cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

s5pv210-cpufreq.c (17435B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 * Copyright (c) 2010 Samsung Electronics Co., Ltd.
      4 *		http://www.samsung.com
      5 *
      6 * CPU frequency scaling for S5PC110/S5PV210
      7*/
      8
      9#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
     10
     11#include <linux/types.h>
     12#include <linux/kernel.h>
     13#include <linux/init.h>
     14#include <linux/err.h>
     15#include <linux/clk.h>
     16#include <linux/io.h>
     17#include <linux/cpufreq.h>
     18#include <linux/of.h>
     19#include <linux/of_address.h>
     20#include <linux/platform_device.h>
     21#include <linux/reboot.h>
     22#include <linux/regulator/consumer.h>
     23
     24static void __iomem *clk_base;
     25static void __iomem *dmc_base[2];
     26
     27#define S5P_CLKREG(x)		(clk_base + (x))
     28
     29#define S5P_APLL_LOCK		S5P_CLKREG(0x00)
     30#define S5P_APLL_CON		S5P_CLKREG(0x100)
     31#define S5P_CLK_SRC0		S5P_CLKREG(0x200)
     32#define S5P_CLK_SRC2		S5P_CLKREG(0x208)
     33#define S5P_CLK_DIV0		S5P_CLKREG(0x300)
     34#define S5P_CLK_DIV2		S5P_CLKREG(0x308)
     35#define S5P_CLK_DIV6		S5P_CLKREG(0x318)
     36#define S5P_CLKDIV_STAT0	S5P_CLKREG(0x1000)
     37#define S5P_CLKDIV_STAT1	S5P_CLKREG(0x1004)
     38#define S5P_CLKMUX_STAT0	S5P_CLKREG(0x1100)
     39#define S5P_CLKMUX_STAT1	S5P_CLKREG(0x1104)
     40
     41#define S5P_ARM_MCS_CON		S5P_CLKREG(0x6100)
     42
     43/* CLKSRC0 */
     44#define S5P_CLKSRC0_MUX200_SHIFT	(16)
     45#define S5P_CLKSRC0_MUX200_MASK		(0x1 << S5P_CLKSRC0_MUX200_SHIFT)
     46#define S5P_CLKSRC0_MUX166_MASK		(0x1<<20)
     47#define S5P_CLKSRC0_MUX133_MASK		(0x1<<24)
     48
     49/* CLKSRC2 */
     50#define S5P_CLKSRC2_G3D_SHIFT           (0)
     51#define S5P_CLKSRC2_G3D_MASK            (0x3 << S5P_CLKSRC2_G3D_SHIFT)
     52#define S5P_CLKSRC2_MFC_SHIFT           (4)
     53#define S5P_CLKSRC2_MFC_MASK            (0x3 << S5P_CLKSRC2_MFC_SHIFT)
     54
     55/* CLKDIV0 */
     56#define S5P_CLKDIV0_APLL_SHIFT		(0)
     57#define S5P_CLKDIV0_APLL_MASK		(0x7 << S5P_CLKDIV0_APLL_SHIFT)
     58#define S5P_CLKDIV0_A2M_SHIFT		(4)
     59#define S5P_CLKDIV0_A2M_MASK		(0x7 << S5P_CLKDIV0_A2M_SHIFT)
     60#define S5P_CLKDIV0_HCLK200_SHIFT	(8)
     61#define S5P_CLKDIV0_HCLK200_MASK	(0x7 << S5P_CLKDIV0_HCLK200_SHIFT)
     62#define S5P_CLKDIV0_PCLK100_SHIFT	(12)
     63#define S5P_CLKDIV0_PCLK100_MASK	(0x7 << S5P_CLKDIV0_PCLK100_SHIFT)
     64#define S5P_CLKDIV0_HCLK166_SHIFT	(16)
     65#define S5P_CLKDIV0_HCLK166_MASK	(0xF << S5P_CLKDIV0_HCLK166_SHIFT)
     66#define S5P_CLKDIV0_PCLK83_SHIFT	(20)
     67#define S5P_CLKDIV0_PCLK83_MASK		(0x7 << S5P_CLKDIV0_PCLK83_SHIFT)
     68#define S5P_CLKDIV0_HCLK133_SHIFT	(24)
     69#define S5P_CLKDIV0_HCLK133_MASK	(0xF << S5P_CLKDIV0_HCLK133_SHIFT)
     70#define S5P_CLKDIV0_PCLK66_SHIFT	(28)
     71#define S5P_CLKDIV0_PCLK66_MASK		(0x7 << S5P_CLKDIV0_PCLK66_SHIFT)
     72
     73/* CLKDIV2 */
     74#define S5P_CLKDIV2_G3D_SHIFT           (0)
     75#define S5P_CLKDIV2_G3D_MASK            (0xF << S5P_CLKDIV2_G3D_SHIFT)
