cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

keembay-ocs-hcu-core.c (33368B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 * Intel Keem Bay OCS HCU Crypto Driver.
      4 *
      5 * Copyright (C) 2018-2020 Intel Corporation
      6 */
      7
      8#include <linux/completion.h>
      9#include <linux/delay.h>
     10#include <linux/dma-mapping.h>
     11#include <linux/interrupt.h>
     12#include <linux/module.h>
     13#include <linux/of_device.h>
     14
     15#include <crypto/engine.h>
     16#include <crypto/scatterwalk.h>
     17#include <crypto/sha2.h>
     18#include <crypto/sm3.h>
     19#include <crypto/hmac.h>
     20#include <crypto/internal/hash.h>
     21
     22#include "ocs-hcu.h"
     23
     24#define DRV_NAME	"keembay-ocs-hcu"
     25
     26/* Flag marking a final request. */
     27#define REQ_FINAL			BIT(0)
     28/* Flag marking a HMAC request. */
     29#define REQ_FLAGS_HMAC			BIT(1)
     30/* Flag set when HW HMAC is being used. */
     31#define REQ_FLAGS_HMAC_HW		BIT(2)
     32/* Flag set when SW HMAC is being used. */
     33#define REQ_FLAGS_HMAC_SW		BIT(3)
     34
     35/**
     36 * struct ocs_hcu_ctx: OCS HCU Transform context.
     37 * @engine_ctx:	 Crypto Engine context.
     38 * @hcu_dev:	 The OCS HCU device used by the transformation.
     39 * @key:	 The key (used only for HMAC transformations).
     40 * @key_len:	 The length of the key.
     41 * @is_sm3_tfm:  Whether or not this is an SM3 transformation.
     42 * @is_hmac_tfm: Whether or not this is a HMAC transformation.
     43 */
     44struct ocs_hcu_ctx {
     45	struct crypto_engine_ctx engine_ctx;
     46	struct ocs_hcu_dev *hcu_dev;
     47	u8 key[SHA512_BLOCK_SIZE];
     48	size_t key_len;
     49	bool is_sm3_tfm;
     50	bool is_hmac_tfm;
     51};
     52
     53/**
     54 * struct ocs_hcu_rctx - Context for the request.
     55 * @hcu_dev:	    OCS HCU device to be used to service the request.
     56 * @flags:	    Flags tracking request status.
     57 * @algo:	    Algorithm to use for the request.
     58 * @blk_sz:	    Block size of the transformation / request.
     59 * @dig_sz:	    Digest size of the transformation / request.
     60 * @dma_list:	    OCS DMA linked list.
     61 * @hash_ctx:	    OCS HCU hashing context.
     62 * @buffer:	    Buffer to store: partial block of data and SW HMAC
     63 *		    artifacts (ipad, opad, etc.).
     64 * @buf_cnt:	    Number of bytes currently stored in the buffer.
     65 * @buf_dma_addr:   The DMA address of @buffer (when mapped).
     66 * @buf_dma_count:  The number of bytes in @buffer currently DMA-mapped.
     67 * @sg:		    Head of the scatterlist entries containing data.
     68 * @sg_data_total:  Total data in the SG list at any time.
     69 * @sg_data_offset: Offset into the data of the current individual SG node.
     70 * @sg_dma_nents:   Number of sg entries mapped in dma_list.
     71 */
     72struct ocs_hcu_rctx {
     73	struct ocs_hcu_dev	*hcu_dev;
     74	u32			flags;
     75	enum ocs_hcu_algo	algo;
     76	size_t			blk_sz;
     77	size_t			dig_sz;
     78	struct ocs_hcu_dma_list	*dma_list;
     79	struct ocs_hcu_hash_ctx	hash_ctx;
     80	/*
     81	 * Buffer is double the block size because we need space for SW HMAC
     82	 * artifacts, i.e:
     83	 * - ipad (1 block) + a possible partial block of data.
     84	 * - opad (1 block) + digest of H(k ^ ipad || m)
     85	 */
     86	u8			buffer[2 * SHA512_BLOCK_SIZE];
     87	size_t			buf_cnt;
     88	dma_addr_t		buf_dma_addr;
     89	size_t			buf_dma_count;
     90	struct scatterlist	*sg;
     91	unsigned int		sg_data_total;
     92	unsigned int		sg_data_offset;
     93	unsigned int		sg_dma_nents;
     94};
     95
     96/**
     97 * struct ocs_hcu_drv - Driver data
     98 * @dev_list:	The list of HCU devices.
     99 * @lock:	The lock protecting dev_list.
    100 */
    101struct ocs_hcu_drv {
    102	struct list_head dev_list;
    103	spinlock_t lock; /* Protects dev_list. */
    104};
    105
    106static struct ocs_hcu_drv ocs_hcu = {
    107	.dev_list = LIST_HEAD_INIT(ocs_hcu.dev_list),
    108	.lock = __SPIN_LOCK_UNLOCKED(ocs_hcu.lock),
    109};
    110
    111/*
    112 * Return the total amount of data in the request; that is: the data in the
    113 * request buffer + the data in the sg list.
    114 */
    115static inline unsigned int kmb_get_total_data(struct ocs_hcu_rctx *rctx)
    116{
    117	return rctx->sg_data_total + rctx->buf_cnt;
    118}
    119
    120/* Move remaining content of scatter-gather list to context buffer. */
    121static int flush_sg_to_ocs_buffer(struct ocs_hcu_rctx *rctx)
    122{
    123	size_t count;
    124
    125	if (rctx->sg_data_total > (sizeof(rctx->buffer) - rctx->buf_cnt)) {
    126		WARN(1, "%s: sg data does not fit in buffer\n", __func__);
    127		return -EINVAL;
    128	}
    129
    130	while (rctx->sg_data_total) {
    131		if (!rctx->sg) {
    132			WARN(1, "%s: unexpected NULL sg\n", __func__);
    133			return -EINVAL;
    134		}
    135		/*
    136		 * If current sg has been fully processed, skip to the next
    137		 * one.
    138		 */
    139		if (rctx->sg_data_offset == rctx->sg->length) {
    140			rctx->sg = sg_next(rctx->sg);
    141			rctx->sg_data_offset = 0;
    142			continue;
    143		}
    144		/*
    145		 * Determine the maximum data available to copy from the node.
    146		 * Minimum of the length left in the sg node, or the total data
    147		 * in the request.
