cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

sun4i-ss-hash.c (14278B)


      1// SPDX-License-Identifier: GPL-2.0-or-later
      2/*
      3 * sun4i-ss-hash.c - hardware cryptographic accelerator for Allwinner A20 SoC
      4 *
      5 * Copyright (C) 2013-2015 Corentin LABBE <clabbe.montjoie@gmail.com>
      6 *
      7 * This file add support for MD5 and SHA1.
      8 *
      9 * You could find the datasheet in Documentation/arm/sunxi.rst
     10 */
     11#include "sun4i-ss.h"
     12#include <asm/unaligned.h>
     13#include <linux/scatterlist.h>
     14
     15/* This is a totally arbitrary value */
     16#define SS_TIMEOUT 100
     17
     18int sun4i_hash_crainit(struct crypto_tfm *tfm)
     19{
     20	struct sun4i_tfm_ctx *op = crypto_tfm_ctx(tfm);
     21	struct ahash_alg *alg = __crypto_ahash_alg(tfm->__crt_alg);
     22	struct sun4i_ss_alg_template *algt;
     23	int err;
     24
     25	memset(op, 0, sizeof(struct sun4i_tfm_ctx));
     26
     27	algt = container_of(alg, struct sun4i_ss_alg_template, alg.hash);
     28	op->ss = algt->ss;
     29
     30	err = pm_runtime_resume_and_get(op->ss->dev);
     31	if (err < 0)
     32		return err;
     33
     34	crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
     35				 sizeof(struct sun4i_req_ctx));
     36	return 0;
     37}
     38
     39void sun4i_hash_craexit(struct crypto_tfm *tfm)
     40{
     41	struct sun4i_tfm_ctx *op = crypto_tfm_ctx(tfm);
     42
     43	pm_runtime_put(op->ss->dev);
     44}
     45
     46/* sun4i_hash_init: initialize request context */
     47int sun4i_hash_init(struct ahash_request *areq)
     48{
     49	struct sun4i_req_ctx *op = ahash_request_ctx(areq);
     50	struct crypto_ahash *tfm = crypto_ahash_reqtfm(areq);
     51	struct ahash_alg *alg = __crypto_ahash_alg(tfm->base.__crt_alg);
     52	struct sun4i_ss_alg_template *algt;
     53
     54	memset(op, 0, sizeof(struct sun4i_req_ctx));
     55
     56	algt = container_of(alg, struct sun4i_ss_alg_template, alg.hash);
     57	op->mode = algt->mode;
     58
     59	return 0;
     60}
     61
     62int sun4i_hash_export_md5(struct ahash_request *areq, void *out)
     63{
     64	struct sun4i_req_ctx *op = ahash_request_ctx(areq);
     65	struct md5_state *octx = out;
     66	int i;
     67
     68	octx->byte_count = op->byte_count + op->len;
     69
     70	memcpy(octx->block, op->buf, op->len);
     71
     72	if (op->byte_count) {
     73		for (i = 0; i < 4; i++)
     74			octx->hash[i] = op->hash[i];
     75	} else {
     76		octx->hash[0] = SHA1_H0;
     77		octx->hash[1] = SHA1_H1;
     78		octx->hash[2] = SHA1_H2;
     79		octx->hash[3] = SHA1_H3;
     80	}
     81
     82	return 0;
     83}
     84
     85int sun4i_hash_import_md5(struct ahash_request *areq, const void *in)
     86{
     87	struct sun4i_req_ctx *op = ahash_request_ctx(areq);
     88	const struct md5_state *ictx = in;
     89	int i;
     90
     91	sun4i_hash_init(areq);
     92
     93	op->byte_count = ictx->byte_count & ~0x3F;
     94	op->len = ictx->byte_count & 0x3F;
     95
     96	memcpy(op->buf, ictx->block, op->len);
     97
     98	for (i = 0; i < 4; i++)
     99		op->hash[i] = ictx->hash[i];
    100
    101	return 0;
    102}
    103
    104int sun4i_hash_export_sha1(struct ahash_request *areq, void *out)
    105{
    106	struct sun4i_req_ctx *op = ahash_request_ctx(areq);
    107	struct sha1_state *octx = out;
    108	int i;
    109
    110	octx->count = op->byte_count + op->len;
    111
    112	memcpy(octx->buffer, op->buf, op->len);
    113
    114	if (op->byte_count) {
    115		for (i = 0; i < 5; i++)
    116			octx->state[i] = op->hash[i];
    117	} else {
    118		octx->state[0] = SHA1_H0;
    119		octx->state[1] = SHA1_H1;
    120		octx->state[2] = SHA1_H2;
    121		octx->state[3] = SHA1_H3;
    122		octx->state[4] = SHA1_H4;
    123	}
    124
    125	return 0;
