cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

tegra30-devfreq.c (25249B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 * A devfreq driver for NVIDIA Tegra SoCs
      4 *
      5 * Copyright (c) 2014 NVIDIA CORPORATION. All rights reserved.
      6 * Copyright (C) 2014 Google, Inc
      7 */
      8
      9#include <linux/clk.h>
     10#include <linux/cpufreq.h>
     11#include <linux/devfreq.h>
     12#include <linux/interrupt.h>
     13#include <linux/io.h>
     14#include <linux/irq.h>
     15#include <linux/module.h>
     16#include <linux/of_device.h>
     17#include <linux/platform_device.h>
     18#include <linux/pm_opp.h>
     19#include <linux/reset.h>
     20#include <linux/workqueue.h>
     21
     22#include <soc/tegra/fuse.h>
     23
     24#include "governor.h"
     25
     26#define ACTMON_GLB_STATUS					0x0
     27#define ACTMON_GLB_PERIOD_CTRL					0x4
     28
     29#define ACTMON_DEV_CTRL						0x0
     30#define ACTMON_DEV_CTRL_K_VAL_SHIFT				10
     31#define ACTMON_DEV_CTRL_ENB_PERIODIC				BIT(18)
     32#define ACTMON_DEV_CTRL_AVG_BELOW_WMARK_EN			BIT(20)
     33#define ACTMON_DEV_CTRL_AVG_ABOVE_WMARK_EN			BIT(21)
     34#define ACTMON_DEV_CTRL_CONSECUTIVE_BELOW_WMARK_NUM_SHIFT	23
     35#define ACTMON_DEV_CTRL_CONSECUTIVE_ABOVE_WMARK_NUM_SHIFT	26
     36#define ACTMON_DEV_CTRL_CONSECUTIVE_BELOW_WMARK_EN		BIT(29)
     37#define ACTMON_DEV_CTRL_CONSECUTIVE_ABOVE_WMARK_EN		BIT(30)
     38#define ACTMON_DEV_CTRL_ENB					BIT(31)
     39
     40#define ACTMON_DEV_CTRL_STOP					0x00000000
     41
     42#define ACTMON_DEV_UPPER_WMARK					0x4
     43#define ACTMON_DEV_LOWER_WMARK					0x8
     44#define ACTMON_DEV_INIT_AVG					0xc
     45#define ACTMON_DEV_AVG_UPPER_WMARK				0x10
     46#define ACTMON_DEV_AVG_LOWER_WMARK				0x14
     47#define ACTMON_DEV_COUNT_WEIGHT					0x18
     48#define ACTMON_DEV_AVG_COUNT					0x20
     49#define ACTMON_DEV_INTR_STATUS					0x24
     50
     51#define ACTMON_INTR_STATUS_CLEAR				0xffffffff
     52
     53#define ACTMON_DEV_INTR_CONSECUTIVE_UPPER			BIT(31)
     54#define ACTMON_DEV_INTR_CONSECUTIVE_LOWER			BIT(30)
     55
     56#define ACTMON_ABOVE_WMARK_WINDOW				1
     57#define ACTMON_BELOW_WMARK_WINDOW				3
     58#define ACTMON_BOOST_FREQ_STEP					16000
     59
     60/*
     61 * ACTMON_AVERAGE_WINDOW_LOG2: default value for @DEV_CTRL_K_VAL, which
     62 * translates to 2 ^ (K_VAL + 1). ex: 2 ^ (6 + 1) = 128
     63 */
     64#define ACTMON_AVERAGE_WINDOW_LOG2			6
     65#define ACTMON_SAMPLING_PERIOD				12 /* ms */
     66#define ACTMON_DEFAULT_AVG_BAND				6  /* 1/10 of % */
     67
     68#define KHZ							1000
     69
     70#define KHZ_MAX						(ULONG_MAX / KHZ)
     71
     72/* Assume that the bus is saturated if the utilization is 25% */
     73#define BUS_SATURATION_RATIO					25
     74
     75/**
     76 * struct tegra_devfreq_device_config - configuration specific to an ACTMON
     77 * device
     78 *
     79 * Coefficients and thresholds are percentages unless otherwise noted
     80 */
     81struct tegra_devfreq_device_config {
     82	u32		offset;
     83	u32		irq_mask;
     84
     85	/* Factors applied to boost_freq every consecutive watermark breach */
     86	unsigned int	boost_up_coeff;
     87	unsigned int	boost_down_coeff;
     88
     89	/* Define the watermark bounds when applied to the current avg */
     90	unsigned int	boost_up_threshold;
     91	unsigned int	boost_down_threshold;
     92
     93	/*
     94	 * Threshold of activity (cycles translated to kHz) below which the
     95	 * CPU frequency isn't to be taken into account. This is to avoid
     96	 * increasing the EMC frequency when the CPU is very busy but not
     97	 * accessing the bus often.
