cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

ccp-crypto-aes-xts.c (7457B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 * AMD Cryptographic Coprocessor (CCP) AES XTS crypto API support
      4 *
      5 * Copyright (C) 2013,2017 Advanced Micro Devices, Inc.
      6 *
      7 * Author: Gary R Hook <gary.hook@amd.com>
      8 * Author: Tom Lendacky <thomas.lendacky@amd.com>
      9 */
     10
     11#include <linux/module.h>
     12#include <linux/sched.h>
     13#include <linux/delay.h>
     14#include <linux/scatterlist.h>
     15#include <crypto/aes.h>
     16#include <crypto/xts.h>
     17#include <crypto/internal/skcipher.h>
     18#include <crypto/scatterwalk.h>
     19
     20#include "ccp-crypto.h"
     21
     22struct ccp_aes_xts_def {
     23	const char *name;
     24	const char *drv_name;
     25};
     26
     27static const struct ccp_aes_xts_def aes_xts_algs[] = {
     28	{
     29		.name		= "xts(aes)",
     30		.drv_name	= "xts-aes-ccp",
     31	},
     32};
     33
     34struct ccp_unit_size_map {
     35	unsigned int size;
     36	u32 value;
     37};
     38
     39static struct ccp_unit_size_map xts_unit_sizes[] = {
     40	{
     41		.size   = 16,
     42		.value	= CCP_XTS_AES_UNIT_SIZE_16,
     43	},
     44	{
     45		.size   = 512,
     46		.value	= CCP_XTS_AES_UNIT_SIZE_512,
     47	},
     48	{
     49		.size   = 1024,
     50		.value	= CCP_XTS_AES_UNIT_SIZE_1024,
     51	},
     52	{
     53		.size   = 2048,
     54		.value	= CCP_XTS_AES_UNIT_SIZE_2048,
     55	},
     56	{
     57		.size   = 4096,
     58		.value	= CCP_XTS_AES_UNIT_SIZE_4096,
     59	},
     60};
     61
     62static int ccp_aes_xts_complete(struct crypto_async_request *async_req, int ret)
     63{
     64	struct skcipher_request *req = skcipher_request_cast(async_req);
     65	struct ccp_aes_req_ctx *rctx = skcipher_request_ctx(req);
     66
     67	if (ret)
     68		return ret;
     69
     70	memcpy(req->iv, rctx->iv, AES_BLOCK_SIZE);
     71
     72	return 0;
     73}
     74
     75static int ccp_aes_xts_setkey(struct crypto_skcipher *tfm, const u8 *key,
     76			      unsigned int key_len)
     77{
     78	struct ccp_ctx *ctx = crypto_skcipher_ctx(tfm);
     79	unsigned int ccpversion = ccp_version();
     80	int ret;
     81
     82	ret = xts_verify_key(tfm, key, key_len);
     83	if (ret)
     84		return ret;
     85
     86	/* Version 3 devices support 128-bit keys; version 5 devices can
     87	 * accommodate 128- and 256-bit keys.
     88	 */
     89	switch (key_len) {
     90	case AES_KEYSIZE_128 * 2:
     91		memcpy(ctx->u.aes.key, key, key_len);
     92		break;
     93	case AES_KEYSIZE_256 * 2:
     94		if (ccpversion > CCP_VERSION(3, 0))
     95			memcpy(ctx->u.aes.key, key, key_len);
     96		break;
     97	}
     98	ctx->u.aes.key_len = key_len / 2;
     99	sg_init_one(&ctx->u.aes.key_sg, ctx->u.aes.key, key_len);
    100
    101	return crypto_skcipher_setkey(ctx->u.aes.tfm_skcipher, key, key_len);
    102}
    103
    104static int ccp_aes_xts_crypt(struct skcipher_request *req,
    105			     unsigned int encrypt)
    106{
    107	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
    108	struct ccp_ctx *ctx = crypto_skcipher_ctx(tfm);
    109	struct ccp_aes_req_ctx *rctx = skcipher_request_ctx(req);
    110	unsigned int ccpversion = ccp_version();
    111	unsigned int fallback = 0;
    112	unsigned int unit;
    113	u32 unit_size;
    114	int ret;
    115
    116	if (!ctx->u.aes.key_len)
    117		return -EINVAL;
    118
    119	if (!req->iv)
    120		return -EINVAL;
    121
    122	/* Check conditions under which the CCP can fulfill a request. The
    123	 * device can handle input plaintext of a length that is a multiple
    124	 * of the unit_size, bug the crypto implementation only supports
    125	 * the unit_size being equal to the input length. This limits the
    126	 * number of scenarios we can handle.
