cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

nx-sha256.c (7766B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 * SHA-256 routines supporting the Power 7+ Nest Accelerators driver
      4 *
      5 * Copyright (C) 2011-2012 International Business Machines Inc.
      6 *
      7 * Author: Kent Yoder <yoder1@us.ibm.com>
      8 */
      9
     10#include <crypto/internal/hash.h>
     11#include <crypto/sha2.h>
     12#include <linux/module.h>
     13#include <asm/vio.h>
     14#include <asm/byteorder.h>
     15
     16#include "nx_csbcpb.h"
     17#include "nx.h"
     18
     19struct sha256_state_be {
     20	__be32 state[SHA256_DIGEST_SIZE / 4];
     21	u64 count;
     22	u8 buf[SHA256_BLOCK_SIZE];
     23};
     24
     25static int nx_crypto_ctx_sha256_init(struct crypto_tfm *tfm)
     26{
     27	struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(tfm);
     28	int err;
     29
     30	err = nx_crypto_ctx_sha_init(tfm);
     31	if (err)
     32		return err;
     33
     34	nx_ctx_init(nx_ctx, HCOP_FC_SHA);
     35
     36	nx_ctx->ap = &nx_ctx->props[NX_PROPS_SHA256];
     37
     38	NX_CPB_SET_DIGEST_SIZE(nx_ctx->csbcpb, NX_DS_SHA256);
     39
     40	return 0;
     41}
     42
     43static int nx_sha256_init(struct shash_desc *desc) {
     44	struct sha256_state_be *sctx = shash_desc_ctx(desc);
     45
     46	memset(sctx, 0, sizeof *sctx);
     47
     48	sctx->state[0] = __cpu_to_be32(SHA256_H0);
     49	sctx->state[1] = __cpu_to_be32(SHA256_H1);
     50	sctx->state[2] = __cpu_to_be32(SHA256_H2);
     51	sctx->state[3] = __cpu_to_be32(SHA256_H3);
     52	sctx->state[4] = __cpu_to_be32(SHA256_H4);
     53	sctx->state[5] = __cpu_to_be32(SHA256_H5);
     54	sctx->state[6] = __cpu_to_be32(SHA256_H6);
     55	sctx->state[7] = __cpu_to_be32(SHA256_H7);
     56	sctx->count = 0;
     57
     58	return 0;
     59}
     60
     61static int nx_sha256_update(struct shash_desc *desc, const u8 *data,
     62			    unsigned int len)
     63{
     64	struct sha256_state_be *sctx = shash_desc_ctx(desc);
     65	struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base);
     66	struct nx_csbcpb *csbcpb = (struct nx_csbcpb *)nx_ctx->csbcpb;
     67	struct nx_sg *out_sg;
     68	u64 to_process = 0, leftover, total;
     69	unsigned long irq_flags;
     70	int rc = 0;
     71	int data_len;
     72	u32 max_sg_len;
     73	u64 buf_len = (sctx->count % SHA256_BLOCK_SIZE);
     74
     75	spin_lock_irqsave(&nx_ctx->lock, irq_flags);
     76
     77	/* 2 cases for total data len:
     78	 *  1: < SHA256_BLOCK_SIZE: copy into state, return 0
     79	 *  2: >= SHA256_BLOCK_SIZE: process X blocks, copy in leftover
     80	 */
     81	total = (sctx->count % SHA256_BLOCK_SIZE) + len;
     82	if (total < SHA256_BLOCK_SIZE) {
     83		memcpy(sctx->buf + buf_len, data, len);
     84		sctx->count += len;
     85		goto out;
     86	}
     87
     88	memcpy(csbcpb->cpb.sha256.message_digest, sctx->state, SHA256_DIGEST_SIZE);
     89	NX_CPB_FDM(csbcpb) |= NX_FDM_INTERMEDIATE;
     90	NX_CPB_FDM(csbcpb) |= NX_FDM_CONTINUATION;
     91
     92	max_sg_len = min_t(u64, nx_ctx->ap->sglen,
     93			nx_driver.of.max_sg_len/sizeof(struct nx_sg));
     94	max_sg_len = min_t(u64, max_sg_len,
     95			nx_ctx->ap->databytelen/NX_PAGE_SIZE);
