cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

otx2_cptlf.h (10996B)


      1/* SPDX-License-Identifier: GPL-2.0-only
      2 * Copyright (C) 2020 Marvell.
      3 */
      4#ifndef __OTX2_CPTLF_H
      5#define __OTX2_CPTLF_H
      6
      7#include <linux/soc/marvell/octeontx2/asm.h>
      8#include <mbox.h>
      9#include <rvu.h>
     10#include "otx2_cpt_common.h"
     11#include "otx2_cpt_reqmgr.h"
     12
     13/*
     14 * CPT instruction and pending queues user requested length in CPT_INST_S msgs
     15 */
     16#define OTX2_CPT_USER_REQUESTED_QLEN_MSGS 8200
     17
     18/*
     19 * CPT instruction queue size passed to HW is in units of 40*CPT_INST_S
     20 * messages.
     21 */
     22#define OTX2_CPT_SIZE_DIV40 (OTX2_CPT_USER_REQUESTED_QLEN_MSGS/40)
     23
     24/*
     25 * CPT instruction and pending queues length in CPT_INST_S messages
     26 */
     27#define OTX2_CPT_INST_QLEN_MSGS	((OTX2_CPT_SIZE_DIV40 - 1) * 40)
     28
     29/*
     30 * LDWB is getting incorrectly used when IQB_LDWB = 1 and CPT instruction
     31 * queue has less than 320 free entries. So, increase HW instruction queue
     32 * size by 320 and give 320 entries less for SW/NIX RX as a workaround.
     33 */
     34#define OTX2_CPT_INST_QLEN_EXTRA_BYTES  (320 * OTX2_CPT_INST_SIZE)
     35#define OTX2_CPT_EXTRA_SIZE_DIV40       (320/40)
     36
     37/* CPT instruction queue length in bytes */
     38#define OTX2_CPT_INST_QLEN_BYTES                                               \
     39		((OTX2_CPT_SIZE_DIV40 * 40 * OTX2_CPT_INST_SIZE) +             \
     40		OTX2_CPT_INST_QLEN_EXTRA_BYTES)
     41
     42/* CPT instruction group queue length in bytes */
     43#define OTX2_CPT_INST_GRP_QLEN_BYTES                                           \
     44		((OTX2_CPT_SIZE_DIV40 + OTX2_CPT_EXTRA_SIZE_DIV40) * 16)
     45
     46/* CPT FC length in bytes */
     47#define OTX2_CPT_Q_FC_LEN 128
     48
     49/* CPT instruction queue alignment */
     50#define OTX2_CPT_INST_Q_ALIGNMENT  128
     51
     52/* Mask which selects all engine groups */
     53#define OTX2_CPT_ALL_ENG_GRPS_MASK 0xFF
     54
     55/* Maximum LFs supported in OcteonTX2 for CPT */
     56#define OTX2_CPT_MAX_LFS_NUM    64
     57
     58/* Queue priority */
     59#define OTX2_CPT_QUEUE_HI_PRIO  0x1
     60#define OTX2_CPT_QUEUE_LOW_PRIO 0x0
     61
     62enum otx2_cptlf_state {
     63	OTX2_CPTLF_IN_RESET,
     64	OTX2_CPTLF_STARTED,
     65};
     66
     67struct otx2_cpt_inst_queue {
     68	u8 *vaddr;
     69	u8 *real_vaddr;
     70	dma_addr_t dma_addr;
     71	dma_addr_t real_dma_addr;
     72	u32 size;
     73};
     74
     75struct otx2_cptlfs_info;
     76struct otx2_cptlf_wqe {
     77	struct tasklet_struct work;
     78	struct otx2_cptlfs_info *lfs;
     79	u8 lf_num;
     80};
     81
     82struct otx2_cptlf_info {
     83	struct otx2_cptlfs_info *lfs;           /* Ptr to cptlfs_info struct */
     84	void __iomem *lmtline;                  /* Address of LMTLINE */
     85	void __iomem *ioreg;                    /* LMTLINE send register */
     86	int msix_offset;                        /* MSI-X interrupts offset */
     87	cpumask_var_t affinity_mask;            /* IRQs affinity mask */
     88	u8 irq_name[OTX2_CPT_LF_MSIX_VECTORS][32];/* Interrupts name */
     89	u8 is_irq_reg[OTX2_CPT_LF_MSIX_VECTORS];  /* Is interrupt registered */