    148		 */
    149		count = min(rctx->sg->length - rctx->sg_data_offset,
    150			    rctx->sg_data_total);
    151		/* Copy from scatter-list entry to context buffer. */
    152		scatterwalk_map_and_copy(&rctx->buffer[rctx->buf_cnt],
    153					 rctx->sg, rctx->sg_data_offset,
    154					 count, 0);
    155
    156		rctx->sg_data_offset += count;
    157		rctx->sg_data_total -= count;
    158		rctx->buf_cnt += count;
    159	}
    160
    161	return 0;
    162}
    163
    164static struct ocs_hcu_dev *kmb_ocs_hcu_find_dev(struct ahash_request *req)
    165{
    166	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
    167	struct ocs_hcu_ctx *tctx = crypto_ahash_ctx(tfm);
    168
    169	/* If the HCU device for the request was previously set, return it. */
    170	if (tctx->hcu_dev)
    171		return tctx->hcu_dev;
    172
    173	/*
    174	 * Otherwise, get the first HCU device available (there should be one
    175	 * and only one device).
    176	 */
    177	spin_lock_bh(&ocs_hcu.lock);
    178	tctx->hcu_dev = list_first_entry_or_null(&ocs_hcu.dev_list,
    179						 struct ocs_hcu_dev,
    180						 list);
    181	spin_unlock_bh(&ocs_hcu.lock);
    182
    183	return tctx->hcu_dev;
    184}
    185
    186/* Free OCS DMA linked list and DMA-able context buffer. */
    187static void kmb_ocs_hcu_dma_cleanup(struct ahash_request *req,
    188				    struct ocs_hcu_rctx *rctx)
    189{
    190	struct ocs_hcu_dev *hcu_dev = rctx->hcu_dev;
    191	struct device *dev = hcu_dev->dev;
    192
    193	/* Unmap rctx->buffer (if mapped). */
    194	if (rctx->buf_dma_count) {
    195		dma_unmap_single(dev, rctx->buf_dma_addr, rctx->buf_dma_count,
    196				 DMA_TO_DEVICE);
    197		rctx->buf_dma_count = 0;
    198	}
    199
    200	/* Unmap req->src (if mapped). */
    201	if (rctx->sg_dma_nents) {
    202		dma_unmap_sg(dev, req->src, rctx->sg_dma_nents, DMA_TO_DEVICE);
    203		rctx->sg_dma_nents = 0;
    204	}
    205
    206	/* Free dma_list (if allocated). */
    207	if (rctx->dma_list) {
    208		ocs_hcu_dma_list_free(hcu_dev, rctx->dma_list);
    209		rctx->dma_list = NULL;
    210	}
    211}
    212
    213/*
    214 * Prepare for DMA operation:
    215 * - DMA-map request context buffer (if needed)
    216 * - DMA-map SG list (only the entries to be processed, see note below)
    217 * - Allocate OCS HCU DMA linked list (number of elements =  SG entries to
    218 *   process + context buffer (if not empty)).
    219 * - Add DMA-mapped request context buffer to OCS HCU DMA list.
    220 * - Add SG entries to DMA list.
    221 *
    222 * Note: if this is a final request, we process all the data in the SG list,
    223 * otherwise we can only process up to the maximum amount of block-aligned data
    224 * (the remainder will be put into the context buffer and processed in the next
    225 * request).
    226 */
    227static int kmb_ocs_dma_prepare(struct ahash_request *req)
    228{
    229	struct ocs_hcu_rctx *rctx = ahash_request_ctx(req);
    230	struct device *dev = rctx->hcu_dev->dev;
    231	unsigned int remainder = 0;
    232	unsigned int total;
    233	size_t nents;
    234	size_t count;
    235	int rc;
    236	int i;
    237
    238	/* This function should be called only when there is data to process. */
    239	total = kmb_get_total_data(rctx);
    240	if (!total)
    241		return -EINVAL;
    242
    243	/*
    244	 * If this is not a final DMA (terminated DMA), the data passed to the
    245	 * HCU must be aligned to the block size; compute the remainder data to
    246	 * be processed in the next request.
    247	 */
    248	if (!(rctx->flags & REQ_FINAL))
    249		remainder = total % rctx->blk_sz;
    250
    251	/* Determine the number of scatter gather list entries to process. */
    252	nents = sg_nents_for_len(req->src, rctx->sg_data_total - remainder);
    253
    254	/* If there are entries to process, map them. */
    255	if (nents) {
    256		rctx->sg_dma_nents = dma_map_sg(dev, req->src, nents,
    257						DMA_TO_DEVICE);
    258		if (!rctx->sg_dma_nents) {
    259			dev_err(dev, "Failed to MAP SG\n");
    260			rc = -ENOMEM;
    261			goto cleanup;
    262		}
    263		/*
    264		 * The value returned by dma_map_sg() can be < nents; so update
    265		 * nents accordingly.
    266		 */
    267		nents = rctx->sg_dma_nents;
    268	}
    269
    270	/*
    271	 * If context buffer is not empty, map it and add extra DMA entry for
    272	 * it.
    273	 */
    274	if (rctx->buf_cnt) {
    275		rctx->buf_dma_addr = dma_map_single(dev, rctx->buffer,
    276						    rctx->buf_cnt,
    277						    DMA_TO_DEVICE);
    278		if (dma_mapping_error(dev, rctx->buf_dma_addr)) {
    279			dev_err(dev, "Failed to map request context buffer\n");
    280			rc = -ENOMEM;
    281			goto cleanup;
    282		}
    283		rctx->buf_dma_count = rctx->buf_cnt;
    284		/* Increase number of dma entries. */
    285		nents++;
    286	}
    287
    288	/* Allocate OCS HCU DMA list. */
    289	rctx->dma_list = ocs_hcu_dma_list_alloc(rctx->hcu_dev, nents);
    290	if (!rctx->dma_list) {
    291		rc = -ENOMEM;
    292		goto cleanup;
    293	}
    294
    295	/* Add request context buffer (if previously DMA-mapped) */
    296	if (rctx->buf_dma_count) {
    297		rc = ocs_hcu_dma_list_add_tail(rctx->hcu_dev, rctx->dma_list,
    298					       rctx->buf_dma_addr,
    299					       rctx->buf_dma_count);
    300		if (rc)
    301			goto cleanup;
    302	}
    303
    304	/* Add the SG nodes to be processed to the DMA linked list. */
    305	for_each_sg(req->src, rctx->sg, rctx->sg_dma_nents, i) {
    306		/*
    307		 * The number of bytes to add to the list entry is the minimum
    308		 * between:
    309		 * - The DMA length of the SG entry.
    310		 * - The data left to be processed.
    311		 */
    312		count = min(rctx->sg_data_total - remainder,
    313			    sg_dma_len(rctx->sg) - rctx->sg_data_offset);
    314		/*
    315		 * Do not create a zero length DMA descriptor. Check in case of
    316		 * zero length SG node.
