cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

crypto4xx_core.c (41978B)


      1// SPDX-License-Identifier: GPL-2.0-or-later
      2/*
      3 * AMCC SoC PPC4xx Crypto Driver
      4 *
      5 * Copyright (c) 2008 Applied Micro Circuits Corporation.
      6 * All rights reserved. James Hsiao <jhsiao@amcc.com>
      7 *
      8 * This file implements AMCC crypto offload Linux device driver for use with
      9 * Linux CryptoAPI.
     10 */
     11
     12#include <linux/kernel.h>
     13#include <linux/interrupt.h>
     14#include <linux/spinlock_types.h>
     15#include <linux/random.h>
     16#include <linux/scatterlist.h>
     17#include <linux/crypto.h>
     18#include <linux/dma-mapping.h>
     19#include <linux/platform_device.h>
     20#include <linux/init.h>
     21#include <linux/module.h>
     22#include <linux/of_address.h>
     23#include <linux/of_irq.h>
     24#include <linux/of_platform.h>
     25#include <linux/slab.h>
     26#include <asm/dcr.h>
     27#include <asm/dcr-regs.h>
     28#include <asm/cacheflush.h>
     29#include <crypto/aead.h>
     30#include <crypto/aes.h>
     31#include <crypto/ctr.h>
     32#include <crypto/gcm.h>
     33#include <crypto/sha1.h>
     34#include <crypto/rng.h>
     35#include <crypto/scatterwalk.h>
     36#include <crypto/skcipher.h>
     37#include <crypto/internal/aead.h>
     38#include <crypto/internal/rng.h>
     39#include <crypto/internal/skcipher.h>
     40#include "crypto4xx_reg_def.h"
     41#include "crypto4xx_core.h"
     42#include "crypto4xx_sa.h"
     43#include "crypto4xx_trng.h"
     44
     45#define PPC4XX_SEC_VERSION_STR			"0.5"
     46
     47/*
     48 * PPC4xx Crypto Engine Initialization Routine
     49 */
     50static void crypto4xx_hw_init(struct crypto4xx_device *dev)
     51{
     52	union ce_ring_size ring_size;
     53	union ce_ring_control ring_ctrl;
     54	union ce_part_ring_size part_ring_size;
     55	union ce_io_threshold io_threshold;
     56	u32 rand_num;
     57	union ce_pe_dma_cfg pe_dma_cfg;
     58	u32 device_ctrl;
     59
     60	writel(PPC4XX_BYTE_ORDER, dev->ce_base + CRYPTO4XX_BYTE_ORDER_CFG);
     61	/* setup pe dma, include reset sg, pdr and pe, then release reset */
     62	pe_dma_cfg.w = 0;
     63	pe_dma_cfg.bf.bo_sgpd_en = 1;
     64	pe_dma_cfg.bf.bo_data_en = 0;
     65	pe_dma_cfg.bf.bo_sa_en = 1;
     66	pe_dma_cfg.bf.bo_pd_en = 1;
     67	pe_dma_cfg.bf.dynamic_sa_en = 1;
     68	pe_dma_cfg.bf.reset_sg = 1;
     69	pe_dma_cfg.bf.reset_pdr = 1;
     70	pe_dma_cfg.bf.reset_pe = 1;
     71	writel(pe_dma_cfg.w, dev->ce_base + CRYPTO4XX_PE_DMA_CFG);
     72	/* un reset pe,sg and pdr */
     73	pe_dma_cfg.bf.pe_mode = 0;
     74	pe_dma_cfg.bf.reset_sg = 0;
     75	pe_dma_cfg.bf.reset_pdr = 0;
     76	pe_dma_cfg.bf.reset_pe = 0;
     77	pe_dma_cfg.bf.bo_td_en = 0;
     78	writel(pe_dma_cfg.w, dev->ce_base + CRYPTO4XX_PE_DMA_CFG);
     79	writel(dev->pdr_pa, dev->ce_base + CRYPTO4XX_PDR_BASE);
     80	writel(dev->pdr_pa, dev->ce_base + CRYPTO4XX_RDR_BASE);
     81	writel(PPC4XX_PRNG_CTRL_AUTO_EN, dev->ce_base + CRYPTO4XX_PRNG_CTRL);
     82	get_random_bytes(&rand_num, sizeof(rand_num));
     83	writel(rand_num, dev->ce_base + CRYPTO4XX_PRNG_SEED_L);
     84	get_random_bytes(&rand_num, sizeof(rand_num));
     85	writel(rand_num, dev->ce_base + CRYPTO4XX_PRNG_SEED_H);
     86	ring_size.w = 0;
     87	ring_size.bf.ring_offset = PPC4XX_PD_SIZE;
     88	ring_size.bf.ring_size   = PPC4XX_NUM_PD;
     89	writel(ring_size.w, dev->ce_base + CRYPTO4XX_RING_SIZE);
     90	ring_ctrl.w = 0;
     91	writel(ring_ctrl.w, dev->ce_base + CRYPTO4XX_RING_CTRL);
     92	device_ctrl = readl(dev->ce_base + CRYPTO4XX_DEVICE_CTRL);
     93	device_ctrl |= PPC4XX_DC_3DES_EN;
     94	writel(device_ctrl, dev->ce_base + CRYPTO4XX_DEVICE_CTRL);
     95	writel(dev->gdr_pa, dev->ce_base + CRYPTO4XX_GATH_RING_BASE);
     96	writel(dev->sdr_pa, dev->ce_base + CRYPTO4XX_SCAT_RING_BASE);
     97	part_ring_size.w = 0;
     98	part_ring_size.bf.sdr_size = PPC4XX_SDR_SIZE;
     99	part_ring_size.bf.gdr_size = PPC4XX_GDR_SIZE;
    100	writel(part_ring_size.w, dev->ce_base + CRYPTO4XX_PART_RING_SIZE);
    101	writel(PPC4XX_SD_BUFFER_SIZE, dev->ce_base + CRYPTO4XX_PART_RING_CFG);
    102	io_threshold.w = 0;
    103	io_threshold.bf.output_threshold = PPC4XX_OUTPUT_THRESHOLD;
    104	io_threshold.bf.input_threshold  = PPC4XX_INPUT_THRESHOLD;
    105	writel(io_threshold.w, dev->ce_base + CRYPTO4XX_IO_THRESHOLD);
    106	writel(0, dev->ce_base + CRYPTO4XX_PDR_BASE_UADDR);
    107	writel(0, dev->ce_base + CRYPTO4XX_RDR_BASE_UADDR);
    108	writel(0, dev->ce_base + CRYPTO4XX_PKT_SRC_UADDR);
    109	writel(0, dev->ce_base + CRYPTO4XX_PKT_DEST_UADDR);
    110	writel(0, dev->ce_base + CRYPTO4XX_SA_UADDR);
    111	writel(0, dev->ce_base + CRYPTO4XX_GATH_RING_BASE_UADDR);
    112	writel(0, dev->ce_base + CRYPTO4XX_SCAT_RING_BASE_UADDR);
    113	/* un reset pe,sg and pdr */
    114	pe_dma_cfg.bf.pe_mode = 1;
    115	pe_dma_cfg.bf.reset_sg = 0;
    116	pe_dma_cfg.bf.reset_pdr = 0;
    117	pe_dma_cfg.bf.reset_pe = 0;
    118	pe_dma_cfg.bf.bo_td_en = 0;
    119	writel(pe_dma_cfg.w, dev->ce_base + CRYPTO4XX_PE_DMA_CFG);
    120	/*clear all pending interrupt*/
    121	writel(PPC4XX_INTERRUPT_CLR, dev->ce_base + CRYPTO4XX_INT_CLR);
    122	writel(PPC4XX_INT_DESCR_CNT, dev->ce_base + CRYPTO4XX_INT_DESCR_CNT);
    123	writel(PPC4XX_INT_DESCR_CNT, dev->ce_base + CRYPTO4XX_INT_DESCR_CNT);
    124	writel(PPC4XX_INT_CFG, dev->ce_base + CRYPTO4XX_INT_CFG);
    125	if (dev->is_revb) {
    126		writel(PPC4XX_INT_TIMEOUT_CNT_REVB << 10,
    127		       dev->ce_base + CRYPTO4XX_INT_TIMEOUT_CNT);
    128		writel(PPC4XX_PD_DONE_INT | PPC4XX_TMO_ERR_INT,
    129		       dev->ce_base + CRYPTO4XX_INT_EN);
    130	} else {
    131		writel(PPC4XX_PD_DONE_INT, dev->ce_base + CRYPTO4XX_INT_EN);
    132	}
    133}
    134
    135int crypto4xx_alloc_sa(struct crypto4xx_ctx *ctx, u32 size)
    136{
    137	ctx->sa_in = kcalloc(size, 4, GFP_ATOMIC);
    138	if (ctx->sa_in == NULL)
    139		return -ENOMEM;
    140
    141	ctx->sa_out = kcalloc(size, 4, GFP_ATOMIC);
    142	if (ctx->sa_out == NULL) {
    143		kfree(ctx->sa_in);
    144		ctx->sa_in = NULL;
    145		return -ENOMEM;
    146	}
    147
    148	ctx->sa_len = size;
    149
    150	return 0;
    151}
    152
    153void crypto4xx_free_sa(struct crypto4xx_ctx *ctx)
    154{
    155	kfree(ctx->sa_in);
    156	ctx->sa_in = NULL;
    157	kfree(ctx->sa_out);
    158	ctx->sa_out = NULL;
    159	ctx->sa_len = 0;
    160}
    161
    162/*
    163 * alloc memory for the gather ring
    164 * no need to alloc buf for the ring
    165 * gdr_tail, gdr_head and gdr_count are initialized by this function
    166 */
    167static u32 crypto4xx_build_pdr(struct crypto4xx_device *dev)
    168{
    169	int i;
    170	dev->pdr = dma_alloc_coherent(dev->core_dev->device,
    171				      sizeof(struct ce_pd) * PPC4XX_NUM_PD,
    172				      &dev->pdr_pa, GFP_KERNEL);
    173	if (!dev->pdr)