     98	 */
     99	u32		avg_dependency_threshold;
    100};
    101
    102enum tegra_actmon_device {
    103	MCALL = 0,
    104	MCCPU,
    105};
    106
    107static const struct tegra_devfreq_device_config tegra124_device_configs[] = {
    108	{
    109		/* MCALL: All memory accesses (including from the CPUs) */
    110		.offset = 0x1c0,
    111		.irq_mask = 1 << 26,
    112		.boost_up_coeff = 200,
    113		.boost_down_coeff = 50,
    114		.boost_up_threshold = 60,
    115		.boost_down_threshold = 40,
    116	},
    117	{
    118		/* MCCPU: memory accesses from the CPUs */
    119		.offset = 0x200,
    120		.irq_mask = 1 << 25,
    121		.boost_up_coeff = 800,
    122		.boost_down_coeff = 40,
    123		.boost_up_threshold = 27,
    124		.boost_down_threshold = 10,
    125		.avg_dependency_threshold = 16000, /* 16MHz in kHz units */
    126	},
    127};
    128
    129static const struct tegra_devfreq_device_config tegra30_device_configs[] = {
    130	{
    131		/* MCALL: All memory accesses (including from the CPUs) */
    132		.offset = 0x1c0,
    133		.irq_mask = 1 << 26,
    134		.boost_up_coeff = 200,
    135		.boost_down_coeff = 50,
    136		.boost_up_threshold = 20,
    137		.boost_down_threshold = 10,
    138	},
    139	{
    140		/* MCCPU: memory accesses from the CPUs */
    141		.offset = 0x200,
    142		.irq_mask = 1 << 25,
    143		.boost_up_coeff = 800,
    144		.boost_down_coeff = 40,
    145		.boost_up_threshold = 27,
    146		.boost_down_threshold = 10,
    147		.avg_dependency_threshold = 16000, /* 16MHz in kHz units */
    148	},
    149};
    150
    151/**
    152 * struct tegra_devfreq_device - state specific to an ACTMON device
    153 *
    154 * Frequencies are in kHz.
    155 */
    156struct tegra_devfreq_device {
    157	const struct tegra_devfreq_device_config *config;
    158	void __iomem *regs;
    159
    160	/* Average event count sampled in the last interrupt */
    161	u32 avg_count;
    162
    163	/*
    164	 * Extra frequency to increase the target by due to consecutive
    165	 * watermark breaches.
    166	 */
    167	unsigned long boost_freq;
    168
    169	/* Optimal frequency calculated from the stats for this device */
    170	unsigned long target_freq;
    171};
    172
    173struct tegra_devfreq_soc_data {
    174	const struct tegra_devfreq_device_config *configs;
    175	/* Weight value for count measurements */
    176	unsigned int count_weight;
    177};
    178
    179struct tegra_devfreq {
    180	struct devfreq		*devfreq;
    181
    182	struct reset_control	*reset;
    183	struct clk		*clock;
    184	void __iomem		*regs;
    185
    186	struct clk		*emc_clock;
    187	unsigned long		max_freq;
    188	unsigned long		cur_freq;
    189	struct notifier_block	clk_rate_change_nb;
    190
    191	struct delayed_work	cpufreq_update_work;
    192	struct notifier_block	cpu_rate_change_nb;
    193
    194	struct tegra_devfreq_device devices[2];
    195
    196	unsigned int		irq;
    197
    198	bool			started;
    199
    200	const struct tegra_devfreq_soc_data *soc;
    201};
    202
    203struct tegra_actmon_emc_ratio {
    204	unsigned long cpu_freq;
    205	unsigned long emc_freq;
    206};
    207
    208static const struct tegra_actmon_emc_ratio actmon_emc_ratios[] = {
    209	{ 1400000,    KHZ_MAX },
    210	{ 1200000,    750000 },
    211	{ 1100000,    600000 },
    212	{ 1000000,    500000 },
    213	{  800000,    375000 },
    214	{  500000,    200000 },
    215	{  250000,    100000 },
    216};
    217
    218static u32 actmon_readl(struct tegra_devfreq *tegra, u32 offset)
    219{
    220	return readl_relaxed(tegra->regs + offset);
    221}
    222
    223static void actmon_writel(struct tegra_devfreq *tegra, u32 val, u32 offset)
    224{
    225	writel_relaxed(val, tegra->regs + offset);
    226}
    227
    228static u32 device_readl(struct tegra_devfreq_device *dev, u32 offset)
    229{
    230	return readl_relaxed(dev->regs + offset);
    231}
    232
    233static void device_writel(struct tegra_devfreq_device *dev, u32 val,
    234			  u32 offset)
    235{
    236	writel_relaxed(val, dev->regs + offset);
    237}
    238
    239static unsigned long do_percent(unsigned long long val, unsigned int pct)
    240{
    241	val = val * pct;
    242	do_div(val, 100);
    243
    244	/*
    245	 * High freq + high boosting percent + large polling interval are
    246	 * resulting in integer overflow when watermarks are calculated.
