cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

cpufreq_governor.c (17100B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 * drivers/cpufreq/cpufreq_governor.c
      4 *
      5 * CPUFREQ governors common code
      6 *
      7 * Copyright	(C) 2001 Russell King
      8 *		(C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
      9 *		(C) 2003 Jun Nakajima <jun.nakajima@intel.com>
     10 *		(C) 2009 Alexander Clouter <alex@digriz.org.uk>
     11 *		(c) 2012 Viresh Kumar <viresh.kumar@linaro.org>
     12 */
     13
     14#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
     15
     16#include <linux/export.h>
     17#include <linux/kernel_stat.h>
     18#include <linux/slab.h>
     19
     20#include "cpufreq_governor.h"
     21
     22#define CPUFREQ_DBS_MIN_SAMPLING_INTERVAL	(2 * TICK_NSEC / NSEC_PER_USEC)
     23
     24static DEFINE_PER_CPU(struct cpu_dbs_info, cpu_dbs);
     25
     26static DEFINE_MUTEX(gov_dbs_data_mutex);
     27
     28/* Common sysfs tunables */
     29/*
     30 * sampling_rate_store - update sampling rate effective immediately if needed.
     31 *
     32 * If new rate is smaller than the old, simply updating
     33 * dbs.sampling_rate might not be appropriate. For example, if the
     34 * original sampling_rate was 1 second and the requested new sampling rate is 10
     35 * ms because the user needs immediate reaction from ondemand governor, but not
     36 * sure if higher frequency will be required or not, then, the governor may
     37 * change the sampling rate too late; up to 1 second later. Thus, if we are
     38 * reducing the sampling rate, we need to make the new value effective
     39 * immediately.
     40 *
     41 * This must be called with dbs_data->mutex held, otherwise traversing
     42 * policy_dbs_list isn't safe.
     43 */
     44ssize_t sampling_rate_store(struct gov_attr_set *attr_set, const char *buf,
     45			    size_t count)
     46{
     47	struct dbs_data *dbs_data = to_dbs_data(attr_set);
     48	struct policy_dbs_info *policy_dbs;
     49	unsigned int sampling_interval;
     50	int ret;
     51
     52	ret = sscanf(buf, "%u", &sampling_interval);
     53	if (ret != 1 || sampling_interval < CPUFREQ_DBS_MIN_SAMPLING_INTERVAL)
     54		return -EINVAL;
     55
     56	dbs_data->sampling_rate = sampling_interval;
     57
     58	/*
     59	 * We are operating under dbs_data->mutex and so the list and its
     60	 * entries can't be freed concurrently.
     61	 */
     62	list_for_each_entry(policy_dbs, &attr_set->policy_list, list) {
     63		mutex_lock(&policy_dbs->update_mutex);
     64		/*
     65		 * On 32-bit architectures this may race with the
     66		 * sample_delay_ns read in dbs_update_util_handler(), but that
     67		 * really doesn't matter.  If the read returns a value that's
     68		 * too big, the sample will be skipped, but the next invocation
     69		 * of dbs_update_util_handler() (when the update has been
     70		 * completed) will take a sample.
     71		 *
     72		 * If this runs in parallel with dbs_work_handler(), we may end
     73		 * up overwriting the sample_delay_ns value that it has just
     74		 * written, but it will be corrected next time a sample is
     75		 * taken, so it shouldn't be significant.
     76		 */
     77		gov_update_sample_delay(policy_dbs, 0);
     78		mutex_unlock(&policy_dbs->update_mutex);
     79	}
     80
     81	return count;
     82}
     83EXPORT_SYMBOL_GPL(sampling_rate_store);
     84
     85/**
     86 * gov_update_cpu_data - Update CPU load data.
     87 * @dbs_data: Top-level governor data pointer.
     88 *
     89 * Update CPU load data for all CPUs in the domain governed by @dbs_data
     90 * (that may be a single policy or a bunch of them if governor tunables are
     91 * system-wide).
