cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

cpuidle.c (18859B)


      1/*
      2 * cpuidle.c - core cpuidle infrastructure
      3 *
      4 * (C) 2006-2007 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
      5 *               Shaohua Li <shaohua.li@intel.com>
      6 *               Adam Belay <abelay@novell.com>
      7 *
      8 * This code is licenced under the GPL.
      9 */
     10
     11#include <linux/clockchips.h>
     12#include <linux/kernel.h>
     13#include <linux/mutex.h>
     14#include <linux/sched.h>
     15#include <linux/sched/clock.h>
     16#include <linux/notifier.h>
     17#include <linux/pm_qos.h>
     18#include <linux/cpu.h>
     19#include <linux/cpuidle.h>
     20#include <linux/ktime.h>
     21#include <linux/hrtimer.h>
     22#include <linux/module.h>
     23#include <linux/suspend.h>
     24#include <linux/tick.h>
     25#include <linux/mmu_context.h>
     26#include <trace/events/power.h>
     27
     28#include "cpuidle.h"
     29
     30DEFINE_PER_CPU(struct cpuidle_device *, cpuidle_devices);
     31DEFINE_PER_CPU(struct cpuidle_device, cpuidle_dev);
     32
     33DEFINE_MUTEX(cpuidle_lock);
     34LIST_HEAD(cpuidle_detected_devices);
     35
     36static int enabled_devices;
     37static int off __read_mostly;
     38static int initialized __read_mostly;
     39
     40int cpuidle_disabled(void)
     41{
     42	return off;
     43}
     44void disable_cpuidle(void)
     45{
     46	off = 1;
     47}
     48
     49bool cpuidle_not_available(struct cpuidle_driver *drv,
     50			   struct cpuidle_device *dev)
     51{
     52	return off || !initialized || !drv || !dev || !dev->enabled;
     53}
     54
     55/**
     56 * cpuidle_play_dead - cpu off-lining
     57 *
     58 * Returns in case of an error or no driver
     59 */
     60int cpuidle_play_dead(void)
     61{
     62	struct cpuidle_device *dev = __this_cpu_read(cpuidle_devices);
     63	struct cpuidle_driver *drv = cpuidle_get_cpu_driver(dev);
     64	int i;
     65
     66	if (!drv)
     67		return -ENODEV;
     68
     69	/* Find lowest-power state that supports long-term idle */
     70	for (i = drv->state_count - 1; i >= 0; i--)
     71		if (drv->states[i].enter_dead)
     72			return drv->states[i].enter_dead(dev, i);
     73
     74	return -ENODEV;
     75}
     76
     77static int find_deepest_state(struct cpuidle_driver *drv,
     78			      struct cpuidle_device *dev,
     79			      u64 max_latency_ns,
     80			      unsigned int forbidden_flags,
     81			      bool s2idle)
     82{
     83	u64 latency_req = 0;
     84	int i, ret = 0;
     85
     86	for (i = 1; i < drv->state_count; i++) {
     87		struct cpuidle_state *s = &drv->states[i];
     88
     89		if (dev->states_usage[i].disable ||
     90		    s->exit_latency_ns <= latency_req ||
     91		    s->exit_latency_ns > max_latency_ns ||
     92		    (s->flags & forbidden_flags) ||
     93		    (s2idle && !s->enter_s2idle))
     94			continue;
     95
     96		latency_req = s->exit_latency_ns;
     97		ret = i;
     98	}
     99	return ret;
    100}
    101
    102/**
    103 * cpuidle_use_deepest_state - Set/unset governor override mode.
    104 * @latency_limit_ns: Idle state exit latency limit (or no override if 0).
    105 *
    106 * If @latency_limit_ns is nonzero, set the current CPU to use the deepest idle
    107 * state with exit latency within @latency_limit_ns (override governors going
    108 * forward), or do not override governors if it is zero.
