cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

padlock-aes.c (14813B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/* 
      3 * Cryptographic API.
      4 *
      5 * Support for VIA PadLock hardware crypto engine.
      6 *
      7 * Copyright (c) 2004  Michal Ludvig <michal@logix.cz>
      8 *
      9 */
     10
     11#include <crypto/algapi.h>
     12#include <crypto/aes.h>
     13#include <crypto/internal/skcipher.h>
     14#include <crypto/padlock.h>
     15#include <linux/module.h>
     16#include <linux/init.h>
     17#include <linux/types.h>
     18#include <linux/errno.h>
     19#include <linux/interrupt.h>
     20#include <linux/kernel.h>
     21#include <linux/mm.h>
     22#include <linux/percpu.h>
     23#include <linux/smp.h>
     24#include <linux/slab.h>
     25#include <asm/cpu_device_id.h>
     26#include <asm/byteorder.h>
     27#include <asm/processor.h>
     28#include <asm/fpu/api.h>
     29
     30/*
     31 * Number of data blocks actually fetched for each xcrypt insn.
     32 * Processors with prefetch errata will fetch extra blocks.
     33 */
     34static unsigned int ecb_fetch_blocks = 2;
     35#define MAX_ECB_FETCH_BLOCKS (8)
     36#define ecb_fetch_bytes (ecb_fetch_blocks * AES_BLOCK_SIZE)
     37
     38static unsigned int cbc_fetch_blocks = 1;
     39#define MAX_CBC_FETCH_BLOCKS (4)
     40#define cbc_fetch_bytes (cbc_fetch_blocks * AES_BLOCK_SIZE)
     41
     42/* Control word. */
     43struct cword {
     44	unsigned int __attribute__ ((__packed__))
     45		rounds:4,
     46		algo:3,
     47		keygen:1,
     48		interm:1,
     49		encdec:1,
     50		ksize:2;
     51} __attribute__ ((__aligned__(PADLOCK_ALIGNMENT)));
     52
     53/* Whenever making any changes to the following
     54 * structure *make sure* you keep E, d_data
     55 * and cword aligned on 16 Bytes boundaries and
     56 * the Hardware can access 16 * 16 bytes of E and d_data
     57 * (only the first 15 * 16 bytes matter but the HW reads
     58 * more).
     59 */
     60struct aes_ctx {
     61	u32 E[AES_MAX_KEYLENGTH_U32]
     62		__attribute__ ((__aligned__(PADLOCK_ALIGNMENT)));
     63	u32 d_data[AES_MAX_KEYLENGTH_U32]
     64		__attribute__ ((__aligned__(PADLOCK_ALIGNMENT)));
     65	struct {
     66		struct cword encrypt;
     67		struct cword decrypt;
     68	} cword;
     69	u32 *D;
     70};
     71
     72static DEFINE_PER_CPU(struct cword *, paes_last_cword);
     73
     74/* Tells whether the ACE is capable to generate
     75   the extended key for a given key_len. */
     76static inline int
     77aes_hw_extkey_available(uint8_t key_len)
     78{
     79	/* TODO: We should check the actual CPU model/stepping
     80	         as it's possible that the capability will be
     81	         added in the next CPU revisions. */
     82	if (key_len == 16)
     83		return 1;
     84	return 0;
     85}
     86
     87static inline struct aes_ctx *aes_ctx_common(void *ctx)
     88{
     89	unsigned long addr = (unsigned long)ctx;
     90	unsigned long align = PADLOCK_ALIGNMENT;
     91
     92	if (align <= crypto_tfm_ctx_alignment())
     93		align = 1;
     94	return (struct aes_ctx *)ALIGN(addr, align);
     95}
     96
     97static inline struct aes_ctx *aes_ctx(struct crypto_tfm *tfm)
     98{
     99	return aes_ctx_common(crypto_tfm_ctx(tfm));
    100}
    101
    102static inline struct aes_ctx *skcipher_aes_ctx(struct crypto_skcipher *tfm)
    103{
    104	return aes_ctx_common(crypto_skcipher_ctx(tfm));
    105}
    106
    107static int aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
    108		       unsigned int key_len)
    109{
    110	struct aes_ctx *ctx = aes_ctx(tfm);
    111	const __le32 *key = (const __le32 *)in_key;
    112	struct crypto_aes_ctx gen_aes;
    113	int cpu;
    114
    115	if (key_len % 8)
    116		return -EINVAL;
    117
    118	/*
    119	 * If the hardware is capable of generating the extended key
    120	 * itself we must supply the plain key for both encryption
    121	 * and decryption.
