nx-sha256.c (7766B)
1// SPDX-License-Identifier: GPL-2.0-only 2/* 3 * SHA-256 routines supporting the Power 7+ Nest Accelerators driver 4 * 5 * Copyright (C) 2011-2012 International Business Machines Inc. 6 * 7 * Author: Kent Yoder <yoder1@us.ibm.com> 8 */ 9 10#include <crypto/internal/hash.h> 11#include <crypto/sha2.h> 12#include <linux/module.h> 13#include <asm/vio.h> 14#include <asm/byteorder.h> 15 16#include "nx_csbcpb.h" 17#include "nx.h" 18 19struct sha256_state_be { 20 __be32 state[SHA256_DIGEST_SIZE / 4]; 21 u64 count; 22 u8 buf[SHA256_BLOCK_SIZE]; 23}; 24 25static int nx_crypto_ctx_sha256_init(struct crypto_tfm *tfm) 26{ 27 struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(tfm); 28 int err; 29 30 err = nx_crypto_ctx_sha_init(tfm); 31 if (err) 32 return err; 33 34 nx_ctx_init(nx_ctx, HCOP_FC_SHA); 35 36 nx_ctx->ap = &nx_ctx->props[NX_PROPS_SHA256]; 37 38 NX_CPB_SET_DIGEST_SIZE(nx_ctx->csbcpb, NX_DS_SHA256); 39 40 return 0; 41} 42 43static int nx_sha256_init(struct shash_desc *desc) { 44 struct sha256_state_be *sctx = shash_desc_ctx(desc); 45 46 memset(sctx, 0, sizeof *sctx); 47 48 sctx->state[0] = __cpu_to_be32(SHA256_H0); 49 sctx->state[1] = __cpu_to_be32(SHA256_H1); 50 sctx->state[2] = __cpu_to_be32(SHA256_H2); 51 sctx->state[3] = __cpu_to_be32(SHA256_H3); 52 sctx->state[4] = __cpu_to_be32(SHA256_H4); 53 sctx->state[5] = __cpu_to_be32(SHA256_H5); 54 sctx->state[6] = __cpu_to_be32(SHA256_H6); 55 sctx->state[7] = __cpu_to_be32(SHA256_H7); 56 sctx->count = 0; 57 58 return 0; 59} 60 61static int nx_sha256_update(struct shash_desc *desc, const u8 *data, 62 unsigned int len) 63{ 64 struct sha256_state_be *sctx = shash_desc_ctx(desc); 65 struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base); 66 struct nx_csbcpb *csbcpb = (struct nx_csbcpb *)nx_ctx->csbcpb; 67 struct nx_sg *out_sg; 68 u64 to_process = 0, leftover, total; 69 unsigned long irq_flags; 70 int rc = 0; 71 int data_len; 72 u32 max_sg_len; 73 u64 buf_len = (sctx->count % SHA256_BLOCK_SIZE); 74 75 spin_lock_irqsave(&nx_ctx->lock, irq_flags); 76 77 /* 2 cases for total data len: 78 * 1: < SHA256_BLOCK_SIZE: copy into state, return 0 79 * 2: >= SHA256_BLOCK_SIZE: process X blocks, copy in leftover 80 */ 81 total = (sctx->count % SHA256_BLOCK_SIZE) + len; 82 if (total < SHA256_BLOCK_SIZE) { 83 memcpy(sctx->buf + buf_len, data, len); 84 sctx->count += len; 85 goto out; 86 } 87 88 memcpy(csbcpb->cpb.sha256.message_digest, sctx->state, SHA256_DIGEST_SIZE); 89 NX_CPB_FDM(csbcpb) |= NX_FDM_INTERMEDIATE; 90 NX_CPB_FDM(csbcpb) |= NX_FDM_CONTINUATION; 91 92 max_sg_len = min_t(u64, nx_ctx->ap->sglen, 93 nx_driver.of.max_sg_len/sizeof(struct nx_sg)); 94 max_sg_len = min_t(u64, max_sg_len, 95 nx_ctx->ap->databytelen/NX_PAGE_SIZE); 96 97 data_len = SHA256_DIGEST_SIZE; 