    317		 */
    318		if (count == 0)
    319			continue;
    320		/* Add sg to HCU DMA list. */
    321		rc = ocs_hcu_dma_list_add_tail(rctx->hcu_dev,
    322					       rctx->dma_list,
    323					       rctx->sg->dma_address,
    324					       count);
    325		if (rc)
    326			goto cleanup;
    327
    328		/* Update amount of data remaining in SG list. */
    329		rctx->sg_data_total -= count;
    330
    331		/*
    332		 * If  remaining data is equal to remainder (note: 'less than'
    333		 * case should never happen in practice), we are done: update
    334		 * offset and exit the loop.
    335		 */
    336		if (rctx->sg_data_total <= remainder) {
    337			WARN_ON(rctx->sg_data_total < remainder);
    338			rctx->sg_data_offset += count;
    339			break;
    340		}
    341
    342		/*
    343		 * If we get here is because we need to process the next sg in
    344		 * the list; set offset within the sg to 0.
    345		 */
    346		rctx->sg_data_offset = 0;
    347	}
    348
    349	return 0;
    350cleanup:
    351	dev_err(dev, "Failed to prepare DMA.\n");
    352	kmb_ocs_hcu_dma_cleanup(req, rctx);
    353
    354	return rc;
    355}
    356
    357static void kmb_ocs_hcu_secure_cleanup(struct ahash_request *req)
    358{
    359	struct ocs_hcu_rctx *rctx = ahash_request_ctx(req);
    360
    361	/* Clear buffer of any data. */
    362	memzero_explicit(rctx->buffer, sizeof(rctx->buffer));
    363}
    364
    365static int kmb_ocs_hcu_handle_queue(struct ahash_request *req)
    366{
    367	struct ocs_hcu_dev *hcu_dev = kmb_ocs_hcu_find_dev(req);
    368
    369	if (!hcu_dev)
    370		return -ENOENT;
    371
    372	return crypto_transfer_hash_request_to_engine(hcu_dev->engine, req);
    373}
    374
    375static int prepare_ipad(struct ahash_request *req)
    376{
    377	struct ocs_hcu_rctx *rctx = ahash_request_ctx(req);
    378	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
    379	struct ocs_hcu_ctx *ctx = crypto_ahash_ctx(tfm);
    380	int i;
    381
    382	WARN(rctx->buf_cnt, "%s: Context buffer is not empty\n", __func__);
    383	WARN(!(rctx->flags & REQ_FLAGS_HMAC_SW),
    384	     "%s: HMAC_SW flag is not set\n", __func__);
    385	/*
    386	 * Key length must be equal to block size. If key is shorter,
    387	 * we pad it with zero (note: key cannot be longer, since
    388	 * longer keys are hashed by kmb_ocs_hcu_setkey()).
    389	 */
    390	if (ctx->key_len > rctx->blk_sz) {
    391		WARN(1, "%s: Invalid key length in tfm context\n", __func__);
    392		return -EINVAL;
    393	}
    394	memzero_explicit(&ctx->key[ctx->key_len],
    395			 rctx->blk_sz - ctx->key_len);
    396	ctx->key_len = rctx->blk_sz;
    397	/*
    398	 * Prepare IPAD for HMAC. Only done for first block.
    399	 * HMAC(k,m) = H(k ^ opad || H(k ^ ipad || m))
    400	 * k ^ ipad will be first hashed block.
    401	 * k ^ opad will be calculated in the final request.
    402	 * Only needed if not using HW HMAC.
    403	 */
    404	for (i = 0; i < rctx->blk_sz; i++)
    405		rctx->buffer[i] = ctx->key[i] ^ HMAC_IPAD_VALUE;
    406	rctx->buf_cnt = rctx->blk_sz;
    407
    408	return 0;
    409}
    410
    411static int kmb_ocs_hcu_do_one_request(struct crypto_engine *engine, void *areq)
    412{
    413	struct ahash_request *req = container_of(areq, struct ahash_request,
    414						 base);
    415	struct ocs_hcu_dev *hcu_dev = kmb_ocs_hcu_find_dev(req);
    416	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
    417	struct ocs_hcu_rctx *rctx = ahash_request_ctx(req);
    418	struct ocs_hcu_ctx *tctx = crypto_ahash_ctx(tfm);
    419	int rc;
    420	int i;
    421
    422	if (!hcu_dev) {
    423		rc = -ENOENT;
    424		goto error;
    425	}
    426
    427	/*
    428	 * If hardware HMAC flag is set, perform HMAC in hardware.
    429	 *
    430	 * NOTE: this flag implies REQ_FINAL && kmb_get_total_data(rctx)
    431	 */
    432	if (rctx->flags & REQ_FLAGS_HMAC_HW) {
    433		/* Map input data into the HCU DMA linked list. */
    434		rc = kmb_ocs_dma_prepare(req);
    435		if (rc)
    436			goto error;
    437
    438		rc = ocs_hcu_hmac(hcu_dev, rctx->algo, tctx->key, tctx->key_len,
    439				  rctx->dma_list, req->result, rctx->dig_sz);
    440
    441		/* Unmap data and free DMA list regardless of return code. */
    442		kmb_ocs_hcu_dma_cleanup(req, rctx);
    443
    444		/* Process previous return code. */
    445		if (rc)
    446			goto error;
    447
    448		goto done;
    449	}
    450
    451	/* Handle update request case. */
    452	if (!(rctx->flags & REQ_FINAL)) {
    453		/* Update should always have input data. */
    454		if (!kmb_get_total_data(rctx))
    455			return -EINVAL;
    456
    457		/* Map input data into the HCU DMA linked list. */
    458		rc = kmb_ocs_dma_prepare(req);
    459		if (rc)
    460			goto error;
    461
    462		/* Do hashing step. */
    463		rc = ocs_hcu_hash_update(hcu_dev, &rctx->hash_ctx,
    464					 rctx->dma_list);
    465
    466		/* Unmap data and free DMA list regardless of return code. */
    467		kmb_ocs_hcu_dma_cleanup(req, rctx);
    468
    469		/* Process previous return code. */
    470		if (rc)
    471			goto error;
    472
    473		/*
    474		 * Reset request buffer count (data in the buffer was just
    475		 * processed).
    476		 */
    477		rctx->buf_cnt = 0;
    478		/*
    479		 * Move remaining sg data into the request buffer, so that it
    480		 * will be processed during the next request.
    481		 *
    482		 * NOTE: we have remaining data if kmb_get_total_data() was not
    483		 * a multiple of block size.