    122	 */
    123	ctx->D = ctx->E;
    124
    125	ctx->E[0] = le32_to_cpu(key[0]);
    126	ctx->E[1] = le32_to_cpu(key[1]);
    127	ctx->E[2] = le32_to_cpu(key[2]);
    128	ctx->E[3] = le32_to_cpu(key[3]);
    129
    130	/* Prepare control words. */
    131	memset(&ctx->cword, 0, sizeof(ctx->cword));
    132
    133	ctx->cword.decrypt.encdec = 1;
    134	ctx->cword.encrypt.rounds = 10 + (key_len - 16) / 4;
    135	ctx->cword.decrypt.rounds = ctx->cword.encrypt.rounds;
    136	ctx->cword.encrypt.ksize = (key_len - 16) / 8;
    137	ctx->cword.decrypt.ksize = ctx->cword.encrypt.ksize;
    138
    139	/* Don't generate extended keys if the hardware can do it. */
    140	if (aes_hw_extkey_available(key_len))
    141		goto ok;
    142
    143	ctx->D = ctx->d_data;
    144	ctx->cword.encrypt.keygen = 1;
    145	ctx->cword.decrypt.keygen = 1;
    146
    147	if (aes_expandkey(&gen_aes, in_key, key_len))
    148		return -EINVAL;
    149
    150	memcpy(ctx->E, gen_aes.key_enc, AES_MAX_KEYLENGTH);
    151	memcpy(ctx->D, gen_aes.key_dec, AES_MAX_KEYLENGTH);
    152
    153ok:
    154	for_each_online_cpu(cpu)
    155		if (&ctx->cword.encrypt == per_cpu(paes_last_cword, cpu) ||
    156		    &ctx->cword.decrypt == per_cpu(paes_last_cword, cpu))
    157			per_cpu(paes_last_cword, cpu) = NULL;
    158
    159	return 0;
    160}
    161
    162static int aes_set_key_skcipher(struct crypto_skcipher *tfm, const u8 *in_key,
    163				unsigned int key_len)
    164{
    165	return aes_set_key(crypto_skcipher_tfm(tfm), in_key, key_len);
    166}
    167
    168/* ====== Encryption/decryption routines ====== */
    169
    170/* These are the real call to PadLock. */
    171static inline void padlock_reset_key(struct cword *cword)
    172{
    173	int cpu = raw_smp_processor_id();
    174
    175	if (cword != per_cpu(paes_last_cword, cpu))
    176#ifndef CONFIG_X86_64
    177		asm volatile ("pushfl; popfl");
    178#else
    179		asm volatile ("pushfq; popfq");
    180#endif
    181}
    182
    183static inline void padlock_store_cword(struct cword *cword)
    184{
    185	per_cpu(paes_last_cword, raw_smp_processor_id()) = cword;
    186}
    187
    188/*
    189 * While the padlock instructions don't use FP/SSE registers, they
    190 * generate a spurious DNA fault when CR0.TS is '1'.  Fortunately,
    191 * the kernel doesn't use CR0.TS.