    247	 */
    248	return min_t(u64, val, U32_MAX);
    249}
    250
    251static void tegra_devfreq_update_avg_wmark(struct tegra_devfreq *tegra,
    252					   struct tegra_devfreq_device *dev)
    253{
    254	u32 avg_band_freq = tegra->max_freq * ACTMON_DEFAULT_AVG_BAND / KHZ;
    255	u32 band = avg_band_freq * tegra->devfreq->profile->polling_ms;
    256	u32 avg;
    257
    258	avg = min(dev->avg_count, U32_MAX - band);
    259	device_writel(dev, avg + band, ACTMON_DEV_AVG_UPPER_WMARK);
    260
    261	avg = max(dev->avg_count, band);
    262	device_writel(dev, avg - band, ACTMON_DEV_AVG_LOWER_WMARK);
    263}
    264
    265static void tegra_devfreq_update_wmark(struct tegra_devfreq *tegra,
    266				       struct tegra_devfreq_device *dev)
    267{
    268	u32 val = tegra->cur_freq * tegra->devfreq->profile->polling_ms;
    269
    270	device_writel(dev, do_percent(val, dev->config->boost_up_threshold),
    271		      ACTMON_DEV_UPPER_WMARK);
    272
    273	device_writel(dev, do_percent(val, dev->config->boost_down_threshold),
    274		      ACTMON_DEV_LOWER_WMARK);
    275}
    276
    277static void actmon_isr_device(struct tegra_devfreq *tegra,
    278			      struct tegra_devfreq_device *dev)
    279{
    280	u32 intr_status, dev_ctrl;
    281
    282	dev->avg_count = device_readl(dev, ACTMON_DEV_AVG_COUNT);
    283	tegra_devfreq_update_avg_wmark(tegra, dev);
    284
    285	intr_status = device_readl(dev, ACTMON_DEV_INTR_STATUS);
    286	dev_ctrl = device_readl(dev, ACTMON_DEV_CTRL);
    287
    288	if (intr_status & ACTMON_DEV_INTR_CONSECUTIVE_UPPER) {
    289		/*
    290		 * new_boost = min(old_boost * up_coef + step, max_freq)
    291		 */
    292		dev->boost_freq = do_percent(dev->boost_freq,
    293					     dev->config->boost_up_coeff);
    294		dev->boost_freq += ACTMON_BOOST_FREQ_STEP;
    295
    296		dev_ctrl |= ACTMON_DEV_CTRL_CONSECUTIVE_BELOW_WMARK_EN;
    297
    298		if (dev->boost_freq >= tegra->max_freq) {
    299			dev_ctrl &= ~ACTMON_DEV_CTRL_CONSECUTIVE_ABOVE_WMARK_EN;
    300			dev->boost_freq = tegra->max_freq;
    301		}
    302	} else if (intr_status & ACTMON_DEV_INTR_CONSECUTIVE_LOWER) {
    303		/*
    304		 * new_boost = old_boost * down_coef
    305		 * or 0 if (old_boost * down_coef < step / 2)
    306		 */
    307		dev->boost_freq = do_percent(dev->boost_freq,
    308					     dev->config->boost_down_coeff);
    309
    310		dev_ctrl |= ACTMON_DEV_CTRL_CONSECUTIVE_ABOVE_WMARK_EN;
    311
    312		if (dev->boost_freq < (ACTMON_BOOST_FREQ_STEP >> 1)) {
    313			dev_ctrl &= ~ACTMON_DEV_CTRL_CONSECUTIVE_BELOW_WMARK_EN;
    314			dev->boost_freq = 0;
    315		}
    316	}
    317
    318	device_writel(dev, dev_ctrl, ACTMON_DEV_CTRL);
    319
    320	device_writel(dev, ACTMON_INTR_STATUS_CLEAR, ACTMON_DEV_INTR_STATUS);
    321}
    322
    323static unsigned long actmon_cpu_to_emc_rate(struct tegra_devfreq *tegra,
    324					    unsigned long cpu_freq)
    325{
    326	unsigned int i;
    327	const struct tegra_actmon_emc_ratio *ratio = actmon_emc_ratios;
    328
    329	for (i = 0; i < ARRAY_SIZE(actmon_emc_ratios); i++, ratio++) {
    330		if (cpu_freq >= ratio->cpu_freq) {
    331			if (ratio->emc_freq >= tegra->max_freq)
    332				return tegra->max_freq;
    333			else
    334				return ratio->emc_freq;
    335		}
    336	}
    337
    338	return 0;
    339}
    340
    341static unsigned long actmon_device_target_freq(struct tegra_devfreq *tegra,
    342					       struct tegra_devfreq_device *dev)
    343{
    344	unsigned int avg_sustain_coef;
    345	unsigned long target_freq;
    346
    347	target_freq = dev->avg_count / tegra->devfreq->profile->polling_ms;
    348	avg_sustain_coef = 100 * 100 / dev->config->boost_up_threshold;
    349	target_freq = do_percent(target_freq, avg_sustain_coef);
    350
    351	return target_freq;