     92 *
     93 * Call under the @dbs_data mutex.
     94 */
     95void gov_update_cpu_data(struct dbs_data *dbs_data)
     96{
     97	struct policy_dbs_info *policy_dbs;
     98
     99	list_for_each_entry(policy_dbs, &dbs_data->attr_set.policy_list, list) {
    100		unsigned int j;
    101
    102		for_each_cpu(j, policy_dbs->policy->cpus) {
    103			struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j);
    104
    105			j_cdbs->prev_cpu_idle = get_cpu_idle_time(j, &j_cdbs->prev_update_time,
    106								  dbs_data->io_is_busy);
    107			if (dbs_data->ignore_nice_load)
    108				j_cdbs->prev_cpu_nice = kcpustat_field(&kcpustat_cpu(j), CPUTIME_NICE, j);
    109		}
    110	}
    111}
    112EXPORT_SYMBOL_GPL(gov_update_cpu_data);
    113
    114unsigned int dbs_update(struct cpufreq_policy *policy)
    115{
    116	struct policy_dbs_info *policy_dbs = policy->governor_data;
    117	struct dbs_data *dbs_data = policy_dbs->dbs_data;
    118	unsigned int ignore_nice = dbs_data->ignore_nice_load;
    119	unsigned int max_load = 0, idle_periods = UINT_MAX;
    120	unsigned int sampling_rate, io_busy, j;
    121
    122	/*
    123	 * Sometimes governors may use an additional multiplier to increase
    124	 * sample delays temporarily.  Apply that multiplier to sampling_rate
    125	 * so as to keep the wake-up-from-idle detection logic a bit
    126	 * conservative.
    127	 */
    128	sampling_rate = dbs_data->sampling_rate * policy_dbs->rate_mult;
    129	/*
    130	 * For the purpose of ondemand, waiting for disk IO is an indication
    131	 * that you're performance critical, and not that the system is actually
    132	 * idle, so do not add the iowait time to the CPU idle time then.
    133	 */
    134	io_busy = dbs_data->io_is_busy;
    135
    136	/* Get Absolute Load */
    137	for_each_cpu(j, policy->cpus) {
    138		struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j);
    139		u64 update_time, cur_idle_time;
    140		unsigned int idle_time, time_elapsed;
    141		unsigned int load;
    142
    143		cur_idle_time = get_cpu_idle_time(j, &update_time, io_busy);
    144
    145		time_elapsed = update_time - j_cdbs->prev_update_time;
    146		j_cdbs->prev_update_time = update_time;
    147
    148		idle_time = cur_idle_time - j_cdbs->prev_cpu_idle;
    149		j_cdbs->prev_cpu_idle = cur_idle_time;
    150
    151		if (ignore_nice) {
    152			u64 cur_nice = kcpustat_field(&kcpustat_cpu(j), CPUTIME_NICE, j);
    153
    154			idle_time += div_u64(cur_nice - j_cdbs->prev_cpu_nice, NSEC_PER_USEC);
    155			j_cdbs->prev_cpu_nice = cur_nice;
    156		}
    157
    158		if (unlikely(!time_elapsed)) {
    159			/*
    160			 * That can only happen when this function is called
    161			 * twice in a row with a very short interval between the
    162			 * calls, so the previous load value can be used then.
    163			 */
    164			load = j_cdbs->prev_load;
    165		} else if (unlikely((int)idle_time > 2 * sampling_rate &&
    166				    j_cdbs->prev_load)) {
    167			/*
    168			 * If the CPU had gone completely idle and a task has
    169			 * just woken up on this CPU now, it would be unfair to
    170			 * calculate 'load' the usual way for this elapsed
    171			 * time-window, because it would show near-zero load,
    172			 * irrespective of how CPU intensive that task actually
    173			 * was. This is undesirable for latency-sensitive bursty
    174			 * workloads.
