * Section 8.4.7.1.1.5 of ACPI 6.1 spec)
    706	 */
    707	policy->min = cppc_cpufreq_perf_to_khz(cpu_data,
    708					       caps->lowest_nonlinear_perf);
    709	policy->max = cppc_cpufreq_perf_to_khz(cpu_data,
    710					       caps->nominal_perf);
    711
    712	/*
    713	 * Set cpuinfo.min_freq to Lowest to make the full range of performance
    714	 * available if userspace wants to use any perf between lowest & lowest
    715	 * nonlinear perf
    716	 */
    717	policy->cpuinfo.min_freq = cppc_cpufreq_perf_to_khz(cpu_data,
    718							    caps->lowest_perf);
    719	policy->cpuinfo.max_freq = cppc_cpufreq_perf_to_khz(cpu_data,
    720							    caps->nominal_perf);
    721
    722	policy->transition_delay_us = cppc_cpufreq_get_transition_delay_us(cpu);
    723	policy->shared_type = cpu_data->shared_type;
    724
    725	switch (policy->shared_type) {
    726	case CPUFREQ_SHARED_TYPE_HW:
    727	case CPUFREQ_SHARED_TYPE_NONE:
    728		/* Nothing to be done - we'll have a policy for each CPU */
    729		break;
    730	case CPUFREQ_SHARED_TYPE_ANY:
    731		/*
    732		 * All CPUs in the domain will share a policy and all cpufreq
    733		 * operations will use a single cppc_cpudata structure stored
    734		 * in policy->driver_data.
    735		 */
    736		cpumask_copy(policy->cpus, cpu_data->shared_cpu_map);
    737		break;
    738	default:
    739		pr_debug("Unsupported CPU co-ord type: %d\n",
    740			 policy->shared_type);
    741		ret = -EFAULT;
    742		goto out;
    743	}
    744
    745	policy->fast_switch_possible = cppc_allow_fast_switch();
    746	policy->dvfs_possible_from_any_cpu = true;
    747
    748	/*
    749	 * If 'highest_perf' is greater than 'nominal_perf', we assume CPU Boost
    750	 * is supported.
    751	 */
    752	if (caps->highest_perf > caps->nominal_perf)
    753		boost_supported = true;
    754
    755	/* Set policy->cur to max now. The governors will adjust later. */
    756	policy->cur = cppc_cpufreq_perf_to_khz(cpu_data, caps->highest_perf);
    757	cpu_data->perf_ctrls.desired_perf =  caps->highest_perf;
    758
    759	ret = cppc_set_perf(cpu, &cpu_data->perf_ctrls);
    760	if (ret) {
    761		pr_debug("Err setting perf value:%d on CPU:%d. ret:%d\n",
    762			 caps->highest_perf, cpu, ret);
    763		goto out;
    764	}
    765
    766	cppc_cpufreq_cpu_fie_init(policy);
    767	return 0;
    768
    769out:
    770	cppc_cpufreq_put_cpu_data(policy);
    771	return ret;
    772}
    773
    774static int cppc_cpufreq_cpu_exit(struct cpufreq_policy *policy)
    775{
    776	struct cppc_cpudata *cpu_data = policy->driver_data;
    777	struct cppc_perf_caps *caps = &cpu_data->perf_caps;
    778	unsigned int cpu = policy->cpu;
    779	int ret;
    780
    781	cppc_cpufreq_cpu_fie_exit(policy);
    782
    783	cpu_data->perf_ctrls.desired_perf = caps->lowest_perf;
    784
    785	ret = cppc_set_perf(cpu, &cpu_data->perf_ctrls);
    786	if (ret)
    787		pr_debug("Err setting perf value:%d on CPU:%d. ret:%d\n",
    788			 caps->lowest_perf, cpu, ret);
    789
    790	cppc_cpufreq_put_cpu_data(policy);
    791	return 0;
    792}
    793
    794static inline u64 get_delta(u64 t1, u64 t0)
    795{
    796	if (t1 > t0 || t0 > ~(u32)0)
    797		return t1 - t0;
    798
    799	return (u32)t1 - (u32)t0;
    800}
    801
    802static int cppc_perf_from_fbctrs(struct cppc_cpudata *cpu_data,
    803				 struct cppc_perf_fb_ctrs *fb_ctrs_t0,
    804				 struct cppc_perf_fb_ctrs *fb_ctrs_t1)