     90	u8 slot;                                /* Slot number of this LF */
     91
     92	struct otx2_cpt_inst_queue iqueue;/* Instruction queue */
     93	struct otx2_cpt_pending_queue pqueue; /* Pending queue */
     94	struct otx2_cptlf_wqe *wqe;       /* Tasklet work info */
     95};
     96
     97struct cpt_hw_ops {
     98	void (*send_cmd)(union otx2_cpt_inst_s *cptinst, u32 insts_num,
     99			 struct otx2_cptlf_info *lf);
    100	u8 (*cpt_get_compcode)(union otx2_cpt_res_s *result);
    101	u8 (*cpt_get_uc_compcode)(union otx2_cpt_res_s *result);
    102};
    103
    104struct otx2_cptlfs_info {
    105	/* Registers start address of VF/PF LFs are attached to */
    106	void __iomem *reg_base;
    107#define LMTLINE_SIZE  128
    108	void __iomem *lmt_base;
    109	struct pci_dev *pdev;   /* Device LFs are attached to */
    110	struct otx2_cptlf_info lf[OTX2_CPT_MAX_LFS_NUM];
    111	struct otx2_mbox *mbox;
    112	struct cpt_hw_ops *ops;
    113	u8 are_lfs_attached;	/* Whether CPT LFs are attached */
    114	u8 lfs_num;		/* Number of CPT LFs */
    115	u8 kcrypto_eng_grp_num;	/* Kernel crypto engine group number */
    116	u8 kvf_limits;          /* Kernel crypto limits */
    117	atomic_t state;         /* LF's state. started/reset */
    118	int blkaddr;            /* CPT blkaddr: BLKADDR_CPT0/BLKADDR_CPT1 */
    119};
    120
    121static inline void otx2_cpt_free_instruction_queues(
    122					struct otx2_cptlfs_info *lfs)
    123{
    124	struct otx2_cpt_inst_queue *iq;
    125	int i;
    126
    127	for (i = 0; i < lfs->lfs_num; i++) {
    128		iq = &lfs->lf[i].iqueue;
    129		if (iq->real_vaddr)
    130			dma_free_coherent(&lfs->pdev->dev,
    131					  iq->size,
    132					  iq->real_vaddr,
    133					  iq->real_dma_addr);
    134		iq->real_vaddr = NULL;
    135		iq->vaddr = NULL;
    136	}
    137}
    138
    139static inline int otx2_cpt_alloc_instruction_queues(
    140					struct otx2_cptlfs_info *lfs)
    141{
    142	struct otx2_cpt_inst_queue *iq;
    143	int ret = 0, i;
    144
    145	if (!lfs->lfs_num)
    146		return -EINVAL;
    147
    148	for (i = 0; i < lfs->lfs_num; i++) {
    149		iq = &lfs->lf[i].iqueue;
    150		iq->size = OTX2_CPT_INST_QLEN_BYTES +
    151			   OTX2_CPT_Q_FC_LEN +
    152			   OTX2_CPT_INST_GRP_QLEN_BYTES +
    153			   OTX2_CPT_INST_Q_ALIGNMENT;
    154		iq->real_vaddr = dma_alloc_coherent(&lfs->pdev->dev, iq->size,
    155					&iq->real_dma_addr, GFP_KERNEL);
    156		if (!iq->real_vaddr) {
    157			ret = -ENOMEM;
    158			goto error;
    159		}
    160		iq->vaddr = iq->real_vaddr + OTX2_CPT_INST_GRP_QLEN_BYTES;
    161		iq->dma_addr = iq->real_dma_addr + OTX2_CPT_INST_GRP_QLEN_BYTES;
    162
    163		/* Align pointers */
    164		iq->vaddr = PTR_ALIGN(iq->vaddr, OTX2_CPT_INST_Q_ALIGNMENT);
    165		iq->dma_addr = PTR_ALIGN(iq->dma_addr,
    166					 OTX2_CPT_INST_Q_ALIGNMENT);
    167	}
    168	return 0;
    169
    170error:
    171	otx2_cpt_free_instruction_queues(lfs);
    172	return ret;
    173}
    174
    175static inline void otx2_cptlf_set_iqueues_base_addr(
    176					struct otx2_cptlfs_info *lfs)
    177{
    178	union otx2_cptx_lf_q_base lf_q_base;
    179	int slot;
    180
    181	for (slot = 0; slot < lfs->lfs_num; slot++) {
    182		lf_q_base.u = lfs->lf[slot].iqueue.dma_addr;
    183		otx2_cpt_write64(lfs->reg_base, BLKADDR_CPT0, slot,
    184				 OTX2_CPT_LF_Q_BASE, lf_q_base.u);
    185	}
    186}
    187
