cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

cptvf_reqmanager.c (15501B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 * Copyright (C) 2016 Cavium, Inc.
      4 */
      5
      6#include "cptvf.h"
      7#include "cptvf_algs.h"
      8#include "request_manager.h"
      9
     10/**
     11 * get_free_pending_entry - get free entry from pending queue
     12 * @q: pending queue
     13 * @qlen: queue length
     14 */
     15static struct pending_entry *get_free_pending_entry(struct pending_queue *q,
     16						    int qlen)
     17{
     18	struct pending_entry *ent = NULL;
     19
     20	ent = &q->head[q->rear];
     21	if (unlikely(ent->busy)) {
     22		ent = NULL;
     23		goto no_free_entry;
     24	}
     25
     26	q->rear++;
     27	if (unlikely(q->rear == qlen))
     28		q->rear = 0;
     29
     30no_free_entry:
     31	return ent;
     32}
     33
     34static inline void pending_queue_inc_front(struct pending_qinfo *pqinfo,
     35					   int qno)
     36{
     37	struct pending_queue *queue = &pqinfo->queue[qno];
     38
     39	queue->front++;
     40	if (unlikely(queue->front == pqinfo->qlen))
     41		queue->front = 0;
     42}
     43
     44static int setup_sgio_components(struct cpt_vf *cptvf, struct buf_ptr *list,
     45				 int buf_count, u8 *buffer)
     46{
     47	int ret = 0, i, j;
     48	int components;
     49	struct sglist_component *sg_ptr = NULL;
     50	struct pci_dev *pdev = cptvf->pdev;
     51
     52	if (unlikely(!list)) {
     53		dev_err(&pdev->dev, "Input List pointer is NULL\n");
     54		return -EFAULT;
     55	}
     56
     57	for (i = 0; i < buf_count; i++) {
     58		if (likely(list[i].vptr)) {
     59			list[i].dma_addr = dma_map_single(&pdev->dev,
     60							  list[i].vptr,
     61							  list[i].size,
     62							  DMA_BIDIRECTIONAL);
     63			if (unlikely(dma_mapping_error(&pdev->dev,
     64						       list[i].dma_addr))) {
     65				dev_err(&pdev->dev, "DMA map kernel buffer failed for component: %d\n",
     66					i);
     67				ret = -EIO;
     68				goto sg_cleanup;
     69			}
     70		}
     71	}
     72
     73	components = buf_count / 4;
     74	sg_ptr = (struct sglist_component *)buffer;
     75	for (i = 0; i < components; i++) {
     76		sg_ptr->u.s.len0 = cpu_to_be16(list[i * 4 + 0].size);
     77		sg_ptr->u.s.len1 = cpu_to_be16(list[i * 4 + 1].size);
     78		sg_ptr->u.s.len2 = cpu_to_be16(list[i * 4 + 2].size);
     79		sg_ptr->u.s.len3 = cpu_to_be16(list[i * 4 + 3].size);
     80		sg_ptr->ptr0 = cpu_to_be64(list[i * 4 + 0].dma_addr);
     81		sg_ptr->ptr1 = cpu_to_be64(list[i * 4 + 1].dma_addr);
     82		sg_ptr->ptr2 = cpu_to_be64(list[i * 4 + 2].dma_addr);
     83		sg_ptr->ptr3 = cpu_to_be64(list[i * 4 + 3].dma_addr);
     84		sg_ptr++;
     85	}
     86
     87	components = buf_count % 4;
     88
     89	switch (components) {
     90	case 3:
     91		sg_ptr->u.s.len2 = cpu_to_be16(list[i * 4 + 2].size);
     92		sg_ptr->ptr2 = cpu_to_be64(list[i * 4 + 2].dma_addr);
     93		fallthrough;
     94	case 2:
     95		sg_ptr->u.s.len1 = cpu_to_be16(list[i * 4 + 1].size);
     96		sg_ptr->ptr1 = cpu_to_be64(list[i * 4 + 1].dma_addr);
     97		fallthrough;
     98	case 1:
     99		sg_ptr->u.s.len0 = cpu_to_be16(list[i * 4 + 0].size);