     76#define S5P_CLKDIV2_MFC_SHIFT           (4)
     77#define S5P_CLKDIV2_MFC_MASK            (0xF << S5P_CLKDIV2_MFC_SHIFT)
     78
     79/* CLKDIV6 */
     80#define S5P_CLKDIV6_ONEDRAM_SHIFT       (28)
     81#define S5P_CLKDIV6_ONEDRAM_MASK        (0xF << S5P_CLKDIV6_ONEDRAM_SHIFT)
     82
     83static struct clk *dmc0_clk;
     84static struct clk *dmc1_clk;
     85static DEFINE_MUTEX(set_freq_lock);
     86
     87/* APLL M,P,S values for 1G/800Mhz */
     88#define APLL_VAL_1000	((1 << 31) | (125 << 16) | (3 << 8) | 1)
     89#define APLL_VAL_800	((1 << 31) | (100 << 16) | (3 << 8) | 1)
     90
     91/* Use 800MHz when entering sleep mode */
     92#define SLEEP_FREQ	(800 * 1000)
     93
     94/* Tracks if CPU frequency can be updated anymore */
     95static bool no_cpufreq_access;
     96
     97/*
     98 * DRAM configurations to calculate refresh counter for changing
     99 * frequency of memory.
    100 */
    101struct dram_conf {
    102	unsigned long freq;	/* HZ */
    103	unsigned long refresh;	/* DRAM refresh counter * 1000 */
    104};
    105
    106/* DRAM configuration (DMC0 and DMC1) */
    107static struct dram_conf s5pv210_dram_conf[2];
    108
    109enum perf_level {
    110	L0, L1, L2, L3, L4,
    111};
    112
    113enum s5pv210_mem_type {
    114	LPDDR	= 0x1,
    115	LPDDR2	= 0x2,
    116	DDR2	= 0x4,
    117};
    118
    119enum s5pv210_dmc_port {
    120	DMC0 = 0,
    121	DMC1,
    122};
    123
    124static struct cpufreq_frequency_table s5pv210_freq_table[] = {
    125	{0, L0, 1000*1000},
    126	{0, L1, 800*1000},
    127	{0, L2, 400*1000},
    128	{0, L3, 200*1000},
    129	{0, L4, 100*1000},
    130	{0, 0, CPUFREQ_TABLE_END},
    131};
    132
    133static struct regulator *arm_regulator;
    134static struct regulator *int_regulator;
    135
    136struct s5pv210_dvs_conf {
    137	int arm_volt;	/* uV */
    138	int int_volt;	/* uV */
    139};
    140
    141static const int arm_volt_max = 1350000;
    142static const int int_volt_max = 1250000;
    143
    144static struct s5pv210_dvs_conf dvs_conf[] = {
    145	[L0] = {
    146		.arm_volt	= 1250000,
    147		.int_volt	= 1100000,
    148	},
    149	[L1] = {
    150		.arm_volt	= 1200000,
    151		.int_volt	= 1100000,
    152	},
    153	[L2] = {
    154		.arm_volt	= 1050000,
    155		.int_volt	= 1100000,
    156	},
    157	[L3] = {
    158		.arm_volt	= 950000,
    159		.int_volt	= 1100000,
    160	},
    161	[L4] = {
    162		.arm_volt	= 950000,
    163		.int_volt	= 1000000,
    164	},
    165};
    166
    167static u32 clkdiv_val[5][11] = {
    168	/*
    169	 * Clock divider value for following
    170	 * { APLL, A2M, HCLK_MSYS, PCLK_MSYS,
    171	 *   HCLK_DSYS, PCLK_DSYS, HCLK_PSYS, PCLK_PSYS,
    172	 *   ONEDRAM, MFC, G3D }
    173	 */
    174
    175	/* L0 : [1000/200/100][166/83][133/66][200/200] */
    176	{0, 4, 4, 1, 3, 1, 4, 1, 3, 0, 0},
    177
    178	/* L1 : [800/200/100][166/83][133/66][200/200] */
    179	{0, 3, 3, 1, 3, 1, 4, 1, 3, 0, 0},
    180
    181	/* L2 : [400/200/100][166/83][133/66][200/200] */
    182	{1, 3, 1, 1, 3, 1, 4, 1, 3, 0, 0},
    183
    184	/* L3 : [200/200/100][166/83][133/66][200/200] */
