cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

ep93xx_dma.c (39764B)


      1// SPDX-License-Identifier: GPL-2.0-or-later
      2/*
      3 * Driver for the Cirrus Logic EP93xx DMA Controller
      4 *
      5 * Copyright (C) 2011 Mika Westerberg
      6 *
      7 * DMA M2P implementation is based on the original
      8 * arch/arm/mach-ep93xx/dma-m2p.c which has following copyrights:
      9 *
     10 *   Copyright (C) 2006 Lennert Buytenhek <buytenh@wantstofly.org>
     11 *   Copyright (C) 2006 Applied Data Systems
     12 *   Copyright (C) 2009 Ryan Mallon <rmallon@gmail.com>
     13 *
     14 * This driver is based on dw_dmac and amba-pl08x drivers.
     15 */
     16
     17#include <linux/clk.h>
     18#include <linux/init.h>
     19#include <linux/interrupt.h>
     20#include <linux/dmaengine.h>
     21#include <linux/module.h>
     22#include <linux/mod_devicetable.h>
     23#include <linux/platform_device.h>
     24#include <linux/slab.h>
     25
     26#include <linux/platform_data/dma-ep93xx.h>
     27
     28#include "dmaengine.h"
     29
     30/* M2P registers */
     31#define M2P_CONTROL			0x0000
     32#define M2P_CONTROL_STALLINT		BIT(0)
     33#define M2P_CONTROL_NFBINT		BIT(1)
     34#define M2P_CONTROL_CH_ERROR_INT	BIT(3)
     35#define M2P_CONTROL_ENABLE		BIT(4)
     36#define M2P_CONTROL_ICE			BIT(6)
     37
     38#define M2P_INTERRUPT			0x0004
     39#define M2P_INTERRUPT_STALL		BIT(0)
     40#define M2P_INTERRUPT_NFB		BIT(1)
     41#define M2P_INTERRUPT_ERROR		BIT(3)
     42
     43#define M2P_PPALLOC			0x0008
     44#define M2P_STATUS			0x000c
     45
     46#define M2P_MAXCNT0			0x0020
     47#define M2P_BASE0			0x0024
     48#define M2P_MAXCNT1			0x0030
     49#define M2P_BASE1			0x0034
     50
     51#define M2P_STATE_IDLE			0
     52#define M2P_STATE_STALL			1
     53#define M2P_STATE_ON			2
     54#define M2P_STATE_NEXT			3
     55
     56/* M2M registers */
     57#define M2M_CONTROL			0x0000
     58#define M2M_CONTROL_DONEINT		BIT(2)
     59#define M2M_CONTROL_ENABLE		BIT(3)
     60#define M2M_CONTROL_START		BIT(4)
     61#define M2M_CONTROL_DAH			BIT(11)
     62#define M2M_CONTROL_SAH			BIT(12)
     63#define M2M_CONTROL_PW_SHIFT		9
     64#define M2M_CONTROL_PW_8		(0 << M2M_CONTROL_PW_SHIFT)
     65#define M2M_CONTROL_PW_16		(1 << M2M_CONTROL_PW_SHIFT)
     66#define M2M_CONTROL_PW_32		(2 << M2M_CONTROL_PW_SHIFT)
     67#define M2M_CONTROL_PW_MASK		(3 << M2M_CONTROL_PW_SHIFT)
     68#define M2M_CONTROL_TM_SHIFT		13
     69#define M2M_CONTROL_TM_TX		(1 << M2M_CONTROL_TM_SHIFT)
     70#define M2M_CONTROL_TM_RX		(2 << M2M_CONTROL_TM_SHIFT)
     71#define M2M_CONTROL_NFBINT		BIT(21)
     72#define M2M_CONTROL_RSS_SHIFT		22
     73#define M2M_CONTROL_RSS_SSPRX		(1 << M2M_CONTROL_RSS_SHIFT)
     74#define M2M_CONTROL_RSS_SSPTX		(2 << M2M_CONTROL_RSS_SHIFT)
     75#define M2M_CONTROL_RSS_IDE		(3 << M2M_CONTROL_RSS_SHIFT)
     76#define M2M_CONTROL_NO_HDSK		BIT(24)
     77#define M2M_CONTROL_PWSC_SHIFT		25
     78
     79#define M2M_INTERRUPT			0x0004
     80#define M2M_INTERRUPT_MASK		6
     81
     82#define M2M_STATUS			0x000c
     83#define M2M_STATUS_CTL_SHIFT		1
     84#define M2M_STATUS_CTL_IDLE		(0 << M2M_STATUS_CTL_SHIFT)
     85#define M2M_STATUS_CTL_STALL		(1 << M2M_STATUS_CTL_SHIFT)
     86#define M2M_STATUS_CTL_MEMRD		(2 << M2M_STATUS_CTL_SHIFT)
     87#define M2M_STATUS_CTL_MEMWR		(3 << M2M_STATUS_CTL_SHIFT)
     88#define M2M_STATUS_CTL_BWCWAIT		(4 << M2M_STATUS_CTL_SHIFT)
     89#define M2M_STATUS_CTL_MASK		(7 << M2M_STATUS_CTL_SHIFT)
     90#define M2M_STATUS_BUF_SHIFT		4
     91#define M2M_STATUS_BUF_NO		(0 << M2M_STATUS_BUF_SHIFT)
     92#define M2M_STATUS_BUF_ON		(1 << M2M_STATUS_BUF_SHIFT)
     93#define M2M_STATUS_BUF_NEXT		(2 << M2M_STATUS_BUF_SHIFT)
     94#define M2M_STATUS_BUF_MASK		(3 << M2M_STATUS_BUF_SHIFT)
     95#define M2M_STATUS_DONE			BIT(6)
     96
     97#define M2M_BCR0			0x0010
     98#define M2M_BCR1			0x0014
     99#define M2M_SAR_BASE0			0x0018
    100#define M2M_SAR_BASE1			0x001c
    101#define M2M_DAR_BASE0			0x002c
    102#define M2M_DAR_BASE1			0x0030
    103
    104#define DMA_MAX_CHAN_BYTES		0xffff
    105#define DMA_MAX_CHAN_DESCRIPTORS	32
    106
    107struct ep93xx_dma_engine;
    108static int ep93xx_dma_slave_config_write(struct dma_chan *chan,
    109					 enum dma_transfer_direction dir,
    110					 struct dma_slave_config *config);
    111
    112/**
    113 * struct ep93xx_dma_desc - EP93xx specific transaction descriptor