    100		sg_ptr->ptr0 = cpu_to_be64(list[i * 4 + 0].dma_addr);
    101		break;
    102	default:
    103		break;
    104	}
    105
    106	return ret;
    107
    108sg_cleanup:
    109	for (j = 0; j < i; j++) {
    110		if (list[j].dma_addr) {
    111			dma_unmap_single(&pdev->dev, list[i].dma_addr,
    112					 list[i].size, DMA_BIDIRECTIONAL);
    113		}
    114
    115		list[j].dma_addr = 0;
    116	}
    117
    118	return ret;
    119}
    120
    121static inline int setup_sgio_list(struct cpt_vf *cptvf,
    122				  struct cpt_info_buffer *info,
    123				  struct cpt_request_info *req)
    124{
    125	u16 g_sz_bytes = 0, s_sz_bytes = 0;
    126	int ret = 0;
    127	struct pci_dev *pdev = cptvf->pdev;
    128
    129	if (req->incnt > MAX_SG_IN_CNT || req->outcnt > MAX_SG_OUT_CNT) {
    130		dev_err(&pdev->dev, "Request SG components are higher than supported\n");
    131		ret = -EINVAL;
    132		goto  scatter_gather_clean;
    133	}
    134
    135	/* Setup gather (input) components */
    136	g_sz_bytes = ((req->incnt + 3) / 4) * sizeof(struct sglist_component);
    137	info->gather_components = kzalloc(g_sz_bytes, req->may_sleep ? GFP_KERNEL : GFP_ATOMIC);
    138	if (!info->gather_components) {
    139		ret = -ENOMEM;
    140		goto  scatter_gather_clean;
    141	}
    142
    143	ret = setup_sgio_components(cptvf, req->in,
    144				    req->incnt,
    145				    info->gather_components);
    146	if (ret) {
    147		dev_err(&pdev->dev, "Failed to setup gather list\n");
    148		ret = -EFAULT;
    149		goto  scatter_gather_clean;
    150	}
    151
    152	/* Setup scatter (output) components */
    153	s_sz_bytes = ((req->outcnt + 3) / 4) * sizeof(struct sglist_component);
    154	info->scatter_components = kzalloc(s_sz_bytes, req->may_sleep ? GFP_KERNEL : GFP_ATOMIC);
    155	if (!info->scatter_components) {
    156		ret = -ENOMEM;
    157		goto  scatter_gather_clean;
    158	}
    159
    160	ret = setup_sgio_components(cptvf, req->out,
    161				    req->outcnt,
    162				    info->scatter_components);
    163	if (ret) {
    164		dev_err(&pdev->dev, "Failed to setup gather list\n");
    165		ret = -EFAULT;
    166		goto  scatter_gather_clean;
    167	}
    168
    169	/* Create and initialize DPTR */
    170	info->dlen = g_sz_bytes + s_sz_bytes + SG_LIST_HDR_SIZE;
    171	info->in_buffer = kzalloc(info->dlen, req->may_sleep ? GFP_KERNEL : GFP_ATOMIC);
    172	if (!info->in_buffer) {
    173		ret = -ENOMEM;
    174		goto  scatter_gather_clean;
    175	}
    176
    177	((__be16 *)info->in_buffer)[0] = cpu_to_be16(req->outcnt);
    178	((__be16 *)info->in_buffer)[1] = cpu_to_be16(req->incnt);
    179	((__be16 *)info->in_buffer)[2] = 0;
    180	((__be16 *)info->in_buffer)[3] = 0;
    181
    182	memcpy(&info->in_buffer[8], info->gather_components,
    183	       g_sz_bytes);
    184	memcpy(&info->in_buffer[8 + g_sz_bytes],
    185	       info->scatter_components, s_sz_bytes);
    186
    187	info->dptr_baddr = dma_map_single(&pdev->dev,
    188					  (void *)info->in_buffer,
    189					  info->dlen,
    190					  DMA_BIDIRECTIONAL);
    191	if (dma_mapping_error(&pdev->dev, info->dptr_baddr)) {
    192		dev_err(&pdev->dev, "Mapping DPTR Failed %d\n", info->dlen);
    193		ret = -EIO;
