cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

cpuidle-pseries.c (12636B)


      1// SPDX-License-Identifier: GPL-2.0
      2/*
      3 *  cpuidle-pseries - idle state cpuidle driver.
      4 *  Adapted from drivers/idle/intel_idle.c and
      5 *  drivers/acpi/processor_idle.c
      6 *
      7 */
      8
      9#include <linux/kernel.h>
     10#include <linux/module.h>
     11#include <linux/init.h>
     12#include <linux/moduleparam.h>
     13#include <linux/cpuidle.h>
     14#include <linux/cpu.h>
     15#include <linux/notifier.h>
     16
     17#include <asm/paca.h>
     18#include <asm/reg.h>
     19#include <asm/machdep.h>
     20#include <asm/firmware.h>
     21#include <asm/runlatch.h>
     22#include <asm/idle.h>
     23#include <asm/plpar_wrappers.h>
     24#include <asm/rtas.h>
     25
     26static struct cpuidle_driver pseries_idle_driver = {
     27	.name             = "pseries_idle",
     28	.owner            = THIS_MODULE,
     29};
     30
     31static int max_idle_state __read_mostly;
     32static struct cpuidle_state *cpuidle_state_table __read_mostly;
     33static u64 snooze_timeout __read_mostly;
     34static bool snooze_timeout_en __read_mostly;
     35
     36static int snooze_loop(struct cpuidle_device *dev,
     37			struct cpuidle_driver *drv,
     38			int index)
     39{
     40	u64 snooze_exit_time;
     41
     42	set_thread_flag(TIF_POLLING_NRFLAG);
     43
     44	pseries_idle_prolog();
     45	local_irq_enable();
     46	snooze_exit_time = get_tb() + snooze_timeout;
     47
     48	while (!need_resched()) {
     49		HMT_low();
     50		HMT_very_low();
     51		if (likely(snooze_timeout_en) && get_tb() > snooze_exit_time) {
     52			/*
     53			 * Task has not woken up but we are exiting the polling
     54			 * loop anyway. Require a barrier after polling is
     55			 * cleared to order subsequent test of need_resched().
     56			 */
     57			clear_thread_flag(TIF_POLLING_NRFLAG);
     58			smp_mb();
     59			break;
     60		}
     61	}
     62
     63	HMT_medium();
     64	clear_thread_flag(TIF_POLLING_NRFLAG);
     65
     66	local_irq_disable();
     67
     68	pseries_idle_epilog();
     69
     70	return index;
     71}
     72
     73static void check_and_cede_processor(void)
     74{
     75	/*
     76	 * Ensure our interrupt state is properly tracked,
     77	 * also checks if no interrupt has occurred while we
     78	 * were soft-disabled
     79	 */
     80	if (prep_irq_for_idle()) {
     81		cede_processor();
     82#ifdef CONFIG_TRACE_IRQFLAGS
     83		/* Ensure that H_CEDE returns with IRQs on */
     84		if (WARN_ON(!(mfmsr() & MSR_EE)))
     85			__hard_irq_enable();
     86#endif
     87	}
     88}
     89
     90/*
     91 * XCEDE: Extended CEDE states discovered through the
     92 *        "ibm,get-systems-parameter" RTAS call with the token
     93 *        CEDE_LATENCY_TOKEN
     94 */
     95
     96/*
     97 * Section 7.3.16 System Parameters Option of PAPR version 2.8.1 has a
     98 * table with all the parameters to ibm,get-system-parameters.
     99 * CEDE_LATENCY_TOKEN corresponds to the token value for Cede Latency
    100 * Settings Information.
    101 */
    102#define CEDE_LATENCY_TOKEN	45
    103
    104/*
    105 * If the platform supports the cede latency settings information system
    106 * parameter it must provide the following information in the NULL terminated
    107 * parameter string:
    108 *
    109 * a. The first byte is the length ā€œNā€ of each cede latency setting record minus
    110 *    one (zero indicates a length of 1 byte).
    111 *
    112 * b. For each supported cede latency setting a cede latency setting record
    113 *    consisting of the first ā€œNā€ bytes as per the following table.