    175			 *
    176			 * To avoid this, reuse the 'load' from the previous
    177			 * time-window and give this task a chance to start with
    178			 * a reasonably high CPU frequency. However, that
    179			 * shouldn't be over-done, lest we get stuck at a high
    180			 * load (high frequency) for too long, even when the
    181			 * current system load has actually dropped down, so
    182			 * clear prev_load to guarantee that the load will be
    183			 * computed again next time.
    184			 *
    185			 * Detecting this situation is easy: an unusually large
    186			 * 'idle_time' (as compared to the sampling rate)
    187			 * indicates this scenario.
    188			 */
    189			load = j_cdbs->prev_load;
    190			j_cdbs->prev_load = 0;
    191		} else {
    192			if (time_elapsed >= idle_time) {
    193				load = 100 * (time_elapsed - idle_time) / time_elapsed;
    194			} else {
    195				/*
    196				 * That can happen if idle_time is returned by
    197				 * get_cpu_idle_time_jiffy().  In that case
    198				 * idle_time is roughly equal to the difference
    199				 * between time_elapsed and "busy time" obtained
    200				 * from CPU statistics.  Then, the "busy time"
    201				 * can end up being greater than time_elapsed
    202				 * (for example, if jiffies_64 and the CPU
    203				 * statistics are updated by different CPUs),
    204				 * so idle_time may in fact be negative.  That
    205				 * means, though, that the CPU was busy all
    206				 * the time (on the rough average) during the
    207				 * last sampling interval and 100 can be
    208				 * returned as the load.
    209				 */
    210				load = (int)idle_time < 0 ? 100 : 0;
    211			}
    212			j_cdbs->prev_load = load;
    213		}
    214
    215		if (unlikely((int)idle_time > 2 * sampling_rate)) {
    216			unsigned int periods = idle_time / sampling_rate;
    217
    218			if (periods < idle_periods)
    219				idle_periods = periods;
    220		}
    221
    222		if (load > max_load)
    223			max_load = load;
    224	}
    225
    226	policy_dbs->idle_periods = idle_periods;
    227
    228	return max_load;
    229}
    230EXPORT_SYMBOL_GPL(dbs_update);
    231
    232static void dbs_work_handler(struct work_struct *work)
    233{
    234	struct policy_dbs_info *policy_dbs;
    235	struct cpufreq_policy *policy;
    236	struct dbs_governor *gov;
    237
    238	policy_dbs = container_of(work, struct policy_dbs_info, work);
    239	policy = policy_dbs->policy;
    240	gov = dbs_governor_of(policy);
    241
    242	/*
    243	 * Make sure cpufreq_governor_limits() isn't evaluating load or the
    244	 * ondemand governor isn't updating the sampling rate in parallel.
    245	 */
    246	mutex_lock(&policy_dbs->update_mutex);
    247	gov_update_sample_delay(policy_dbs, gov->gov_dbs_update(policy));
    248	mutex_unlock(&policy_dbs->update_mutex);
    249
    250	/* Allow the utilization update handler to queue up more work. */
    251	atomic_set(&policy_dbs->work_count, 0);
    252	/*
    253	 * If the update below is reordered with respect to the sample delay
    254	 * modification, the utilization update handler may end up using a stale
    255	 * sample delay value.
    256	 */
    257	smp_wmb();
    258	policy_dbs->work_in_progress = false;
    259}
    260
    261static void dbs_irq_work(struct irq_work *irq_work)
    262{
    263	struct policy_dbs_info *policy_dbs;
    264
    265	policy_dbs = container_of(irq_work, struct policy_dbs_info, irq_work);
    266	schedule_work_on(smp_processor_id(), &policy_dbs->work);
    267}
    268
    269static void dbs_update_util_handler(struct update_util_data *data, u64 time,
    270				    unsigned int flags)
    271{
    272	struct cpu_dbs_info *cdbs = container_of(data, struct cpu_dbs_info, update_util);
    273	struct policy_dbs_info *policy_dbs = cdbs->policy_dbs;
    274	u64 delta_ns, lst;
    275
    276	if (!cpufreq_this_cpu_can_update(policy_dbs->policy))
    277		return;
    278
    279	/*
    280	 * The work may not be allowed to be queued up right now.