    192 */
    193
    194static inline void rep_xcrypt_ecb(const u8 *input, u8 *output, void *key,
    195				  struct cword *control_word, int count)
    196{
    197	asm volatile (".byte 0xf3,0x0f,0xa7,0xc8"	/* rep xcryptecb */
    198		      : "+S"(input), "+D"(output)
    199		      : "d"(control_word), "b"(key), "c"(count));
    200}
    201
    202static inline u8 *rep_xcrypt_cbc(const u8 *input, u8 *output, void *key,
    203				 u8 *iv, struct cword *control_word, int count)
    204{
    205	asm volatile (".byte 0xf3,0x0f,0xa7,0xd0"	/* rep xcryptcbc */
    206		      : "+S" (input), "+D" (output), "+a" (iv)
    207		      : "d" (control_word), "b" (key), "c" (count));
    208	return iv;
    209}
    210
    211static void ecb_crypt_copy(const u8 *in, u8 *out, u32 *key,
    212			   struct cword *cword, int count)
    213{
    214	/*
    215	 * Padlock prefetches extra data so we must provide mapped input buffers.
    216	 * Assume there are at least 16 bytes of stack already in use.
    217	 */
    218	u8 buf[AES_BLOCK_SIZE * (MAX_ECB_FETCH_BLOCKS - 1) + PADLOCK_ALIGNMENT - 1];
    219	u8 *tmp = PTR_ALIGN(&buf[0], PADLOCK_ALIGNMENT);
    220
    221	memcpy(tmp, in, count * AES_BLOCK_SIZE);
    222	rep_xcrypt_ecb(tmp, out, key, cword, count);
    223}
    224
    225static u8 *cbc_crypt_copy(const u8 *in, u8 *out, u32 *key,
    226			   u8 *iv, struct cword *cword, int count)
    227{
    228	/*
    229	 * Padlock prefetches extra data so we must provide mapped input buffers.
    230	 * Assume there are at least 16 bytes of stack already in use.
    231	 */
    232	u8 buf[AES_BLOCK_SIZE * (MAX_CBC_FETCH_BLOCKS - 1) + PADLOCK_ALIGNMENT - 1];
    233	u8 *tmp = PTR_ALIGN(&buf[0], PADLOCK_ALIGNMENT);
    234
    235	memcpy(tmp, in, count * AES_BLOCK_SIZE);
    236	return rep_xcrypt_cbc(tmp, out, key, iv, cword, count);
    237}
    238
    239static inline void ecb_crypt(const u8 *in, u8 *out, u32 *key,
    240			     struct cword *cword, int count)
    241{
    242	/* Padlock in ECB mode fetches at least ecb_fetch_bytes of data.
    243	 * We could avoid some copying here but it's probably not worth it.
    244	 */
    245	if (unlikely(offset_in_page(in) + ecb_fetch_bytes > PAGE_SIZE)) {
    246		ecb_crypt_copy(in, out, key, cword, count);
    247		return;
    248	}
    249
    250	rep_xcrypt_ecb(in, out, key, cword, count);
    251}
    252
    253static inline u8 *cbc_crypt(const u8 *in, u8 *out, u32 *key,
    254			    u8 *iv, struct cword *cword, int count)
    255{
    256	/* Padlock in CBC mode fetches at least cbc_fetch_bytes of data. */
    257	if (unlikely(offset_in_page(in) + cbc_fetch_bytes > PAGE_SIZE))
    258		return cbc_crypt_copy(in, out, key, iv, cword, count);
    259
    260	return rep_xcrypt_cbc(in, out, key, iv, cword, count);
    261}
    262
    263static inline void padlock_xcrypt_ecb(const u8 *input, u8 *output, void *key,
    264				      void *control_word, u32 count)
    265{
    266	u32 initial = count & (ecb_fetch_blocks - 1);
    267
    268	if (count < ecb_fetch_blocks) {