    127	 */
    128	unit_size = CCP_XTS_AES_UNIT_SIZE__LAST;
    129	for (unit = 0; unit < ARRAY_SIZE(xts_unit_sizes); unit++) {
    130		if (req->cryptlen == xts_unit_sizes[unit].size) {
    131			unit_size = unit;
    132			break;
    133		}
    134	}
    135	/* The CCP has restrictions on block sizes. Also, a version 3 device
    136	 * only supports AES-128 operations; version 5 CCPs support both
    137	 * AES-128 and -256 operations.
    138	 */
    139	if (unit_size == CCP_XTS_AES_UNIT_SIZE__LAST)
    140		fallback = 1;
    141	if ((ccpversion < CCP_VERSION(5, 0)) &&
    142	    (ctx->u.aes.key_len != AES_KEYSIZE_128))
    143		fallback = 1;
    144	if ((ctx->u.aes.key_len != AES_KEYSIZE_128) &&
    145	    (ctx->u.aes.key_len != AES_KEYSIZE_256))
    146		fallback = 1;
    147	if (fallback) {
    148		/* Use the fallback to process the request for any
    149		 * unsupported unit sizes or key sizes
    150		 */
    151		skcipher_request_set_tfm(&rctx->fallback_req,
    152					 ctx->u.aes.tfm_skcipher);
    153		skcipher_request_set_callback(&rctx->fallback_req,
    154					      req->base.flags,
    155					      req->base.complete,
    156					      req->base.data);
    157		skcipher_request_set_crypt(&rctx->fallback_req, req->src,
    158					   req->dst, req->cryptlen, req->iv);
    159		ret = encrypt ? crypto_skcipher_encrypt(&rctx->fallback_req) :
    160				crypto_skcipher_decrypt(&rctx->fallback_req);
    161		return ret;
    162	}
    163
    164	memcpy(rctx->iv, req->iv, AES_BLOCK_SIZE);
    165	sg_init_one(&rctx->iv_sg, rctx->iv, AES_BLOCK_SIZE);
    166
    167	memset(&rctx->cmd, 0, sizeof(rctx->cmd));
    168	INIT_LIST_HEAD(&rctx->cmd.entry);
    169	rctx->cmd.engine = CCP_ENGINE_XTS_AES_128;
    170	rctx->cmd.u.xts.type = CCP_AES_TYPE_128;
    171	rctx->cmd.u.xts.action = (encrypt) ? CCP_AES_ACTION_ENCRYPT
    172					   : CCP_AES_ACTION_DECRYPT;
    173	rctx->cmd.u.xts.unit_size = unit_size;
    174	rctx->cmd.u.xts.key = &ctx->u.aes.key_sg;
    175	rctx->cmd.u.xts.key_len = ctx->u.aes.key_len;
    176	rctx->cmd.u.xts.iv = &rctx->iv_sg;
    177	rctx->cmd.u.xts.iv_len = AES_BLOCK_SIZE;
    178	rctx->cmd.u.xts.src = req->src;
    179	rctx->cmd.u.xts.src_len = req->cryptlen;
    180	rctx->cmd.u.xts.dst = req->dst;
    181
    182	ret = ccp_crypto_enqueue_request(&req->base, &rctx->cmd);
    183
    184	return ret;
    185}
    186
    187static int ccp_aes_xts_encrypt(struct skcipher_request *req)
    188{
    189	return ccp_aes_xts_crypt(req, 1);
    190}
    191
    192static int ccp_aes_xts_decrypt(struct skcipher_request *req)
    193{
    194	return ccp_aes_xts_crypt(req, 0);
    195}
    196
    197static int ccp_aes_xts_init_tfm(struct crypto_skcipher *tfm)
    198{
    199	struct ccp_ctx *ctx = crypto_skcipher_ctx(tfm);