    281	 * Possible reasons:
    282	 * - Work has already been queued up or is in progress.
    283	 * - It is too early (too little time from the previous sample).
    284	 */
    285	if (policy_dbs->work_in_progress)
    286		return;
    287
    288	/*
    289	 * If the reads below are reordered before the check above, the value
    290	 * of sample_delay_ns used in the computation may be stale.
    291	 */
    292	smp_rmb();
    293	lst = READ_ONCE(policy_dbs->last_sample_time);
    294	delta_ns = time - lst;
    295	if ((s64)delta_ns < policy_dbs->sample_delay_ns)
    296		return;
    297
    298	/*
    299	 * If the policy is not shared, the irq_work may be queued up right away
    300	 * at this point.  Otherwise, we need to ensure that only one of the
    301	 * CPUs sharing the policy will do that.
    302	 */
    303	if (policy_dbs->is_shared) {
    304		if (!atomic_add_unless(&policy_dbs->work_count, 1, 1))
    305			return;
    306
    307		/*
    308		 * If another CPU updated last_sample_time in the meantime, we
    309		 * shouldn't be here, so clear the work counter and bail out.
    310		 */
    311		if (unlikely(lst != READ_ONCE(policy_dbs->last_sample_time))) {
    312			atomic_set(&policy_dbs->work_count, 0);
    313			return;
    314		}
    315	}
    316
    317	policy_dbs->last_sample_time = time;
    318	policy_dbs->work_in_progress = true;
    319	irq_work_queue(&policy_dbs->irq_work);
    320}
    321
    322static void gov_set_update_util(struct policy_dbs_info *policy_dbs,
    323				unsigned int delay_us)
    324{
    325	struct cpufreq_policy *policy = policy_dbs->policy;
    326	int cpu;
    327
    328	gov_update_sample_delay(policy_dbs, delay_us);
    329	policy_dbs->last_sample_time = 0;
    330
    331	for_each_cpu(cpu, policy->cpus) {
    332		struct cpu_dbs_info *cdbs = &per_cpu(cpu_dbs, cpu);
    333
    334		cpufreq_add_update_util_hook(cpu, &cdbs->update_util,
    335					     dbs_update_util_handler);
    336	}
    337}
    338
    339static inline void gov_clear_update_util(struct cpufreq_policy *policy)
    340{
    341	int i;
    342
    343	for_each_cpu(i, policy->cpus)
    344		cpufreq_remove_update_util_hook(i);
    345
    346	synchronize_rcu();
    347}
    348
    349static struct policy_dbs_info *alloc_policy_dbs_info(struct cpufreq_policy *policy,
    350						     struct dbs_governor *gov)
    351{
    352	struct policy_dbs_info *policy_dbs;
    353	int j;
    354
    355	/* Allocate memory for per-policy governor data. */
    356	policy_dbs = gov->alloc();
    357	if (!policy_dbs)
    358		return NULL;
    359
    360	policy_dbs->policy = policy;
    361	mutex_init(&policy_dbs->update_mutex);
    362	atomic_set(&policy_dbs->work_count, 0);
    363	init_irq_work(&policy_dbs->irq_work, dbs_irq_work);
    364	INIT_WORK(&policy_dbs->work, dbs_work_handler);
    365
    366	/* Set policy_dbs for all CPUs, online+offline */
    367	for_each_cpu(j, policy->related_cpus) {
    368		struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j);
    369
    370		j_cdbs->policy_dbs = policy_dbs;
    371	}
    372	return policy_dbs;
    373}
    374
    375static void free_policy_dbs_info(struct policy_dbs_info *policy_dbs,
    376				 struct dbs_governor *gov)
    377{
    378	int j;
    379