    352}
    353
    354static void actmon_update_target(struct tegra_devfreq *tegra,
    355				 struct tegra_devfreq_device *dev)
    356{
    357	unsigned long cpu_freq = 0;
    358	unsigned long static_cpu_emc_freq = 0;
    359
    360	dev->target_freq = actmon_device_target_freq(tegra, dev);
    361
    362	if (dev->config->avg_dependency_threshold &&
    363	    dev->config->avg_dependency_threshold <= dev->target_freq) {
    364		cpu_freq = cpufreq_quick_get(0);
    365		static_cpu_emc_freq = actmon_cpu_to_emc_rate(tegra, cpu_freq);
    366
    367		dev->target_freq += dev->boost_freq;
    368		dev->target_freq = max(dev->target_freq, static_cpu_emc_freq);
    369	} else {
    370		dev->target_freq += dev->boost_freq;
    371	}
    372}
    373
    374static irqreturn_t actmon_thread_isr(int irq, void *data)
    375{
    376	struct tegra_devfreq *tegra = data;
    377	bool handled = false;
    378	unsigned int i;
    379	u32 val;
    380
    381	mutex_lock(&tegra->devfreq->lock);
    382
    383	val = actmon_readl(tegra, ACTMON_GLB_STATUS);
    384	for (i = 0; i < ARRAY_SIZE(tegra->devices); i++) {
    385		if (val & tegra->devices[i].config->irq_mask) {
    386			actmon_isr_device(tegra, tegra->devices + i);
    387			handled = true;
    388		}
    389	}
    390
    391	if (handled)
    392		update_devfreq(tegra->devfreq);
    393
    394	mutex_unlock(&tegra->devfreq->lock);
    395
    396	return handled ? IRQ_HANDLED : IRQ_NONE;
    397}
    398
    399static int tegra_actmon_clk_notify_cb(struct notifier_block *nb,
    400				      unsigned long action, void *ptr)
    401{
    402	struct clk_notifier_data *data = ptr;
    403	struct tegra_devfreq *tegra;
    404	struct tegra_devfreq_device *dev;
    405	unsigned int i;
    406
    407	if (action != POST_RATE_CHANGE)
    408		return NOTIFY_OK;
    409
    410	tegra = container_of(nb, struct tegra_devfreq, clk_rate_change_nb);
    411
    412	tegra->cur_freq = data->new_rate / KHZ;
    413
    414	for (i = 0; i < ARRAY_SIZE(tegra->devices); i++) {
    415		dev = &tegra->devices[i];
    416
    417		tegra_devfreq_update_wmark(tegra, dev);
    418	}
    419
    420	return NOTIFY_OK;
    421}
    422
    423static void tegra_actmon_delayed_update(struct work_struct *work)
    424{
    425	struct tegra_devfreq *tegra = container_of(work, struct tegra_devfreq,
    426						   cpufreq_update_work.work);
    427
    428	mutex_lock(&tegra->devfreq->lock);
    429	update_devfreq(tegra->devfreq);
    430	mutex_unlock(&tegra->devfreq->lock);
    431}
    432
    433static unsigned long
    434tegra_actmon_cpufreq_contribution(struct tegra_devfreq *tegra,
    435				  unsigned int cpu_freq)
    436{
    437	struct tegra_devfreq_device *actmon_dev = &tegra->devices[MCCPU];
    438	unsigned long static_cpu_emc_freq, dev_freq;
    439
    440	dev_freq = actmon_device_target_freq(tegra, actmon_dev);
    441
    442	/* check whether CPU's freq is taken into account at all */
    443	if (dev_freq < actmon_dev->config->avg_dependency_threshold)
    444		return 0;
    445
    446	static_cpu_emc_freq = actmon_cpu_to_emc_rate(tegra, cpu_freq);
    447
    448	if (dev_freq + actmon_dev->boost_freq >= static_cpu_emc_freq)
    449		return 0;
    450
    451	return static_cpu_emc_freq;
    452}
    453
    454static int tegra_actmon_cpu_notify_cb(struct notifier_block *nb,
    455				      unsigned long action, void *ptr)
    456{
    457	struct cpufreq_freqs *freqs = ptr;
    458	struct tegra_devfreq *tegra;
    459	unsigned long old, new, delay;
    460
    461	if (action != CPUFREQ_POSTCHANGE)
    462		return NOTIFY_OK;
    463
    464	tegra = container_of(nb, struct tegra_devfreq, cpu_rate_change_nb);
    465
    466	/*
    467	 * Quickly check whether CPU frequency should be taken into account
    468	 * at all, without blocking CPUFreq's core.