    188static inline void otx2_cptlf_do_set_iqueue_size(struct otx2_cptlf_info *lf)
    189{
    190	union otx2_cptx_lf_q_size lf_q_size = { .u = 0x0 };
    191
    192	lf_q_size.s.size_div40 = OTX2_CPT_SIZE_DIV40 +
    193				 OTX2_CPT_EXTRA_SIZE_DIV40;
    194	otx2_cpt_write64(lf->lfs->reg_base, BLKADDR_CPT0, lf->slot,
    195			 OTX2_CPT_LF_Q_SIZE, lf_q_size.u);
    196}
    197
    198static inline void otx2_cptlf_set_iqueues_size(struct otx2_cptlfs_info *lfs)
    199{
    200	int slot;
    201
    202	for (slot = 0; slot < lfs->lfs_num; slot++)
    203		otx2_cptlf_do_set_iqueue_size(&lfs->lf[slot]);
    204}
    205
    206static inline void otx2_cptlf_do_disable_iqueue(struct otx2_cptlf_info *lf)
    207{
    208	union otx2_cptx_lf_ctl lf_ctl = { .u = 0x0 };
    209	union otx2_cptx_lf_inprog lf_inprog;
    210	int timeout = 20;
    211
    212	/* Disable instructions enqueuing */
    213	otx2_cpt_write64(lf->lfs->reg_base, BLKADDR_CPT0, lf->slot,
    214			 OTX2_CPT_LF_CTL, lf_ctl.u);
    215
    216	/* Wait for instruction queue to become empty */
    217	do {
    218		lf_inprog.u = otx2_cpt_read64(lf->lfs->reg_base, BLKADDR_CPT0,
    219					      lf->slot, OTX2_CPT_LF_INPROG);
    220		if (!lf_inprog.s.inflight)
    221			break;
    222
    223		usleep_range(10000, 20000);
    224		if (timeout-- < 0) {
    225			dev_err(&lf->lfs->pdev->dev,
    226				"Error LF %d is still busy.\n", lf->slot);
    227			break;
    228		}
    229
    230	} while (1);
    231
    232	/*
    233	 * Disable executions in the LF's queue,
    234	 * the queue should be empty at this point
    235	 */
    236	lf_inprog.s.eena = 0x0;
    237	otx2_cpt_write64(lf->lfs->reg_base, BLKADDR_CPT0, lf->slot,
    238			 OTX2_CPT_LF_INPROG, lf_inprog.u);
    239}
    240
    241static inline void otx2_cptlf_disable_iqueues(struct otx2_cptlfs_info *lfs)
    242{
    243	int slot;
    244
    245	for (slot = 0; slot < lfs->lfs_num; slot++)
    246		otx2_cptlf_do_disable_iqueue(&lfs->lf[slot]);
    247}
    248
    249static inline void otx2_cptlf_set_iqueue_enq(struct otx2_cptlf_info *lf,
    250					     bool enable)
    251{
    252	union otx2_cptx_lf_ctl lf_ctl;
    253
    254	lf_ctl.u = otx2_cpt_read64(lf->lfs->reg_base, BLKADDR_CPT0, lf->slot,
    255				   OTX2_CPT_LF_CTL);
    256
    257	/* Set iqueue's enqueuing */
    258	lf_ctl.s.ena = enable ? 0x1 : 0x0;
    259	otx2_cpt_write64(lf->lfs->reg_base, BLKADDR_CPT0, lf->slot,
    260			 OTX2_CPT_LF_CTL, lf_ctl.u);
    261}
    262
    263static inline void otx2_cptlf_enable_iqueue_enq(struct otx2_cptlf_info *lf)
    264{
    265	otx2_cptlf_set_iqueue_enq(lf, true);
    266}
    267
    268static inline void otx2_cptlf_set_iqueue_exec(struct otx2_cptlf_info *lf,
    269					      bool enable)
    270{
    271	union otx2_cptx_lf_inprog lf_inprog;
    272
    273	lf_inprog.u = otx2_cpt_read64(lf->lfs->reg_base, BLKADDR_CPT0, lf->slot,
    274				      OTX2_CPT_LF_INPROG);
    275
    276	/* Set iqueue's execution */
    277	lf_inprog.s.eena = enable ? 0x1 : 0x0;
    278	otx2_cpt_write64(lf->lfs->reg_base, BLKADDR_CPT0, lf->slot,
    279			 OTX2_CPT_LF_INPROG, lf_inprog.u);
    280}
    281
    282static inline void otx2_cptlf_enable_iqueue_exec(struct otx2_cptlf_info *lf)
    283{
    284	otx2_cptlf_set_iqueue_exec(lf, true);
    285}
    286
    287static inline void otx2_cptlf_disable_iqueue_exec(struct otx2_cptlf_info *lf)
    288{