    174		return -ENOMEM;
    175
    176	dev->pdr_uinfo = kcalloc(PPC4XX_NUM_PD, sizeof(struct pd_uinfo),
    177				 GFP_KERNEL);
    178	if (!dev->pdr_uinfo) {
    179		dma_free_coherent(dev->core_dev->device,
    180				  sizeof(struct ce_pd) * PPC4XX_NUM_PD,
    181				  dev->pdr,
    182				  dev->pdr_pa);
    183		return -ENOMEM;
    184	}
    185	dev->shadow_sa_pool = dma_alloc_coherent(dev->core_dev->device,
    186				   sizeof(union shadow_sa_buf) * PPC4XX_NUM_PD,
    187				   &dev->shadow_sa_pool_pa,
    188				   GFP_KERNEL);
    189	if (!dev->shadow_sa_pool)
    190		return -ENOMEM;
    191
    192	dev->shadow_sr_pool = dma_alloc_coherent(dev->core_dev->device,
    193			 sizeof(struct sa_state_record) * PPC4XX_NUM_PD,
    194			 &dev->shadow_sr_pool_pa, GFP_KERNEL);
    195	if (!dev->shadow_sr_pool)
    196		return -ENOMEM;
    197	for (i = 0; i < PPC4XX_NUM_PD; i++) {
    198		struct ce_pd *pd = &dev->pdr[i];
    199		struct pd_uinfo *pd_uinfo = &dev->pdr_uinfo[i];
    200
    201		pd->sa = dev->shadow_sa_pool_pa +
    202			sizeof(union shadow_sa_buf) * i;
    203
    204		/* alloc 256 bytes which is enough for any kind of dynamic sa */
    205		pd_uinfo->sa_va = &dev->shadow_sa_pool[i].sa;
    206
    207		/* alloc state record */
    208		pd_uinfo->sr_va = &dev->shadow_sr_pool[i];
    209		pd_uinfo->sr_pa = dev->shadow_sr_pool_pa +
    210		    sizeof(struct sa_state_record) * i;
    211	}
    212
    213	return 0;
    214}
    215
    216static void crypto4xx_destroy_pdr(struct crypto4xx_device *dev)
    217{
    218	if (dev->pdr)
    219		dma_free_coherent(dev->core_dev->device,
    220				  sizeof(struct ce_pd) * PPC4XX_NUM_PD,
    221				  dev->pdr, dev->pdr_pa);
    222
    223	if (dev->shadow_sa_pool)
    224		dma_free_coherent(dev->core_dev->device,
    225			sizeof(union shadow_sa_buf) * PPC4XX_NUM_PD,
    226			dev->shadow_sa_pool, dev->shadow_sa_pool_pa);
    227
    228	if (dev->shadow_sr_pool)
    229		dma_free_coherent(dev->core_dev->device,
    230			sizeof(struct sa_state_record) * PPC4XX_NUM_PD,
    231			dev->shadow_sr_pool, dev->shadow_sr_pool_pa);
    232
    233	kfree(dev->pdr_uinfo);
    234}
    235
    236static u32 crypto4xx_get_pd_from_pdr_nolock(struct crypto4xx_device *dev)
    237{
    238	u32 retval;
    239	u32 tmp;
    240
    241	retval = dev->pdr_head;
    242	tmp = (dev->pdr_head + 1) % PPC4XX_NUM_PD;
    243
    244	if (tmp == dev->pdr_tail)
    245		return ERING_WAS_FULL;
    246
    247	dev->pdr_head = tmp;
    248
    249	return retval;
    250}
    251
    252static u32 crypto4xx_put_pd_to_pdr(struct crypto4xx_device *dev, u32 idx)
    253{
    254	struct pd_uinfo *pd_uinfo = &dev->pdr_uinfo[idx];
    255	u32 tail;
    256	unsigned long flags;
    257
    258	spin_lock_irqsave(&dev->core_dev->lock, flags);
    259	pd_uinfo->state = PD_ENTRY_FREE;
    260
    261	if (dev->pdr_tail != PPC4XX_LAST_PD)
    262		dev->pdr_tail++;
    263	else
    264		dev->pdr_tail = 0;
    265	tail = dev->pdr_tail;
    266	spin_unlock_irqrestore(&dev->core_dev->lock, flags);
    267
    268	return tail;
    269}
    270
    271/*
    272 * alloc memory for the gather ring
    273 * no need to alloc buf for the ring
    274 * gdr_tail, gdr_head and gdr_count are initialized by this function
    275 */
    276static u32 crypto4xx_build_gdr(struct crypto4xx_device *dev)
    277{
    278	dev->gdr = dma_alloc_coherent(dev->core_dev->device,
    279				      sizeof(struct ce_gd) * PPC4XX_NUM_GD,
    280				      &dev->gdr_pa, GFP_KERNEL);
    281	if (!dev->gdr)
    282		return -ENOMEM;
    283
    284	return 0;
    285}
    286
    287static inline void crypto4xx_destroy_gdr(struct crypto4xx_device *dev)
    288{
    289	if (dev->gdr)
    290		dma_free_coherent(dev->core_dev->device,
    291			  sizeof(struct ce_gd) * PPC4XX_NUM_GD,
    292			  dev->gdr, dev->gdr_pa);
    293}
    294
    295/*
    296 * when this function is called.
    297 * preemption or interrupt must be disabled
    298 */
    299static u32 crypto4xx_get_n_gd(struct crypto4xx_device *dev, int n)
    300{
    301	u32 retval;
    302	u32 tmp;
    303
    304	if (n >= PPC4XX_NUM_GD)
    305		return ERING_WAS_FULL;
    306
    307	retval = dev->gdr_head;
    308	tmp = (dev->gdr_head + n) % PPC4XX_NUM_GD;
    309	if (dev->gdr_head > dev->gdr_tail) {
    310		if (tmp < dev->gdr_head && tmp >= dev->gdr_tail)
    311			return ERING_WAS_FULL;
    312	} else if (dev->gdr_head < dev->gdr_tail) {
    313		if (tmp < dev->gdr_head || tmp >= dev->gdr_tail)
    314			return ERING_WAS_FULL;
    315	}
    316	dev->gdr_head = tmp;
    317
    318	return retval;
    319}
    320
    321static u32 crypto4xx_put_gd_to_gdr(struct crypto4xx_device *dev)
    322{
    323	unsigned long flags;
    324
    325	spin_lock_irqsave(&dev->core_dev->lock, flags);
    326	if (dev->gdr_tail == dev->gdr_head) {
    327		spin_unlock_irqrestore(&dev->core_dev->lock, flags);
    328		return 0;
    329	}
    330
    331	if (dev->gdr_tail != PPC4XX_LAST_GD)
    332		dev->gdr_tail++;
    333	else
    334		dev->gdr_tail = 0;
    335
    336	spin_unlock_irqrestore(&dev->core_dev->lock, flags);
    337
    338	return 0;
    339}
    340
    341static inline struct ce_gd *crypto4xx_get_gdp(struct crypto4xx_device *dev,
    342					      dma_addr_t *gd_dma, u32 idx)
    343{
    344	*gd_dma = dev->gdr_pa + sizeof(struct ce_gd) * idx;
    345
    346	return &dev->gdr[idx];
    347}
    348
    349/*
    350 * alloc memory for the scatter ring
    351 * need to alloc buf for the ring
    352 * sdr_tail, sdr_head and sdr_count are initialized by this function
    353 */
    354static u32 crypto4xx_build_sdr(struct crypto4xx_device *dev)
    355{
    356	int i;
    357
    358	dev->scatter_buffer_va =
    359		dma_alloc_coherent(dev->core_dev->device,
    360			PPC4XX_SD_BUFFER_SIZE * PPC4XX_NUM_SD,
    361			&dev->scatter_buffer_pa, GFP_KERNEL);
    362	if (!dev->scatter_buffer_va)
    363		return -ENOMEM;
    364
    365	/* alloc memory for scatter descriptor ring */
    366	dev->sdr = dma_alloc_coherent(dev->core_dev->device,
    367				      sizeof(struct ce_sd) * PPC4XX_NUM_SD,
    368				      &dev->sdr_pa, GFP_KERNEL);
    369	if (!dev->sdr)
    370		return -ENOMEM;
    371
    372	for (i = 0; i < PPC4XX_NUM_SD; i++) {
    373		dev->sdr[i].ptr = dev->scatter_buffer_pa +
    374				  PPC4XX_SD_BUFFER_SIZE * i;
    375	}
    376
    377	return 0;
    378}
    379
    380static void crypto4xx_destroy_sdr(struct crypto4xx_device *dev)
    381{
    382	if (dev->sdr)
    383		dma_free_coherent(dev->core_dev->device,
    384				  sizeof(struct ce_sd) * PPC4XX_NUM_SD,
    385				  dev->sdr, dev->sdr_pa);
    386
    387	if (dev->scatter_buffer_va)
    388		dma_free_coherent(dev->core_dev->device,
    389				  PPC4XX_SD_BUFFER_SIZE * PPC4XX_NUM_SD,
    390				  dev->scatter_buffer_va,
    391				  dev->scatter_buffer_pa);
    392}
    393
    394/*
    395 * when this function is called.