    805{
    806	u64 delta_reference, delta_delivered;
    807	u64 reference_perf;
    808
    809	reference_perf = fb_ctrs_t0->reference_perf;
    810
    811	delta_reference = get_delta(fb_ctrs_t1->reference,
    812				    fb_ctrs_t0->reference);
    813	delta_delivered = get_delta(fb_ctrs_t1->delivered,
    814				    fb_ctrs_t0->delivered);
    815
    816	/* Check to avoid divide-by zero and invalid delivered_perf */
    817	if (!delta_reference || !delta_delivered)
    818		return cpu_data->perf_ctrls.desired_perf;
    819
    820	return (reference_perf * delta_delivered) / delta_reference;
    821}
    822
    823static unsigned int cppc_cpufreq_get_rate(unsigned int cpu)
    824{
    825	struct cppc_perf_fb_ctrs fb_ctrs_t0 = {0}, fb_ctrs_t1 = {0};
    826	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
    827	struct cppc_cpudata *cpu_data = policy->driver_data;
    828	u64 delivered_perf;
    829	int ret;
    830
    831	cpufreq_cpu_put(policy);
    832
    833	ret = cppc_get_perf_ctrs(cpu, &fb_ctrs_t0);
    834	if (ret)
    835		return ret;
    836
    837	udelay(2); /* 2usec delay between sampling */
    838
    839	ret = cppc_get_perf_ctrs(cpu, &fb_ctrs_t1);
    840	if (ret)
    841		return ret;
    842
    843	delivered_perf = cppc_perf_from_fbctrs(cpu_data, &fb_ctrs_t0,
    844					       &fb_ctrs_t1);
    845
    846	return cppc_cpufreq_perf_to_khz(cpu_data, delivered_perf);
    847}
    848
    849static int cppc_cpufreq_set_boost(struct cpufreq_policy *policy, int state)
    850{
    851	struct cppc_cpudata *cpu_data = policy->driver_data;
    852	struct cppc_perf_caps *caps = &cpu_data->perf_caps;
    853	int ret;
    854
    855	if (!boost_supported) {
    856		pr_err("BOOST not supported by CPU or firmware\n");
    857		return -EINVAL;
    858	}
    859
    860	if (state)
    861		policy->max = cppc_cpufreq_perf_to_khz(cpu_data,
    862						       caps->highest_perf);
    863	else
    864		policy->max = cppc_cpufreq_perf_to_khz(cpu_data,
    865						       caps->nominal_perf);
    866	policy->cpuinfo.max_freq = policy->max;
    867
    868	ret = freq_qos_update_request(policy->max_freq_req, policy->max);
    869	if (ret < 0)
    870		return ret;
    871
    872	return 0;
    873}
    874
    875static ssize_t show_freqdomain_cpus(struct cpufreq_policy *policy, char *buf)
    876{
    877	struct cppc_cpudata *cpu_data = policy->driver_data;
    878
    879	return cpufreq_show_cpus(cpu_data->shared_cpu_map, buf);
    880}
    881cpufreq_freq_attr_ro(freqdomain_cpus);
    882
    883static struct freq_attr *cppc_cpufreq_attr[] = {
    884	&freqdomain_cpus,
    885	NULL,
    886};
    887
    888static struct cpufreq_driver cppc_cpufreq_driver = {
    889	.flags = CPUFREQ_CONST_LOOPS,
    890	.verify = cppc_verify_policy,
    891	.target = cppc_cpufreq_set_target,
    892	.get = cppc_cpufreq_get_rate,
    893	.fast_switch = cppc_cpufreq_fast_switch,
    894	.init = cppc_cpufreq_cpu_init,
    895	.exit = cppc_cpufreq_cpu_exit,
    896	.set_boost = cppc_cpufreq_set_boost,
    897	.attr = cppc_cpufreq_attr,
    898	.name = "cppc_cpufreq",
    899};
    900
    901/*
    902 * HISI platform does not support delivered performance counter and
    903 * reference performance counter. It can calculate the performance using the
    904 * platform specific mechanism. We reuse the desired performance register to
    905 * store the real performance calculated by the platform.