    269		ecb_crypt(input, output, key, control_word, count);
    270		return;
    271	}
    272
    273	count -= initial;
    274
    275	if (initial)
    276		asm volatile (".byte 0xf3,0x0f,0xa7,0xc8"	/* rep xcryptecb */
    277			      : "+S"(input), "+D"(output)
    278			      : "d"(control_word), "b"(key), "c"(initial));
    279
    280	asm volatile (".byte 0xf3,0x0f,0xa7,0xc8"	/* rep xcryptecb */
    281		      : "+S"(input), "+D"(output)
    282		      : "d"(control_word), "b"(key), "c"(count));
    283}
    284
    285static inline u8 *padlock_xcrypt_cbc(const u8 *input, u8 *output, void *key,
    286				     u8 *iv, void *control_word, u32 count)
    287{
    288	u32 initial = count & (cbc_fetch_blocks - 1);
    289
    290	if (count < cbc_fetch_blocks)
    291		return cbc_crypt(input, output, key, iv, control_word, count);
    292
    293	count -= initial;
    294
    295	if (initial)
    296		asm volatile (".byte 0xf3,0x0f,0xa7,0xd0"	/* rep xcryptcbc */
    297			      : "+S" (input), "+D" (output), "+a" (iv)
    298			      : "d" (control_word), "b" (key), "c" (initial));
    299
    300	asm volatile (".byte 0xf3,0x0f,0xa7,0xd0"	/* rep xcryptcbc */
    301		      : "+S" (input), "+D" (output), "+a" (iv)
    302		      : "d" (control_word), "b" (key), "c" (count));
    303	return iv;
    304}
    305
    306static void padlock_aes_encrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
    307{
    308	struct aes_ctx *ctx = aes_ctx(tfm);
    309
    310	padlock_reset_key(&ctx->cword.encrypt);
    311	ecb_crypt(in, out, ctx->E, &ctx->cword.encrypt, 1);
    312	padlock_store_cword(&ctx->cword.encrypt);
    313}
    314
    315static void padlock_aes_decrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
    316{
    317	struct aes_ctx *ctx = aes_ctx(tfm);
    318
    319	padlock_reset_key(&ctx->cword.encrypt);
    320	ecb_crypt(in, out, ctx->D, &ctx->cword.decrypt, 1);
    321	padlock_store_cword(&ctx->cword.encrypt);
    322}
    323
    324static struct crypto_alg aes_alg = {
    325	.cra_name		=	"aes",
    326	.cra_driver_name	=	"aes-padlock",
    327	.cra_priority		=	PADLOCK_CRA_PRIORITY,
    328	.cra_flags		=	CRYPTO_ALG_TYPE_CIPHER,
    329	.cra_blocksize		=	AES_BLOCK_SIZE,
    330	.cra_ctxsize		=	sizeof(struct aes_ctx),
    331	.cra_alignmask		=	PADLOCK_ALIGNMENT - 1,
    332	.cra_module		=	THIS_MODULE,
    333	.cra_u			=	{
    334		.cipher = {
    335			.cia_min_keysize	=	AES_MIN_KEY_SIZE,
    336			.cia_max_keysize	=	AES_MAX_KEY_SIZE,
    337			.cia_setkey	   	= 	aes_set_key,
    338			.cia_encrypt	 	=	padlock_aes_encrypt,
    339			.cia_decrypt	  	=	padlock_aes_decrypt,
    340		}
    341	}
    342};
    343
    344static int ecb_aes_encrypt(struct skcipher_request *req)
    345{
    346	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
    347	struct aes_ctx *ctx = skcipher_aes_ctx(tfm);
    348	struct skcipher_walk walk;
    349	unsigned int nbytes;
    350	int err;
    351
    352	padlock_reset_key(&ctx->cword.encrypt);
    353
    354	err = skcipher_walk_virt(&walk, req, false);