    109 */
    110void cpuidle_use_deepest_state(u64 latency_limit_ns)
    111{
    112	struct cpuidle_device *dev;
    113
    114	preempt_disable();
    115	dev = cpuidle_get_device();
    116	if (dev)
    117		dev->forced_idle_latency_limit_ns = latency_limit_ns;
    118	preempt_enable();
    119}
    120
    121/**
    122 * cpuidle_find_deepest_state - Find the deepest available idle state.
    123 * @drv: cpuidle driver for the given CPU.
    124 * @dev: cpuidle device for the given CPU.
    125 * @latency_limit_ns: Idle state exit latency limit
    126 *
    127 * Return: the index of the deepest available idle state.
    128 */
    129int cpuidle_find_deepest_state(struct cpuidle_driver *drv,
    130			       struct cpuidle_device *dev,
    131			       u64 latency_limit_ns)
    132{
    133	return find_deepest_state(drv, dev, latency_limit_ns, 0, false);
    134}
    135
    136#ifdef CONFIG_SUSPEND
    137static void enter_s2idle_proper(struct cpuidle_driver *drv,
    138				struct cpuidle_device *dev, int index)
    139{
    140	ktime_t time_start, time_end;
    141	struct cpuidle_state *target_state = &drv->states[index];
    142
    143	time_start = ns_to_ktime(local_clock());
    144
    145	tick_freeze();
    146	/*
    147	 * The state used here cannot be a "coupled" one, because the "coupled"
    148	 * cpuidle mechanism enables interrupts and doing that with timekeeping
    149	 * suspended is generally unsafe.
    150	 */
    151	stop_critical_timings();
    152	if (!(target_state->flags & CPUIDLE_FLAG_RCU_IDLE))
    153		rcu_idle_enter();
    154	target_state->enter_s2idle(dev, drv, index);
    155	if (WARN_ON_ONCE(!irqs_disabled()))
    156		local_irq_disable();
    157	if (!(target_state->flags & CPUIDLE_FLAG_RCU_IDLE))
    158		rcu_idle_exit();
    159	tick_unfreeze();
    160	start_critical_timings();
    161
    162	time_end = ns_to_ktime(local_clock());
    163
    164	dev->states_usage[index].s2idle_time += ktime_us_delta(time_end, time_start);
    165	dev->states_usage[index].s2idle_usage++;
    166}
    167
    168/**
    169 * cpuidle_enter_s2idle - Enter an idle state suitable for suspend-to-idle.
    170 * @drv: cpuidle driver for the given CPU.
    171 * @dev: cpuidle device for the given CPU.
    172 *
    173 * If there are states with the ->enter_s2idle callback, find the deepest of
    174 * them and enter it with frozen tick.
    175 */
    176int cpuidle_enter_s2idle(struct cpuidle_driver *drv, struct cpuidle_device *dev)
    177{
    178	int index;
    179
    180	/*
    181	 * Find the deepest state with ->enter_s2idle present, which guarantees
    182	 * that interrupts won't be enabled when it exits and allows the tick to
    183	 * be frozen safely.
    184	 */
    185	index = find_deepest_state(drv, dev, U64_MAX, 0, true);
    186	if (index > 0) {
    187		enter_s2idle_proper(drv, dev, index);
    188		local_irq_enable();
    189	}
    190	return index;
    191}
    192#endif /* CONFIG_SUSPEND */
    193
    194/**
    195 * cpuidle_enter_state - enter the state and update stats
    196 * @dev: cpuidle device for this cpu
    197 * @drv: cpuidle driver for this cpu
    198 * @index: index into the states table in @drv of the state to enter
    199 */
    200int cpuidle_enter_state(struct cpuidle_device *dev, struct cpuidle_driver *drv,
    201			int index)
    202{
    203	int entered_state;
    204
    205	struct cpuidle_state *target_state = &drv->states[index];
    206	bool broadcast = !!(target_state->flags & CPUIDLE_FLAG_TIMER_STOP);
    207	ktime_t time_start, time_end;
    208
    209	/*
    210	 * Tell the time framework to switch to a broadcast timer because our
    211	 * local timer will be shut down.  If a local timer is used from another
    212	 * CPU as a broadcast timer, this call may fail if it is not available.