    469	 */
    470	if (mutex_trylock(&tegra->devfreq->lock)) {
    471		old = tegra_actmon_cpufreq_contribution(tegra, freqs->old);
    472		new = tegra_actmon_cpufreq_contribution(tegra, freqs->new);
    473		mutex_unlock(&tegra->devfreq->lock);
    474
    475		/*
    476		 * If CPU's frequency shouldn't be taken into account at
    477		 * the moment, then there is no need to update the devfreq's
    478		 * state because ISR will re-check CPU's frequency on the
    479		 * next interrupt.
    480		 */
    481		if (old == new)
    482			return NOTIFY_OK;
    483	}
    484
    485	/*
    486	 * CPUFreq driver should support CPUFREQ_ASYNC_NOTIFICATION in order
    487	 * to allow asynchronous notifications. This means we can't block
    488	 * here for too long, otherwise CPUFreq's core will complain with a
    489	 * warning splat.
    490	 */
    491	delay = msecs_to_jiffies(ACTMON_SAMPLING_PERIOD);
    492	schedule_delayed_work(&tegra->cpufreq_update_work, delay);
    493
    494	return NOTIFY_OK;
    495}
    496
    497static void tegra_actmon_configure_device(struct tegra_devfreq *tegra,
    498					  struct tegra_devfreq_device *dev)
    499{
    500	u32 val = 0;
    501
    502	/* reset boosting on governor's restart */
    503	dev->boost_freq = 0;
    504
    505	dev->target_freq = tegra->cur_freq;
    506
    507	dev->avg_count = tegra->cur_freq * tegra->devfreq->profile->polling_ms;
    508	device_writel(dev, dev->avg_count, ACTMON_DEV_INIT_AVG);
    509
    510	tegra_devfreq_update_avg_wmark(tegra, dev);
    511	tegra_devfreq_update_wmark(tegra, dev);
    512
    513	device_writel(dev, tegra->soc->count_weight, ACTMON_DEV_COUNT_WEIGHT);
    514	device_writel(dev, ACTMON_INTR_STATUS_CLEAR, ACTMON_DEV_INTR_STATUS);
    515
    516	val |= ACTMON_DEV_CTRL_ENB_PERIODIC;
    517	val |= (ACTMON_AVERAGE_WINDOW_LOG2 - 1)
    518		<< ACTMON_DEV_CTRL_K_VAL_SHIFT;
    519	val |= (ACTMON_BELOW_WMARK_WINDOW - 1)
    520		<< ACTMON_DEV_CTRL_CONSECUTIVE_BELOW_WMARK_NUM_SHIFT;
    521	val |= (ACTMON_ABOVE_WMARK_WINDOW - 1)
    522		<< ACTMON_DEV_CTRL_CONSECUTIVE_ABOVE_WMARK_NUM_SHIFT;
    523	val |= ACTMON_DEV_CTRL_AVG_ABOVE_WMARK_EN;
    524	val |= ACTMON_DEV_CTRL_AVG_BELOW_WMARK_EN;
    525	val |= ACTMON_DEV_CTRL_CONSECUTIVE_ABOVE_WMARK_EN;
    526	val |= ACTMON_DEV_CTRL_ENB;
    527
    528	device_writel(dev, val, ACTMON_DEV_CTRL);
    529}
    530
    531static void tegra_actmon_stop_devices(struct tegra_devfreq *tegra)
    532{
    533	struct tegra_devfreq_device *dev = tegra->devices;
    534	unsigned int i;
    535
    536	for (i = 0; i < ARRAY_SIZE(tegra->devices); i++, dev++) {
    537		device_writel(dev, ACTMON_DEV_CTRL_STOP, ACTMON_DEV_CTRL);
    538		device_writel(dev, ACTMON_INTR_STATUS_CLEAR,
    539			      ACTMON_DEV_INTR_STATUS);
    540	}
    541}
    542
    543static int tegra_actmon_resume(struct tegra_devfreq *tegra)
    544{
    545	unsigned int i;
    546	int err;
    547
    548	if (!tegra->devfreq->profile->polling_ms || !tegra->started)
    549		return 0;
    550
    551	actmon_writel(tegra, tegra->devfreq->profile->polling_ms - 1,
    552		      ACTMON_GLB_PERIOD_CTRL);
    553
    554	/*
    555	 * CLK notifications are needed in order to reconfigure the upper
    556	 * consecutive watermark in accordance to the actual clock rate
    557	 * to avoid unnecessary upper interrupts.
    558	 */
    559	err = clk_notifier_register(tegra->emc_clock,
    560				    &tegra->clk_rate_change_nb);
    561	if (err) {
    562		dev_err(tegra->devfreq->dev.parent,
    563			"Failed to register rate change notifier\n");
    564		return err;
    565	}
    566
    567	tegra->cur_freq = clk_get_rate(tegra->emc_clock) / KHZ;
    568
    569	for (i = 0; i < ARRAY_SIZE(tegra->devices); i++)
    570		tegra_actmon_configure_device(tegra, &tegra->devices[i]);
    571
    572	/*
    573	 * We are estimating CPU's memory bandwidth requirement based on
    574	 * amount of memory accesses and system's load, judging by CPU's
    575	 * frequency. We also don't want to receive events about CPU's
    576	 * frequency transaction when governor is stopped, hence notifier
    577	 * is registered dynamically.