    355
    356	while ((nbytes = walk.nbytes) != 0) {
    357		padlock_xcrypt_ecb(walk.src.virt.addr, walk.dst.virt.addr,
    358				   ctx->E, &ctx->cword.encrypt,
    359				   nbytes / AES_BLOCK_SIZE);
    360		nbytes &= AES_BLOCK_SIZE - 1;
    361		err = skcipher_walk_done(&walk, nbytes);
    362	}
    363
    364	padlock_store_cword(&ctx->cword.encrypt);
    365
    366	return err;
    367}
    368
    369static int ecb_aes_decrypt(struct skcipher_request *req)
    370{
    371	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
    372	struct aes_ctx *ctx = skcipher_aes_ctx(tfm);
    373	struct skcipher_walk walk;
    374	unsigned int nbytes;
    375	int err;
    376
    377	padlock_reset_key(&ctx->cword.decrypt);
    378
    379	err = skcipher_walk_virt(&walk, req, false);
    380
    381	while ((nbytes = walk.nbytes) != 0) {
    382		padlock_xcrypt_ecb(walk.src.virt.addr, walk.dst.virt.addr,
    383				   ctx->D, &ctx->cword.decrypt,
    384				   nbytes / AES_BLOCK_SIZE);
    385		nbytes &= AES_BLOCK_SIZE - 1;
    386		err = skcipher_walk_done(&walk, nbytes);
    387	}
    388
    389	padlock_store_cword(&ctx->cword.encrypt);
    390
    391	return err;
    392}
    393
    394static struct skcipher_alg ecb_aes_alg = {
    395	.base.cra_name		=	"ecb(aes)",
    396	.base.cra_driver_name	=	"ecb-aes-padlock",
    397	.base.cra_priority	=	PADLOCK_COMPOSITE_PRIORITY,
    398	.base.cra_blocksize	=	AES_BLOCK_SIZE,
    399	.base.cra_ctxsize	=	sizeof(struct aes_ctx),
    400	.base.cra_alignmask	=	PADLOCK_ALIGNMENT - 1,
    401	.base.cra_module	=	THIS_MODULE,
    402	.min_keysize		=	AES_MIN_KEY_SIZE,
    403	.max_keysize		=	AES_MAX_KEY_SIZE,
    404	.setkey			=	aes_set_key_skcipher,
    405	.encrypt		=	ecb_aes_encrypt,
    406	.decrypt		=	ecb_aes_decrypt,
    407};
    408
    409static int cbc_aes_encrypt(struct skcipher_request *req)
    410{
    411	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
    412	struct aes_ctx *ctx = skcipher_aes_ctx(tfm);
    413	struct skcipher_walk walk;
    414	unsigned int nbytes;
    415	int err;
    416
    417	padlock_reset_key(&ctx->cword.encrypt);
    418
    419	err = skcipher_walk_virt(&walk, req, false);
    420
    421	while ((nbytes = walk.nbytes) != 0) {
    422		u8 *iv = padlock_xcrypt_cbc(walk.src.virt.addr,
    423					    walk.dst.virt.addr, ctx->E,
    424					    walk.iv, &ctx->cword.encrypt,
    425					    nbytes / AES_BLOCK_SIZE);
    426		memcpy(walk.iv, iv, AES_BLOCK_SIZE);
    427		nbytes &= AES_BLOCK_SIZE - 1;
    428		err = skcipher_walk_done(&walk, nbytes);
    429	}
    430
    431	padlock_store_cword(&ctx->cword.decrypt);
    432
    433	return err;
    434}
    435
    436static int cbc_aes_decrypt(struct skcipher_request *req)
    437{
    438	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
    439	struct aes_ctx *ctx = skcipher_aes_ctx(tfm);
    440	struct skcipher_walk walk;
    441	unsigned int nbytes;
    442	int err;
    443
    444	padlock_reset_key(&ctx->cword.encrypt);
    445
    446	err = skcipher_walk_virt(&walk, req, false);