    213	 */
    214	if (broadcast && tick_broadcast_enter()) {
    215		index = find_deepest_state(drv, dev, target_state->exit_latency_ns,
    216					   CPUIDLE_FLAG_TIMER_STOP, false);
    217		if (index < 0) {
    218			default_idle_call();
    219			return -EBUSY;
    220		}
    221		target_state = &drv->states[index];
    222		broadcast = false;
    223	}
    224
    225	if (target_state->flags & CPUIDLE_FLAG_TLB_FLUSHED)
    226		leave_mm(dev->cpu);
    227
    228	/* Take note of the planned idle state. */
    229	sched_idle_set_state(target_state);
    230
    231	trace_cpu_idle(index, dev->cpu);
    232	time_start = ns_to_ktime(local_clock());
    233
    234	stop_critical_timings();
    235	if (!(target_state->flags & CPUIDLE_FLAG_RCU_IDLE))
    236		rcu_idle_enter();
    237	entered_state = target_state->enter(dev, drv, index);
    238	if (!(target_state->flags & CPUIDLE_FLAG_RCU_IDLE))
    239		rcu_idle_exit();
    240	start_critical_timings();
    241
    242	sched_clock_idle_wakeup_event();
    243	time_end = ns_to_ktime(local_clock());
    244	trace_cpu_idle(PWR_EVENT_EXIT, dev->cpu);
    245
    246	/* The cpu is no longer idle or about to enter idle. */
    247	sched_idle_set_state(NULL);
    248
    249	if (broadcast) {
    250		if (WARN_ON_ONCE(!irqs_disabled()))
    251			local_irq_disable();
    252
    253		tick_broadcast_exit();
    254	}
    255
    256	if (!cpuidle_state_is_coupled(drv, index))
    257		local_irq_enable();
    258
    259	if (entered_state >= 0) {
    260		s64 diff, delay = drv->states[entered_state].exit_latency_ns;
    261		int i;
    262
    263		/*
    264		 * Update cpuidle counters
    265		 * This can be moved to within driver enter routine,
    266		 * but that results in multiple copies of same code.
    267		 */
    268		diff = ktime_sub(time_end, time_start);
    269
    270		dev->last_residency_ns = diff;
    271		dev->states_usage[entered_state].time_ns += diff;
    272		dev->states_usage[entered_state].usage++;
    273
    274		if (diff < drv->states[entered_state].target_residency_ns) {
    275			for (i = entered_state - 1; i >= 0; i--) {
    276				if (dev->states_usage[i].disable)
    277					continue;
    278
    279				/* Shallower states are enabled, so update. */
    280				dev->states_usage[entered_state].above++;
    281				break;
    282			}
    283		} else if (diff > delay) {
    284			for (i = entered_state + 1; i < drv->state_count; i++) {
    285				if (dev->states_usage[i].disable)
    286					continue;
    287
    288				/*
    289				 * Update if a deeper state would have been a
    290				 * better match for the observed idle duration.
    291				 */
    292				if (diff - delay >= drv->states[i].target_residency_ns)
    293					dev->states_usage[entered_state].below++;
    294
    295				break;
    296			}
    297		}
    298	} else {
    299		dev->last_residency_ns = 0;
    300		dev->states_usage[index].rejected++;
    301	}
    302
    303	return entered_state;
    304}
    305
    306/**
    307 * cpuidle_select - ask the cpuidle framework to choose an idle state
    308 *
    309 * @drv: the cpuidle driver
    310 * @dev: the cpuidle device
    311 * @stop_tick: indication on whether or not to stop the tick
    312 *
    313 * Returns the index of the idle state.  The return value must not be negative.