98 out_sg = nx_build_sg_list(nx_ctx->out_sg, (u8 *)sctx->state, 99 &data_len, max_sg_len); 100 nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg); 101 102 if (data_len != SHA256_DIGEST_SIZE) { 103 rc = -EINVAL; 104 goto out; 105 } 106 107 do { 108 int used_sgs = 0; 109 struct nx_sg *in_sg = nx_ctx->in_sg; 110 111 if (buf_len) { 112 data_len = buf_len; 113 in_sg = nx_build_sg_list(in_sg, 114 (u8 *) sctx->buf, 115 &data_len, 116 max_sg_len); 117 118 if (data_len != buf_len) { 119 rc = -EINVAL; 120 goto out; 121 } 122 used_sgs = in_sg - nx_ctx->in_sg; 123 } 124 125 /* to_process: SHA256_BLOCK_SIZE aligned chunk to be 126 * processed in this iteration. This value is restricted 127 * by sg list limits and number of sgs we already used 128 * for leftover data. (see above) 129 * In ideal case, we could allow NX_PAGE_SIZE * max_sg_len, 130 * but because data may not be aligned, we need to account 131 * for that too. */ 132 to_process = min_t(u64, total, 133 (max_sg_len - 1 - used_sgs) * NX_PAGE_SIZE); 134 to_process = to_process & ~(SHA256_BLOCK_SIZE - 1); 135 136 data_len = to_process - buf_len; 137 in_sg = nx_build_sg_list(in_sg, (u8 *) data, 138 &data_len, max_sg_len); 139 140 nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) * sizeof(struct nx_sg); 141 142 to_process = data_len + buf_len; 143 leftover = total - to_process; 144 145 /* 146 * we've hit the nx chip previously and we're updating 147 * again, so copy over the partial digest. 148 */ 149 memcpy(csbcpb->cpb.sha256.input_partial_digest, 150 csbcpb->cpb.sha256.message_digest, 151 SHA256_DIGEST_SIZE); 152 153 if (!nx_ctx->op.inlen || !nx_ctx->op.outlen) { 154 rc = -EINVAL; 155 goto out; 156 } 157 158 rc = nx_hcall_sync(nx_ctx, &nx_ctx->op, 0); 159 if (rc) 160 goto out; 161 162 atomic_inc(&(nx_ctx->stats->sha256_ops)); 163 164 total -= to_process; 165 data += to_process - buf_len; 166 buf_len = 0; 167 168 } while (leftover >= SHA256_BLOCK_SIZE); 169 170 /* copy the leftover back into the state struct */ 171 if (leftover) 172 memcpy(sctx->buf, data, leftover); 173 174 sctx->count += len; 175 memcpy(sctx->state, csbcpb->cpb.sha256.message_digest, SHA256_DIGEST_SIZE); 176out: 177 spin_unlock_irqrestore(&nx_ctx->lock, irq_flags); 178 return rc; 179} 180 181static int nx_sha256_final(struct shash_desc *desc, u8 *out) 182{ 183 struct sha256_state_be *sctx = shash_desc_ctx(desc); 184 struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base); 185 struct nx_csbcpb *csbcpb = (struct nx_csbcpb *)nx_ctx->csbcpb; 186 struct nx_sg *in_sg, *out_sg; 187 unsigned long irq_flags; 188 u32 max_sg_len; 189 int rc = 0; 190 int len; 191 192 spin_lock_irqsave(&nx_ctx->lock, irq_flags); 193 194 max_sg_len = min_t(u64, nx_ctx->ap->sglen, 195 nx_driver.of.max_sg_len/sizeof(struct