    114 *
    115 *    -----------------------------
    116 *    | Field           | Field   |
    117 *    | Name            | Length  |
    118 *    -----------------------------
    119 *    | Cede Latency    | 1 Byte  |
    120 *    | Specifier Value |         |
    121 *    -----------------------------
    122 *    | Maximum wakeup  |         |
    123 *    | latency in      | 8 Bytes |
    124 *    | tb-ticks        |         |
    125 *    -----------------------------
    126 *    | Responsive to   |         |
    127 *    | external        | 1 Byte  |
    128 *    | interrupts      |         |
    129 *    -----------------------------
    130 *
    131 * This version has cede latency record size = 10.
    132 *
    133 * The structure xcede_latency_payload represents a) and b) with
    134 * xcede_latency_record representing the table in b).
    135 *
    136 * xcede_latency_parameter is what gets returned by
    137 * ibm,get-systems-parameter RTAS call when made with
    138 * CEDE_LATENCY_TOKEN.
    139 *
    140 * These structures are only used to represent the data obtained by the RTAS
    141 * call. The data is in big-endian.
    142 */
    143struct xcede_latency_record {
    144	u8	hint;
    145	__be64	latency_ticks;
    146	u8	wake_on_irqs;
    147} __packed;
    148
    149// Make space for 16 records, which "should be enough".
    150struct xcede_latency_payload {
    151	u8     record_size;
    152	struct xcede_latency_record records[16];
    153} __packed;
    154
    155struct xcede_latency_parameter {
    156	__be16  payload_size;
    157	struct xcede_latency_payload payload;
    158	u8 null_char;
    159} __packed;
    160
    161static unsigned int nr_xcede_records;
    162static struct xcede_latency_parameter xcede_latency_parameter __initdata;
    163
    164static int __init parse_cede_parameters(void)
    165{
    166	struct xcede_latency_payload *payload;
    167	u32 total_xcede_records_size;
    168	u8 xcede_record_size;
    169	u16 payload_size;
    170	int ret, i;
    171
    172	ret = rtas_call(rtas_token("ibm,get-system-parameter"), 3, 1,
    173			NULL, CEDE_LATENCY_TOKEN, __pa(&xcede_latency_parameter),
    174			sizeof(xcede_latency_parameter));
    175	if (ret) {
    176		pr_err("xcede: Error parsing CEDE_LATENCY_TOKEN\n");
    177		return ret;
    178	}
    179
    180	payload_size = be16_to_cpu(xcede_latency_parameter.payload_size);
    181	payload = &xcede_latency_parameter.payload;
    182
    183	xcede_record_size = payload->record_size + 1;
    184
    185	if (xcede_record_size != sizeof(struct xcede_latency_record)) {
    186		pr_err("xcede: Expected record-size %lu. Observed size %u.\n",
    187		       sizeof(struct xcede_latency_record), xcede_record_size);
    188		return -EINVAL;
    189	}
    190
    191	pr_info("xcede: xcede_record_size = %d\n", xcede_record_size);
    192
    193	/*
    194	 * Since the payload_size includes the last NULL byte and the
    195	 * xcede_record_size, the remaining bytes correspond to array of all
    196	 * cede_latency settings.
    197	 */
    198	total_xcede_records_size = payload_size - 2;
    199	nr_xcede_records = total_xcede_records_size / xcede_record_size;
    200
    201	for (i = 0; i < nr_xcede_records; i++) {
    202		struct xcede_latency_record *record = &payload->records[i];
    203		u64 latency_ticks = be64_to_cpu(record->latency_ticks);
    204		u8 wake_on_irqs = record->wake_on_irqs;
    205		u8 hint = record->hint;
    206
    207		pr_info("xcede: Record %d : hint = %u, latency = 0x%llx tb ticks, Wake-on-irq = %u\n",
    208			i, hint, latency_ticks, wake_on_irqs);
    209	}
    210
    211	return 0;
    212}
    213
    214#define NR_DEDICATED_STATES	2 /* snooze, CEDE */
    215static u8 cede_latency_hint[NR_DEDICATED_STATES];
    216
    217static int dedicated_cede_loop(struct cpuidle_device *dev,
    218				struct cpuidle_driver *drv,
    219				int index)
    220{
    221	u8 old_latency_hint;
    222
    223	pseries_idle_prolog();
    224	get_lppaca()->donate_dedicated_cpu = 1;
    225	old_latency_hint = get_lppaca()->cede_latency_hint;
    226	get_lppaca()->cede_latency_hint = cede_latency_hint[index];
    227
    228	HMT_medium();
    229	check_and_cede_processor();
    230
    231	local_irq_disable();
    232	get_lppaca()->donate_dedicated_cpu = 0;
    233	get_lppaca()->cede_latency_hint = old_latency_hint;
    234
    235	pseries_idle_epilog();
    236
    237	return index;
    238}
    239
    240static int shared_cede_loop(struct cpuidle_device *dev,
    241			struct cpuidle_driver *drv,
    242			int index)
    243{
    244
    245	pseries_idle_prolog();
    246
    247	/*
    248	 * Yield the processor to the hypervisor.  We return if
    249	 * an external interrupt occurs (which are driven prior
    250	 * to returning here) or if a prod occurs from another
    251	 * processor. When returning here, external interrupts
    252	 * are enabled.