    126}
    127
    128int sun4i_hash_import_sha1(struct ahash_request *areq, const void *in)
    129{
    130	struct sun4i_req_ctx *op = ahash_request_ctx(areq);
    131	const struct sha1_state *ictx = in;
    132	int i;
    133
    134	sun4i_hash_init(areq);
    135
    136	op->byte_count = ictx->count & ~0x3F;
    137	op->len = ictx->count & 0x3F;
    138
    139	memcpy(op->buf, ictx->buffer, op->len);
    140
    141	for (i = 0; i < 5; i++)
    142		op->hash[i] = ictx->state[i];
    143
    144	return 0;
    145}
    146
    147#define SS_HASH_UPDATE 1
    148#define SS_HASH_FINAL 2
    149
    150/*
    151 * sun4i_hash_update: update hash engine
    152 *
    153 * Could be used for both SHA1 and MD5
    154 * Write data by step of 32bits and put then in the SS.
    155 *
    156 * Since we cannot leave partial data and hash state in the engine,
    157 * we need to get the hash state at the end of this function.
    158 * We can get the hash state every 64 bytes
    159 *
    160 * So the first work is to get the number of bytes to write to SS modulo 64
    161 * The extra bytes will go to a temporary buffer op->buf storing op->len bytes
    162 *
    163 * So at the begin of update()
    164 * if op->len + areq->nbytes < 64
    165 * => all data will be written to wait buffer (op->buf) and end=0
    166 * if not, write all data from op->buf to the device and position end to
    167 * complete to 64bytes
    168 *
    169 * example 1:
    170 * update1 60o => op->len=60
    171 * update2 60o => need one more word to have 64 bytes
    172 * end=4
    173 * so write all data from op->buf and one word of SGs
    174 * write remaining data in op->buf
    175 * final state op->len=56
    176 */
    177static int sun4i_hash(struct ahash_request *areq)
    178{
    179	/*
    180	 * i is the total bytes read from SGs, to be compared to areq->nbytes
    181	 * i is important because we cannot rely on SG length since the sum of
    182	 * SG->length could be greater than areq->nbytes
    183	 *
    184	 * end is the position when we need to stop writing to the device,
    185	 * to be compared to i
    186	 *
    187	 * in_i: advancement in the current SG
    188	 */
    189	unsigned int i = 0, end, fill, min_fill, nwait, nbw = 0, j = 0, todo;
    190	unsigned int in_i = 0;
    191	u32 spaces, rx_cnt = SS_RX_DEFAULT, bf[32] = {0}, v, ivmode = 0;
    192	struct sun4i_req_ctx *op = ahash_request_ctx(areq);
    193	struct crypto_ahash *tfm = crypto_ahash_reqtfm(areq);
    194	struct ahash_alg *alg = __crypto_ahash_alg(tfm->base.__crt_alg);
    195	struct sun4i_tfm_ctx *tfmctx = crypto_ahash_ctx(tfm);
    196	struct sun4i_ss_ctx *ss = tfmctx->ss;
    197	struct sun4i_ss_alg_template *algt;
    198	struct scatterlist *in_sg = areq->src;
    199	struct sg_mapping_iter mi;
    200	int in_r, err = 0;
    201	size_t copied = 0;
    202	u32 wb = 0;
    203
    204	dev_dbg(ss->dev, "%s %s bc=%llu len=%u mode=%x wl=%u h0=%0x",
    205		__func__, crypto_tfm_alg_name(areq->base.tfm),
    206		op->byte_count, areq->nbytes, op->mode,
    207		op->len, op->hash[0]);
    208
    209	if (unlikely(!areq->nbytes) && !(op->flags & SS_HASH_FINAL))
    210		return 0;
    211
    212	/* protect against overflow */
    213	if (unlikely(areq->nbytes > UINT_MAX - op->len)) {
    214		dev_err(ss->dev, "Cannot process too large request\n");
    215		return -EINVAL;
    216	}
    217
    218	if (op->len + areq->nbytes < 64 && !(op->flags & SS_HASH_FINAL)) {
    219		/* linearize data to op->buf */
    220		copied = sg_pcopy_to_buffer(areq->src, sg_nents(areq->src),
    221					    op->buf + op->len, areq->nbytes, 0);
    222		op->len += copied;
    223		return 0;
    224	}
    225
    226	spin_lock_bh(&ss->slock);
    227
    228	/*
    229	 * if some data have been processed before,
    230	 * we need to restore the partial hash state