    396 * preemption or interrupt must be disabled
    397 */
    398static u32 crypto4xx_get_n_sd(struct crypto4xx_device *dev, int n)
    399{
    400	u32 retval;
    401	u32 tmp;
    402
    403	if (n >= PPC4XX_NUM_SD)
    404		return ERING_WAS_FULL;
    405
    406	retval = dev->sdr_head;
    407	tmp = (dev->sdr_head + n) % PPC4XX_NUM_SD;
    408	if (dev->sdr_head > dev->gdr_tail) {
    409		if (tmp < dev->sdr_head && tmp >= dev->sdr_tail)
    410			return ERING_WAS_FULL;
    411	} else if (dev->sdr_head < dev->sdr_tail) {
    412		if (tmp < dev->sdr_head || tmp >= dev->sdr_tail)
    413			return ERING_WAS_FULL;
    414	} /* the head = tail, or empty case is already take cared */
    415	dev->sdr_head = tmp;
    416
    417	return retval;
    418}
    419
    420static u32 crypto4xx_put_sd_to_sdr(struct crypto4xx_device *dev)
    421{
    422	unsigned long flags;
    423
    424	spin_lock_irqsave(&dev->core_dev->lock, flags);
    425	if (dev->sdr_tail == dev->sdr_head) {
    426		spin_unlock_irqrestore(&dev->core_dev->lock, flags);
    427		return 0;
    428	}
    429	if (dev->sdr_tail != PPC4XX_LAST_SD)
    430		dev->sdr_tail++;
    431	else
    432		dev->sdr_tail = 0;
    433	spin_unlock_irqrestore(&dev->core_dev->lock, flags);
    434
    435	return 0;
    436}
    437
    438static inline struct ce_sd *crypto4xx_get_sdp(struct crypto4xx_device *dev,
    439					      dma_addr_t *sd_dma, u32 idx)
    440{
    441	*sd_dma = dev->sdr_pa + sizeof(struct ce_sd) * idx;
    442
    443	return &dev->sdr[idx];
    444}
    445
    446static void crypto4xx_copy_pkt_to_dst(struct crypto4xx_device *dev,
    447				      struct ce_pd *pd,
    448				      struct pd_uinfo *pd_uinfo,
    449				      u32 nbytes,
    450				      struct scatterlist *dst)
    451{
    452	unsigned int first_sd = pd_uinfo->first_sd;
    453	unsigned int last_sd;
    454	unsigned int overflow = 0;
    455	unsigned int to_copy;
    456	unsigned int dst_start = 0;
    457
    458	/*
    459	 * Because the scatter buffers are all neatly organized in one
    460	 * big continuous ringbuffer; scatterwalk_map_and_copy() can
    461	 * be instructed to copy a range of buffers in one go.
    462	 */
    463
    464	last_sd = (first_sd + pd_uinfo->num_sd);
    465	if (last_sd > PPC4XX_LAST_SD) {
    466		last_sd = PPC4XX_LAST_SD;
    467		overflow = last_sd % PPC4XX_NUM_SD;
    468	}
    469
    470	while (nbytes) {
    471		void *buf = dev->scatter_buffer_va +
    472			first_sd * PPC4XX_SD_BUFFER_SIZE;
    473
    474		to_copy = min(nbytes, PPC4XX_SD_BUFFER_SIZE *
    475				      (1 + last_sd - first_sd));
    476		scatterwalk_map_and_copy(buf, dst, dst_start, to_copy, 1);
    477		nbytes -= to_copy;
    478
    479		if (overflow) {
    480			first_sd = 0;
    481			last_sd = overflow;
    482			dst_start += to_copy;
    483			overflow = 0;
    484		}
    485	}
    486}
    487
    488static void crypto4xx_copy_digest_to_dst(void *dst,
    489					struct pd_uinfo *pd_uinfo,
    490					struct crypto4xx_ctx *ctx)
    491{
    492	struct dynamic_sa_ctl *sa = (struct dynamic_sa_ctl *) ctx->sa_in;
    493
    494	if (sa->sa_command_0.bf.hash_alg == SA_HASH_ALG_SHA1) {
    495		memcpy(dst, pd_uinfo->sr_va->save_digest,
    496		       SA_HASH_ALG_SHA1_DIGEST_SIZE);
    497	}
    498}
    499
    500static void crypto4xx_ret_sg_desc(struct crypto4xx_device *dev,
    501				  struct pd_uinfo *pd_uinfo)
    502{
    503	int i;
    504	if (pd_uinfo->num_gd) {
    505		for (i = 0; i < pd_uinfo->num_gd; i++)
    506			crypto4xx_put_gd_to_gdr(dev);
    507		pd_uinfo->first_gd = 0xffffffff;
    508		pd_uinfo->num_gd = 0;
    509	}
    510	if (pd_uinfo->num_sd) {
    511		for (i = 0; i < pd_uinfo->num_sd; i++)
    512			crypto4xx_put_sd_to_sdr(dev);
    513
    514		pd_uinfo->first_sd = 0xffffffff;
    515		pd_uinfo->num_sd = 0;
    516	}
    517}
    518
    519static void crypto4xx_cipher_done(struct crypto4xx_device *dev,
    520				     struct pd_uinfo *pd_uinfo,
    521				     struct ce_pd *pd)
    522{
    523	struct skcipher_request *req;
    524	struct scatterlist *dst;
    525	dma_addr_t addr;
    526
    527	req = skcipher_request_cast(pd_uinfo->async_req);
    528
    529	if (pd_uinfo->sa_va->sa_command_0.bf.scatter) {
    530		crypto4xx_copy_pkt_to_dst(dev, pd, pd_uinfo,
    531					  req->cryptlen, req->dst);
    532	} else {
    533		dst = pd_uinfo->dest_va;
    534		addr = dma_map_page(dev->core_dev->device, sg_page(dst),
    535				    dst->offset, dst->length, DMA_FROM_DEVICE);
    536	}
    537
    538	if (pd_uinfo->sa_va->sa_command_0.bf.save_iv == SA_SAVE_IV) {
    539		struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
    540
    541		crypto4xx_memcpy_from_le32((u32 *)req->iv,
    542			pd_uinfo->sr_va->save_iv,
    543			crypto_skcipher_ivsize(skcipher));
    544	}
    545
    546	crypto4xx_ret_sg_desc(dev, pd_uinfo);
    547
    548	if (pd_uinfo->state & PD_ENTRY_BUSY)
    549		skcipher_request_complete(req, -EINPROGRESS);
    550	skcipher_request_complete(req, 0);
    551}
    552
    553static void crypto4xx_ahash_done(struct crypto4xx_device *dev,
    554				struct pd_uinfo *pd_uinfo)
    555{
    556	struct crypto4xx_ctx *ctx;
    557	struct ahash_request *ahash_req;
    558
    559	ahash_req = ahash_request_cast(pd_uinfo->async_req);
    560	ctx  = crypto_tfm_ctx(ahash_req->base.tfm);
    561
    562	crypto4xx_copy_digest_to_dst(ahash_req->result, pd_uinfo,
    563				     crypto_tfm_ctx(ahash_req->base.tfm));
    564	crypto4xx_ret_sg_desc(dev, pd_uinfo);
    565
    566	if (pd_uinfo->state & PD_ENTRY_BUSY)
    567		ahash_request_complete(ahash_req, -EINPROGRESS);
    568	ahash_request_complete(ahash_req, 0);
    569}
    570
    571static void crypto4xx_aead_done(struct crypto4xx_device *dev,
    572				struct pd_uinfo *pd_uinfo,
    573				struct ce_pd *pd)
    574{
    575	struct aead_request *aead_req = container_of(pd_uinfo->async_req,
    576		struct aead_request, base);
    577	struct scatterlist *dst = pd_uinfo->dest_va;
    578	size_t cp_len = crypto_aead_authsize(
    579		crypto_aead_reqtfm(aead_req));
    580	u32 icv[AES_BLOCK_SIZE];
    581	int err = 0;
    582
    583	if (pd_uinfo->sa_va->sa_command_0.bf.scatter) {
    584		crypto4xx_copy_pkt_to_dst(dev, pd, pd_uinfo,
    585					  pd->pd_ctl_len.bf.pkt_len,
    586					  dst);
    587	} else {