    289	otx2_cptlf_set_iqueue_exec(lf, false);
    290}
    291
    292static inline void otx2_cptlf_enable_iqueues(struct otx2_cptlfs_info *lfs)
    293{
    294	int slot;
    295
    296	for (slot = 0; slot < lfs->lfs_num; slot++) {
    297		otx2_cptlf_enable_iqueue_exec(&lfs->lf[slot]);
    298		otx2_cptlf_enable_iqueue_enq(&lfs->lf[slot]);
    299	}
    300}
    301
    302static inline void otx2_cpt_fill_inst(union otx2_cpt_inst_s *cptinst,
    303				      struct otx2_cpt_iq_command *iq_cmd,
    304				      u64 comp_baddr)
    305{
    306	cptinst->u[0] = 0x0;
    307	cptinst->s.doneint = true;
    308	cptinst->s.res_addr = comp_baddr;
    309	cptinst->u[2] = 0x0;
    310	cptinst->u[3] = 0x0;
    311	cptinst->s.ei0 = iq_cmd->cmd.u;
    312	cptinst->s.ei1 = iq_cmd->dptr;
    313	cptinst->s.ei2 = iq_cmd->rptr;
    314	cptinst->s.ei3 = iq_cmd->cptr.u;
    315}
    316
    317/*
    318 * On OcteonTX2 platform the parameter insts_num is used as a count of
    319 * instructions to be enqueued. The valid values for insts_num are:
    320 * 1 - 1 CPT instruction will be enqueued during LMTST operation
    321 * 2 - 2 CPT instructions will be enqueued during LMTST operation
    322 */
    323static inline void otx2_cpt_send_cmd(union otx2_cpt_inst_s *cptinst,
    324				     u32 insts_num, struct otx2_cptlf_info *lf)
    325{
    326	void __iomem *lmtline = lf->lmtline;
    327	long ret;
    328
    329	/*
    330	 * Make sure memory areas pointed in CPT_INST_S
    331	 * are flushed before the instruction is sent to CPT
    332	 */
    333	dma_wmb();
    334
    335	do {
    336		/* Copy CPT command to LMTLINE */
    337		memcpy_toio(lmtline, cptinst, insts_num * OTX2_CPT_INST_SIZE);
    338
    339		/*
    340		 * LDEOR initiates atomic transfer to I/O device
    341		 * The following will cause the LMTST to fail (the LDEOR
    342		 * returns zero):
    343		 * - No stores have been performed to the LMTLINE since it was
    344		 * last invalidated.
    345		 * - The bytes which have been stored to LMTLINE since it was
    346		 * last invalidated form a pattern that is non-contiguous, does
    347		 * not start at byte 0, or does not end on a 8-byte boundary.
    348		 * (i.e.comprises a formation of other than 1–16 8-byte
    349		 * words.)
    350		 *
    351		 * These rules are designed such that an operating system
    352		 * context switch or hypervisor guest switch need have no
    353		 * knowledge of the LMTST operations; the switch code does not
    354		 * need to store to LMTCANCEL. Also note as LMTLINE data cannot
    355		 * be read, there is no information leakage between processes.
    356		 */
    357		ret = otx2_lmt_flush(lf->ioreg);
    358
    359	} while (!ret);
    360}
    361
    362static inline bool otx2_cptlf_started(struct otx2_cptlfs_info *lfs)
    363{
    364	return atomic_read(&lfs->state) == OTX2_CPTLF_STARTED;
    365}
    366
    367int otx2_cptlf_init(struct otx2_cptlfs_info *lfs, u8 eng_grp_msk, int pri,
    368		    int lfs_num);
    369void otx2_cptlf_shutdown(struct otx2_cptlfs_info *lfs);
    370int otx2_cptlf_register_interrupts(struct otx2_cptlfs_info *lfs);
    371void otx2_cptlf_unregister_interrupts(struct otx2_cptlfs_info *lfs);
    372void otx2_cptlf_free_irqs_affinity(struct otx2_cptlfs_info *lfs);
    373int otx2_cptlf_set_irqs_affinity(struct otx2_cptlfs_info *lfs);
    374
    375#endif /* __OTX2_CPTLF_H */