    231	 */
    232	if (op->byte_count) {
    233		ivmode = SS_IV_ARBITRARY;
    234		for (i = 0; i < crypto_ahash_digestsize(tfm) / 4; i++)
    235			writel(op->hash[i], ss->base + SS_IV0 + i * 4);
    236	}
    237	/* Enable the device */
    238	writel(op->mode | SS_ENABLED | ivmode, ss->base + SS_CTL);
    239
    240	if (!(op->flags & SS_HASH_UPDATE))
    241		goto hash_final;
    242
    243	/* start of handling data */
    244	if (!(op->flags & SS_HASH_FINAL)) {
    245		end = ((areq->nbytes + op->len) / 64) * 64 - op->len;
    246
    247		if (end > areq->nbytes || areq->nbytes - end > 63) {
    248			dev_err(ss->dev, "ERROR: Bound error %u %u\n",
    249				end, areq->nbytes);
    250			err = -EINVAL;
    251			goto release_ss;
    252		}
    253	} else {
    254		/* Since we have the flag final, we can go up to modulo 4 */
    255		if (areq->nbytes < 4)
    256			end = 0;
    257		else
    258			end = ((areq->nbytes + op->len) / 4) * 4 - op->len;
    259	}
    260
    261	/* TODO if SGlen % 4 and !op->len then DMA */
    262	i = 1;
    263	while (in_sg && i == 1) {
    264		if (in_sg->length % 4)
    265			i = 0;
    266		in_sg = sg_next(in_sg);
    267	}
    268	if (i == 1 && !op->len && areq->nbytes)
    269		dev_dbg(ss->dev, "We can DMA\n");
    270
    271	i = 0;
    272	sg_miter_start(&mi, areq->src, sg_nents(areq->src),
    273		       SG_MITER_FROM_SG | SG_MITER_ATOMIC);
    274	sg_miter_next(&mi);
    275	in_i = 0;
    276
    277	do {
    278		/*
    279		 * we need to linearize in two case:
    280		 * - the buffer is already used
    281		 * - the SG does not have enough byte remaining ( < 4)
    282		 */
    283		if (op->len || (mi.length - in_i) < 4) {
    284			/*
    285			 * if we have entered here we have two reason to stop
    286			 * - the buffer is full
    287			 * - reach the end
    288			 */
    289			while (op->len < 64 && i < end) {
    290				/* how many bytes we can read from current SG */
    291				in_r = min(end - i, 64 - op->len);
    292				in_r = min_t(size_t, mi.length - in_i, in_r);
    293				memcpy(op->buf + op->len, mi.addr + in_i, in_r);
    294				op->len += in_r;
    295				i += in_r;
    296				in_i += in_r;
    297				if (in_i == mi.length) {
    298					sg_miter_next(&mi);
    299					in_i = 0;
    300				}
    301			}
    302			if (op->len > 3 && !(op->len % 4)) {
    303				/* write buf to the device */
    304				writesl(ss->base + SS_RXFIFO, op->buf,
    305					op->len / 4);
    306				op->byte_count += op->len;
    307				op->len = 0;
    308			}
    309		}
    310		if (mi.length - in_i > 3 && i < end) {
    311			/* how many bytes we can read from current SG */
    312			in_r = min_t(size_t, mi.length - in_i, areq->nbytes - i);
    313			in_r = min_t(size_t, ((mi.length - in_i) / 4) * 4, in_r);
    314			/* how many bytes we can write in the device*/
    315			todo = min3((u32)(end - i) / 4, rx_cnt, (u32)in_r / 4);
    316			writesl(ss->base + SS_RXFIFO, mi.addr + in_i, todo);
    317			op->byte_count += todo * 4;
    318			i += todo * 4;
    319			in_i += todo * 4;
    320			rx_cnt -= todo;
    321			if (!rx_cnt) {
    322				spaces = readl(ss->base + SS_FCSR);
    323				rx_cnt = SS_RXFIFO_SPACES(spaces);
    324			}
    325			if (in_i == mi.length) {
    326				sg_miter_next(&mi);
    327				in_i = 0;
    328			}
    329		}
    330	} while (i < end);
    331
    332	/*
    333	 * Now we have written to the device all that we can,
    334	 * store the remaining bytes in op->buf
    335	 */
    336	if ((areq->nbytes - i) < 64) {
    337		while (i < areq->nbytes && in_i < mi.length && op->len < 64) {
    338			/* how many bytes we can read from current SG */
    339			in_r = min(areq->nbytes - i, 64 - op->len);
    340			in_r = min_t(size_t, mi.length - in_i, in_r);
    341			memcpy(op->buf + op->len, mi.addr + in_i, in_r);
    342			op->len += in_r;