    380	mutex_destroy(&policy_dbs->update_mutex);
    381
    382	for_each_cpu(j, policy_dbs->policy->related_cpus) {
    383		struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j);
    384
    385		j_cdbs->policy_dbs = NULL;
    386		j_cdbs->update_util.func = NULL;
    387	}
    388	gov->free(policy_dbs);
    389}
    390
    391static void cpufreq_dbs_data_release(struct kobject *kobj)
    392{
    393	struct dbs_data *dbs_data = to_dbs_data(to_gov_attr_set(kobj));
    394	struct dbs_governor *gov = dbs_data->gov;
    395
    396	gov->exit(dbs_data);
    397	kfree(dbs_data);
    398}
    399
    400int cpufreq_dbs_governor_init(struct cpufreq_policy *policy)
    401{
    402	struct dbs_governor *gov = dbs_governor_of(policy);
    403	struct dbs_data *dbs_data;
    404	struct policy_dbs_info *policy_dbs;
    405	int ret = 0;
    406
    407	/* State should be equivalent to EXIT */
    408	if (policy->governor_data)
    409		return -EBUSY;
    410
    411	policy_dbs = alloc_policy_dbs_info(policy, gov);
    412	if (!policy_dbs)
    413		return -ENOMEM;
    414
    415	/* Protect gov->gdbs_data against concurrent updates. */
    416	mutex_lock(&gov_dbs_data_mutex);
    417
    418	dbs_data = gov->gdbs_data;
    419	if (dbs_data) {
    420		if (WARN_ON(have_governor_per_policy())) {
    421			ret = -EINVAL;
    422			goto free_policy_dbs_info;
    423		}
    424		policy_dbs->dbs_data = dbs_data;
    425		policy->governor_data = policy_dbs;
    426
    427		gov_attr_set_get(&dbs_data->attr_set, &policy_dbs->list);
    428		goto out;
    429	}
    430
    431	dbs_data = kzalloc(sizeof(*dbs_data), GFP_KERNEL);
    432	if (!dbs_data) {
    433		ret = -ENOMEM;
    434		goto free_policy_dbs_info;
    435	}
    436
    437	dbs_data->gov = gov;
    438	gov_attr_set_init(&dbs_data->attr_set, &policy_dbs->list);
    439
    440	ret = gov->init(dbs_data);
    441	if (ret)
    442		goto free_policy_dbs_info;
    443
    444	/*
    445	 * The sampling interval should not be less than the transition latency
    446	 * of the CPU and it also cannot be too small for dbs_update() to work
    447	 * correctly.
    448	 */
    449	dbs_data->sampling_rate = max_t(unsigned int,
    450					CPUFREQ_DBS_MIN_SAMPLING_INTERVAL,
    451					cpufreq_policy_transition_delay_us(policy));
    452
    453	if (!have_governor_per_policy())
    454		gov->gdbs_data = dbs_data;
    455
    456	policy_dbs->dbs_data = dbs_data;
    457	policy->governor_data = policy_dbs;
    458
    459	gov->kobj_type.sysfs_ops = &governor_sysfs_ops;
    460	gov->kobj_type.release = cpufreq_dbs_data_release;
    461	ret = kobject_init_and_add(&dbs_data->attr_set.kobj, &gov->kobj_type,
    462				   get_governor_parent_kobj(policy),
    463				   "%s", gov->gov.name);
    464	if (!ret)
    465		goto out;
    466
    467	/* Failure, so roll back. */
    468	pr_err("initialization failed (dbs_data kobject init error %d)\n", ret);
    469
    470	kobject_put(&dbs_data->attr_set.kobj);
    471
    472	policy->governor_data = NULL;
    473
    474	if (!have_governor_per_policy())
    475		gov->gdbs_data = NULL;
    476	gov->exit(dbs_data);
    477	kfree(dbs_data);
    478
    479free_policy_dbs_info:
    480	free_policy_dbs_info(policy_dbs, gov);
    481
    482out:
    483	mutex_unlock(&gov_dbs_data_mutex);
    484	return ret;