nx_sg)); 196 max_sg_len = min_t(u64, max_sg_len, 197 nx_ctx->ap->databytelen/NX_PAGE_SIZE); 198 199 /* final is represented by continuing the operation and indicating that 200 * this is not an intermediate operation */ 201 if (sctx->count >= SHA256_BLOCK_SIZE) { 202 /* we've hit the nx chip previously, now we're finalizing, 203 * so copy over the partial digest */ 204 memcpy(csbcpb->cpb.sha256.input_partial_digest, sctx->state, SHA256_DIGEST_SIZE); 205 NX_CPB_FDM(csbcpb) &= ~NX_FDM_INTERMEDIATE; 206 NX_CPB_FDM(csbcpb) |= NX_FDM_CONTINUATION; 207 } else { 208 NX_CPB_FDM(csbcpb) &= ~NX_FDM_INTERMEDIATE; 209 NX_CPB_FDM(csbcpb) &= ~NX_FDM_CONTINUATION; 210 } 211 212 csbcpb->cpb.sha256.message_bit_length = (u64) (sctx->count * 8); 213 214 len = sctx->count & (SHA256_BLOCK_SIZE - 1); 215 in_sg = nx_build_sg_list(nx_ctx->in_sg, (u8 *) sctx->buf, 216 &len, max_sg_len); 217 218 if (len != (sctx->count & (SHA256_BLOCK_SIZE - 1))) { 219 rc = -EINVAL; 220 goto out; 221 } 222 223 len = SHA256_DIGEST_SIZE; 224 out_sg = nx_build_sg_list(nx_ctx->out_sg, out, &len, max_sg_len); 225 226 if (len != SHA256_DIGEST_SIZE) { 227 rc = -EINVAL; 228 goto out; 229 } 230 231 nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) * sizeof(struct nx_sg); 232 nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg); 233 if (!nx_ctx->op.outlen) { 234 rc = -EINVAL; 235 goto out; 236 } 237 238 rc = nx_hcall_sync(nx_ctx, &nx_ctx->op, 0); 239 if (rc) 240 goto out; 241 242 atomic_inc(&(nx_ctx->stats->sha256_ops)); 243 244 atomic64_add(sctx->count, &(nx_ctx->stats->sha256_bytes)); 245 memcpy(out, csbcpb->cpb.sha256.message_digest, SHA256_DIGEST_SIZE); 246out: 247 spin_unlock_irqrestore(&nx_ctx->lock, irq_flags); 248 return rc; 249} 250 251static int nx_sha256_export(struct shash_desc *desc, void *out) 252{ 253 struct sha256_state_be *sctx = shash_desc_ctx(desc); 254 255 memcpy(out, sctx, sizeof(*sctx)); 256 257 return 0; 258} 259 260static int nx_sha256_import(struct shash_desc *desc, const void *in) 261{ 262 struct sha256_state_be *sctx = shash_desc_ctx(desc); 263 264 memcpy(sctx, in, sizeof(*sctx)); 265 266 return 0; 267} 268 269struct shash_alg nx_shash_sha256_alg = { 270 .digestsize = SHA256_DIGEST_SIZE, 271 .init = nx_sha256_init, 272 .update = nx_sha256_update, 273 .final = nx_sha256_final, 274 .export = nx_sha256_export, 275 .import = nx_sha256_import, 276 .descsize = sizeof(struct sha256_state_be), 277 .statesize = sizeof(struct sha256_state_be), 278 .base = { 279 .cra_name = "sha256", 280 .cra_driver_name = "sha256-nx", 281 .cra_priority = 300, 282 .cra_blocksize = SHA256_BLOCK_SIZE, 283 .cra_module = THIS_MODULE, 284 .cra_ctxsize = sizeof(struct nx_crypto_ctx), 285 .cra_init = nx_crypto_ctx_sha256_init, 286 .cra_exit = nx_crypto_ctx_exit, 287 } 288};