    194		goto  scatter_gather_clean;
    195	}
    196
    197	/* Create and initialize RPTR */
    198	info->out_buffer = kzalloc(COMPLETION_CODE_SIZE, req->may_sleep ? GFP_KERNEL : GFP_ATOMIC);
    199	if (!info->out_buffer) {
    200		ret = -ENOMEM;
    201		goto scatter_gather_clean;
    202	}
    203
    204	*((u64 *)info->out_buffer) = ~((u64)COMPLETION_CODE_INIT);
    205	info->alternate_caddr = (u64 *)info->out_buffer;
    206	info->rptr_baddr = dma_map_single(&pdev->dev,
    207					  (void *)info->out_buffer,
    208					  COMPLETION_CODE_SIZE,
    209					  DMA_BIDIRECTIONAL);
    210	if (dma_mapping_error(&pdev->dev, info->rptr_baddr)) {
    211		dev_err(&pdev->dev, "Mapping RPTR Failed %d\n",
    212			COMPLETION_CODE_SIZE);
    213		ret = -EIO;
    214		goto  scatter_gather_clean;
    215	}
    216
    217	return 0;
    218
    219scatter_gather_clean:
    220	return ret;
    221}
    222
    223static int send_cpt_command(struct cpt_vf *cptvf, union cpt_inst_s *cmd,
    224		     u32 qno)
    225{
    226	struct pci_dev *pdev = cptvf->pdev;
    227	struct command_qinfo *qinfo = NULL;
    228	struct command_queue *queue;
    229	struct command_chunk *chunk;
    230	u8 *ent;
    231	int ret = 0;
    232
    233	if (unlikely(qno >= cptvf->nr_queues)) {
    234		dev_err(&pdev->dev, "Invalid queue (qno: %d, nr_queues: %d)\n",
    235			qno, cptvf->nr_queues);
    236		return -EINVAL;
    237	}
    238
    239	qinfo = &cptvf->cqinfo;
    240	queue = &qinfo->queue[qno];
    241	/* lock commad queue */
    242	spin_lock(&queue->lock);
    243	ent = &queue->qhead->head[queue->idx * qinfo->cmd_size];
    244	memcpy(ent, (void *)cmd, qinfo->cmd_size);
    245
    246	if (++queue->idx >= queue->qhead->size / 64) {
    247		hlist_for_each_entry(chunk, &queue->chead, nextchunk) {
    248			if (chunk == queue->qhead) {
    249				continue;
    250			} else {
    251				queue->qhead = chunk;
    252				break;
    253			}
    254		}
    255		queue->idx = 0;
    256	}
    257	/* make sure all memory stores are done before ringing doorbell */
    258	smp_wmb();
    259	cptvf_write_vq_doorbell(cptvf, 1);
    260	/* unlock command queue */
    261	spin_unlock(&queue->lock);
    262
    263	return ret;
    264}
    265
    266static void do_request_cleanup(struct cpt_vf *cptvf,
    267			struct cpt_info_buffer *info)
    268{
    269	int i;
    270	struct pci_dev *pdev = cptvf->pdev;
    271	struct cpt_request_info *req;
    272
    273	if (info->dptr_baddr)
    274		dma_unmap_single(&pdev->dev, info->dptr_baddr,
    275				 info->dlen, DMA_BIDIRECTIONAL);
    276
    277	if (info->rptr_baddr)
    278		dma_unmap_single(&pdev->dev, info->rptr_baddr,
    279				 COMPLETION_CODE_SIZE, DMA_BIDIRECTIONAL);
    280
    281	if (info->comp_baddr)
    282		dma_unmap_single(&pdev->dev, info->comp_baddr,
    283				 sizeof(union cpt_res_s), DMA_BIDIRECTIONAL);
    284
    285	if (info->req) {
    286		req = info->req;
    287		for (i = 0; i < req->outcnt; i++) {
    288			if (req->out[i].dma_addr)
    289				dma_unmap_single(&pdev->dev,
    290						 req->out[i].dma_addr,
    291						 req->out[i].size,
    292						 DMA_BIDIRECTIONAL);
    293		}
    294
    295		for (i = 0; i < req->incnt; i++) {
    296			if (req->in[i].dma_addr)