    484		 */
    485		rc = flush_sg_to_ocs_buffer(rctx);
    486		if (rc)
    487			goto error;
    488
    489		goto done;
    490	}
    491
    492	/* If we get here, this is a final request. */
    493
    494	/* If there is data to process, use finup. */
    495	if (kmb_get_total_data(rctx)) {
    496		/* Map input data into the HCU DMA linked list. */
    497		rc = kmb_ocs_dma_prepare(req);
    498		if (rc)
    499			goto error;
    500
    501		/* Do hashing step. */
    502		rc = ocs_hcu_hash_finup(hcu_dev, &rctx->hash_ctx,
    503					rctx->dma_list,
    504					req->result, rctx->dig_sz);
    505		/* Free DMA list regardless of return code. */
    506		kmb_ocs_hcu_dma_cleanup(req, rctx);
    507
    508		/* Process previous return code. */
    509		if (rc)
    510			goto error;
    511
    512	} else {  /* Otherwise (if we have no data), use final. */
    513		rc = ocs_hcu_hash_final(hcu_dev, &rctx->hash_ctx, req->result,
    514					rctx->dig_sz);
    515		if (rc)
    516			goto error;
    517	}
    518
    519	/*
    520	 * If we are finalizing a SW HMAC request, we just computed the result
    521	 * of: H(k ^ ipad || m).
    522	 *
    523	 * We now need to complete the HMAC calculation with the OPAD step,
    524	 * that is, we need to compute H(k ^ opad || digest), where digest is
    525	 * the digest we just obtained, i.e., H(k ^ ipad || m).
    526	 */
    527	if (rctx->flags & REQ_FLAGS_HMAC_SW) {
    528		/*
    529		 * Compute k ^ opad and store it in the request buffer (which
    530		 * is not used anymore at this point).
    531		 * Note: key has been padded / hashed already (so keylen ==
    532		 * blksz) .
    533		 */
    534		WARN_ON(tctx->key_len != rctx->blk_sz);
    535		for (i = 0; i < rctx->blk_sz; i++)
    536			rctx->buffer[i] = tctx->key[i] ^ HMAC_OPAD_VALUE;
    537		/* Now append the digest to the rest of the buffer. */
    538		for (i = 0; (i < rctx->dig_sz); i++)
    539			rctx->buffer[rctx->blk_sz + i] = req->result[i];
    540
    541		/* Now hash the buffer to obtain the final HMAC. */
    542		rc = ocs_hcu_digest(hcu_dev, rctx->algo, rctx->buffer,
    543				    rctx->blk_sz + rctx->dig_sz, req->result,
    544				    rctx->dig_sz);
    545		if (rc)
    546			goto error;
    547	}
    548
    549	/* Perform secure clean-up. */
    550	kmb_ocs_hcu_secure_cleanup(req);
    551done:
    552	crypto_finalize_hash_request(hcu_dev->engine, req, 0);
    553
    554	return 0;
    555
    556error:
    557	kmb_ocs_hcu_secure_cleanup(req);
    558	return rc;
    559}
    560
    561static int kmb_ocs_hcu_init(struct ahash_request *req)
    562{
    563	struct ocs_hcu_dev *hcu_dev = kmb_ocs_hcu_find_dev(req);
    564	struct ocs_hcu_rctx *rctx = ahash_request_ctx(req);
    565	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
    566	struct ocs_hcu_ctx *ctx = crypto_ahash_ctx(tfm);
    567
    568	if (!hcu_dev)
    569		return -ENOENT;
    570
    571	/* Initialize entire request context to zero. */
    572	memset(rctx, 0, sizeof(*rctx));
    573
    574	rctx->hcu_dev = hcu_dev;
    575	rctx->dig_sz = crypto_ahash_digestsize(tfm);
    576
    577	switch (rctx->dig_sz) {
    578#ifdef CONFIG_CRYPTO_DEV_KEEMBAY_OCS_HCU_HMAC_SHA224
    579	case SHA224_DIGEST_SIZE:
    580		rctx->blk_sz = SHA224_BLOCK_SIZE;
    581		rctx->algo = OCS_HCU_ALGO_SHA224;
    582		break;
    583#endif /* CONFIG_CRYPTO_DEV_KEEMBAY_OCS_HCU_HMAC_SHA224 */
    584	case SHA256_DIGEST_SIZE:
    585		rctx->blk_sz = SHA256_BLOCK_SIZE;
    586		/*
    587		 * SHA256 and SM3 have the same digest size: use info from tfm
    588		 * context to find out which one we should use.
    589		 */
    590		rctx->algo = ctx->is_sm3_tfm ? OCS_HCU_ALGO_SM3 :
    591					       OCS_HCU_ALGO_SHA256;
    592		break;
    593	case SHA384_DIGEST_SIZE:
    594		rctx->blk_sz = SHA384_BLOCK_SIZE;
    595		rctx->algo = OCS_HCU_ALGO_SHA384;
    596		break;
    597	case SHA512_DIGEST_SIZE:
    598		rctx->blk_sz = SHA512_BLOCK_SIZE;
    599		rctx->algo = OCS_HCU_ALGO_SHA512;
    600		break;
    601	default:
    602		return -EINVAL;
    603	}
    604
    605	/* Initialize intermediate data. */
    606	ocs_hcu_hash_init(&rctx->hash_ctx, rctx->algo);
    607
    608	/* If this a HMAC request, set HMAC flag. */
    609	if (ctx->is_hmac_tfm)
    610		rctx->flags |= REQ_FLAGS_HMAC;
    611
    612	return 0;
    613}
    614
    615static int kmb_ocs_hcu_update(struct ahash_request *req)
    616{
    617	struct ocs_hcu_rctx *rctx = ahash_request_ctx(req);
    618	int rc;
    619
    620	if (!req->nbytes)
    621		return 0;
    622
    623	rctx->sg_data_total = req->nbytes;
    624	rctx->sg_data_offset = 0;
    625	rctx->sg = req->src;
    626
    627	/*
    628	 * If we are doing HMAC, then we must use SW-assisted HMAC, since HW
    629	 * HMAC does not support context switching (there it can only be used
    630	 * with finup() or digest()).
    631	 */
    632	if (rctx->flags & REQ_FLAGS_HMAC &&
    633	    !(rctx->flags & REQ_FLAGS_HMAC_SW)) {
    634		rctx->flags |= REQ_FLAGS_HMAC_SW;
    635		rc = prepare_ipad(req);
    636		if (rc)
    637			return rc;
    638	}
    639
    640	/*
    641	 * If remaining sg_data fits into ctx buffer, just copy it there; we'll
    642	 * process it at the next update() or final().
    643	 */
    644	if (rctx->sg_data_total <= (sizeof(rctx->buffer) - rctx->buf_cnt))
    645		return flush_sg_to_ocs_buffer(rctx);
    646
    647	return kmb_ocs_hcu_handle_queue(req);
    648}
    649
    650/* Common logic for kmb_ocs_hcu_final() and kmb_ocs_hcu_finup(). */
    651static int kmb_ocs_hcu_fin_common(struct ahash_request *req)
    652{
    653	struct ocs_hcu_rctx *rctx = ahash_request_ctx(req);
    654	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
    655	struct ocs_hcu_ctx *ctx = crypto_ahash_ctx(tfm);
    656	int rc;
    657
    658	rctx->flags |= REQ_FINAL;
    659
    660	/*
    661	 * If this is a HMAC request and, so far, we didn't have to switch to
    662	 * SW HMAC, check if we can use HW HMAC.