    906 */
    907static unsigned int hisi_cppc_cpufreq_get_rate(unsigned int cpu)
    908{
    909	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
    910	struct cppc_cpudata *cpu_data = policy->driver_data;
    911	u64 desired_perf;
    912	int ret;
    913
    914	cpufreq_cpu_put(policy);
    915
    916	ret = cppc_get_desired_perf(cpu, &desired_perf);
    917	if (ret < 0)
    918		return -EIO;
    919
    920	return cppc_cpufreq_perf_to_khz(cpu_data, desired_perf);
    921}
    922
    923static void cppc_check_hisi_workaround(void)
    924{
    925	struct acpi_table_header *tbl;
    926	acpi_status status = AE_OK;
    927	int i;
    928
    929	status = acpi_get_table(ACPI_SIG_PCCT, 0, &tbl);
    930	if (ACPI_FAILURE(status) || !tbl)
    931		return;
    932
    933	for (i = 0; i < ARRAY_SIZE(wa_info); i++) {
    934		if (!memcmp(wa_info[i].oem_id, tbl->oem_id, ACPI_OEM_ID_SIZE) &&
    935		    !memcmp(wa_info[i].oem_table_id, tbl->oem_table_id, ACPI_OEM_TABLE_ID_SIZE) &&
    936		    wa_info[i].oem_revision == tbl->oem_revision) {
    937			/* Overwrite the get() callback */
    938			cppc_cpufreq_driver.get = hisi_cppc_cpufreq_get_rate;
    939			break;
    940		}
    941	}
    942
    943	acpi_put_table(tbl);
    944}
    945
    946static int __init cppc_cpufreq_init(void)
    947{
    948	int ret;
    949
    950	if ((acpi_disabled) || !acpi_cpc_valid())
    951		return -ENODEV;
    952
    953	cppc_check_hisi_workaround();
    954	cppc_freq_invariance_init();
    955	populate_efficiency_class();
    956
    957	ret = cpufreq_register_driver(&cppc_cpufreq_driver);
    958	if (ret)
    959		cppc_freq_invariance_exit();
    960
    961	return ret;
    962}
    963
    964static inline void free_cpu_data(void)
    965{
    966	struct cppc_cpudata *iter, *tmp;
    967
    968	list_for_each_entry_safe(iter, tmp, &cpu_data_list, node) {
    969		free_cpumask_var(iter->shared_cpu_map);
    970		list_del(&iter->node);
    971		kfree(iter);
    972	}
    973
    974}
    975
    976static void __exit cppc_cpufreq_exit(void)
    977{
    978	cpufreq_unregister_driver(&cppc_cpufreq_driver);
    979	cppc_freq_invariance_exit();
    980
    981	free_cpu_data();
    982}
    983
    984module_exit(cppc_cpufreq_exit);
    985MODULE_AUTHOR("Ashwin Chaugule");
    986MODULE_DESCRIPTION("CPUFreq driver based on the ACPI CPPC v5.0+ spec");
    987MODULE_LICENSE("GPL");
    988
    989late_initcall(cppc_cpufreq_init);
    990
    991static const struct acpi_device_id cppc_acpi_ids[] __used = {
    992	{ACPI_PROCESSOR_DEVICE_HID, },
    993	{}
    994};
    995
    996MODULE_DEVICE_TABLE(acpi, cppc_acpi_ids);