    297				dma_unmap_single(&pdev->dev,
    298						 req->in[i].dma_addr,
    299						 req->in[i].size,
    300						 DMA_BIDIRECTIONAL);
    301		}
    302	}
    303
    304	kfree_sensitive(info->scatter_components);
    305	kfree_sensitive(info->gather_components);
    306	kfree_sensitive(info->out_buffer);
    307	kfree_sensitive(info->in_buffer);
    308	kfree_sensitive((void *)info->completion_addr);
    309	kfree_sensitive(info);
    310}
    311
    312static void do_post_process(struct cpt_vf *cptvf, struct cpt_info_buffer *info)
    313{
    314	struct pci_dev *pdev = cptvf->pdev;
    315
    316	if (!info) {
    317		dev_err(&pdev->dev, "incorrect cpt_info_buffer for post processing\n");
    318		return;
    319	}
    320
    321	do_request_cleanup(cptvf, info);
    322}
    323
    324static inline void process_pending_queue(struct cpt_vf *cptvf,
    325					 struct pending_qinfo *pqinfo,
    326					 int qno)
    327{
    328	struct pci_dev *pdev = cptvf->pdev;
    329	struct pending_queue *pqueue = &pqinfo->queue[qno];
    330	struct pending_entry *pentry = NULL;
    331	struct cpt_info_buffer *info = NULL;
    332	union cpt_res_s *status = NULL;
    333	unsigned char ccode;
    334
    335	while (1) {
    336		spin_lock_bh(&pqueue->lock);
    337		pentry = &pqueue->head[pqueue->front];
    338		if (unlikely(!pentry->busy)) {
    339			spin_unlock_bh(&pqueue->lock);
    340			break;
    341		}
    342
    343		info = (struct cpt_info_buffer *)pentry->post_arg;
    344		if (unlikely(!info)) {
    345			dev_err(&pdev->dev, "Pending Entry post arg NULL\n");
    346			pending_queue_inc_front(pqinfo, qno);
    347			spin_unlock_bh(&pqueue->lock);
    348			continue;
    349		}
    350
    351		status = (union cpt_res_s *)pentry->completion_addr;
    352		ccode = status->s.compcode;
    353		if ((status->s.compcode == CPT_COMP_E_FAULT) ||
    354		    (status->s.compcode == CPT_COMP_E_SWERR)) {
    355			dev_err(&pdev->dev, "Request failed with %s\n",
    356				(status->s.compcode == CPT_COMP_E_FAULT) ?
    357				"DMA Fault" : "Software error");
    358			pentry->completion_addr = NULL;
    359			pentry->busy = false;
    360			atomic64_dec((&pqueue->pending_count));
    361			pentry->post_arg = NULL;
    362			pending_queue_inc_front(pqinfo, qno);
    363			do_request_cleanup(cptvf, info);
    364			spin_unlock_bh(&pqueue->lock);
    365			break;
    366		} else if (status->s.compcode == COMPLETION_CODE_INIT) {
    367			/* check for timeout */
    368			if (time_after_eq(jiffies,
    369					  (info->time_in +
    370					  (CPT_COMMAND_TIMEOUT * HZ)))) {
    371				dev_err(&pdev->dev, "Request timed out");
    372				pentry->completion_addr = NULL;
    373				pentry->busy = false;
    374				atomic64_dec((&pqueue->pending_count));
    375				pentry->post_arg = NULL;
    376				pending_queue_inc_front(pqinfo, qno);
    377				do_request_cleanup(cptvf, info);
    378				spin_unlock_bh(&pqueue->lock);
    379				break;
    380			} else if ((*info->alternate_caddr ==
    381				(~COMPLETION_CODE_INIT)) &&
    382				(info->extra_time < TIME_IN_RESET_COUNT)) {
    383				info->time_in = jiffies;
    384				info->extra_time++;
    385				spin_unlock_bh(&pqueue->lock);
    386				break;