    447
    448	while ((nbytes = walk.nbytes) != 0) {
    449		padlock_xcrypt_cbc(walk.src.virt.addr, walk.dst.virt.addr,
    450				   ctx->D, walk.iv, &ctx->cword.decrypt,
    451				   nbytes / AES_BLOCK_SIZE);
    452		nbytes &= AES_BLOCK_SIZE - 1;
    453		err = skcipher_walk_done(&walk, nbytes);
    454	}
    455
    456	padlock_store_cword(&ctx->cword.encrypt);
    457
    458	return err;
    459}
    460
    461static struct skcipher_alg cbc_aes_alg = {
    462	.base.cra_name		=	"cbc(aes)",
    463	.base.cra_driver_name	=	"cbc-aes-padlock",
    464	.base.cra_priority	=	PADLOCK_COMPOSITE_PRIORITY,
    465	.base.cra_blocksize	=	AES_BLOCK_SIZE,
    466	.base.cra_ctxsize	=	sizeof(struct aes_ctx),
    467	.base.cra_alignmask	=	PADLOCK_ALIGNMENT - 1,
    468	.base.cra_module	=	THIS_MODULE,
    469	.min_keysize		=	AES_MIN_KEY_SIZE,
    470	.max_keysize		=	AES_MAX_KEY_SIZE,
    471	.ivsize			=	AES_BLOCK_SIZE,
    472	.setkey			=	aes_set_key_skcipher,
    473	.encrypt		=	cbc_aes_encrypt,
    474	.decrypt		=	cbc_aes_decrypt,
    475};
    476
    477static const struct x86_cpu_id padlock_cpu_id[] = {
    478	X86_MATCH_FEATURE(X86_FEATURE_XCRYPT, NULL),
    479	{}
    480};
    481MODULE_DEVICE_TABLE(x86cpu, padlock_cpu_id);
    482
    483static int __init padlock_init(void)
    484{
    485	int ret;
    486	struct cpuinfo_x86 *c = &cpu_data(0);
    487
    488	if (!x86_match_cpu(padlock_cpu_id))
    489		return -ENODEV;
    490
    491	if (!boot_cpu_has(X86_FEATURE_XCRYPT_EN)) {
    492		printk(KERN_NOTICE PFX "VIA PadLock detected, but not enabled. Hmm, strange...\n");
    493		return -ENODEV;
    494	}
    495
    496	if ((ret = crypto_register_alg(&aes_alg)) != 0)
    497		goto aes_err;
    498
    499	if ((ret = crypto_register_skcipher(&ecb_aes_alg)) != 0)
    500		goto ecb_aes_err;
    501
    502	if ((ret = crypto_register_skcipher(&cbc_aes_alg)) != 0)
    503		goto cbc_aes_err;
    504
    505	printk(KERN_NOTICE PFX "Using VIA PadLock ACE for AES algorithm.\n");
    506
    507	if (c->x86 == 6 && c->x86_model == 15 && c->x86_stepping == 2) {
    508		ecb_fetch_blocks = MAX_ECB_FETCH_BLOCKS;
    509		cbc_fetch_blocks = MAX_CBC_FETCH_BLOCKS;
    510		printk(KERN_NOTICE PFX "VIA Nano stepping 2 detected: enabling workaround.\n");
    511	}
    512
    513out:
    514	return ret;
    515
    516cbc_aes_err:
    517	crypto_unregister_skcipher(&ecb_aes_alg);
    518ecb_aes_err:
    519	crypto_unregister_alg(&aes_alg);
    520aes_err:
    521	printk(KERN_ERR PFX "VIA PadLock AES initialization failed.\n");
    522	goto out;
    523}
    524
    525static void __exit padlock_fini(void)
    526{
    527	crypto_unregister_skcipher(&cbc_aes_alg);
    528	crypto_unregister_skcipher(&ecb_aes_alg);
    529	crypto_unregister_alg(&aes_alg);
    530}
    531
    532module_init(padlock_init);
    533module_exit(padlock_fini);
    534
    535MODULE_DESCRIPTION("VIA PadLock AES algorithm support");
    536MODULE_LICENSE("GPL");
    537MODULE_AUTHOR("Michal Ludvig");
    538
    539MODULE_ALIAS_CRYPTO("aes");