    588		dma_unmap_page(dev->core_dev->device, pd->dest, dst->length,
    589				DMA_FROM_DEVICE);
    590	}
    591
    592	if (pd_uinfo->sa_va->sa_command_0.bf.dir == DIR_OUTBOUND) {
    593		/* append icv at the end */
    594		crypto4xx_memcpy_from_le32(icv, pd_uinfo->sr_va->save_digest,
    595					   sizeof(icv));
    596
    597		scatterwalk_map_and_copy(icv, dst, aead_req->cryptlen,
    598					 cp_len, 1);
    599	} else {
    600		/* check icv at the end */
    601		scatterwalk_map_and_copy(icv, aead_req->src,
    602			aead_req->assoclen + aead_req->cryptlen -
    603			cp_len, cp_len, 0);
    604
    605		crypto4xx_memcpy_from_le32(icv, icv, sizeof(icv));
    606
    607		if (crypto_memneq(icv, pd_uinfo->sr_va->save_digest, cp_len))
    608			err = -EBADMSG;
    609	}
    610
    611	crypto4xx_ret_sg_desc(dev, pd_uinfo);
    612
    613	if (pd->pd_ctl.bf.status & 0xff) {
    614		if (!__ratelimit(&dev->aead_ratelimit)) {
    615			if (pd->pd_ctl.bf.status & 2)
    616				pr_err("pad fail error\n");
    617			if (pd->pd_ctl.bf.status & 4)
    618				pr_err("seqnum fail\n");
    619			if (pd->pd_ctl.bf.status & 8)
    620				pr_err("error _notify\n");
    621			pr_err("aead return err status = 0x%02x\n",
    622				pd->pd_ctl.bf.status & 0xff);
    623			pr_err("pd pad_ctl = 0x%08x\n",
    624				pd->pd_ctl.bf.pd_pad_ctl);
    625		}
    626		err = -EINVAL;
    627	}
    628
    629	if (pd_uinfo->state & PD_ENTRY_BUSY)
    630		aead_request_complete(aead_req, -EINPROGRESS);
    631
    632	aead_request_complete(aead_req, err);
    633}
    634
    635static void crypto4xx_pd_done(struct crypto4xx_device *dev, u32 idx)
    636{
    637	struct ce_pd *pd = &dev->pdr[idx];
    638	struct pd_uinfo *pd_uinfo = &dev->pdr_uinfo[idx];
    639
    640	switch (crypto_tfm_alg_type(pd_uinfo->async_req->tfm)) {
    641	case CRYPTO_ALG_TYPE_SKCIPHER:
    642		crypto4xx_cipher_done(dev, pd_uinfo, pd);
    643		break;
    644	case CRYPTO_ALG_TYPE_AEAD:
    645		crypto4xx_aead_done(dev, pd_uinfo, pd);
    646		break;
    647	case CRYPTO_ALG_TYPE_AHASH:
    648		crypto4xx_ahash_done(dev, pd_uinfo);
    649		break;
    650	}
    651}
    652
    653static void crypto4xx_stop_all(struct crypto4xx_core_device *core_dev)
    654{
    655	crypto4xx_destroy_pdr(core_dev->dev);
    656	crypto4xx_destroy_gdr(core_dev->dev);
    657	crypto4xx_destroy_sdr(core_dev->dev);
    658	iounmap(core_dev->dev->ce_base);
    659	kfree(core_dev->dev);
    660	kfree(core_dev);
    661}
    662
    663static u32 get_next_gd(u32 current)
    664{
    665	if (current != PPC4XX_LAST_GD)
    666		return current + 1;
    667	else
    668		return 0;
    669}
    670
    671static u32 get_next_sd(u32 current)
    672{
    673	if (current != PPC4XX_LAST_SD)
    674		return current + 1;
    675	else
    676		return 0;
    677}
    678
    679int crypto4xx_build_pd(struct crypto_async_request *req,
    680		       struct crypto4xx_ctx *ctx,
    681		       struct scatterlist *src,
    682		       struct scatterlist *dst,
    683		       const unsigned int datalen,
    684		       const __le32 *iv, const u32 iv_len,
    685		       const struct dynamic_sa_ctl *req_sa,
    686		       const unsigned int sa_len,
    687		       const unsigned int assoclen,
    688		       struct scatterlist *_dst)
    689{
    690	struct crypto4xx_device *dev = ctx->dev;
    691	struct dynamic_sa_ctl *sa;
    692	struct ce_gd *gd;
    693	struct ce_pd *pd;
    694	u32 num_gd, num_sd;
    695	u32 fst_gd = 0xffffffff;
    696	u32 fst_sd = 0xffffffff;
    697	u32 pd_entry;
    698	unsigned long flags;
    699	struct pd_uinfo *pd_uinfo;
    700	unsigned int nbytes = datalen;
    701	size_t offset_to_sr_ptr;
    702	u32 gd_idx = 0;
    703	int tmp;
    704	bool is_busy, force_sd;
    705
    706	/*
    707	 * There's a very subtile/disguised "bug" in the hardware that
    708	 * gets indirectly mentioned in 18.1.3.5 Encryption/Decryption
    709	 * of the hardware spec:
    710	 * *drum roll* the AES/(T)DES OFB and CFB modes are listed as
    711	 * operation modes for >>> "Block ciphers" <<<.
    712	 *
    713	 * To workaround this issue and stop the hardware from causing
    714	 * "overran dst buffer" on crypttexts that are not a multiple
    715	 * of 16 (AES_BLOCK_SIZE), we force the driver to use the
    716	 * scatter buffers.
    717	 */
    718	force_sd = (req_sa->sa_command_1.bf.crypto_mode9_8 == CRYPTO_MODE_CFB
    719		|| req_sa->sa_command_1.bf.crypto_mode9_8 == CRYPTO_MODE_OFB)
    720		&& (datalen % AES_BLOCK_SIZE);
    721
    722	/* figure how many gd are needed */
    723	tmp = sg_nents_for_len(src, assoclen + datalen);
    724	if (tmp < 0) {
    725		dev_err(dev->core_dev->device, "Invalid number of src SG.\n");
    726		return tmp;
    727	}
    728	if (tmp == 1)
    729		tmp = 0;
    730	num_gd = tmp;
    731
    732	if (assoclen) {
    733		nbytes += assoclen;
    734		dst = scatterwalk_ffwd(_dst, dst, assoclen);
    735	}
    736
    737	/* figure how many sd are needed */
    738	if (sg_is_last(dst) && force_sd == false) {
    739		num_sd = 0;
    740	} else {
    741		if (datalen > PPC4XX_SD_BUFFER_SIZE) {
    742			num_sd = datalen / PPC4XX_SD_BUFFER_SIZE;
    743			if (datalen % PPC4XX_SD_BUFFER_SIZE)
    744				num_sd++;
    745		} else {
    746			num_sd = 1;
    747		}
    748	}
    749
    750	/*
    751	 * The follow section of code needs to be protected
    752	 * The gather ring and scatter ring needs to be consecutive
    753	 * In case of run out of any kind of descriptor, the descriptor
    754	 * already got must be return the original place.
    755	 */
    756	spin_lock_irqsave(&dev->core_dev->lock, flags);
    757	/*
    758	 * Let the caller know to slow down, once more than 13/16ths = 81%
    759	 * of the available data contexts are being used simultaneously.
    760	 *
    761	 * With PPC4XX_NUM_PD = 256, this will leave a "backlog queue" for
    762	 * 31 more contexts. Before new requests have to be rejected.
    763	 */
    764	if (req->flags & CRYPTO_TFM_REQ_MAY_BACKLOG) {
    765		is_busy = ((dev->pdr_head - dev->pdr_tail) % PPC4XX_NUM_PD) >=
    766			((PPC4XX_NUM_PD * 13) / 16);
    767	} else {
    768		/*
    769		 * To fix contention issues between ipsec (no blacklog) and
    770		 * dm-crypto (backlog) reserve 32 entries for "no backlog"
    771		 * data contexts.