    578	 */
    579	err = cpufreq_register_notifier(&tegra->cpu_rate_change_nb,
    580					CPUFREQ_TRANSITION_NOTIFIER);
    581	if (err) {
    582		dev_err(tegra->devfreq->dev.parent,
    583			"Failed to register rate change notifier: %d\n", err);
    584		goto err_stop;
    585	}
    586
    587	enable_irq(tegra->irq);
    588
    589	return 0;
    590
    591err_stop:
    592	tegra_actmon_stop_devices(tegra);
    593
    594	clk_notifier_unregister(tegra->emc_clock, &tegra->clk_rate_change_nb);
    595
    596	return err;
    597}
    598
    599static int tegra_actmon_start(struct tegra_devfreq *tegra)
    600{
    601	int ret = 0;
    602
    603	if (!tegra->started) {
    604		tegra->started = true;
    605
    606		ret = tegra_actmon_resume(tegra);
    607		if (ret)
    608			tegra->started = false;
    609	}
    610
    611	return ret;
    612}
    613
    614static void tegra_actmon_pause(struct tegra_devfreq *tegra)
    615{
    616	if (!tegra->devfreq->profile->polling_ms || !tegra->started)
    617		return;
    618
    619	disable_irq(tegra->irq);
    620
    621	cpufreq_unregister_notifier(&tegra->cpu_rate_change_nb,
    622				    CPUFREQ_TRANSITION_NOTIFIER);
    623
    624	cancel_delayed_work_sync(&tegra->cpufreq_update_work);
    625
    626	tegra_actmon_stop_devices(tegra);
    627
    628	clk_notifier_unregister(tegra->emc_clock, &tegra->clk_rate_change_nb);
    629}
    630
    631static void tegra_actmon_stop(struct tegra_devfreq *tegra)
    632{
    633	tegra_actmon_pause(tegra);
    634	tegra->started = false;
    635}
    636
    637static int tegra_devfreq_target(struct device *dev, unsigned long *freq,
    638				u32 flags)
    639{
    640	struct dev_pm_opp *opp;
    641	int ret;
    642
    643	opp = devfreq_recommended_opp(dev, freq, flags);
    644	if (IS_ERR(opp)) {
    645		dev_err(dev, "Failed to find opp for %lu Hz\n", *freq);
    646		return PTR_ERR(opp);
    647	}
    648
    649	ret = dev_pm_opp_set_opp(dev, opp);
    650	dev_pm_opp_put(opp);
    651
    652	return ret;
    653}
    654
    655static int tegra_devfreq_get_dev_status(struct device *dev,
    656					struct devfreq_dev_status *stat)
    657{
    658	struct tegra_devfreq *tegra = dev_get_drvdata(dev);
    659	struct tegra_devfreq_device *actmon_dev;
    660	unsigned long cur_freq;
    661
    662	cur_freq = READ_ONCE(tegra->cur_freq);
    663
    664	/* To be used by the tegra governor */
    665	stat->private_data = tegra;
    666
    667	/* The below are to be used by the other governors */
    668	stat->current_frequency = cur_freq * KHZ;
    669
    670	actmon_dev = &tegra->devices[MCALL];
    671
    672	/* Number of cycles spent on memory access */
    673	stat->busy_time = device_readl(actmon_dev, ACTMON_DEV_AVG_COUNT);
    674
    675	/* The bus can be considered to be saturated way before 100% */
    676	stat->busy_time *= 100 / BUS_SATURATION_RATIO;
    677
    678	/* Number of cycles in a sampling period */
    679	stat->total_time = tegra->devfreq->profile->polling_ms * cur_freq;
    680
    681	stat->busy_time = min(stat->busy_time, stat->total_time);
    682
    683	return 0;
    684}
    685
    686static struct devfreq_dev_profile tegra_devfreq_profile = {
    687	.polling_ms	= ACTMON_SAMPLING_PERIOD,
    688	.target		= tegra_devfreq_target,
    689	.get_dev_status	= tegra_devfreq_get_dev_status,
    690	.is_cooling_device = true,
    691};
    692
    693static int tegra_governor_get_target(struct devfreq *devfreq,
    694				     unsigned long *freq)
    695{
    696	struct devfreq_dev_status *stat;
    697	struct tegra_devfreq *tegra;
    698	struct tegra_devfreq_device *dev;
    699	unsigned long target_freq = 0;
    700	unsigned int i;
    701	int err;
    702
    703	err = devfreq_update_stats(devfreq);
    704	if (err)
    705		return err;
    706
    707	stat = &devfreq->last_status;
    708
    709	tegra = stat->private_data;
    710
    711	for (i = 0; i < ARRAY_SIZE(tegra->devices); i++) {
    712		dev = &tegra->devices[i];
    713
    714		actmon_update_target(tegra, dev);
    715
    716		target_freq = max(target_freq, dev->target_freq);
    717	}
    718
    719	/*
    720	 * tegra-devfreq driver operates with KHz units, while OPP table
    721	 * entries use Hz units. Hence we need to convert the units for the
    722	 * devfreq core.