     96
     97	data_len = SHA256_DIGEST_SIZE;
     98	out_sg = nx_build_sg_list(nx_ctx->out_sg, (u8 *)sctx->state,
     99				  &data_len, max_sg_len);
    100	nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg);
    101
    102	if (data_len != SHA256_DIGEST_SIZE) {
    103		rc = -EINVAL;
    104		goto out;
    105	}
    106
    107	do {
    108		int used_sgs = 0;
    109		struct nx_sg *in_sg = nx_ctx->in_sg;
    110
    111		if (buf_len) {
    112			data_len = buf_len;
    113			in_sg = nx_build_sg_list(in_sg,
    114						 (u8 *) sctx->buf,
    115						 &data_len,
    116						 max_sg_len);
    117
    118			if (data_len != buf_len) {
    119				rc = -EINVAL;
    120				goto out;
    121			}
    122			used_sgs = in_sg - nx_ctx->in_sg;
    123		}
    124
    125		/* to_process: SHA256_BLOCK_SIZE aligned chunk to be
    126		 * processed in this iteration. This value is restricted
    127		 * by sg list limits and number of sgs we already used
    128		 * for leftover data. (see above)
    129		 * In ideal case, we could allow NX_PAGE_SIZE * max_sg_len,
    130		 * but because data may not be aligned, we need to account
    131		 * for that too. */
    132		to_process = min_t(u64, total,
    133			(max_sg_len - 1 - used_sgs) * NX_PAGE_SIZE);
    134		to_process = to_process & ~(SHA256_BLOCK_SIZE - 1);
    135
    136		data_len = to_process - buf_len;
    137		in_sg = nx_build_sg_list(in_sg, (u8 *) data,
    138					 &data_len, max_sg_len);
    139
    140		nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) * sizeof(struct nx_sg);
    141
    142		to_process = data_len + buf_len;
    143		leftover = total - to_process;
    144
    145		/*
    146		 * we've hit the nx chip previously and we're updating
    147		 * again, so copy over the partial digest.
    148		 */
    149		memcpy(csbcpb->cpb.sha256.input_partial_digest,
    150			       csbcpb->cpb.sha256.message_digest,
    151			       SHA256_DIGEST_SIZE);
    152
    153		if (!nx_ctx->op.inlen || !nx_ctx->op.outlen) {
    154			rc = -EINVAL;
    155			goto out;
    156		}
    157
    158		rc = nx_hcall_sync(nx_ctx, &nx_ctx->op, 0);
    159		if (rc)
    160			goto out;
    161
    162		atomic_inc(&(nx_ctx->stats->sha256_ops));
    163
    164		total -= to_process;
    165		data += to_process - buf_len;
    166		buf_len = 0;
    167
    168	} while (leftover >= SHA256_BLOCK_SIZE);
    169
    170	/* copy the leftover back into the state struct */
    171	if (leftover)
    172		memcpy(sctx->buf, data, leftover);
    173
    174	sctx->count += len;
    175	memcpy(sctx->state, csbcpb->cpb.sha256.message_digest, SHA256_DIGEST_SIZE);
    176out:
    177	spin_unlock_irqrestore(&nx_ctx->lock, irq_flags);
    178	return rc;
    179}
    180
    181static int nx_sha256_final(struct shash_desc *desc, u8 *out)
    182{
    183	struct sha256_state_be *sctx = shash_desc_ctx(desc);
    184	struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base);
    185	struct nx_csbcpb *csbcpb = (struct nx_csbcpb *)nx_ctx->csbcpb;
    186	struct nx_sg *in_sg, *out_sg;
    187	unsigned long irq_flags;
    188	u32 max_sg_len;
    189	int rc = 0;
    190	int len;
    191
    192	spin_lock_irqsave(&nx_ctx->lock, irq_flags);
    193
    194	max_sg_len = min_t(u64, nx_ctx->ap->sglen,