    314 *
    315 * The memory location pointed to by @stop_tick is expected to be written the
    316 * 'false' boolean value if the scheduler tick should not be stopped before
    317 * entering the returned state.
    318 */
    319int cpuidle_select(struct cpuidle_driver *drv, struct cpuidle_device *dev,
    320		   bool *stop_tick)
    321{
    322	return cpuidle_curr_governor->select(drv, dev, stop_tick);
    323}
    324
    325/**
    326 * cpuidle_enter - enter into the specified idle state
    327 *
    328 * @drv:   the cpuidle driver tied with the cpu
    329 * @dev:   the cpuidle device
    330 * @index: the index in the idle state table
    331 *
    332 * Returns the index in the idle state, < 0 in case of error.
    333 * The error code depends on the backend driver
    334 */
    335int cpuidle_enter(struct cpuidle_driver *drv, struct cpuidle_device *dev,
    336		  int index)
    337{
    338	int ret = 0;
    339
    340	/*
    341	 * Store the next hrtimer, which becomes either next tick or the next
    342	 * timer event, whatever expires first. Additionally, to make this data
    343	 * useful for consumers outside cpuidle, we rely on that the governor's
    344	 * ->select() callback have decided, whether to stop the tick or not.
    345	 */
    346	WRITE_ONCE(dev->next_hrtimer, tick_nohz_get_next_hrtimer());
    347
    348	if (cpuidle_state_is_coupled(drv, index))
    349		ret = cpuidle_enter_state_coupled(dev, drv, index);
    350	else
    351		ret = cpuidle_enter_state(dev, drv, index);
    352
    353	WRITE_ONCE(dev->next_hrtimer, 0);
    354	return ret;
    355}
    356
    357/**
    358 * cpuidle_reflect - tell the underlying governor what was the state
    359 * we were in
    360 *
    361 * @dev  : the cpuidle device
    362 * @index: the index in the idle state table
    363 *
    364 */
    365void cpuidle_reflect(struct cpuidle_device *dev, int index)
    366{
    367	if (cpuidle_curr_governor->reflect && index >= 0)
    368		cpuidle_curr_governor->reflect(dev, index);
    369}
    370
    371/*
    372 * Min polling interval of 10usec is a guess. It is assuming that
    373 * for most users, the time for a single ping-pong workload like
    374 * perf bench pipe would generally complete within 10usec but
    375 * this is hardware dependant. Actual time can be estimated with
    376 *
    377 * perf bench sched pipe -l 10000
    378 *
    379 * Run multiple times to avoid cpufreq effects.
    380 */
    381#define CPUIDLE_POLL_MIN 10000
    382#define CPUIDLE_POLL_MAX (TICK_NSEC / 16)
    383
    384/**
    385 * cpuidle_poll_time - return amount of time to poll for,
    386 * governors can override dev->poll_limit_ns if necessary
    387 *
    388 * @drv:   the cpuidle driver tied with the cpu
    389 * @dev:   the cpuidle device
    390 *
    391 */
    392u64 cpuidle_poll_time(struct cpuidle_driver *drv,
    393		      struct cpuidle_device *dev)
    394{
    395	int i;
    396	u64 limit_ns;
    397
    398	BUILD_BUG_ON(CPUIDLE_POLL_MIN > CPUIDLE_POLL_MAX);
    399
    400	if (dev->poll_limit_ns)
    401		return dev->poll_limit_ns;
    402
    403	limit_ns = CPUIDLE_POLL_MAX;
    404	for (i = 1; i < drv->state_count; i++) {
    405		u64 state_limit;
    406
    407		if (dev->states_usage[i].disable)
    408			continue;
    409
    410		state_limit = drv->states[i].target_residency_ns;
    411		if (state_limit < CPUIDLE_POLL_MIN)
    412			continue;
    413
    414		limit_ns = min_t(u64, state_limit, CPUIDLE_POLL_MAX);
    415		break;
    416	}
    417
    418	dev->poll_limit_ns = limit_ns;
    419
    420	return dev->poll_limit_ns;
    421}
    422
    423/**
    424 * cpuidle_install_idle_handler - installs the cpuidle idle loop handler
    425 */
    426void cpuidle_install_idle_handler(void)
    427{
    428	if (enabled_devices) {
    429		/* Make sure all changes finished before we switch to new idle */
    430		smp_wmb();
    431		initialized = 1;
    432	}
    433}
    434
    435/**
    436 * cpuidle_uninstall_idle_handler - uninstalls the cpuidle idle loop handler
    437 */
    438void cpuidle_uninstall_idle_handler(void)
    439{
    440	if (enabled_devices) {
    441		initialized = 0;
    442		wake_up_all_idle_cpus();
    443	}
    444
    445	/*
    446	 * Make sure external observers (such as the scheduler)
    447	 * are done looking at pointed idle states.