    253	 */
    254	check_and_cede_processor();
    255
    256	local_irq_disable();
    257	pseries_idle_epilog();
    258
    259	return index;
    260}
    261
    262/*
    263 * States for dedicated partition case.
    264 */
    265static struct cpuidle_state dedicated_states[NR_DEDICATED_STATES] = {
    266	{ /* Snooze */
    267		.name = "snooze",
    268		.desc = "snooze",
    269		.exit_latency = 0,
    270		.target_residency = 0,
    271		.enter = &snooze_loop },
    272	{ /* CEDE */
    273		.name = "CEDE",
    274		.desc = "CEDE",
    275		.exit_latency = 10,
    276		.target_residency = 100,
    277		.enter = &dedicated_cede_loop },
    278};
    279
    280/*
    281 * States for shared partition case.
    282 */
    283static struct cpuidle_state shared_states[] = {
    284	{ /* Snooze */
    285		.name = "snooze",
    286		.desc = "snooze",
    287		.exit_latency = 0,
    288		.target_residency = 0,
    289		.enter = &snooze_loop },
    290	{ /* Shared Cede */
    291		.name = "Shared Cede",
    292		.desc = "Shared Cede",
    293		.exit_latency = 10,
    294		.target_residency = 100,
    295		.enter = &shared_cede_loop },
    296};
    297
    298static int pseries_cpuidle_cpu_online(unsigned int cpu)
    299{
    300	struct cpuidle_device *dev = per_cpu(cpuidle_devices, cpu);
    301
    302	if (dev && cpuidle_get_driver()) {
    303		cpuidle_pause_and_lock();
    304		cpuidle_enable_device(dev);
    305		cpuidle_resume_and_unlock();
    306	}
    307	return 0;
    308}
    309
    310static int pseries_cpuidle_cpu_dead(unsigned int cpu)
    311{
    312	struct cpuidle_device *dev = per_cpu(cpuidle_devices, cpu);
    313
    314	if (dev && cpuidle_get_driver()) {
    315		cpuidle_pause_and_lock();
    316		cpuidle_disable_device(dev);
    317		cpuidle_resume_and_unlock();
    318	}
    319	return 0;
    320}
    321
    322/*
    323 * pseries_cpuidle_driver_init()
    324 */
    325static int pseries_cpuidle_driver_init(void)
    326{
    327	int idle_state;
    328	struct cpuidle_driver *drv = &pseries_idle_driver;
    329
    330	drv->state_count = 0;
    331
    332	for (idle_state = 0; idle_state < max_idle_state; ++idle_state) {
    333		/* Is the state not enabled? */
    334		if (cpuidle_state_table[idle_state].enter == NULL)
    335			continue;
    336
    337		drv->states[drv->state_count] =	/* structure copy */
    338			cpuidle_state_table[idle_state];
    339
    340		drv->state_count += 1;
    341	}
    342
    343	return 0;
    344}
    345
    346static void __init fixup_cede0_latency(void)
    347{
    348	struct xcede_latency_payload *payload;
    349	u64 min_xcede_latency_us = UINT_MAX;
    350	int i;
    351
    352	if (parse_cede_parameters())
    353		return;
    354
    355	pr_info("cpuidle: Skipping the %d Extended CEDE idle states\n",
    356		nr_xcede_records);
    357
    358	payload = &xcede_latency_parameter.payload;
    359
    360	/*
    361	 * The CEDE idle state maps to CEDE(0). While the hypervisor
    362	 * does not advertise CEDE(0) exit latency values, it does
    363	 * advertise the latency values of the extended CEDE states.
    364	 * We use the lowest advertised exit latency value as a proxy
    365	 * for the exit latency of CEDE(0).