    723	 */
    724	*freq = target_freq * KHZ;
    725
    726	return 0;
    727}
    728
    729static int tegra_governor_event_handler(struct devfreq *devfreq,
    730					unsigned int event, void *data)
    731{
    732	struct tegra_devfreq *tegra = dev_get_drvdata(devfreq->dev.parent);
    733	unsigned int *new_delay = data;
    734	int ret = 0;
    735
    736	/*
    737	 * Couple devfreq-device with the governor early because it is
    738	 * needed at the moment of governor's start (used by ISR).
    739	 */
    740	tegra->devfreq = devfreq;
    741
    742	switch (event) {
    743	case DEVFREQ_GOV_START:
    744		devfreq_monitor_start(devfreq);
    745		ret = tegra_actmon_start(tegra);
    746		break;
    747
    748	case DEVFREQ_GOV_STOP:
    749		tegra_actmon_stop(tegra);
    750		devfreq_monitor_stop(devfreq);
    751		break;
    752
    753	case DEVFREQ_GOV_UPDATE_INTERVAL:
    754		/*
    755		 * ACTMON hardware supports up to 256 milliseconds for the
    756		 * sampling period.
    757		 */
    758		if (*new_delay > 256) {
    759			ret = -EINVAL;
    760			break;
    761		}
    762
    763		tegra_actmon_pause(tegra);
    764		devfreq_update_interval(devfreq, new_delay);
    765		ret = tegra_actmon_resume(tegra);
    766		break;
    767
    768	case DEVFREQ_GOV_SUSPEND:
    769		tegra_actmon_stop(tegra);
    770		devfreq_monitor_suspend(devfreq);
    771		break;
    772
    773	case DEVFREQ_GOV_RESUME:
    774		devfreq_monitor_resume(devfreq);
    775		ret = tegra_actmon_start(tegra);
    776		break;
    777	}
    778
    779	return ret;
    780}
    781
    782static struct devfreq_governor tegra_devfreq_governor = {
    783	.name = "tegra_actmon",
    784	.attrs = DEVFREQ_GOV_ATTR_POLLING_INTERVAL,
    785	.flags = DEVFREQ_GOV_FLAG_IMMUTABLE
    786		| DEVFREQ_GOV_FLAG_IRQ_DRIVEN,
    787	.get_target_freq = tegra_governor_get_target,
    788	.event_handler = tegra_governor_event_handler,
    789};
    790
    791static void devm_tegra_devfreq_deinit_hw(void *data)
    792{
    793	struct tegra_devfreq *tegra = data;
    794
    795	reset_control_reset(tegra->reset);
    796	clk_disable_unprepare(tegra->clock);
    797}
    798
    799static int devm_tegra_devfreq_init_hw(struct device *dev,
    800				      struct tegra_devfreq *tegra)
    801{
    802	int err;
    803
    804	err = clk_prepare_enable(tegra->clock);
    805	if (err) {
    806		dev_err(dev, "Failed to prepare and enable ACTMON clock\n");
    807		return err;
    808	}
    809
    810	err = devm_add_action_or_reset(dev, devm_tegra_devfreq_deinit_hw,
    811				       tegra);
    812	if (err)
    813		return err;
    814
    815	err = reset_control_reset(tegra->reset);
    816	if (err) {
    817		dev_err(dev, "Failed to reset hardware: %d\n", err);
    818		return err;
    819	}
    820
    821	return err;
    822}
    823
    824static int tegra_devfreq_probe(struct platform_device *pdev)
    825{
    826	u32 hw_version = BIT(tegra_sku_info.soc_speedo_id);
    827	struct tegra_devfreq_device *dev;
    828	struct tegra_devfreq *tegra;
    829	struct devfreq *devfreq;
    830	unsigned int i;
    831	long rate;
    832	int err;
    833
    834	tegra = devm_kzalloc(&pdev->dev, sizeof(*tegra), GFP_KERNEL);
    835	if (!tegra)
    836		return -ENOMEM;
    837
    838	tegra->soc = of_device_get_match_data(&pdev->dev);
    839
    840	tegra->regs = devm_platform_ioremap_resource(pdev, 0);
    841	if (IS_ERR(tegra->regs))
    842		return PTR_ERR(tegra->regs);
    843
    844	tegra->reset = devm_reset_control_get(&pdev->dev, "actmon");
    845	if (IS_ERR(tegra->reset)) {
    846		dev_err(&pdev->dev, "Failed to get reset\n");
    847		return PTR_ERR(tegra->reset);
    848	}
    849
    850	tegra->clock = devm_clk_get(&pdev->dev, "actmon");
    851	if (IS_ERR(tegra->clock)) {