    343			i += in_r;
    344			in_i += in_r;
    345			if (in_i == mi.length) {
    346				sg_miter_next(&mi);
    347				in_i = 0;
    348			}
    349		}
    350	}
    351
    352	sg_miter_stop(&mi);
    353
    354	/*
    355	 * End of data process
    356	 * Now if we have the flag final go to finalize part
    357	 * If not, store the partial hash
    358	 */
    359	if (op->flags & SS_HASH_FINAL)
    360		goto hash_final;
    361
    362	writel(op->mode | SS_ENABLED | SS_DATA_END, ss->base + SS_CTL);
    363	i = 0;
    364	do {
    365		v = readl(ss->base + SS_CTL);
    366		i++;
    367	} while (i < SS_TIMEOUT && (v & SS_DATA_END));
    368	if (unlikely(i >= SS_TIMEOUT)) {
    369		dev_err_ratelimited(ss->dev,
    370				    "ERROR: hash end timeout %d>%d ctl=%x len=%u\n",
    371				    i, SS_TIMEOUT, v, areq->nbytes);
    372		err = -EIO;
    373		goto release_ss;
    374	}
    375
    376	/*
    377	 * The datasheet isn't very clear about when to retrieve the digest. The
    378	 * bit SS_DATA_END is cleared when the engine has processed the data and
    379	 * when the digest is computed *but* it doesn't mean the digest is
    380	 * available in the digest registers. Hence the delay to be sure we can
    381	 * read it.
    382	 */
    383	ndelay(1);
    384
    385	for (i = 0; i < crypto_ahash_digestsize(tfm) / 4; i++)
    386		op->hash[i] = readl(ss->base + SS_MD0 + i * 4);
    387
    388	goto release_ss;
    389
    390/*
    391 * hash_final: finalize hashing operation
    392 *
    393 * If we have some remaining bytes, we write them.
    394 * Then ask the SS for finalizing the hashing operation
    395 *
    396 * I do not check RX FIFO size in this function since the size is 32
    397 * after each enabling and this function neither write more than 32 words.
    398 * If we come from the update part, we cannot have more than
    399 * 3 remaining bytes to write and SS is fast enough to not care about it.
    400 */
    401
    402hash_final:
    403	if (IS_ENABLED(CONFIG_CRYPTO_DEV_SUN4I_SS_DEBUG)) {
    404		algt = container_of(alg, struct sun4i_ss_alg_template, alg.hash);
    405		algt->stat_req++;
    406	}
    407
    408	/* write the remaining words of the wait buffer */
    409	if (op->len) {
    410		nwait = op->len / 4;
    411		if (nwait) {
    412			writesl(ss->base + SS_RXFIFO, op->buf, nwait);
    413			op->byte_count += 4 * nwait;
    414		}
    415
    416		nbw = op->len - 4 * nwait;
    417		if (nbw) {
    418			wb = le32_to_cpup((__le32 *)(op->buf + nwait * 4));
    419			wb &= GENMASK((nbw * 8) - 1, 0);
    420
    421			op->byte_count += nbw;
    422		}
    423	}
    424
    425	/* write the remaining bytes of the nbw buffer */
    426	wb |= ((1 << 7) << (nbw * 8));
    427	((__le32 *)bf)[j++] = cpu_to_le32(wb);
    428
    429	/*
    430	 * number of space to pad to obtain 64o minus 8(size) minus 4 (final 1)
    431	 * I take the operations from other MD5/SHA1 implementations
    432	 */
    433
    434	/* last block size */
    435	fill = 64 - (op->byte_count % 64);
    436	min_fill = 2 * sizeof(u32) + (nbw ? 0 : sizeof(u32));
    437
    438	/* if we can't fill all data, jump to the next 64 block */
    439	if (fill < min_fill)
    440		fill += 64;
    441
    442	j += (fill - min_fill) / sizeof(u32);
    443
    444	/* write the length of data */
    445	if (op->mode == SS_OP_SHA1) {
    446		__be64 *bits = (__be64 *)&bf[j];
    447		*bits = cpu_to_be64(op->byte_count << 3);
    448		j += 2;
    449	} else {
    450		__le64 *bits = (__le64 *)&bf[j];
    451		*bits = cpu_to_le64(op->byte_count << 3);
    452		j += 2;
    453	}
    454	writesl(ss->base + SS_RXFIFO, bf, j);
    455
    456	/* Tell the SS to stop the hashing */
    457	writel(op->mode | SS_ENABLED | SS_DATA_END, ss->base + SS_CTL);
    458
    459	/*
    460	 * Wait for SS to finish the hash.