    772		 */
    773		is_busy = ((dev->pdr_head - dev->pdr_tail) % PPC4XX_NUM_PD) >=
    774			((PPC4XX_NUM_PD * 15) / 16);
    775
    776		if (is_busy) {
    777			spin_unlock_irqrestore(&dev->core_dev->lock, flags);
    778			return -EBUSY;
    779		}
    780	}
    781
    782	if (num_gd) {
    783		fst_gd = crypto4xx_get_n_gd(dev, num_gd);
    784		if (fst_gd == ERING_WAS_FULL) {
    785			spin_unlock_irqrestore(&dev->core_dev->lock, flags);
    786			return -EAGAIN;
    787		}
    788	}
    789	if (num_sd) {
    790		fst_sd = crypto4xx_get_n_sd(dev, num_sd);
    791		if (fst_sd == ERING_WAS_FULL) {
    792			if (num_gd)
    793				dev->gdr_head = fst_gd;
    794			spin_unlock_irqrestore(&dev->core_dev->lock, flags);
    795			return -EAGAIN;
    796		}
    797	}
    798	pd_entry = crypto4xx_get_pd_from_pdr_nolock(dev);
    799	if (pd_entry == ERING_WAS_FULL) {
    800		if (num_gd)
    801			dev->gdr_head = fst_gd;
    802		if (num_sd)
    803			dev->sdr_head = fst_sd;
    804		spin_unlock_irqrestore(&dev->core_dev->lock, flags);
    805		return -EAGAIN;
    806	}
    807	spin_unlock_irqrestore(&dev->core_dev->lock, flags);
    808
    809	pd = &dev->pdr[pd_entry];
    810	pd->sa_len = sa_len;
    811
    812	pd_uinfo = &dev->pdr_uinfo[pd_entry];
    813	pd_uinfo->num_gd = num_gd;
    814	pd_uinfo->num_sd = num_sd;
    815	pd_uinfo->dest_va = dst;
    816	pd_uinfo->async_req = req;
    817
    818	if (iv_len)
    819		memcpy(pd_uinfo->sr_va->save_iv, iv, iv_len);
    820
    821	sa = pd_uinfo->sa_va;
    822	memcpy(sa, req_sa, sa_len * 4);
    823
    824	sa->sa_command_1.bf.hash_crypto_offset = (assoclen >> 2);
    825	offset_to_sr_ptr = get_dynamic_sa_offset_state_ptr_field(sa);
    826	*(u32 *)((unsigned long)sa + offset_to_sr_ptr) = pd_uinfo->sr_pa;
    827
    828	if (num_gd) {
    829		dma_addr_t gd_dma;
    830		struct scatterlist *sg;
    831
    832		/* get first gd we are going to use */
    833		gd_idx = fst_gd;
    834		pd_uinfo->first_gd = fst_gd;
    835		gd = crypto4xx_get_gdp(dev, &gd_dma, gd_idx);
    836		pd->src = gd_dma;
    837		/* enable gather */
    838		sa->sa_command_0.bf.gather = 1;
    839		/* walk the sg, and setup gather array */
    840
    841		sg = src;
    842		while (nbytes) {
    843			size_t len;
    844
    845			len = min(sg->length, nbytes);
    846			gd->ptr = dma_map_page(dev->core_dev->device,
    847				sg_page(sg), sg->offset, len, DMA_TO_DEVICE);
    848			gd->ctl_len.len = len;
    849			gd->ctl_len.done = 0;
    850			gd->ctl_len.ready = 1;
    851			if (len >= nbytes)
    852				break;
    853
    854			nbytes -= sg->length;
    855			gd_idx = get_next_gd(gd_idx);
    856			gd = crypto4xx_get_gdp(dev, &gd_dma, gd_idx);
    857			sg = sg_next(sg);
    858		}
    859	} else {
    860		pd->src = (u32)dma_map_page(dev->core_dev->device, sg_page(src),
    861				src->offset, min(nbytes, src->length),
    862				DMA_TO_DEVICE);
    863		/*
    864		 * Disable gather in sa command
    865		 */
    866		sa->sa_command_0.bf.gather = 0;
    867		/*
    868		 * Indicate gather array is not used
    869		 */
    870		pd_uinfo->first_gd = 0xffffffff;
    871	}
    872	if (!num_sd) {
    873		/*
    874		 * we know application give us dst a whole piece of memory
    875		 * no need to use scatter ring.
    876		 */
    877		pd_uinfo->first_sd = 0xffffffff;
    878		sa->sa_command_0.bf.scatter = 0;
    879		pd->dest = (u32)dma_map_page(dev->core_dev->device,
    880					     sg_page(dst), dst->offset,
    881					     min(datalen, dst->length),
    882					     DMA_TO_DEVICE);
    883	} else {
    884		dma_addr_t sd_dma;
    885		struct ce_sd *sd = NULL;
    886
    887		u32 sd_idx = fst_sd;
    888		nbytes = datalen;
    889		sa->sa_command_0.bf.scatter = 1;
    890		pd_uinfo->first_sd = fst_sd;
    891		sd = crypto4xx_get_sdp(dev, &sd_dma, sd_idx);
    892		pd->dest = sd_dma;
    893		/* setup scatter descriptor */
    894		sd->ctl.done = 0;
    895		sd->ctl.rdy = 1;
    896		/* sd->ptr should be setup by sd_init routine*/
    897		if (nbytes >= PPC4XX_SD_BUFFER_SIZE)
    898			nbytes -= PPC4XX_SD_BUFFER_SIZE;
    899		else
    900			nbytes = 0;
    901		while (nbytes) {
    902			sd_idx = get_next_sd(sd_idx);
    903			sd = crypto4xx_get_sdp(dev, &sd_dma, sd_idx);
    904			/* setup scatter descriptor */
    905			sd->ctl.done = 0;
    906			sd->ctl.rdy = 1;
    907			if (nbytes >= PPC4XX_SD_BUFFER_SIZE) {
    908				nbytes -= PPC4XX_SD_BUFFER_SIZE;
    909			} else {
    910				/*
    911				 * SD entry can hold PPC4XX_SD_BUFFER_SIZE,
    912				 * which is more than nbytes, so done.
    913				 */
    914				nbytes = 0;
    915			}
    916		}
    917	}
    918
    919	pd->pd_ctl.w = PD_CTL_HOST_READY |
    920		((crypto_tfm_alg_type(req->tfm) == CRYPTO_ALG_TYPE_AHASH) ||
    921		 (crypto_tfm_alg_type(req->tfm) == CRYPTO_ALG_TYPE_AEAD) ?
    922			PD_CTL_HASH_FINAL : 0);
    923	pd->pd_ctl_len.w = 0x00400000 | (assoclen + datalen);
    924	pd_uinfo->state = PD_ENTRY_INUSE | (is_busy ? PD_ENTRY_BUSY : 0);
    925
    926	wmb();
    927	/* write any value to push engine to read a pd */
    928	writel(0, dev->ce_base + CRYPTO4XX_INT_DESCR_RD);
    929	writel(1, dev->ce_base + CRYPTO4XX_INT_DESCR_RD);
    930	return is_busy ? -EBUSY : -EINPROGRESS;
    931}
    932
    933/*
    934 * Algorithm Registration Functions
    935 */
    936static void crypto4xx_ctx_init(struct crypto4xx_alg *amcc_alg,
    937			       struct crypto4xx_ctx *ctx)
    938{
    939	ctx->dev = amcc_alg->dev;
    940	ctx->sa_in = NULL;
    941	ctx->sa_out = NULL;
    942	ctx->sa_len = 0;
    943}
    944
    945static int crypto4xx_sk_init(struct crypto_skcipher *sk)
    946{
    947	struct skcipher_alg *alg = crypto_skcipher_alg(sk);
    948	struct crypto4xx_alg *amcc_alg;
    949	struct crypto4xx_ctx *ctx =  crypto_skcipher_ctx(sk);
    950
    951	if (alg->base.cra_flags & CRYPTO_ALG_NEED_FALLBACK) {
    952		ctx->sw_cipher.cipher =
    953			crypto_alloc_sync_skcipher(alg->base.cra_name, 0,
    954					      CRYPTO_ALG_NEED_FALLBACK);
    955		if (IS_ERR(ctx->sw_cipher.cipher))
    956			return PTR_ERR(ctx->sw_cipher.cipher);
    957	}
    958
    959	amcc_alg = container_of(alg, struct crypto4xx_alg, alg.u.cipher);
    960	crypto4xx_ctx_init(amcc_alg, ctx);
    961	return 0;
    962}
    963
    964static void crypto4xx_common_exit(struct crypto4xx_ctx *ctx)
    965{
    966	crypto4xx_free_sa(ctx);
    967}
    968
    969static void crypto4xx_sk_exit(struct crypto_skcipher *sk)
    970{