    448	 */
    449	synchronize_rcu();
    450}
    451
    452/**
    453 * cpuidle_pause_and_lock - temporarily disables CPUIDLE
    454 */
    455void cpuidle_pause_and_lock(void)
    456{
    457	mutex_lock(&cpuidle_lock);
    458	cpuidle_uninstall_idle_handler();
    459}
    460
    461EXPORT_SYMBOL_GPL(cpuidle_pause_and_lock);
    462
    463/**
    464 * cpuidle_resume_and_unlock - resumes CPUIDLE operation
    465 */
    466void cpuidle_resume_and_unlock(void)
    467{
    468	cpuidle_install_idle_handler();
    469	mutex_unlock(&cpuidle_lock);
    470}
    471
    472EXPORT_SYMBOL_GPL(cpuidle_resume_and_unlock);
    473
    474/* Currently used in suspend/resume path to suspend cpuidle */
    475void cpuidle_pause(void)
    476{
    477	mutex_lock(&cpuidle_lock);
    478	cpuidle_uninstall_idle_handler();
    479	mutex_unlock(&cpuidle_lock);
    480}
    481
    482/* Currently used in suspend/resume path to resume cpuidle */
    483void cpuidle_resume(void)
    484{
    485	mutex_lock(&cpuidle_lock);
    486	cpuidle_install_idle_handler();
    487	mutex_unlock(&cpuidle_lock);
    488}
    489
    490/**
    491 * cpuidle_enable_device - enables idle PM for a CPU
    492 * @dev: the CPU
    493 *
    494 * This function must be called between cpuidle_pause_and_lock and
    495 * cpuidle_resume_and_unlock when used externally.
    496 */
    497int cpuidle_enable_device(struct cpuidle_device *dev)
    498{
    499	int ret;
    500	struct cpuidle_driver *drv;
    501
    502	if (!dev)
    503		return -EINVAL;
    504
    505	if (dev->enabled)
    506		return 0;
    507
    508	if (!cpuidle_curr_governor)
    509		return -EIO;
    510
    511	drv = cpuidle_get_cpu_driver(dev);
    512
    513	if (!drv)
    514		return -EIO;
    515
    516	if (!dev->registered)
    517		return -EINVAL;
    518
    519	ret = cpuidle_add_device_sysfs(dev);
    520	if (ret)
    521		return ret;
    522
    523	if (cpuidle_curr_governor->enable) {
    524		ret = cpuidle_curr_governor->enable(drv, dev);
    525		if (ret)
    526			goto fail_sysfs;
    527	}
    528
    529	smp_wmb();
    530
    531	dev->enabled = 1;
    532
    533	enabled_devices++;
    534	return 0;
    535
    536fail_sysfs:
    537	cpuidle_remove_device_sysfs(dev);
    538
    539	return ret;
    540}
    541
    542EXPORT_SYMBOL_GPL(cpuidle_enable_device);
    543
    544/**
    545 * cpuidle_disable_device - disables idle PM for a CPU
    546 * @dev: the CPU
    547 *
    548 * This function must be called between cpuidle_pause_and_lock and
    549 * cpuidle_resume_and_unlock when used externally.