    663	 */
    664	if (rctx->flags & REQ_FLAGS_HMAC &&
    665	    !(rctx->flags & REQ_FLAGS_HMAC_SW)) {
    666		/*
    667		 * If we are here, it means we never processed any data so far,
    668		 * so we can use HW HMAC, but only if there is some data to
    669		 * process (since OCS HW MAC does not support zero-length
    670		 * messages) and the key length is supported by the hardware
    671		 * (OCS HCU HW only supports length <= 64); if HW HMAC cannot
    672		 * be used, fall back to SW-assisted HMAC.
    673		 */
    674		if (kmb_get_total_data(rctx) &&
    675		    ctx->key_len <= OCS_HCU_HW_KEY_LEN) {
    676			rctx->flags |= REQ_FLAGS_HMAC_HW;
    677		} else {
    678			rctx->flags |= REQ_FLAGS_HMAC_SW;
    679			rc = prepare_ipad(req);
    680			if (rc)
    681				return rc;
    682		}
    683	}
    684
    685	return kmb_ocs_hcu_handle_queue(req);
    686}
    687
    688static int kmb_ocs_hcu_final(struct ahash_request *req)
    689{
    690	struct ocs_hcu_rctx *rctx = ahash_request_ctx(req);
    691
    692	rctx->sg_data_total = 0;
    693	rctx->sg_data_offset = 0;
    694	rctx->sg = NULL;
    695
    696	return kmb_ocs_hcu_fin_common(req);
    697}
    698
    699static int kmb_ocs_hcu_finup(struct ahash_request *req)
    700{
    701	struct ocs_hcu_rctx *rctx = ahash_request_ctx(req);
    702
    703	rctx->sg_data_total = req->nbytes;
    704	rctx->sg_data_offset = 0;
    705	rctx->sg = req->src;
    706
    707	return kmb_ocs_hcu_fin_common(req);
    708}
    709
    710static int kmb_ocs_hcu_digest(struct ahash_request *req)
    711{
    712	int rc = 0;
    713	struct ocs_hcu_dev *hcu_dev = kmb_ocs_hcu_find_dev(req);
    714
    715	if (!hcu_dev)
    716		return -ENOENT;
    717
    718	rc = kmb_ocs_hcu_init(req);
    719	if (rc)
    720		return rc;
    721
    722	rc = kmb_ocs_hcu_finup(req);
    723
    724	return rc;
    725}
    726
    727static int kmb_ocs_hcu_export(struct ahash_request *req, void *out)
    728{
    729	struct ocs_hcu_rctx *rctx = ahash_request_ctx(req);
    730
    731	/* Intermediate data is always stored and applied per request. */
    732	memcpy(out, rctx, sizeof(*rctx));
    733
    734	return 0;
    735}
    736
    737static int kmb_ocs_hcu_import(struct ahash_request *req, const void *in)
    738{
    739	struct ocs_hcu_rctx *rctx = ahash_request_ctx(req);
    740
    741	/* Intermediate data is always stored and applied per request. */
    742	memcpy(rctx, in, sizeof(*rctx));
    743
    744	return 0;
    745}
    746
    747static int kmb_ocs_hcu_setkey(struct crypto_ahash *tfm, const u8 *key,
    748			      unsigned int keylen)
    749{
    750	unsigned int digestsize = crypto_ahash_digestsize(tfm);
    751	struct ocs_hcu_ctx *ctx = crypto_ahash_ctx(tfm);
    752	size_t blk_sz = crypto_ahash_blocksize(tfm);
    753	struct crypto_ahash *ahash_tfm;
    754	struct ahash_request *req;
    755	struct crypto_wait wait;
    756	struct scatterlist sg;
    757	const char *alg_name;
    758	int rc;
    759
    760	/*
    761	 * Key length must be equal to block size:
    762	 * - If key is shorter, we are done for now (the key will be padded
    763	 *   later on); this is to maximize the use of HW HMAC (which works
    764	 *   only for keys <= 64 bytes).
    765	 * - If key is longer, we hash it.
    766	 */
    767	if (keylen <= blk_sz) {
    768		memcpy(ctx->key, key, keylen);
    769		ctx->key_len = keylen;
    770		return 0;
    771	}
    772
    773	switch (digestsize) {
    774#ifdef CONFIG_CRYPTO_DEV_KEEMBAY_OCS_HCU_HMAC_SHA224
    775	case SHA224_DIGEST_SIZE:
    776		alg_name = "sha224-keembay-ocs";
    777		break;
    778#endif /* CONFIG_CRYPTO_DEV_KEEMBAY_OCS_HCU_HMAC_SHA224 */
    779	case SHA256_DIGEST_SIZE:
    780		alg_name = ctx->is_sm3_tfm ? "sm3-keembay-ocs" :
    781					     "sha256-keembay-ocs";
    782		break;
    783	case SHA384_DIGEST_SIZE:
    784		alg_name = "sha384-keembay-ocs";
    785		break;
    786	case SHA512_DIGEST_SIZE:
    787		alg_name = "sha512-keembay-ocs";
    788		break;
    789	default:
    790		return -EINVAL;
    791	}
    792
    793	ahash_tfm = crypto_alloc_ahash(alg_name, 0, 0);
    794	if (IS_ERR(ahash_tfm))
    795		return PTR_ERR(ahash_tfm);
    796
    797	req = ahash_request_alloc(ahash_tfm, GFP_KERNEL);
    798	if (!req) {
    799		rc = -ENOMEM;
    800		goto err_free_ahash;
    801	}
    802
    803	crypto_init_wait(&wait);
    804	ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
    805				   crypto_req_done, &wait);
    806	crypto_ahash_clear_flags(ahash_tfm, ~0);
    807
    808	sg_init_one(&sg, key, keylen);
    809	ahash_request_set_crypt(req, &sg, ctx->key, keylen);
    810
    811	rc = crypto_wait_req(crypto_ahash_digest(req), &wait);
    812	if (rc == 0)
    813		ctx->key_len = digestsize;