    185	{3, 3, 1, 1, 3, 1, 4, 1, 3, 0, 0},
    186
    187	/* L4 : [100/100/100][83/83][66/66][100/100] */
    188	{7, 7, 0, 0, 7, 0, 9, 0, 7, 0, 0},
    189};
    190
    191/*
    192 * This function set DRAM refresh counter
    193 * according to operating frequency of DRAM
    194 * ch: DMC port number 0 or 1
    195 * freq: Operating frequency of DRAM(KHz)
    196 */
    197static void s5pv210_set_refresh(enum s5pv210_dmc_port ch, unsigned long freq)
    198{
    199	unsigned long tmp, tmp1;
    200	void __iomem *reg = NULL;
    201
    202	if (ch == DMC0) {
    203		reg = (dmc_base[0] + 0x30);
    204	} else if (ch == DMC1) {
    205		reg = (dmc_base[1] + 0x30);
    206	} else {
    207		pr_err("Cannot find DMC port\n");
    208		return;
    209	}
    210
    211	/* Find current DRAM frequency */
    212	tmp = s5pv210_dram_conf[ch].freq;
    213
    214	tmp /= freq;
    215
    216	tmp1 = s5pv210_dram_conf[ch].refresh;
    217
    218	tmp1 /= tmp;
    219
    220	writel_relaxed(tmp1, reg);
    221}
    222
    223static int s5pv210_target(struct cpufreq_policy *policy, unsigned int index)
    224{
    225	unsigned long reg;
    226	unsigned int priv_index;
    227	unsigned int pll_changing = 0;
    228	unsigned int bus_speed_changing = 0;
    229	unsigned int old_freq, new_freq;
    230	int arm_volt, int_volt;
    231	int ret = 0;
    232
    233	mutex_lock(&set_freq_lock);
    234
    235	if (no_cpufreq_access) {
    236		pr_err("Denied access to %s as it is disabled temporarily\n",
    237		       __func__);
    238		ret = -EINVAL;
    239		goto exit;
    240	}
    241
    242	old_freq = policy->cur;
    243	new_freq = s5pv210_freq_table[index].frequency;
    244
    245	/* Finding current running level index */
    246	priv_index = cpufreq_table_find_index_h(policy, old_freq, false);
    247
    248	arm_volt = dvs_conf[index].arm_volt;
    249	int_volt = dvs_conf[index].int_volt;
    250
    251	if (new_freq > old_freq) {
    252		ret = regulator_set_voltage(arm_regulator,
    253				arm_volt, arm_volt_max);
    254		if (ret)
    255			goto exit;
    256
    257		ret = regulator_set_voltage(int_regulator,
    258				int_volt, int_volt_max);
    259		if (ret)
    260			goto exit;
    261	}
    262
    263	/* Check if there need to change PLL */
    264	if ((index == L0) || (priv_index == L0))
    265		pll_changing = 1;
    266
    267	/* Check if there need to change System bus clock */
    268	if ((index == L4) || (priv_index == L4))
    269		bus_speed_changing = 1;
    270
    271	if (bus_speed_changing) {
    272		/*
    273		 * Reconfigure DRAM refresh counter value for minimum
    274		 * temporary clock while changing divider.
    275		 * expected clock is 83Mhz : 7.8usec/(1/83Mhz) = 0x287
    276		 */
    277		if (pll_changing)
    278			s5pv210_set_refresh(DMC1, 83000);
    279		else
    280			s5pv210_set_refresh(DMC1, 100000);
    281
    282		s5pv210_set_refresh(DMC0, 83000);
    283	}
    284
    285	/*
    286	 * APLL should be changed in this level
    287	 * APLL -> MPLL(for stable transition) -> APLL
    288	 * Some clock source's clock API are not prepared.
    289	 * Do not use clock API in below code.