    852		dev_err(&pdev->dev, "Failed to get actmon clock\n");
    853		return PTR_ERR(tegra->clock);
    854	}
    855
    856	tegra->emc_clock = devm_clk_get(&pdev->dev, "emc");
    857	if (IS_ERR(tegra->emc_clock))
    858		return dev_err_probe(&pdev->dev, PTR_ERR(tegra->emc_clock),
    859				     "Failed to get emc clock\n");
    860
    861	err = platform_get_irq(pdev, 0);
    862	if (err < 0)
    863		return err;
    864
    865	tegra->irq = err;
    866
    867	irq_set_status_flags(tegra->irq, IRQ_NOAUTOEN);
    868
    869	err = devm_request_threaded_irq(&pdev->dev, tegra->irq, NULL,
    870					actmon_thread_isr, IRQF_ONESHOT,
    871					"tegra-devfreq", tegra);
    872	if (err) {
    873		dev_err(&pdev->dev, "Interrupt request failed: %d\n", err);
    874		return err;
    875	}
    876
    877	err = devm_pm_opp_set_supported_hw(&pdev->dev, &hw_version, 1);
    878	if (err) {
    879		dev_err(&pdev->dev, "Failed to set supported HW: %d\n", err);
    880		return err;
    881	}
    882
    883	err = devm_pm_opp_of_add_table_noclk(&pdev->dev, 0);
    884	if (err) {
    885		dev_err(&pdev->dev, "Failed to add OPP table: %d\n", err);
    886		return err;
    887	}
    888
    889	err = devm_tegra_devfreq_init_hw(&pdev->dev, tegra);
    890	if (err)
    891		return err;
    892
    893	rate = clk_round_rate(tegra->emc_clock, ULONG_MAX);
    894	if (rate <= 0) {
    895		dev_err(&pdev->dev, "Failed to round clock rate: %ld\n", rate);
    896		return rate ?: -EINVAL;
    897	}
    898
    899	tegra->max_freq = rate / KHZ;
    900
    901	for (i = 0; i < ARRAY_SIZE(tegra->devices); i++) {
    902		dev = tegra->devices + i;
    903		dev->config = tegra->soc->configs + i;
    904		dev->regs = tegra->regs + dev->config->offset;
    905	}
    906
    907	platform_set_drvdata(pdev, tegra);
    908
    909	tegra->clk_rate_change_nb.notifier_call = tegra_actmon_clk_notify_cb;
    910	tegra->cpu_rate_change_nb.notifier_call = tegra_actmon_cpu_notify_cb;
    911
    912	INIT_DELAYED_WORK(&tegra->cpufreq_update_work,
    913			  tegra_actmon_delayed_update);
    914
    915	err = devm_devfreq_add_governor(&pdev->dev, &tegra_devfreq_governor);
    916	if (err) {
    917		dev_err(&pdev->dev, "Failed to add governor: %d\n", err);
    918		return err;
    919	}
    920
    921	tegra_devfreq_profile.initial_freq = clk_get_rate(tegra->emc_clock);
    922
    923	devfreq = devm_devfreq_add_device(&pdev->dev, &tegra_devfreq_profile,
    924					  "tegra_actmon", NULL);
    925	if (IS_ERR(devfreq))
    926		return PTR_ERR(devfreq);
    927
    928	return 0;
    929}
    930
    931static const struct tegra_devfreq_soc_data tegra124_soc = {
    932	.configs = tegra124_device_configs,
    933
    934	/*
    935	 * Activity counter is incremented every 256 memory transactions,
    936	 * and each transaction takes 4 EMC clocks.
    937	 */
    938	.count_weight = 4 * 256,
    939};
    940
    941static const struct tegra_devfreq_soc_data tegra30_soc = {
    942	.configs = tegra30_device_configs,
    943	.count_weight = 2 * 256,
    944};
    945
    946static const struct of_device_id tegra_devfreq_of_match[] = {
    947	{ .compatible = "nvidia,tegra30-actmon",  .data = &tegra30_soc, },
    948	{ .compatible = "nvidia,tegra124-actmon", .data = &tegra124_soc, },
    949	{ },
    950};
    951
    952MODULE_DEVICE_TABLE(of, tegra_devfreq_of_match);
    953
    954static struct platform_driver tegra_devfreq_driver = {
    955	.probe	= tegra_devfreq_probe,
    956	.driver = {
    957		.name = "tegra-devfreq",
    958		.of_match_table = tegra_devfreq_of_match,
    959	},
    960};
    961module_platform_driver(tegra_devfreq_driver);
    962
    963MODULE_LICENSE("GPL v2");
    964MODULE_DESCRIPTION("Tegra devfreq driver");
    965MODULE_AUTHOR("Tomeu Vizoso <tomeu.vizoso@collabora.com>");