    814
    815	ahash_request_free(req);
    816err_free_ahash:
    817	crypto_free_ahash(ahash_tfm);
    818
    819	return rc;
    820}
    821
    822/* Set request size and initialize tfm context. */
    823static void __cra_init(struct crypto_tfm *tfm, struct ocs_hcu_ctx *ctx)
    824{
    825	crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
    826				 sizeof(struct ocs_hcu_rctx));
    827
    828	/* Init context to 0. */
    829	memzero_explicit(ctx, sizeof(*ctx));
    830	/* Set engine ops. */
    831	ctx->engine_ctx.op.do_one_request = kmb_ocs_hcu_do_one_request;
    832}
    833
    834static int kmb_ocs_hcu_sha_cra_init(struct crypto_tfm *tfm)
    835{
    836	struct ocs_hcu_ctx *ctx = crypto_tfm_ctx(tfm);
    837
    838	__cra_init(tfm, ctx);
    839
    840	return 0;
    841}
    842
    843static int kmb_ocs_hcu_sm3_cra_init(struct crypto_tfm *tfm)
    844{
    845	struct ocs_hcu_ctx *ctx = crypto_tfm_ctx(tfm);
    846
    847	__cra_init(tfm, ctx);
    848
    849	ctx->is_sm3_tfm = true;
    850
    851	return 0;
    852}
    853
    854static int kmb_ocs_hcu_hmac_sm3_cra_init(struct crypto_tfm *tfm)
    855{
    856	struct ocs_hcu_ctx *ctx = crypto_tfm_ctx(tfm);
    857
    858	__cra_init(tfm, ctx);
    859
    860	ctx->is_sm3_tfm = true;
    861	ctx->is_hmac_tfm = true;
    862
    863	return 0;
    864}
    865
    866static int kmb_ocs_hcu_hmac_cra_init(struct crypto_tfm *tfm)
    867{
    868	struct ocs_hcu_ctx *ctx = crypto_tfm_ctx(tfm);
    869
    870	__cra_init(tfm, ctx);
    871
    872	ctx->is_hmac_tfm = true;
    873
    874	return 0;
    875}
    876
    877/* Function called when 'tfm' is de-initialized. */
    878static void kmb_ocs_hcu_hmac_cra_exit(struct crypto_tfm *tfm)
    879{
    880	struct ocs_hcu_ctx *ctx = crypto_tfm_ctx(tfm);
    881
    882	/* Clear the key. */
    883	memzero_explicit(ctx->key, sizeof(ctx->key));
    884}
    885
    886static struct ahash_alg ocs_hcu_algs[] = {
    887#ifdef CONFIG_CRYPTO_DEV_KEEMBAY_OCS_HCU_HMAC_SHA224
    888{
    889	.init		= kmb_ocs_hcu_init,
    890	.update		= kmb_ocs_hcu_update,
    891	.final		= kmb_ocs_hcu_final,
    892	.finup		= kmb_ocs_hcu_finup,
    893	.digest		= kmb_ocs_hcu_digest,
    894	.export		= kmb_ocs_hcu_export,
    895	.import		= kmb_ocs_hcu_import,
    896	.halg = {
    897		.digestsize	= SHA224_DIGEST_SIZE,
    898		.statesize	= sizeof(struct ocs_hcu_rctx),
    899		.base	= {
    900			.cra_name		= "sha224",
    901			.cra_driver_name	= "sha224-keembay-ocs",
    902			.cra_priority		= 255,
    903			.cra_flags		= CRYPTO_ALG_ASYNC,
    904			.cra_blocksize		= SHA224_BLOCK_SIZE,
    905			.cra_ctxsize		= sizeof(struct ocs_hcu_ctx),
    906			.cra_alignmask		= 0,
    907			.cra_module		= THIS_MODULE,
    908			.cra_init		= kmb_ocs_hcu_sha_cra_init,
    909		}
    910	}
    911},
    912{
    913	.init		= kmb_ocs_hcu_init,
    914	.update		= kmb_ocs_hcu_update,
    915	.final		= kmb_ocs_hcu_final,
    916	.finup		= kmb_ocs_hcu_finup,
    917	.digest		= kmb_ocs_hcu_digest,
    918	.export		= kmb_ocs_hcu_export,
    919	.import		= kmb_ocs_hcu_import,
    920	.setkey		= kmb_ocs_hcu_setkey,
    921	.halg = {
    922		.digestsize	= SHA224_DIGEST_SIZE,
    923		.statesize	= sizeof(struct ocs_hcu_rctx),
    924		.base	= {
    925			.cra_name		= "hmac(sha224)",
    926			.cra_driver_name	= "hmac-sha224-keembay-ocs",
    927			.cra_priority		= 255,
    928			.cra_flags		= CRYPTO_ALG_ASYNC,
    929			.cra_blocksize		= SHA224_BLOCK_SIZE,
    930			.cra_ctxsize		= sizeof(struct ocs_hcu_ctx),
    931			.cra_alignmask		= 0,
    932			.cra_module		= THIS_MODULE,
    933			.cra_init		= kmb_ocs_hcu_hmac_cra_init,
    934			.cra_exit		= kmb_ocs_hcu_hmac_cra_exit,
    935		}
    936	}
    937},
    938#endif /* CONFIG_CRYPTO_DEV_KEEMBAY_OCS_HCU_HMAC_SHA224 */
    939{
    940	.init		= kmb_ocs_hcu_init,
    941	.update		= kmb_ocs_hcu_update,
    942	.final		= kmb_ocs_hcu_final,
    943	.finup		= kmb_ocs_hcu_finup,
    944	.digest		= kmb_ocs_hcu_digest,
    945	.export		= kmb_ocs_hcu_export,
    946	.import		= kmb_ocs_hcu_import,
    947	.halg = {
    948		.digestsize	= SHA256_DIGEST_SIZE,
    949		.statesize	= sizeof(struct ocs_hcu_rctx),
    950		.base	= {
    951			.cra_name		= "sha256",
    952			.cra_driver_name	= "sha256-keembay-ocs",
    953			.cra_priority		= 255,
    954			.cra_flags		= CRYPTO_ALG_ASYNC,
    955			.cra_blocksize		= SHA256_BLOCK_SIZE,
    956			.cra_ctxsize		= sizeof(struct ocs_hcu_ctx),
    957			.cra_alignmask		= 0,
    958			.cra_module		= THIS_MODULE,
    959			.cra_init		= kmb_ocs_hcu_sha_cra_init,
    960		}
    961	}
    962},
    963{
    964	.init		= kmb_ocs_hcu_init,
    965	.update		= kmb_ocs_hcu_update,
    966	.final		= kmb_ocs_hcu_final,
    967	.finup		= kmb_ocs_hcu_finup,