    971	struct crypto4xx_ctx *ctx =  crypto_skcipher_ctx(sk);
    972
    973	crypto4xx_common_exit(ctx);
    974	if (ctx->sw_cipher.cipher)
    975		crypto_free_sync_skcipher(ctx->sw_cipher.cipher);
    976}
    977
    978static int crypto4xx_aead_init(struct crypto_aead *tfm)
    979{
    980	struct aead_alg *alg = crypto_aead_alg(tfm);
    981	struct crypto4xx_ctx *ctx = crypto_aead_ctx(tfm);
    982	struct crypto4xx_alg *amcc_alg;
    983
    984	ctx->sw_cipher.aead = crypto_alloc_aead(alg->base.cra_name, 0,
    985						CRYPTO_ALG_NEED_FALLBACK |
    986						CRYPTO_ALG_ASYNC);
    987	if (IS_ERR(ctx->sw_cipher.aead))
    988		return PTR_ERR(ctx->sw_cipher.aead);
    989
    990	amcc_alg = container_of(alg, struct crypto4xx_alg, alg.u.aead);
    991	crypto4xx_ctx_init(amcc_alg, ctx);
    992	crypto_aead_set_reqsize(tfm, max(sizeof(struct aead_request) + 32 +
    993				crypto_aead_reqsize(ctx->sw_cipher.aead),
    994				sizeof(struct crypto4xx_aead_reqctx)));
    995	return 0;
    996}
    997
    998static void crypto4xx_aead_exit(struct crypto_aead *tfm)
    999{
   1000	struct crypto4xx_ctx *ctx = crypto_aead_ctx(tfm);
   1001
   1002	crypto4xx_common_exit(ctx);
   1003	crypto_free_aead(ctx->sw_cipher.aead);
   1004}
   1005
   1006static int crypto4xx_register_alg(struct crypto4xx_device *sec_dev,
   1007				  struct crypto4xx_alg_common *crypto_alg,
   1008				  int array_size)
   1009{
   1010	struct crypto4xx_alg *alg;
   1011	int i;
   1012	int rc = 0;
   1013
   1014	for (i = 0; i < array_size; i++) {
   1015		alg = kzalloc(sizeof(struct crypto4xx_alg), GFP_KERNEL);
   1016		if (!alg)
   1017			return -ENOMEM;
   1018
   1019		alg->alg = crypto_alg[i];
   1020		alg->dev = sec_dev;
   1021
   1022		switch (alg->alg.type) {
   1023		case CRYPTO_ALG_TYPE_AEAD:
   1024			rc = crypto_register_aead(&alg->alg.u.aead);
   1025			break;
   1026
   1027		case CRYPTO_ALG_TYPE_AHASH:
   1028			rc = crypto_register_ahash(&alg->alg.u.hash);
   1029			break;
   1030
   1031		case CRYPTO_ALG_TYPE_RNG:
   1032			rc = crypto_register_rng(&alg->alg.u.rng);
   1033			break;
   1034
   1035		default:
   1036			rc = crypto_register_skcipher(&alg->alg.u.cipher);
   1037			break;
   1038		}
   1039
   1040		if (rc)
   1041			kfree(alg);
   1042		else
   1043			list_add_tail(&alg->entry, &sec_dev->alg_list);
   1044	}
   1045
   1046	return 0;
   1047}
   1048
   1049static void crypto4xx_unregister_alg(struct crypto4xx_device *sec_dev)
   1050{
   1051	struct crypto4xx_alg *alg, *tmp;
   1052
   1053	list_for_each_entry_safe(alg, tmp, &sec_dev->alg_list, entry) {
   1054		list_del(&alg->entry);
   1055		switch (alg->alg.type) {
   1056		case CRYPTO_ALG_TYPE_AHASH:
   1057			crypto_unregister_ahash(&alg->alg.u.hash);
   1058			break;
   1059
   1060		case CRYPTO_ALG_TYPE_AEAD:
   1061			crypto_unregister_aead(&alg->alg.u.aead);
   1062			break;
   1063
   1064		case CRYPTO_ALG_TYPE_RNG:
   1065			crypto_unregister_rng(&alg->alg.u.rng);
   1066			break;
   1067
   1068		default:
   1069			crypto_unregister_skcipher(&alg->alg.u.cipher);
   1070		}
   1071		kfree(alg);
   1072	}
   1073}
   1074
   1075static void crypto4xx_bh_tasklet_cb(unsigned long data)
   1076{
   1077	struct device *dev = (struct device *)data;
   1078	struct crypto4xx_core_device *core_dev = dev_get_drvdata(dev);
   1079	struct pd_uinfo *pd_uinfo;
   1080	struct ce_pd *pd;
   1081	u32 tail = core_dev->dev->pdr_tail;
   1082	u32 head = core_dev->dev->pdr_head;
   1083
   1084	do {
   1085		pd_uinfo = &core_dev->dev->pdr_uinfo[tail];
   1086		pd = &core_dev->dev->pdr[tail];
   1087		if ((pd_uinfo->state & PD_ENTRY_INUSE) &&
   1088		     ((READ_ONCE(pd->pd_ctl.w) &
   1089		       (PD_CTL_PE_DONE | PD_CTL_HOST_READY)) ==
   1090		       PD_CTL_PE_DONE)) {
   1091			crypto4xx_pd_done(core_dev->dev, tail);
   1092			tail = crypto4xx_put_pd_to_pdr(core_dev->dev, tail);
   1093		} else {
   1094			/* if tail not done, break */
   1095			break;
   1096		}
   1097	} while (head != tail);
   1098}
   1099
   1100/*
   1101 * Top Half of isr.
   1102 */
   1103static inline irqreturn_t crypto4xx_interrupt_handler(int irq, void *data,
   1104						      u32 clr_val)
   1105{
   1106	struct device *dev = (struct device *)data;
   1107	struct crypto4xx_core_device *core_dev = dev_get_drvdata(dev);
   1108
   1109	writel(clr_val, core_dev->dev->ce_base + CRYPTO4XX_INT_CLR);
   1110	tasklet_schedule(&core_dev->tasklet);
   1111
   1112	return IRQ_HANDLED;
   1113}
   1114
   1115static irqreturn_t crypto4xx_ce_interrupt_handler(int irq, void *data)
   1116{
   1117	return crypto4xx_interrupt_handler(irq, data, PPC4XX_INTERRUPT_CLR);
   1118}
   1119
   1120static irqreturn_t crypto4xx_ce_interrupt_handler_revb(int irq, void *data)
   1121{
   1122	return crypto4xx_interrupt_handler(irq, data, PPC4XX_INTERRUPT_CLR |
   1123		PPC4XX_TMO_ERR_INT);
   1124}
   1125
   1126static int ppc4xx_prng_data_read(struct crypto4xx_device *dev,
   1127				 u8 *data, unsigned int max)
   1128{
   1129	unsigned int i, curr = 0;
   1130	u32 val[2];
   1131
   1132	do {
   1133		/* trigger PRN generation */
   1134		writel(PPC4XX_PRNG_CTRL_AUTO_EN,
   1135		       dev->ce_base + CRYPTO4XX_PRNG_CTRL);
   1136
   1137		for (i = 0; i < 1024; i++) {
   1138			/* usually 19 iterations are enough */
   1139			if ((readl(dev->ce_base + CRYPTO4XX_PRNG_STAT) &
   1140			     CRYPTO4XX_PRNG_STAT_BUSY))
   1141				continue;
   1142
   1143			val[0] = readl_be(dev->ce_base + CRYPTO4XX_PRNG_RES_0);
   1144			val[1] = readl_be(dev->ce_base + CRYPTO4XX_PRNG_RES_1);
   1145			break;
   1146		}
   1147		if (i == 1024)
   1148			return -ETIMEDOUT;
   1149
   1150		if ((max - curr) >= 8) {
   1151			memcpy(data, &val, 8);
   1152			data += 8;
   1153			curr += 8;
   1154		} else {
   1155			/* copy only remaining bytes */
   1156			memcpy(data, &val, max - curr);
   1157			break;
   1158		}
   1159	} while (curr < max);
   1160
   1161	return curr;
   1162}
   1163
   1164static int crypto4xx_prng_generate(struct crypto_rng *tfm,
   1165				   const u8 *src, unsigned int slen,
   1166				   u8 *dstn, unsigned int dlen)
   1167{
   1168	struct rng_alg *alg = crypto_rng_alg(tfm);
   1169	struct crypto4xx_alg *amcc_alg;
   1170	struct crypto4xx_device *dev;
   1171	int ret;
   1172
   1173	amcc_alg = container_of(alg, struct crypto4xx_alg, alg.u.rng);
   1174	dev = amcc_alg->dev;
   1175
   1176	mutex_lock(&dev->core_dev->rng_lock);
   1177	ret = ppc4xx_prng_data_read(dev, dstn, dlen);
   1178	mutex_unlock(&dev->core_dev->rng_lock);