    366	 */
    367	for (i = 0; i < nr_xcede_records; i++) {
    368		struct xcede_latency_record *record = &payload->records[i];
    369		u8 hint = record->hint;
    370		u64 latency_tb = be64_to_cpu(record->latency_ticks);
    371		u64 latency_us = DIV_ROUND_UP_ULL(tb_to_ns(latency_tb), NSEC_PER_USEC);
    372
    373		/*
    374		 * We expect the exit latency of an extended CEDE
    375		 * state to be non-zero, it to since it takes at least
    376		 * a few nanoseconds to wakeup the idle CPU and
    377		 * dispatch the virtual processor into the Linux
    378		 * Guest.
    379		 *
    380		 * So we consider only non-zero value for performing
    381		 * the fixup of CEDE(0) latency.
    382		 */
    383		if (latency_us == 0) {
    384			pr_warn("cpuidle: Skipping xcede record %d [hint=%d]. Exit latency = 0us\n",
    385				i, hint);
    386			continue;
    387		}
    388
    389		if (latency_us < min_xcede_latency_us)
    390			min_xcede_latency_us = latency_us;
    391	}
    392
    393	if (min_xcede_latency_us != UINT_MAX) {
    394		dedicated_states[1].exit_latency = min_xcede_latency_us;
    395		dedicated_states[1].target_residency = 10 * (min_xcede_latency_us);
    396		pr_info("cpuidle: Fixed up CEDE exit latency to %llu us\n",
    397			min_xcede_latency_us);
    398	}
    399
    400}
    401
    402/*
    403 * pseries_idle_probe()
    404 * Choose state table for shared versus dedicated partition
    405 */
    406static int __init pseries_idle_probe(void)
    407{
    408
    409	if (cpuidle_disable != IDLE_NO_OVERRIDE)
    410		return -ENODEV;
    411
    412	if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
    413		/*
    414		 * Use local_paca instead of get_lppaca() since
    415		 * preemption is not disabled, and it is not required in
    416		 * fact, since lppaca_ptr does not need to be the value
    417		 * associated to the current CPU, it can be from any CPU.
    418		 */
    419		if (lppaca_shared_proc(local_paca->lppaca_ptr)) {
    420			cpuidle_state_table = shared_states;
    421			max_idle_state = ARRAY_SIZE(shared_states);
    422		} else {
    423			/*
    424			 * Use firmware provided latency values
    425			 * starting with POWER10 platforms. In the
    426			 * case that we are running on a POWER10
    427			 * platform but in an earlier compat mode, we
    428			 * can still use the firmware provided values.
    429			 *
    430			 * However, on platforms prior to POWER10, we
    431			 * cannot rely on the accuracy of the firmware
    432			 * provided latency values. On such platforms,
    433			 * go with the conservative default estimate
    434			 * of 10us.
    435			 */
    436			if (cpu_has_feature(CPU_FTR_ARCH_31) || pvr_version_is(PVR_POWER10))
    437				fixup_cede0_latency();
    438			cpuidle_state_table = dedicated_states;
    439			max_idle_state = NR_DEDICATED_STATES;
    440		}
    441	} else
    442		return -ENODEV;
    443
    444	if (max_idle_state > 1) {
    445		snooze_timeout_en = true;
    446		snooze_timeout = cpuidle_state_table[1].target_residency *
    447				 tb_ticks_per_usec;
    448	}
    449	return 0;
    450}
    451
    452static int __init pseries_processor_idle_init(void)
    453{
    454	int retval;
    455
    456	retval = pseries_idle_probe();
    457	if (retval)
    458		return retval;
    459
    460	pseries_cpuidle_driver_init();
    461	retval = cpuidle_register(&pseries_idle_driver, NULL);
    462	if (retval) {
    463		printk(KERN_DEBUG "Registration of pseries driver failed.\n");
    464		return retval;
    465	}
    466
    467	retval = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
    468					   "cpuidle/pseries:online",
    469					   pseries_cpuidle_cpu_online, NULL);
    470	WARN_ON(retval < 0);
    471	retval = cpuhp_setup_state_nocalls(CPUHP_CPUIDLE_DEAD,
    472					   "cpuidle/pseries:DEAD", NULL,
    473					   pseries_cpuidle_cpu_dead);
    474	WARN_ON(retval < 0);
    475	printk(KERN_DEBUG "pseries_idle_driver registered\n");
    476	return 0;
    477}
    478
    479device_initcall(pseries_processor_idle_init);