    200	struct crypto_skcipher *fallback_tfm;
    201
    202	ctx->complete = ccp_aes_xts_complete;
    203	ctx->u.aes.key_len = 0;
    204
    205	fallback_tfm = crypto_alloc_skcipher("xts(aes)", 0,
    206					     CRYPTO_ALG_NEED_FALLBACK);
    207	if (IS_ERR(fallback_tfm)) {
    208		pr_warn("could not load fallback driver xts(aes)\n");
    209		return PTR_ERR(fallback_tfm);
    210	}
    211	ctx->u.aes.tfm_skcipher = fallback_tfm;
    212
    213	crypto_skcipher_set_reqsize(tfm, sizeof(struct ccp_aes_req_ctx) +
    214					 crypto_skcipher_reqsize(fallback_tfm));
    215
    216	return 0;
    217}
    218
    219static void ccp_aes_xts_exit_tfm(struct crypto_skcipher *tfm)
    220{
    221	struct ccp_ctx *ctx = crypto_skcipher_ctx(tfm);
    222
    223	crypto_free_skcipher(ctx->u.aes.tfm_skcipher);
    224}
    225
    226static int ccp_register_aes_xts_alg(struct list_head *head,
    227				    const struct ccp_aes_xts_def *def)
    228{
    229	struct ccp_crypto_skcipher_alg *ccp_alg;
    230	struct skcipher_alg *alg;
    231	int ret;
    232
    233	ccp_alg = kzalloc(sizeof(*ccp_alg), GFP_KERNEL);
    234	if (!ccp_alg)
    235		return -ENOMEM;
    236
    237	INIT_LIST_HEAD(&ccp_alg->entry);
    238
    239	alg = &ccp_alg->alg;
    240
    241	snprintf(alg->base.cra_name, CRYPTO_MAX_ALG_NAME, "%s", def->name);
    242	snprintf(alg->base.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
    243		 def->drv_name);
    244	alg->base.cra_flags	= CRYPTO_ALG_ASYNC |
    245				  CRYPTO_ALG_ALLOCATES_MEMORY |
    246				  CRYPTO_ALG_KERN_DRIVER_ONLY |
    247				  CRYPTO_ALG_NEED_FALLBACK;
    248	alg->base.cra_blocksize	= AES_BLOCK_SIZE;
    249	alg->base.cra_ctxsize	= sizeof(struct ccp_ctx);
    250	alg->base.cra_priority	= CCP_CRA_PRIORITY;
    251	alg->base.cra_module	= THIS_MODULE;
    252
    253	alg->setkey		= ccp_aes_xts_setkey;
    254	alg->encrypt		= ccp_aes_xts_encrypt;
    255	alg->decrypt		= ccp_aes_xts_decrypt;
    256	alg->min_keysize	= AES_MIN_KEY_SIZE * 2;
    257	alg->max_keysize	= AES_MAX_KEY_SIZE * 2;
    258	alg->ivsize		= AES_BLOCK_SIZE;
    259	alg->init		= ccp_aes_xts_init_tfm;
    260	alg->exit		= ccp_aes_xts_exit_tfm;
    261
    262	ret = crypto_register_skcipher(alg);
    263	if (ret) {
    264		pr_err("%s skcipher algorithm registration error (%d)\n",
    265		       alg->base.cra_name, ret);
    266		kfree(ccp_alg);
    267		return ret;
    268	}
    269
    270	list_add(&ccp_alg->entry, head);
    271
    272	return 0;
    273}
    274
    275int ccp_register_aes_xts_algs(struct list_head *head)
    276{
    277	int i, ret;
    278
    279	for (i = 0; i < ARRAY_SIZE(aes_xts_algs); i++) {
    280		ret = ccp_register_aes_xts_alg(head, &aes_xts_algs[i]);
    281		if (ret)
    282			return ret;
    283	}
    284
    285	return 0;
    286}