    195			nx_driver.of.max_sg_len/sizeof(struct nx_sg));
    196	max_sg_len = min_t(u64, max_sg_len,
    197			nx_ctx->ap->databytelen/NX_PAGE_SIZE);
    198
    199	/* final is represented by continuing the operation and indicating that
    200	 * this is not an intermediate operation */
    201	if (sctx->count >= SHA256_BLOCK_SIZE) {
    202		/* we've hit the nx chip previously, now we're finalizing,
    203		 * so copy over the partial digest */
    204		memcpy(csbcpb->cpb.sha256.input_partial_digest, sctx->state, SHA256_DIGEST_SIZE);
    205		NX_CPB_FDM(csbcpb) &= ~NX_FDM_INTERMEDIATE;
    206		NX_CPB_FDM(csbcpb) |= NX_FDM_CONTINUATION;
    207	} else {
    208		NX_CPB_FDM(csbcpb) &= ~NX_FDM_INTERMEDIATE;
    209		NX_CPB_FDM(csbcpb) &= ~NX_FDM_CONTINUATION;
    210	}
    211
    212	csbcpb->cpb.sha256.message_bit_length = (u64) (sctx->count * 8);
    213
    214	len = sctx->count & (SHA256_BLOCK_SIZE - 1);
    215	in_sg = nx_build_sg_list(nx_ctx->in_sg, (u8 *) sctx->buf,
    216				 &len, max_sg_len);
    217
    218	if (len != (sctx->count & (SHA256_BLOCK_SIZE - 1))) {
    219		rc = -EINVAL;
    220		goto out;
    221	}
    222
    223	len = SHA256_DIGEST_SIZE;
    224	out_sg = nx_build_sg_list(nx_ctx->out_sg, out, &len, max_sg_len);
    225
    226	if (len != SHA256_DIGEST_SIZE) {
    227		rc = -EINVAL;
    228		goto out;
    229	}
    230
    231	nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) * sizeof(struct nx_sg);
    232	nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg);
    233	if (!nx_ctx->op.outlen) {
    234		rc = -EINVAL;
    235		goto out;
    236	}
    237
    238	rc = nx_hcall_sync(nx_ctx, &nx_ctx->op, 0);
    239	if (rc)
    240		goto out;
    241
    242	atomic_inc(&(nx_ctx->stats->sha256_ops));
    243
    244	atomic64_add(sctx->count, &(nx_ctx->stats->sha256_bytes));
    245	memcpy(out, csbcpb->cpb.sha256.message_digest, SHA256_DIGEST_SIZE);
    246out:
    247	spin_unlock_irqrestore(&nx_ctx->lock, irq_flags);
    248	return rc;
    249}
    250
    251static int nx_sha256_export(struct shash_desc *desc, void *out)
    252{
    253	struct sha256_state_be *sctx = shash_desc_ctx(desc);
    254
    255	memcpy(out, sctx, sizeof(*sctx));
    256
    257	return 0;
    258}
    259
    260static int nx_sha256_import(struct shash_desc *desc, const void *in)
    261{
    262	struct sha256_state_be *sctx = shash_desc_ctx(desc);
    263
    264	memcpy(sctx, in, sizeof(*sctx));
    265
    266	return 0;
    267}
    268
    269struct shash_alg nx_shash_sha256_alg = {
    270	.digestsize = SHA256_DIGEST_SIZE,
    271	.init       = nx_sha256_init,
    272	.update     = nx_sha256_update,
    273	.final      = nx_sha256_final,
    274	.export     = nx_sha256_export,
    275	.import     = nx_sha256_import,
    276	.descsize   = sizeof(struct sha256_state_be),
    277	.statesize  = sizeof(struct sha256_state_be),
    278	.base       = {
    279		.cra_name        = "sha256",
    280		.cra_driver_name = "sha256-nx",
    281		.cra_priority    = 300,
    282		.cra_blocksize   = SHA256_BLOCK_SIZE,
    283		.cra_module      = THIS_MODULE,
    284		.cra_ctxsize     = sizeof(struct nx_crypto_ctx),
    285		.cra_init        = nx_crypto_ctx_sha256_init,
    286		.cra_exit        = nx_crypto_ctx_exit,
    287	}
    288};