   1179	return ret;
   1180}
   1181
   1182
   1183static int crypto4xx_prng_seed(struct crypto_rng *tfm, const u8 *seed,
   1184			unsigned int slen)
   1185{
   1186	return 0;
   1187}
   1188
   1189/*
   1190 * Supported Crypto Algorithms
   1191 */
   1192static struct crypto4xx_alg_common crypto4xx_alg[] = {
   1193	/* Crypto AES modes */
   1194	{ .type = CRYPTO_ALG_TYPE_SKCIPHER, .u.cipher = {
   1195		.base = {
   1196			.cra_name = "cbc(aes)",
   1197			.cra_driver_name = "cbc-aes-ppc4xx",
   1198			.cra_priority = CRYPTO4XX_CRYPTO_PRIORITY,
   1199			.cra_flags = CRYPTO_ALG_ASYNC |
   1200				CRYPTO_ALG_KERN_DRIVER_ONLY,
   1201			.cra_blocksize = AES_BLOCK_SIZE,
   1202			.cra_ctxsize = sizeof(struct crypto4xx_ctx),
   1203			.cra_module = THIS_MODULE,
   1204		},
   1205		.min_keysize = AES_MIN_KEY_SIZE,
   1206		.max_keysize = AES_MAX_KEY_SIZE,
   1207		.ivsize	= AES_IV_SIZE,
   1208		.setkey = crypto4xx_setkey_aes_cbc,
   1209		.encrypt = crypto4xx_encrypt_iv_block,
   1210		.decrypt = crypto4xx_decrypt_iv_block,
   1211		.init = crypto4xx_sk_init,
   1212		.exit = crypto4xx_sk_exit,
   1213	} },
   1214	{ .type = CRYPTO_ALG_TYPE_SKCIPHER, .u.cipher = {
   1215		.base = {
   1216			.cra_name = "cfb(aes)",
   1217			.cra_driver_name = "cfb-aes-ppc4xx",
   1218			.cra_priority = CRYPTO4XX_CRYPTO_PRIORITY,
   1219			.cra_flags = CRYPTO_ALG_ASYNC |
   1220				CRYPTO_ALG_KERN_DRIVER_ONLY,
   1221			.cra_blocksize = 1,
   1222			.cra_ctxsize = sizeof(struct crypto4xx_ctx),
   1223			.cra_module = THIS_MODULE,
   1224		},
   1225		.min_keysize = AES_MIN_KEY_SIZE,
   1226		.max_keysize = AES_MAX_KEY_SIZE,
   1227		.ivsize	= AES_IV_SIZE,
   1228		.setkey	= crypto4xx_setkey_aes_cfb,
   1229		.encrypt = crypto4xx_encrypt_iv_stream,
   1230		.decrypt = crypto4xx_decrypt_iv_stream,
   1231		.init = crypto4xx_sk_init,
   1232		.exit = crypto4xx_sk_exit,
   1233	} },
   1234	{ .type = CRYPTO_ALG_TYPE_SKCIPHER, .u.cipher = {
   1235		.base = {
   1236			.cra_name = "ctr(aes)",
   1237			.cra_driver_name = "ctr-aes-ppc4xx",
   1238			.cra_priority = CRYPTO4XX_CRYPTO_PRIORITY,
   1239			.cra_flags = CRYPTO_ALG_NEED_FALLBACK |
   1240				CRYPTO_ALG_ASYNC |
   1241				CRYPTO_ALG_KERN_DRIVER_ONLY,
   1242			.cra_blocksize = 1,
   1243			.cra_ctxsize = sizeof(struct crypto4xx_ctx),
   1244			.cra_module = THIS_MODULE,
   1245		},
   1246		.min_keysize = AES_MIN_KEY_SIZE,
   1247		.max_keysize = AES_MAX_KEY_SIZE,
   1248		.ivsize	= AES_IV_SIZE,
   1249		.setkey	= crypto4xx_setkey_aes_ctr,
   1250		.encrypt = crypto4xx_encrypt_ctr,
   1251		.decrypt = crypto4xx_decrypt_ctr,
   1252		.init = crypto4xx_sk_init,
   1253		.exit = crypto4xx_sk_exit,
   1254	} },
   1255	{ .type = CRYPTO_ALG_TYPE_SKCIPHER, .u.cipher = {
   1256		.base = {
   1257			.cra_name = "rfc3686(ctr(aes))",
   1258			.cra_driver_name = "rfc3686-ctr-aes-ppc4xx",
   1259			.cra_priority = CRYPTO4XX_CRYPTO_PRIORITY,
   1260			.cra_flags = CRYPTO_ALG_ASYNC |
   1261				CRYPTO_ALG_KERN_DRIVER_ONLY,
   1262			.cra_blocksize = 1,
   1263			.cra_ctxsize = sizeof(struct crypto4xx_ctx),
   1264			.cra_module = THIS_MODULE,
   1265		},
   1266		.min_keysize = AES_MIN_KEY_SIZE + CTR_RFC3686_NONCE_SIZE,
   1267		.max_keysize = AES_MAX_KEY_SIZE + CTR_RFC3686_NONCE_SIZE,
   1268		.ivsize	= CTR_RFC3686_IV_SIZE,
   1269		.setkey = crypto4xx_setkey_rfc3686,
   1270		.encrypt = crypto4xx_rfc3686_encrypt,
   1271		.decrypt = crypto4xx_rfc3686_decrypt,
   1272		.init = crypto4xx_sk_init,
   1273		.exit = crypto4xx_sk_exit,
   1274	} },
   1275	{ .type = CRYPTO_ALG_TYPE_SKCIPHER, .u.cipher = {
   1276		.base = {
   1277			.cra_name = "ecb(aes)",
   1278			.cra_driver_name = "ecb-aes-ppc4xx",
   1279			.cra_priority = CRYPTO4XX_CRYPTO_PRIORITY,
   1280			.cra_flags = CRYPTO_ALG_ASYNC |
   1281				CRYPTO_ALG_KERN_DRIVER_ONLY,
   1282			.cra_blocksize = AES_BLOCK_SIZE,
   1283			.cra_ctxsize = sizeof(struct crypto4xx_ctx),
   1284			.cra_module = THIS_MODULE,
   1285		},
   1286		.min_keysize = AES_MIN_KEY_SIZE,
   1287		.max_keysize = AES_MAX_KEY_SIZE,
   1288		.setkey	= crypto4xx_setkey_aes_ecb,
   1289		.encrypt = crypto4xx_encrypt_noiv_block,
   1290		.decrypt = crypto4xx_decrypt_noiv_block,
   1291		.init = crypto4xx_sk_init,
   1292		.exit = crypto4xx_sk_exit,
   1293	} },
   1294	{ .type = CRYPTO_ALG_TYPE_SKCIPHER, .u.cipher = {
   1295		.base = {
   1296			.cra_name = "ofb(aes)",
   1297			.cra_driver_name = "ofb-aes-ppc4xx",
   1298			.cra_priority = CRYPTO4XX_CRYPTO_PRIORITY,
   1299			.cra_flags = CRYPTO_ALG_ASYNC |
   1300				CRYPTO_ALG_KERN_DRIVER_ONLY,
   1301			.cra_blocksize = 1,
   1302			.cra_ctxsize = sizeof(struct crypto4xx_ctx),
   1303			.cra_module = THIS_MODULE,
   1304		},
   1305		.min_keysize = AES_MIN_KEY_SIZE,
   1306		.max_keysize = AES_MAX_KEY_SIZE,
   1307		.ivsize	= AES_IV_SIZE,
   1308		.setkey	= crypto4xx_setkey_aes_ofb,
   1309		.encrypt = crypto4xx_encrypt_iv_stream,
   1310		.decrypt = crypto4xx_decrypt_iv_stream,
   1311		.init = crypto4xx_sk_init,
   1312		.exit = crypto4xx_sk_exit,
   1313	} },
   1314
   1315	/* AEAD */
   1316	{ .type = CRYPTO_ALG_TYPE_AEAD, .u.aead = {
   1317		.setkey		= crypto4xx_setkey_aes_ccm,
   1318		.setauthsize	= crypto4xx_setauthsize_aead,
   1319		.encrypt	= crypto4xx_encrypt_aes_ccm,
   1320		.decrypt	= crypto4xx_decrypt_aes_ccm,
   1321		.init		= crypto4xx_aead_init,
   1322		.exit		= crypto4xx_aead_exit,
   1323		.ivsize		= AES_BLOCK_SIZE,
   1324		.maxauthsize    = 16,
   1325		.base = {
   1326			.cra_name	= "ccm(aes)",
   1327			.cra_driver_name = "ccm-aes-ppc4xx",
   1328			.cra_priority	= CRYPTO4XX_CRYPTO_PRIORITY,
   1329			.cra_flags	= CRYPTO_ALG_ASYNC |
   1330					  CRYPTO_ALG_NEED_FALLBACK |
   1331					  CRYPTO_ALG_KERN_DRIVER_ONLY,
   1332			.cra_blocksize	= 1,
   1333			.cra_ctxsize	= sizeof(struct crypto4xx_ctx),
   1334			.cra_module	= THIS_MODULE,
   1335		},
   1336	} },
   1337	{ .type = CRYPTO_ALG_TYPE_AEAD, .u.aead = {
   1338		.setkey		= crypto4xx_setkey_aes_gcm,
   1339		.setauthsize	= crypto4xx_setauthsize_aead,
   1340		.encrypt	= crypto4xx_encrypt_aes_gcm,
   1341		.decrypt	= crypto4xx_decrypt_aes_gcm,
   1342		.init		= crypto4xx_aead_init,
   1343		.exit		= crypto4xx_aead_exit,
   1344		.ivsize		= GCM_AES_IV_SIZE,
   1345		.maxauthsize	= 16,
   1346		.base = {
   1347			.cra_name	= "gcm(aes)",
   1348			.cra_driver_name = "gcm-aes-ppc4xx",
   1349			.cra_priority	= CRYPTO4XX_CRYPTO_PRIORITY,
   1350			.cra_flags	= CRYPTO_ALG_ASYNC |
   1351					  CRYPTO_ALG_NEED_FALLBACK |