    290	 */
    291	if (pll_changing) {
    292		/*
    293		 * 1. Temporary Change divider for MFC and G3D
    294		 * SCLKA2M(200/1=200)->(200/4=50)Mhz
    295		 */
    296		reg = readl_relaxed(S5P_CLK_DIV2);
    297		reg &= ~(S5P_CLKDIV2_G3D_MASK | S5P_CLKDIV2_MFC_MASK);
    298		reg |= (3 << S5P_CLKDIV2_G3D_SHIFT) |
    299			(3 << S5P_CLKDIV2_MFC_SHIFT);
    300		writel_relaxed(reg, S5P_CLK_DIV2);
    301
    302		/* For MFC, G3D dividing */
    303		do {
    304			reg = readl_relaxed(S5P_CLKDIV_STAT0);
    305		} while (reg & ((1 << 16) | (1 << 17)));
    306
    307		/*
    308		 * 2. Change SCLKA2M(200Mhz)to SCLKMPLL in MFC_MUX, G3D MUX
    309		 * (200/4=50)->(667/4=166)Mhz
    310		 */
    311		reg = readl_relaxed(S5P_CLK_SRC2);
    312		reg &= ~(S5P_CLKSRC2_G3D_MASK | S5P_CLKSRC2_MFC_MASK);
    313		reg |= (1 << S5P_CLKSRC2_G3D_SHIFT) |
    314			(1 << S5P_CLKSRC2_MFC_SHIFT);
    315		writel_relaxed(reg, S5P_CLK_SRC2);
    316
    317		do {
    318			reg = readl_relaxed(S5P_CLKMUX_STAT1);
    319		} while (reg & ((1 << 7) | (1 << 3)));
    320
    321		/*
    322		 * 3. DMC1 refresh count for 133Mhz if (index == L4) is
    323		 * true refresh counter is already programmed in upper
    324		 * code. 0x287@83Mhz
    325		 */
    326		if (!bus_speed_changing)
    327			s5pv210_set_refresh(DMC1, 133000);
    328
    329		/* 4. SCLKAPLL -> SCLKMPLL */
    330		reg = readl_relaxed(S5P_CLK_SRC0);
    331		reg &= ~(S5P_CLKSRC0_MUX200_MASK);
    332		reg |= (0x1 << S5P_CLKSRC0_MUX200_SHIFT);
    333		writel_relaxed(reg, S5P_CLK_SRC0);
    334
    335		do {
    336			reg = readl_relaxed(S5P_CLKMUX_STAT0);
    337		} while (reg & (0x1 << 18));
    338
    339	}
    340
    341	/* Change divider */
    342	reg = readl_relaxed(S5P_CLK_DIV0);
    343
    344	reg &= ~(S5P_CLKDIV0_APLL_MASK | S5P_CLKDIV0_A2M_MASK |
    345		S5P_CLKDIV0_HCLK200_MASK | S5P_CLKDIV0_PCLK100_MASK |
    346		S5P_CLKDIV0_HCLK166_MASK | S5P_CLKDIV0_PCLK83_MASK |
    347		S5P_CLKDIV0_HCLK133_MASK | S5P_CLKDIV0_PCLK66_MASK);
    348
    349	reg |= ((clkdiv_val[index][0] << S5P_CLKDIV0_APLL_SHIFT) |
    350		(clkdiv_val[index][1] << S5P_CLKDIV0_A2M_SHIFT) |
    351		(clkdiv_val[index][2] << S5P_CLKDIV0_HCLK200_SHIFT) |
    352		(clkdiv_val[index][3] << S5P_CLKDIV0_PCLK100_SHIFT) |
    353		(clkdiv_val[index][4] << S5P_CLKDIV0_HCLK166_SHIFT) |
    354		(clkdiv_val[index][5] << S5P_CLKDIV0_PCLK83_SHIFT) |
    355		(clkdiv_val[index][6] << S5P_CLKDIV0_HCLK133_SHIFT) |
    356		(clkdiv_val[index][7] << S5P_CLKDIV0_PCLK66_SHIFT));
    357
    358	writel_relaxed(reg, S5P_CLK_DIV0);
    359
    360	do {
    361		reg = readl_relaxed(S5P_CLKDIV_STAT0);
    362	} while (reg & 0xff);
    363
    364	/* ARM MCS value changed */
    365	reg = readl_relaxed(S5P_ARM_MCS_CON);
    366	reg &= ~0x3;
    367	if (index >= L3)
    368		reg |= 0x3;
    369	else
    370		reg |= 0x1;
    371
    372	writel_relaxed(reg, S5P_ARM_MCS_CON);
    373
    374	if (pll_changing) {
    375		/* 5. Set Lock time = 30us*24Mhz = 0x2cf */
    376		writel_relaxed(0x2cf, S5P_APLL_LOCK);
    377
    378		/*
    379		 * 6. Turn on APLL
    380		 * 6-1. Set PMS values
    381		 * 6-2. Wait until the PLL is locked
    382		 */
    383		if (index == L0)
    384			writel_relaxed(APLL_VAL_1000, S5P_APLL_CON);
    385		else
    386			writel_relaxed(APLL_VAL_800, S5P_APLL_CON);
    387
    388		do {
    389			reg = readl_relaxed(S5P_APLL_CON);