    387			}
    388		}
    389
    390		pentry->completion_addr = NULL;
    391		pentry->busy = false;
    392		pentry->post_arg = NULL;
    393		atomic64_dec((&pqueue->pending_count));
    394		pending_queue_inc_front(pqinfo, qno);
    395		spin_unlock_bh(&pqueue->lock);
    396
    397		do_post_process(info->cptvf, info);
    398		/*
    399		 * Calling callback after we find
    400		 * that the request has been serviced
    401		 */
    402		pentry->callback(ccode, pentry->callback_arg);
    403	}
    404}
    405
    406int process_request(struct cpt_vf *cptvf, struct cpt_request_info *req)
    407{
    408	int ret = 0, clear = 0, queue = 0;
    409	struct cpt_info_buffer *info = NULL;
    410	struct cptvf_request *cpt_req = NULL;
    411	union ctrl_info *ctrl = NULL;
    412	union cpt_res_s *result = NULL;
    413	struct pending_entry *pentry = NULL;
    414	struct pending_queue *pqueue = NULL;
    415	struct pci_dev *pdev = cptvf->pdev;
    416	u8 group = 0;
    417	struct cpt_vq_command vq_cmd;
    418	union cpt_inst_s cptinst;
    419
    420	info = kzalloc(sizeof(*info), req->may_sleep ? GFP_KERNEL : GFP_ATOMIC);
    421	if (unlikely(!info)) {
    422		dev_err(&pdev->dev, "Unable to allocate memory for info_buffer\n");
    423		return -ENOMEM;
    424	}
    425
    426	cpt_req = (struct cptvf_request *)&req->req;
    427	ctrl = (union ctrl_info *)&req->ctrl;
    428
    429	info->cptvf = cptvf;
    430	group = ctrl->s.grp;
    431	ret = setup_sgio_list(cptvf, info, req);
    432	if (ret) {
    433		dev_err(&pdev->dev, "Setting up SG list failed");
    434		goto request_cleanup;
    435	}
    436
    437	cpt_req->dlen = info->dlen;
    438	/*
    439	 * Get buffer for union cpt_res_s response
    440	 * structure and its physical address
    441	 */
    442	info->completion_addr = kzalloc(sizeof(union cpt_res_s), req->may_sleep ? GFP_KERNEL : GFP_ATOMIC);
    443	if (unlikely(!info->completion_addr)) {
    444		dev_err(&pdev->dev, "Unable to allocate memory for completion_addr\n");
    445		ret = -ENOMEM;
    446		goto request_cleanup;
    447	}
    448
    449	result = (union cpt_res_s *)info->completion_addr;
    450	result->s.compcode = COMPLETION_CODE_INIT;
    451	info->comp_baddr = dma_map_single(&pdev->dev,
    452					       (void *)info->completion_addr,
    453					       sizeof(union cpt_res_s),
    454					       DMA_BIDIRECTIONAL);
    455	if (dma_mapping_error(&pdev->dev, info->comp_baddr)) {
    456		dev_err(&pdev->dev, "mapping compptr Failed %lu\n",
    457			sizeof(union cpt_res_s));
    458		ret = -EFAULT;
    459		goto  request_cleanup;
    460	}
    461
    462	/* Fill the VQ command */
    463	vq_cmd.cmd.u64 = 0;
    464	vq_cmd.cmd.s.opcode = cpu_to_be16(cpt_req->opcode.flags);
    465	vq_cmd.cmd.s.param1 = cpu_to_be16(cpt_req->param1);
    466	vq_cmd.cmd.s.param2 = cpu_to_be16(cpt_req->param2);
    467	vq_cmd.cmd.s.dlen   = cpu_to_be16(cpt_req->dlen);
    468
    469	vq_cmd.dptr = info->dptr_baddr;
    470	vq_cmd.rptr = info->rptr_baddr;
    471	vq_cmd.cptr.u64 = 0;
    472	vq_cmd.cptr.s.grp = group;
    473	/* Get Pending Entry to submit command */
    474	/* Always queue 0, because 1 queue per VF */
    475	queue = 0;
    476	pqueue = &cptvf->pqinfo.queue[queue];
    477