   1352					  CRYPTO_ALG_KERN_DRIVER_ONLY,
   1353			.cra_blocksize	= 1,
   1354			.cra_ctxsize	= sizeof(struct crypto4xx_ctx),
   1355			.cra_module	= THIS_MODULE,
   1356		},
   1357	} },
   1358	{ .type = CRYPTO_ALG_TYPE_RNG, .u.rng = {
   1359		.base = {
   1360			.cra_name		= "stdrng",
   1361			.cra_driver_name        = "crypto4xx_rng",
   1362			.cra_priority		= 300,
   1363			.cra_ctxsize		= 0,
   1364			.cra_module		= THIS_MODULE,
   1365		},
   1366		.generate               = crypto4xx_prng_generate,
   1367		.seed                   = crypto4xx_prng_seed,
   1368		.seedsize               = 0,
   1369	} },
   1370};
   1371
   1372/*
   1373 * Module Initialization Routine
   1374 */
   1375static int crypto4xx_probe(struct platform_device *ofdev)
   1376{
   1377	int rc;
   1378	struct resource res;
   1379	struct device *dev = &ofdev->dev;
   1380	struct crypto4xx_core_device *core_dev;
   1381	u32 pvr;
   1382	bool is_revb = true;
   1383
   1384	rc = of_address_to_resource(ofdev->dev.of_node, 0, &res);
   1385	if (rc)
   1386		return -ENODEV;
   1387
   1388	if (of_find_compatible_node(NULL, NULL, "amcc,ppc460ex-crypto")) {
   1389		mtdcri(SDR0, PPC460EX_SDR0_SRST,
   1390		       mfdcri(SDR0, PPC460EX_SDR0_SRST) | PPC460EX_CE_RESET);
   1391		mtdcri(SDR0, PPC460EX_SDR0_SRST,
   1392		       mfdcri(SDR0, PPC460EX_SDR0_SRST) & ~PPC460EX_CE_RESET);
   1393	} else if (of_find_compatible_node(NULL, NULL,
   1394			"amcc,ppc405ex-crypto")) {
   1395		mtdcri(SDR0, PPC405EX_SDR0_SRST,
   1396		       mfdcri(SDR0, PPC405EX_SDR0_SRST) | PPC405EX_CE_RESET);
   1397		mtdcri(SDR0, PPC405EX_SDR0_SRST,
   1398		       mfdcri(SDR0, PPC405EX_SDR0_SRST) & ~PPC405EX_CE_RESET);
   1399		is_revb = false;
   1400	} else if (of_find_compatible_node(NULL, NULL,
   1401			"amcc,ppc460sx-crypto")) {
   1402		mtdcri(SDR0, PPC460SX_SDR0_SRST,
   1403		       mfdcri(SDR0, PPC460SX_SDR0_SRST) | PPC460SX_CE_RESET);
   1404		mtdcri(SDR0, PPC460SX_SDR0_SRST,
   1405		       mfdcri(SDR0, PPC460SX_SDR0_SRST) & ~PPC460SX_CE_RESET);
   1406	} else {
   1407		printk(KERN_ERR "Crypto Function Not supported!\n");
   1408		return -EINVAL;
   1409	}
   1410
   1411	core_dev = kzalloc(sizeof(struct crypto4xx_core_device), GFP_KERNEL);
   1412	if (!core_dev)
   1413		return -ENOMEM;
   1414
   1415	dev_set_drvdata(dev, core_dev);
   1416	core_dev->ofdev = ofdev;
   1417	core_dev->dev = kzalloc(sizeof(struct crypto4xx_device), GFP_KERNEL);
   1418	rc = -ENOMEM;
   1419	if (!core_dev->dev)
   1420		goto err_alloc_dev;
   1421
   1422	/*
   1423	 * Older version of 460EX/GT have a hardware bug.
   1424	 * Hence they do not support H/W based security intr coalescing
   1425	 */
   1426	pvr = mfspr(SPRN_PVR);
   1427	if (is_revb && ((pvr >> 4) == 0x130218A)) {
   1428		u32 min = PVR_MIN(pvr);
   1429
   1430		if (min < 4) {
   1431			dev_info(dev, "RevA detected - disable interrupt coalescing\n");
   1432			is_revb = false;
   1433		}
   1434	}
   1435
   1436	core_dev->dev->core_dev = core_dev;
   1437	core_dev->dev->is_revb = is_revb;
   1438	core_dev->device = dev;
   1439	mutex_init(&core_dev->rng_lock);
   1440	spin_lock_init(&core_dev->lock);
   1441	INIT_LIST_HEAD(&core_dev->dev->alg_list);
   1442	ratelimit_default_init(&core_dev->dev->aead_ratelimit);
   1443	rc = crypto4xx_build_sdr(core_dev->dev);
   1444	if (rc)
   1445		goto err_build_sdr;
   1446	rc = crypto4xx_build_pdr(core_dev->dev);
   1447	if (rc)
   1448		goto err_build_sdr;
   1449
   1450	rc = crypto4xx_build_gdr(core_dev->dev);
   1451	if (rc)
   1452		goto err_build_sdr;
   1453
   1454	/* Init tasklet for bottom half processing */
   1455	tasklet_init(&core_dev->tasklet, crypto4xx_bh_tasklet_cb,
   1456		     (unsigned long) dev);
   1457
   1458	core_dev->dev->ce_base = of_iomap(ofdev->dev.of_node, 0);
   1459	if (!core_dev->dev->ce_base) {
   1460		dev_err(dev, "failed to of_iomap\n");
   1461		rc = -ENOMEM;
   1462		goto err_iomap;
   1463	}
   1464
   1465	/* Register for Crypto isr, Crypto Engine IRQ */
   1466	core_dev->irq = irq_of_parse_and_map(ofdev->dev.of_node, 0);
   1467	rc = request_irq(core_dev->irq, is_revb ?
   1468			 crypto4xx_ce_interrupt_handler_revb :
   1469			 crypto4xx_ce_interrupt_handler, 0,
   1470			 KBUILD_MODNAME, dev);
   1471	if (rc)
   1472		goto err_request_irq;
   1473
   1474	/* need to setup pdr, rdr, gdr and sdr before this */
   1475	crypto4xx_hw_init(core_dev->dev);
   1476
   1477	/* Register security algorithms with Linux CryptoAPI */
   1478	rc = crypto4xx_register_alg(core_dev->dev, crypto4xx_alg,
   1479			       ARRAY_SIZE(crypto4xx_alg));
   1480	if (rc)
   1481		goto err_start_dev;
   1482
   1483	ppc4xx_trng_probe(core_dev);
   1484	return 0;
   1485
   1486err_start_dev:
   1487	free_irq(core_dev->irq, dev);
   1488err_request_irq:
   1489	irq_dispose_mapping(core_dev->irq);
   1490	iounmap(core_dev->dev->ce_base);
   1491err_iomap:
   1492	tasklet_kill(&core_dev->tasklet);
   1493err_build_sdr:
   1494	crypto4xx_destroy_sdr(core_dev->dev);
   1495	crypto4xx_destroy_gdr(core_dev->dev);
   1496	crypto4xx_destroy_pdr(core_dev->dev);
   1497	kfree(core_dev->dev);
   1498err_alloc_dev:
   1499	kfree(core_dev);
   1500
   1501	return rc;
   1502}
   1503
   1504static int crypto4xx_remove(struct platform_device *ofdev)
   1505{
   1506	struct device *dev = &ofdev->dev;
   1507	struct crypto4xx_core_device *core_dev = dev_get_drvdata(dev);
   1508
   1509	ppc4xx_trng_remove(core_dev);
   1510
   1511	free_irq(core_dev->irq, dev);
   1512	irq_dispose_mapping(core_dev->irq);
   1513
   1514	tasklet_kill(&core_dev->tasklet);
   1515	/* Un-register with Linux CryptoAPI */
   1516	crypto4xx_unregister_alg(core_dev->dev);
   1517	mutex_destroy(&core_dev->rng_lock);
   1518	/* Free all allocated memory */
   1519	crypto4xx_stop_all(core_dev);
   1520
   1521	return 0;
   1522}
   1523
   1524static const struct of_device_id crypto4xx_match[] = {
   1525	{ .compatible      = "amcc,ppc4xx-crypto",},
   1526	{ },
   1527};
   1528MODULE_DEVICE_TABLE(of, crypto4xx_match);
   1529
   1530static struct platform_driver crypto4xx_driver = {
   1531	.driver = {
   1532		.name = KBUILD_MODNAME,
   1533		.of_match_table = crypto4xx_match,
   1534	},
   1535	.probe		= crypto4xx_probe,
   1536	.remove		= crypto4xx_remove,
   1537};
   1538
   1539module_platform_driver(crypto4xx_driver);
   1540
   1541MODULE_LICENSE("GPL");
   1542MODULE_AUTHOR("James Hsiao <jhsiao@amcc.com>");
   1543MODULE_DESCRIPTION("Driver for AMCC PPC4xx crypto accelerator");