    390		} while (!(reg & (0x1 << 29)));
    391
    392		/*
    393		 * 7. Change source clock from SCLKMPLL(667Mhz)
    394		 * to SCLKA2M(200Mhz) in MFC_MUX and G3D MUX
    395		 * (667/4=166)->(200/4=50)Mhz
    396		 */
    397		reg = readl_relaxed(S5P_CLK_SRC2);
    398		reg &= ~(S5P_CLKSRC2_G3D_MASK | S5P_CLKSRC2_MFC_MASK);
    399		reg |= (0 << S5P_CLKSRC2_G3D_SHIFT) |
    400			(0 << S5P_CLKSRC2_MFC_SHIFT);
    401		writel_relaxed(reg, S5P_CLK_SRC2);
    402
    403		do {
    404			reg = readl_relaxed(S5P_CLKMUX_STAT1);
    405		} while (reg & ((1 << 7) | (1 << 3)));
    406
    407		/*
    408		 * 8. Change divider for MFC and G3D
    409		 * (200/4=50)->(200/1=200)Mhz
    410		 */
    411		reg = readl_relaxed(S5P_CLK_DIV2);
    412		reg &= ~(S5P_CLKDIV2_G3D_MASK | S5P_CLKDIV2_MFC_MASK);
    413		reg |= (clkdiv_val[index][10] << S5P_CLKDIV2_G3D_SHIFT) |
    414			(clkdiv_val[index][9] << S5P_CLKDIV2_MFC_SHIFT);
    415		writel_relaxed(reg, S5P_CLK_DIV2);
    416
    417		/* For MFC, G3D dividing */
    418		do {
    419			reg = readl_relaxed(S5P_CLKDIV_STAT0);
    420		} while (reg & ((1 << 16) | (1 << 17)));
    421
    422		/* 9. Change MPLL to APLL in MSYS_MUX */
    423		reg = readl_relaxed(S5P_CLK_SRC0);
    424		reg &= ~(S5P_CLKSRC0_MUX200_MASK);
    425		reg |= (0x0 << S5P_CLKSRC0_MUX200_SHIFT);
    426		writel_relaxed(reg, S5P_CLK_SRC0);
    427
    428		do {
    429			reg = readl_relaxed(S5P_CLKMUX_STAT0);
    430		} while (reg & (0x1 << 18));
    431
    432		/*
    433		 * 10. DMC1 refresh counter
    434		 * L4 : DMC1 = 100Mhz 7.8us/(1/100) = 0x30c
    435		 * Others : DMC1 = 200Mhz 7.8us/(1/200) = 0x618
    436		 */
    437		if (!bus_speed_changing)
    438			s5pv210_set_refresh(DMC1, 200000);
    439	}
    440
    441	/*
    442	 * L4 level needs to change memory bus speed, hence ONEDRAM clock
    443	 * divider and memory refresh parameter should be changed
    444	 */
    445	if (bus_speed_changing) {
    446		reg = readl_relaxed(S5P_CLK_DIV6);
    447		reg &= ~S5P_CLKDIV6_ONEDRAM_MASK;
    448		reg |= (clkdiv_val[index][8] << S5P_CLKDIV6_ONEDRAM_SHIFT);
    449		writel_relaxed(reg, S5P_CLK_DIV6);
    450
    451		do {
    452			reg = readl_relaxed(S5P_CLKDIV_STAT1);
    453		} while (reg & (1 << 15));
    454
    455		/* Reconfigure DRAM refresh counter value */
    456		if (index != L4) {
    457			/*
    458			 * DMC0 : 166Mhz
    459			 * DMC1 : 200Mhz
    460			 */
    461			s5pv210_set_refresh(DMC0, 166000);
    462			s5pv210_set_refresh(DMC1, 200000);
    463		} else {
    464			/*
    465			 * DMC0 : 83Mhz
    466			 * DMC1 : 100Mhz
    467			 */
    468			s5pv210_set_refresh(DMC0, 83000);
    469			s5pv210_set_refresh(DMC1, 100000);
    470		}
    471	}
    472
    473	if (new_freq < old_freq) {
    474		regulator_set_voltage(int_regulator,
    475				int_volt, int_volt_max);
    476
    477		regulator_set_voltage(arm_regulator,
    478				arm_volt, arm_volt_max);
    479	}
    480
    481	pr_debug("Perf changed[L%d]\n", index);
    482
    483exit:
    484	mutex_unlock(&set_freq_lock);
    485	return ret;
    486}
    487
    488static int check_mem_type(void __iomem *dmc_reg)
    489{
    490	unsigned long val;
    491
    492	val = readl_relaxed(dmc_reg + 0x4);
    493	val = (val & (0xf << 8));
    494
    495	return val >> 8;
    496}
    497
    498static int s5pv210_cpu_init(struct cpufreq_policy *policy)