    461	 * The timeout could happen only in case of bad overclocking
    462	 * or driver bug.
    463	 */
    464	i = 0;
    465	do {
    466		v = readl(ss->base + SS_CTL);
    467		i++;
    468	} while (i < SS_TIMEOUT && (v & SS_DATA_END));
    469	if (unlikely(i >= SS_TIMEOUT)) {
    470		dev_err_ratelimited(ss->dev,
    471				    "ERROR: hash end timeout %d>%d ctl=%x len=%u\n",
    472				    i, SS_TIMEOUT, v, areq->nbytes);
    473		err = -EIO;
    474		goto release_ss;
    475	}
    476
    477	/*
    478	 * The datasheet isn't very clear about when to retrieve the digest. The
    479	 * bit SS_DATA_END is cleared when the engine has processed the data and
    480	 * when the digest is computed *but* it doesn't mean the digest is
    481	 * available in the digest registers. Hence the delay to be sure we can
    482	 * read it.
    483	 */
    484	ndelay(1);
    485
    486	/* Get the hash from the device */
    487	if (op->mode == SS_OP_SHA1) {
    488		for (i = 0; i < 5; i++) {
    489			v = readl(ss->base + SS_MD0 + i * 4);
    490			if (ss->variant->sha1_in_be)
    491				put_unaligned_le32(v, areq->result + i * 4);
    492			else
    493				put_unaligned_be32(v, areq->result + i * 4);
    494		}
    495	} else {
    496		for (i = 0; i < 4; i++) {
    497			v = readl(ss->base + SS_MD0 + i * 4);
    498			put_unaligned_le32(v, areq->result + i * 4);
    499		}
    500	}
    501
    502release_ss:
    503	writel(0, ss->base + SS_CTL);
    504	spin_unlock_bh(&ss->slock);
    505	return err;
    506}
    507
    508int sun4i_hash_final(struct ahash_request *areq)
    509{
    510	struct sun4i_req_ctx *op = ahash_request_ctx(areq);
    511
    512	op->flags = SS_HASH_FINAL;
    513	return sun4i_hash(areq);
    514}
    515
    516int sun4i_hash_update(struct ahash_request *areq)
    517{
    518	struct sun4i_req_ctx *op = ahash_request_ctx(areq);
    519
    520	op->flags = SS_HASH_UPDATE;
    521	return sun4i_hash(areq);
    522}
    523
    524/* sun4i_hash_finup: finalize hashing operation after an update */
    525int sun4i_hash_finup(struct ahash_request *areq)
    526{
    527	struct sun4i_req_ctx *op = ahash_request_ctx(areq);
    528
    529	op->flags = SS_HASH_UPDATE | SS_HASH_FINAL;
    530	return sun4i_hash(areq);
    531}
    532
    533/* combo of init/update/final functions */
    534int sun4i_hash_digest(struct ahash_request *areq)
    535{
    536	int err;
    537	struct sun4i_req_ctx *op = ahash_request_ctx(areq);
    538
    539	err = sun4i_hash_init(areq);
    540	if (err)
    541		return err;
    542
    543	op->flags = SS_HASH_UPDATE | SS_HASH_FINAL;
    544	return sun4i_hash(areq);
    545}