    968	.digest		= kmb_ocs_hcu_digest,
    969	.export		= kmb_ocs_hcu_export,
    970	.import		= kmb_ocs_hcu_import,
    971	.setkey		= kmb_ocs_hcu_setkey,
    972	.halg = {
    973		.digestsize	= SHA256_DIGEST_SIZE,
    974		.statesize	= sizeof(struct ocs_hcu_rctx),
    975		.base	= {
    976			.cra_name		= "hmac(sha256)",
    977			.cra_driver_name	= "hmac-sha256-keembay-ocs",
    978			.cra_priority		= 255,
    979			.cra_flags		= CRYPTO_ALG_ASYNC,
    980			.cra_blocksize		= SHA256_BLOCK_SIZE,
    981			.cra_ctxsize		= sizeof(struct ocs_hcu_ctx),
    982			.cra_alignmask		= 0,
    983			.cra_module		= THIS_MODULE,
    984			.cra_init		= kmb_ocs_hcu_hmac_cra_init,
    985			.cra_exit		= kmb_ocs_hcu_hmac_cra_exit,
    986		}
    987	}
    988},
    989{
    990	.init		= kmb_ocs_hcu_init,
    991	.update		= kmb_ocs_hcu_update,
    992	.final		= kmb_ocs_hcu_final,
    993	.finup		= kmb_ocs_hcu_finup,
    994	.digest		= kmb_ocs_hcu_digest,
    995	.export		= kmb_ocs_hcu_export,
    996	.import		= kmb_ocs_hcu_import,
    997	.halg = {
    998		.digestsize	= SM3_DIGEST_SIZE,
    999		.statesize	= sizeof(struct ocs_hcu_rctx),
   1000		.base	= {
   1001			.cra_name		= "sm3",
   1002			.cra_driver_name	= "sm3-keembay-ocs",
   1003			.cra_priority		= 255,
   1004			.cra_flags		= CRYPTO_ALG_ASYNC,
   1005			.cra_blocksize		= SM3_BLOCK_SIZE,
   1006			.cra_ctxsize		= sizeof(struct ocs_hcu_ctx),
   1007			.cra_alignmask		= 0,
   1008			.cra_module		= THIS_MODULE,
   1009			.cra_init		= kmb_ocs_hcu_sm3_cra_init,
   1010		}
   1011	}
   1012},
   1013{
   1014	.init		= kmb_ocs_hcu_init,
   1015	.update		= kmb_ocs_hcu_update,
   1016	.final		= kmb_ocs_hcu_final,
   1017	.finup		= kmb_ocs_hcu_finup,
   1018	.digest		= kmb_ocs_hcu_digest,
   1019	.export		= kmb_ocs_hcu_export,
   1020	.import		= kmb_ocs_hcu_import,
   1021	.setkey		= kmb_ocs_hcu_setkey,
   1022	.halg = {
   1023		.digestsize	= SM3_DIGEST_SIZE,
   1024		.statesize	= sizeof(struct ocs_hcu_rctx),
   1025		.base	= {
   1026			.cra_name		= "hmac(sm3)",
   1027			.cra_driver_name	= "hmac-sm3-keembay-ocs",
   1028			.cra_priority		= 255,
   1029			.cra_flags		= CRYPTO_ALG_ASYNC,
   1030			.cra_blocksize		= SM3_BLOCK_SIZE,
   1031			.cra_ctxsize		= sizeof(struct ocs_hcu_ctx),
   1032			.cra_alignmask		= 0,
   1033			.cra_module		= THIS_MODULE,
   1034			.cra_init		= kmb_ocs_hcu_hmac_sm3_cra_init,
   1035			.cra_exit		= kmb_ocs_hcu_hmac_cra_exit,
   1036		}
   1037	}
   1038},
   1039{
   1040	.init		= kmb_ocs_hcu_init,
   1041	.update		= kmb_ocs_hcu_update,
   1042	.final		= kmb_ocs_hcu_final,
   1043	.finup		= kmb_ocs_hcu_finup,
   1044	.digest		= kmb_ocs_hcu_digest,
   1045	.export		= kmb_ocs_hcu_export,
   1046	.import		= kmb_ocs_hcu_import,
   1047	.halg = {
   1048		.digestsize	= SHA384_DIGEST_SIZE,
   1049		.statesize	= sizeof(struct ocs_hcu_rctx),
   1050		.base	= {
   1051			.cra_name		= "sha384",
   1052			.cra_driver_name	= "sha384-keembay-ocs",
   1053			.cra_priority		= 255,
   1054			.cra_flags		= CRYPTO_ALG_ASYNC,
   1055			.cra_blocksize		= SHA384_BLOCK_SIZE,
   1056			.cra_ctxsize		= sizeof(struct ocs_hcu_ctx),
   1057			.cra_alignmask		= 0,
   1058			.cra_module		= THIS_MODULE,
   1059			.cra_init		= kmb_ocs_hcu_sha_cra_init,
   1060		}
   1061	}
   1062},
   1063{
   1064	.init		= kmb_ocs_hcu_init,
   1065	.update		= kmb_ocs_hcu_update,
   1066	.final		= kmb_ocs_hcu_final,
   1067	.finup		= kmb_ocs_hcu_finup,
   1068	.digest		= kmb_ocs_hcu_digest,
   1069	.export		= kmb_ocs_hcu_export,
   1070	.import		= kmb_ocs_hcu_import,
   1071	.setkey		= kmb_ocs_hcu_setkey,
   1072	.halg = {
   1073		.digestsize	= SHA384_DIGEST_SIZE,
   1074		.statesize	= sizeof(struct ocs_hcu_rctx),
   1075		.base	= {
   1076			.cra_name		= "hmac(sha384)",
   1077			.cra_driver_name	= "hmac-sha384-keembay-ocs",
   1078			.cra_priority		= 255,
   1079			.cra_flags		= CRYPTO_ALG_ASYNC,
   1080			.cra_blocksize		= SHA384_BLOCK_SIZE,
   1081			.cra_ctxsize		= sizeof(struct ocs_hcu_ctx),
   1082			.cra_alignmask		= 0,
   1083			.cra_module		= THIS_MODULE,
   1084			.cra_init		= kmb_ocs_hcu_hmac_cra_init,
   1085			.cra_exit		= kmb_ocs_hcu_hmac_cra_exit,
   1086		}
   1087	}
   1088},
   1089{
   1090	.init		= kmb_ocs_hcu_init,
   1091	.update		= kmb_ocs_hcu_update,
   1092	.final		= kmb_ocs_hcu_final,
   1093	.finup		= kmb_ocs_hcu_finup,
   1094	.digest		= kmb_ocs_hcu_digest,
   1095	.export		= kmb_ocs_hcu_export,
   1096	.import		= kmb_ocs_hcu_import,
   1097	.halg = {
   1098		.digestsize	= SHA512_DIGEST_SIZE,
   1099		.statesize	= sizeof(struct ocs_hcu_rctx),
   1100		.base	= {
   1101			.cra_name		= "sha512",
   1102			.cra_driver_name	= "sha512-keembay-ocs",
   1103			.cra_priority		= 255,
   1104			.cra_flags		= CRYPTO_ALG_ASYNC,