    499{
    500	unsigned long mem_type;
    501	int ret;
    502
    503	policy->clk = clk_get(NULL, "armclk");
    504	if (IS_ERR(policy->clk))
    505		return PTR_ERR(policy->clk);
    506
    507	dmc0_clk = clk_get(NULL, "sclk_dmc0");
    508	if (IS_ERR(dmc0_clk)) {
    509		ret = PTR_ERR(dmc0_clk);
    510		goto out_dmc0;
    511	}
    512
    513	dmc1_clk = clk_get(NULL, "hclk_msys");
    514	if (IS_ERR(dmc1_clk)) {
    515		ret = PTR_ERR(dmc1_clk);
    516		goto out_dmc1;
    517	}
    518
    519	if (policy->cpu != 0) {
    520		ret = -EINVAL;
    521		goto out_dmc1;
    522	}
    523
    524	/*
    525	 * check_mem_type : This driver only support LPDDR & LPDDR2.
    526	 * other memory type is not supported.
    527	 */
    528	mem_type = check_mem_type(dmc_base[0]);
    529
    530	if ((mem_type != LPDDR) && (mem_type != LPDDR2)) {
    531		pr_err("CPUFreq doesn't support this memory type\n");
    532		ret = -EINVAL;
    533		goto out_dmc1;
    534	}
    535
    536	/* Find current refresh counter and frequency each DMC */
    537	s5pv210_dram_conf[0].refresh = (readl_relaxed(dmc_base[0] + 0x30) * 1000);
    538	s5pv210_dram_conf[0].freq = clk_get_rate(dmc0_clk);
    539
    540	s5pv210_dram_conf[1].refresh = (readl_relaxed(dmc_base[1] + 0x30) * 1000);
    541	s5pv210_dram_conf[1].freq = clk_get_rate(dmc1_clk);
    542
    543	policy->suspend_freq = SLEEP_FREQ;
    544	cpufreq_generic_init(policy, s5pv210_freq_table, 40000);
    545	return 0;
    546
    547out_dmc1:
    548	clk_put(dmc0_clk);
    549out_dmc0:
    550	clk_put(policy->clk);
    551	return ret;
    552}
    553
    554static int s5pv210_cpufreq_reboot_notifier_event(struct notifier_block *this,
    555						 unsigned long event, void *ptr)
    556{
    557	int ret;
    558	struct cpufreq_policy *policy;
    559
    560	policy = cpufreq_cpu_get(0);
    561	if (!policy) {
    562		pr_debug("cpufreq: get no policy for cpu0\n");
    563		return NOTIFY_BAD;
    564	}
    565
    566	ret = cpufreq_driver_target(policy, SLEEP_FREQ, 0);
    567	cpufreq_cpu_put(policy);
    568
    569	if (ret < 0)
    570		return NOTIFY_BAD;
    571
    572	no_cpufreq_access = true;
    573	return NOTIFY_DONE;
    574}
    575
    576static struct cpufreq_driver s5pv210_driver = {
    577	.flags		= CPUFREQ_NEED_INITIAL_FREQ_CHECK,
    578	.verify		= cpufreq_generic_frequency_table_verify,
    579	.target_index	= s5pv210_target,
    580	.get		= cpufreq_generic_get,
    581	.init		= s5pv210_cpu_init,
    582	.name		= "s5pv210",
    583	.suspend	= cpufreq_generic_suspend,
    584	.resume		= cpufreq_generic_suspend, /* We need to set SLEEP FREQ again */
    585};
    586
    587static struct notifier_block s5pv210_cpufreq_reboot_notifier = {
    588	.notifier_call = s5pv210_cpufreq_reboot_notifier_event,
    589};
    590
    591static int s5pv210_cpufreq_probe(struct platform_device *pdev)
    592{
    593	struct device *dev = &pdev->dev;
    594	struct device_node *np;
    595	int id, result = 0;
    596
    597	/*
    598	 * HACK: This is a temporary workaround to get access to clock
    599	 * and DMC controller registers directly and remove static mappings
    600	 * and dependencies on platform headers. It is necessary to enable
    601	 * S5PV210 multi-platform support and will be removed together with
    602	 * this whole driver as soon as S5PV210 gets migrated to use
    603	 * cpufreq-dt driver.