    485}
    486EXPORT_SYMBOL_GPL(cpufreq_dbs_governor_init);
    487
    488void cpufreq_dbs_governor_exit(struct cpufreq_policy *policy)
    489{
    490	struct dbs_governor *gov = dbs_governor_of(policy);
    491	struct policy_dbs_info *policy_dbs = policy->governor_data;
    492	struct dbs_data *dbs_data = policy_dbs->dbs_data;
    493	unsigned int count;
    494
    495	/* Protect gov->gdbs_data against concurrent updates. */
    496	mutex_lock(&gov_dbs_data_mutex);
    497
    498	count = gov_attr_set_put(&dbs_data->attr_set, &policy_dbs->list);
    499
    500	policy->governor_data = NULL;
    501
    502	if (!count && !have_governor_per_policy())
    503		gov->gdbs_data = NULL;
    504
    505	free_policy_dbs_info(policy_dbs, gov);
    506
    507	mutex_unlock(&gov_dbs_data_mutex);
    508}
    509EXPORT_SYMBOL_GPL(cpufreq_dbs_governor_exit);
    510
    511int cpufreq_dbs_governor_start(struct cpufreq_policy *policy)
    512{
    513	struct dbs_governor *gov = dbs_governor_of(policy);
    514	struct policy_dbs_info *policy_dbs = policy->governor_data;
    515	struct dbs_data *dbs_data = policy_dbs->dbs_data;
    516	unsigned int sampling_rate, ignore_nice, j;
    517	unsigned int io_busy;
    518
    519	if (!policy->cur)
    520		return -EINVAL;
    521
    522	policy_dbs->is_shared = policy_is_shared(policy);
    523	policy_dbs->rate_mult = 1;
    524
    525	sampling_rate = dbs_data->sampling_rate;
    526	ignore_nice = dbs_data->ignore_nice_load;
    527	io_busy = dbs_data->io_is_busy;
    528
    529	for_each_cpu(j, policy->cpus) {
    530		struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j);
    531
    532		j_cdbs->prev_cpu_idle = get_cpu_idle_time(j, &j_cdbs->prev_update_time, io_busy);
    533		/*
    534		 * Make the first invocation of dbs_update() compute the load.
    535		 */
    536		j_cdbs->prev_load = 0;
    537
    538		if (ignore_nice)
    539			j_cdbs->prev_cpu_nice = kcpustat_field(&kcpustat_cpu(j), CPUTIME_NICE, j);
    540	}
    541
    542	gov->start(policy);
    543
    544	gov_set_update_util(policy_dbs, sampling_rate);
    545	return 0;
    546}
    547EXPORT_SYMBOL_GPL(cpufreq_dbs_governor_start);
    548
    549void cpufreq_dbs_governor_stop(struct cpufreq_policy *policy)
    550{
    551	struct policy_dbs_info *policy_dbs = policy->governor_data;
    552
    553	gov_clear_update_util(policy_dbs->policy);
    554	irq_work_sync(&policy_dbs->irq_work);
    555	cancel_work_sync(&policy_dbs->work);
    556	atomic_set(&policy_dbs->work_count, 0);
    557	policy_dbs->work_in_progress = false;
    558}
    559EXPORT_SYMBOL_GPL(cpufreq_dbs_governor_stop);
    560
    561void cpufreq_dbs_governor_limits(struct cpufreq_policy *policy)
    562{
    563	struct policy_dbs_info *policy_dbs;
    564
    565	/* Protect gov->gdbs_data against cpufreq_dbs_governor_exit() */
    566	mutex_lock(&gov_dbs_data_mutex);
    567	policy_dbs = policy->governor_data;
    568	if (!policy_dbs)
    569		goto out;
    570
    571	mutex_lock(&policy_dbs->update_mutex);
    572	cpufreq_policy_apply_limits(policy);
    573	gov_update_sample_delay(policy_dbs, 0);
    574	mutex_unlock(&policy_dbs->update_mutex);
    575
    576out:
    577	mutex_unlock(&gov_dbs_data_mutex);
    578}
    579EXPORT_SYMBOL_GPL(cpufreq_dbs_governor_limits);