    550 */
    551void cpuidle_disable_device(struct cpuidle_device *dev)
    552{
    553	struct cpuidle_driver *drv = cpuidle_get_cpu_driver(dev);
    554
    555	if (!dev || !dev->enabled)
    556		return;
    557
    558	if (!drv || !cpuidle_curr_governor)
    559		return;
    560
    561	dev->enabled = 0;
    562
    563	if (cpuidle_curr_governor->disable)
    564		cpuidle_curr_governor->disable(drv, dev);
    565
    566	cpuidle_remove_device_sysfs(dev);
    567	enabled_devices--;
    568}
    569
    570EXPORT_SYMBOL_GPL(cpuidle_disable_device);
    571
    572static void __cpuidle_unregister_device(struct cpuidle_device *dev)
    573{
    574	struct cpuidle_driver *drv = cpuidle_get_cpu_driver(dev);
    575
    576	list_del(&dev->device_list);
    577	per_cpu(cpuidle_devices, dev->cpu) = NULL;
    578	module_put(drv->owner);
    579
    580	dev->registered = 0;
    581}
    582
    583static void __cpuidle_device_init(struct cpuidle_device *dev)
    584{
    585	memset(dev->states_usage, 0, sizeof(dev->states_usage));
    586	dev->last_residency_ns = 0;
    587	dev->next_hrtimer = 0;
    588}
    589
    590/**
    591 * __cpuidle_register_device - internal register function called before register
    592 * and enable routines
    593 * @dev: the cpu
    594 *
    595 * cpuidle_lock mutex must be held before this is called
    596 */
    597static int __cpuidle_register_device(struct cpuidle_device *dev)
    598{
    599	struct cpuidle_driver *drv = cpuidle_get_cpu_driver(dev);
    600	int i, ret;
    601
    602	if (!try_module_get(drv->owner))
    603		return -EINVAL;
    604
    605	for (i = 0; i < drv->state_count; i++) {
    606		if (drv->states[i].flags & CPUIDLE_FLAG_UNUSABLE)
    607			dev->states_usage[i].disable |= CPUIDLE_STATE_DISABLED_BY_DRIVER;
    608
    609		if (drv->states[i].flags & CPUIDLE_FLAG_OFF)
    610			dev->states_usage[i].disable |= CPUIDLE_STATE_DISABLED_BY_USER;
    611	}
    612
    613	per_cpu(cpuidle_devices, dev->cpu) = dev;
    614	list_add(&dev->device_list, &cpuidle_detected_devices);
    615
    616	ret = cpuidle_coupled_register_device(dev);
    617	if (ret)
    618		__cpuidle_unregister_device(dev);
    619	else
    620		dev->registered = 1;
    621
    622	return ret;
    623}
    624
    625/**
    626 * cpuidle_register_device - registers a CPU's idle PM feature
    627 * @dev: the cpu
    628 */
    629int cpuidle_register_device(struct cpuidle_device *dev)
    630{
    631	int ret = -EBUSY;
    632
    633	if (!dev)
    634		return -EINVAL;
    635
    636	mutex_lock(&cpuidle_lock);
    637
    638	if (dev->registered)
    639		goto out_unlock;
    640
    641	__cpuidle_device_init(dev);
    642
    643	ret = __cpuidle_register_device(dev);
    644	if (ret)
    645		goto out_unlock;
    646
    647	ret = cpuidle_add_sysfs(dev);
    648	if (ret)
    649		goto out_unregister;
    650
    651	ret = cpuidle_enable_device(dev);
    652	if (ret)
    653		goto out_sysfs;
    654
    655	cpuidle_install_idle_handler();
    656
    657out_unlock:
    658	mutex_unlock(&cpuidle_lock);
    659
    660	return ret;
    661
    662out_sysfs:
    663	cpuidle_remove_sysfs(dev);
    664out_unregister:
    665	__cpuidle_unregister_device(dev);
    666	goto out_unlock;
    667}
    668
    669EXPORT_SYMBOL_GPL(cpuidle_register_device);
    670
    671/**
    672 * cpuidle_unregister_device - unregisters a CPU's idle PM feature
    673 * @dev: the cpu
    674 */
    675void cpuidle_unregister_device(struct cpuidle_device *dev)
    676{
    677	if (!dev || dev->registered == 0)
    678		return;
    679
    680	cpuidle_pause_and_lock();
    681
    682	cpuidle_disable_device(dev);
    683
    684	cpuidle_remove_sysfs(dev);
    685
    686	__cpuidle_unregister_device(dev);
    687
    688	cpuidle_coupled_unregister_device(dev);
    689
    690	cpuidle_resume_and_unlock();
    691}
    692
    693EXPORT_SYMBOL_GPL(cpuidle_unregister_device);
    694
    695/**
    696 * cpuidle_unregister: unregister a driver and the devices. This function
    697 * can be used only if the driver has been previously registered through
    698 * the cpuidle_register function.