    604	 */
    605	arm_regulator = regulator_get(NULL, "vddarm");
    606	if (IS_ERR(arm_regulator))
    607		return dev_err_probe(dev, PTR_ERR(arm_regulator),
    608				     "failed to get regulator vddarm\n");
    609
    610	int_regulator = regulator_get(NULL, "vddint");
    611	if (IS_ERR(int_regulator)) {
    612		result = dev_err_probe(dev, PTR_ERR(int_regulator),
    613				       "failed to get regulator vddint\n");
    614		goto err_int_regulator;
    615	}
    616
    617	np = of_find_compatible_node(NULL, NULL, "samsung,s5pv210-clock");
    618	if (!np) {
    619		dev_err(dev, "failed to find clock controller DT node\n");
    620		result = -ENODEV;
    621		goto err_clock;
    622	}
    623
    624	clk_base = of_iomap(np, 0);
    625	of_node_put(np);
    626	if (!clk_base) {
    627		dev_err(dev, "failed to map clock registers\n");
    628		result = -EFAULT;
    629		goto err_clock;
    630	}
    631
    632	for_each_compatible_node(np, NULL, "samsung,s5pv210-dmc") {
    633		id = of_alias_get_id(np, "dmc");
    634		if (id < 0 || id >= ARRAY_SIZE(dmc_base)) {
    635			dev_err(dev, "failed to get alias of dmc node '%pOFn'\n", np);
    636			of_node_put(np);
    637			result = id;
    638			goto err_clk_base;
    639		}
    640
    641		dmc_base[id] = of_iomap(np, 0);
    642		if (!dmc_base[id]) {
    643			dev_err(dev, "failed to map dmc%d registers\n", id);
    644			of_node_put(np);
    645			result = -EFAULT;
    646			goto err_dmc;
    647		}
    648	}
    649
    650	for (id = 0; id < ARRAY_SIZE(dmc_base); ++id) {
    651		if (!dmc_base[id]) {
    652			dev_err(dev, "failed to find dmc%d node\n", id);
    653			result = -ENODEV;
    654			goto err_dmc;
    655		}
    656	}
    657
    658	register_reboot_notifier(&s5pv210_cpufreq_reboot_notifier);
    659
    660	return cpufreq_register_driver(&s5pv210_driver);
    661
    662err_dmc:
    663	for (id = 0; id < ARRAY_SIZE(dmc_base); ++id)
    664		if (dmc_base[id]) {
    665			iounmap(dmc_base[id]);
    666			dmc_base[id] = NULL;
    667		}
    668
    669err_clk_base:
    670	iounmap(clk_base);
    671
    672err_clock:
    673	regulator_put(int_regulator);
    674
    675err_int_regulator:
    676	regulator_put(arm_regulator);
    677
    678	return result;
    679}
    680
    681static struct platform_driver s5pv210_cpufreq_platdrv = {
    682	.driver = {
    683		.name	= "s5pv210-cpufreq",
    684	},
    685	.probe = s5pv210_cpufreq_probe,
    686};
    687builtin_platform_driver(s5pv210_cpufreq_platdrv);