    478	if (atomic64_read(&pqueue->pending_count) > PENDING_THOLD) {
    479		dev_err(&pdev->dev, "pending threshold reached\n");
    480		process_pending_queue(cptvf, &cptvf->pqinfo, queue);
    481	}
    482
    483get_pending_entry:
    484	spin_lock_bh(&pqueue->lock);
    485	pentry = get_free_pending_entry(pqueue, cptvf->pqinfo.qlen);
    486	if (unlikely(!pentry)) {
    487		spin_unlock_bh(&pqueue->lock);
    488		if (clear == 0) {
    489			process_pending_queue(cptvf, &cptvf->pqinfo, queue);
    490			clear = 1;
    491			goto get_pending_entry;
    492		}
    493		dev_err(&pdev->dev, "Get free entry failed\n");
    494		dev_err(&pdev->dev, "queue: %d, rear: %d, front: %d\n",
    495			queue, pqueue->rear, pqueue->front);
    496		ret = -EFAULT;
    497		goto request_cleanup;
    498	}
    499
    500	pentry->completion_addr = info->completion_addr;
    501	pentry->post_arg = (void *)info;
    502	pentry->callback = req->callback;
    503	pentry->callback_arg = req->callback_arg;
    504	info->pentry = pentry;
    505	pentry->busy = true;
    506	atomic64_inc(&pqueue->pending_count);
    507
    508	/* Send CPT command */
    509	info->pentry = pentry;
    510	info->time_in = jiffies;
    511	info->req = req;
    512
    513	/* Create the CPT_INST_S type command for HW intrepretation */
    514	cptinst.s.doneint = true;
    515	cptinst.s.res_addr = (u64)info->comp_baddr;
    516	cptinst.s.tag = 0;
    517	cptinst.s.grp = 0;
    518	cptinst.s.wq_ptr = 0;
    519	cptinst.s.ei0 = vq_cmd.cmd.u64;
    520	cptinst.s.ei1 = vq_cmd.dptr;
    521	cptinst.s.ei2 = vq_cmd.rptr;
    522	cptinst.s.ei3 = vq_cmd.cptr.u64;
    523
    524	ret = send_cpt_command(cptvf, &cptinst, queue);
    525	spin_unlock_bh(&pqueue->lock);
    526	if (unlikely(ret)) {
    527		dev_err(&pdev->dev, "Send command failed for AE\n");
    528		ret = -EFAULT;
    529		goto request_cleanup;
    530	}
    531
    532	return 0;
    533
    534request_cleanup:
    535	dev_dbg(&pdev->dev, "Failed to submit CPT command\n");
    536	do_request_cleanup(cptvf, info);
    537
    538	return ret;
    539}
    540
    541void vq_post_process(struct cpt_vf *cptvf, u32 qno)
    542{
    543	struct pci_dev *pdev = cptvf->pdev;
    544
    545	if (unlikely(qno > cptvf->nr_queues)) {
    546		dev_err(&pdev->dev, "Request for post processing on invalid pending queue: %u\n",
    547			qno);
    548		return;
    549	}
    550
    551	process_pending_queue(cptvf, &cptvf->pqinfo, qno);
    552}
    553
    554int cptvf_do_request(void *vfdev, struct cpt_request_info *req)
    555{
    556	struct cpt_vf *cptvf = (struct cpt_vf *)vfdev;
    557	struct pci_dev *pdev = cptvf->pdev;
    558
    559	if (!cpt_device_ready(cptvf)) {
    560		dev_err(&pdev->dev, "CPT Device is not ready");
    561		return -ENODEV;
    562	}
    563
    564	if ((cptvf->vftype == SE_TYPES) && (!req->ctrl.s.se_req)) {
    565		dev_err(&pdev->dev, "CPTVF-%d of SE TYPE got AE request",
    566			cptvf->vfid);
    567		return -EINVAL;
    568	} else if ((cptvf->vftype == AE_TYPES) && (req->ctrl.s.se_req)) {
    569		dev_err(&pdev->dev, "CPTVF-%d of AE TYPE got SE request",
    570			cptvf->vfid);
    571		return -EINVAL;
    572	}
    573
    574	return process_request(cptvf, req);
    575}