    699 *
    700 * @drv: a valid pointer to a struct cpuidle_driver
    701 */
    702void cpuidle_unregister(struct cpuidle_driver *drv)
    703{
    704	int cpu;
    705	struct cpuidle_device *device;
    706
    707	for_each_cpu(cpu, drv->cpumask) {
    708		device = &per_cpu(cpuidle_dev, cpu);
    709		cpuidle_unregister_device(device);
    710	}
    711
    712	cpuidle_unregister_driver(drv);
    713}
    714EXPORT_SYMBOL_GPL(cpuidle_unregister);
    715
    716/**
    717 * cpuidle_register: registers the driver and the cpu devices with the
    718 * coupled_cpus passed as parameter. This function is used for all common
    719 * initialization pattern there are in the arch specific drivers. The
    720 * devices is globally defined in this file.
    721 *
    722 * @drv         : a valid pointer to a struct cpuidle_driver
    723 * @coupled_cpus: a cpumask for the coupled states
    724 *
    725 * Returns 0 on success, < 0 otherwise
    726 */
    727int cpuidle_register(struct cpuidle_driver *drv,
    728		     const struct cpumask *const coupled_cpus)
    729{
    730	int ret, cpu;
    731	struct cpuidle_device *device;
    732
    733	ret = cpuidle_register_driver(drv);
    734	if (ret) {
    735		pr_err("failed to register cpuidle driver\n");
    736		return ret;
    737	}
    738
    739	for_each_cpu(cpu, drv->cpumask) {
    740		device = &per_cpu(cpuidle_dev, cpu);
    741		device->cpu = cpu;
    742
    743#ifdef CONFIG_ARCH_NEEDS_CPU_IDLE_COUPLED
    744		/*
    745		 * On multiplatform for ARM, the coupled idle states could be
    746		 * enabled in the kernel even if the cpuidle driver does not
    747		 * use it. Note, coupled_cpus is a struct copy.
    748		 */
    749		if (coupled_cpus)
    750			device->coupled_cpus = *coupled_cpus;
    751#endif
    752		ret = cpuidle_register_device(device);
    753		if (!ret)
    754			continue;
    755
    756		pr_err("Failed to register cpuidle device for cpu%d\n", cpu);
    757
    758		cpuidle_unregister(drv);
    759		break;
    760	}
    761
    762	return ret;
    763}
    764EXPORT_SYMBOL_GPL(cpuidle_register);
    765
    766/**
    767 * cpuidle_init - core initializer
    768 */
    769static int __init cpuidle_init(void)
    770{
    771	if (cpuidle_disabled())
    772		return -ENODEV;
    773
    774	return cpuidle_add_interface(cpu_subsys.dev_root);
    775}
    776
    777module_param(off, int, 0444);
    778module_param_string(governor, param_governor, CPUIDLE_NAME_LEN, 0444);
    779core_initcall(cpuidle_init);