   1105			.cra_blocksize		= SHA512_BLOCK_SIZE,
   1106			.cra_ctxsize		= sizeof(struct ocs_hcu_ctx),
   1107			.cra_alignmask		= 0,
   1108			.cra_module		= THIS_MODULE,
   1109			.cra_init		= kmb_ocs_hcu_sha_cra_init,
   1110		}
   1111	}
   1112},
   1113{
   1114	.init		= kmb_ocs_hcu_init,
   1115	.update		= kmb_ocs_hcu_update,
   1116	.final		= kmb_ocs_hcu_final,
   1117	.finup		= kmb_ocs_hcu_finup,
   1118	.digest		= kmb_ocs_hcu_digest,
   1119	.export		= kmb_ocs_hcu_export,
   1120	.import		= kmb_ocs_hcu_import,
   1121	.setkey		= kmb_ocs_hcu_setkey,
   1122	.halg = {
   1123		.digestsize	= SHA512_DIGEST_SIZE,
   1124		.statesize	= sizeof(struct ocs_hcu_rctx),
   1125		.base	= {
   1126			.cra_name		= "hmac(sha512)",
   1127			.cra_driver_name	= "hmac-sha512-keembay-ocs",
   1128			.cra_priority		= 255,
   1129			.cra_flags		= CRYPTO_ALG_ASYNC,
   1130			.cra_blocksize		= SHA512_BLOCK_SIZE,
   1131			.cra_ctxsize		= sizeof(struct ocs_hcu_ctx),
   1132			.cra_alignmask		= 0,
   1133			.cra_module		= THIS_MODULE,
   1134			.cra_init		= kmb_ocs_hcu_hmac_cra_init,
   1135			.cra_exit		= kmb_ocs_hcu_hmac_cra_exit,
   1136		}
   1137	}
   1138},
   1139};
   1140
   1141/* Device tree driver match. */
   1142static const struct of_device_id kmb_ocs_hcu_of_match[] = {
   1143	{
   1144		.compatible = "intel,keembay-ocs-hcu",
   1145	},
   1146	{}
   1147};
   1148
   1149static int kmb_ocs_hcu_remove(struct platform_device *pdev)
   1150{
   1151	struct ocs_hcu_dev *hcu_dev;
   1152	int rc;
   1153
   1154	hcu_dev = platform_get_drvdata(pdev);
   1155	if (!hcu_dev)
   1156		return -ENODEV;
   1157
   1158	crypto_unregister_ahashes(ocs_hcu_algs, ARRAY_SIZE(ocs_hcu_algs));
   1159
   1160	rc = crypto_engine_exit(hcu_dev->engine);
   1161
   1162	spin_lock_bh(&ocs_hcu.lock);
   1163	list_del(&hcu_dev->list);
   1164	spin_unlock_bh(&ocs_hcu.lock);
   1165
   1166	return rc;
   1167}
   1168
   1169static int kmb_ocs_hcu_probe(struct platform_device *pdev)
   1170{
   1171	struct device *dev = &pdev->dev;
   1172	struct ocs_hcu_dev *hcu_dev;
   1173	struct resource *hcu_mem;
   1174	int rc;
   1175
   1176	hcu_dev = devm_kzalloc(dev, sizeof(*hcu_dev), GFP_KERNEL);
   1177	if (!hcu_dev)
   1178		return -ENOMEM;
   1179
   1180	hcu_dev->dev = dev;
   1181
   1182	platform_set_drvdata(pdev, hcu_dev);
   1183	rc = dma_set_mask_and_coherent(&pdev->dev, OCS_HCU_DMA_BIT_MASK);
   1184	if (rc)
   1185		return rc;
   1186
   1187	/* Get the memory address and remap. */
   1188	hcu_mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
   1189	if (!hcu_mem) {
   1190		dev_err(dev, "Could not retrieve io mem resource.\n");
   1191		return -ENODEV;
   1192	}
   1193
   1194	hcu_dev->io_base = devm_ioremap_resource(dev, hcu_mem);
   1195	if (IS_ERR(hcu_dev->io_base))
   1196		return PTR_ERR(hcu_dev->io_base);
   1197
   1198	init_completion(&hcu_dev->irq_done);
   1199
   1200	/* Get and request IRQ. */
   1201	hcu_dev->irq = platform_get_irq(pdev, 0);
   1202	if (hcu_dev->irq < 0)
   1203		return hcu_dev->irq;
   1204
   1205	rc = devm_request_threaded_irq(&pdev->dev, hcu_dev->irq,
   1206				       ocs_hcu_irq_handler, NULL, 0,
   1207				       "keembay-ocs-hcu", hcu_dev);
   1208	if (rc < 0) {
   1209		dev_err(dev, "Could not request IRQ.\n");
   1210		return rc;
   1211	}
   1212
   1213	INIT_LIST_HEAD(&hcu_dev->list);
   1214
   1215	spin_lock_bh(&ocs_hcu.lock);
   1216	list_add_tail(&hcu_dev->list, &ocs_hcu.dev_list);
   1217	spin_unlock_bh(&ocs_hcu.lock);
   1218
   1219	/* Initialize crypto engine */
   1220	hcu_dev->engine = crypto_engine_alloc_init(dev, 1);
   1221	if (!hcu_dev->engine) {
   1222		rc = -ENOMEM;
   1223		goto list_del;
   1224	}
   1225
   1226	rc = crypto_engine_start(hcu_dev->engine);
   1227	if (rc) {
   1228		dev_err(dev, "Could not start engine.\n");
   1229		goto cleanup;
   1230	}
   1231
   1232	/* Security infrastructure guarantees OCS clock is enabled. */
   1233
   1234	rc = crypto_register_ahashes(ocs_hcu_algs, ARRAY_SIZE(ocs_hcu_algs));
   1235	if (rc) {
   1236		dev_err(dev, "Could not register algorithms.\n");
   1237		goto cleanup;
   1238	}
   1239
   1240	return 0;
   1241
   1242cleanup:
   1243	crypto_engine_exit(hcu_dev->engine);
   1244list_del:
   1245	spin_lock_bh(&ocs_hcu.lock);
   1246	list_del(&hcu_dev->list);
   1247	spin_unlock_bh(&ocs_hcu.lock);
   1248
   1249	return rc;
   1250}
   1251
   1252/* The OCS driver is a platform device. */
   1253static struct platform_driver kmb_ocs_hcu_driver = {
   1254	.probe = kmb_ocs_hcu_probe,
   1255	.remove = kmb_ocs_hcu_remove,
   1256	.driver = {
   1257			.name = DRV_NAME,
   1258			.of_match_table = kmb_ocs_hcu_of_match,
   1259		},
   1260};
   1261
   1262module_platform_driver(kmb_ocs_hcu_driver);
   1263
   1264MODULE_LICENSE("GPL");