    114 * @src_addr: source address of the transaction
    115 * @dst_addr: destination address of the transaction
    116 * @size: size of the transaction (in bytes)
    117 * @complete: this descriptor is completed
    118 * @txd: dmaengine API descriptor
    119 * @tx_list: list of linked descriptors
    120 * @node: link used for putting this into a channel queue
    121 */
    122struct ep93xx_dma_desc {
    123	u32				src_addr;
    124	u32				dst_addr;
    125	size_t				size;
    126	bool				complete;
    127	struct dma_async_tx_descriptor	txd;
    128	struct list_head		tx_list;
    129	struct list_head		node;
    130};
    131
    132/**
    133 * struct ep93xx_dma_chan - an EP93xx DMA M2P/M2M channel
    134 * @chan: dmaengine API channel
    135 * @edma: pointer to the engine device
    136 * @regs: memory mapped registers
    137 * @irq: interrupt number of the channel
    138 * @clk: clock used by this channel
    139 * @tasklet: channel specific tasklet used for callbacks
    140 * @lock: lock protecting the fields following
    141 * @flags: flags for the channel
    142 * @buffer: which buffer to use next (0/1)
    143 * @active: flattened chain of descriptors currently being processed
    144 * @queue: pending descriptors which are handled next
    145 * @free_list: list of free descriptors which can be used
    146 * @runtime_addr: physical address currently used as dest/src (M2M only). This
    147 *                is set via .device_config before slave operation is
    148 *                prepared
    149 * @runtime_ctrl: M2M runtime values for the control register.
    150 * @slave_config: slave configuration
    151 *
    152 * As EP93xx DMA controller doesn't support real chained DMA descriptors we
    153 * will have slightly different scheme here: @active points to a head of
    154 * flattened DMA descriptor chain.
    155 *
    156 * @queue holds pending transactions. These are linked through the first
    157 * descriptor in the chain. When a descriptor is moved to the @active queue,
    158 * the first and chained descriptors are flattened into a single list.
    159 *
    160 * @chan.private holds pointer to &struct ep93xx_dma_data which contains
    161 * necessary channel configuration information. For memcpy channels this must
    162 * be %NULL.
    163 */
    164struct ep93xx_dma_chan {
    165	struct dma_chan			chan;
    166	const struct ep93xx_dma_engine	*edma;
    167	void __iomem			*regs;
    168	int				irq;
    169	struct clk			*clk;
    170	struct tasklet_struct		tasklet;
    171	/* protects the fields following */
    172	spinlock_t			lock;
    173	unsigned long			flags;
    174/* Channel is configured for cyclic transfers */
    175#define EP93XX_DMA_IS_CYCLIC		0
    176
    177	int				buffer;
    178	struct list_head		active;
    179	struct list_head		queue;
    180	struct list_head		free_list;
    181	u32				runtime_addr;
    182	u32				runtime_ctrl;
    183	struct dma_slave_config		slave_config;
    184};
    185
    186/**
    187 * struct ep93xx_dma_engine - the EP93xx DMA engine instance
    188 * @dma_dev: holds the dmaengine device
    189 * @m2m: is this an M2M or M2P device
    190 * @hw_setup: method which sets the channel up for operation
    191 * @hw_synchronize: synchronizes DMA channel termination to current context
    192 * @hw_shutdown: shuts the channel down and flushes whatever is left
    193 * @hw_submit: pushes active descriptor(s) to the hardware
    194 * @hw_interrupt: handle the interrupt
    195 * @num_channels: number of channels for this instance
    196 * @channels: array of channels
    197 *
    198 * There is one instance of this struct for the M2P channels and one for the
    199 * M2M channels. hw_xxx() methods are used to perform operations which are
    200 * different on M2M and M2P channels. These methods are called with channel
    201 * lock held and interrupts disabled so they cannot sleep.
    202 */
    203struct ep93xx_dma_engine {
    204	struct dma_device	dma_dev;
    205	bool			m2m;
    206	int			(*hw_setup)(struct ep93xx_dma_chan *);
    207	void			(*hw_synchronize)(struct ep93xx_dma_chan *);
    208	void			(*hw_shutdown)(struct ep93xx_dma_chan *);
    209	void			(*hw_submit)(struct ep93xx_dma_chan *);
    210	int			(*hw_interrupt)(struct ep93xx_dma_chan *);
    211#define INTERRUPT_UNKNOWN	0
    212#define INTERRUPT_DONE		1
    213#define INTERRUPT_NEXT_BUFFER	2
    214
    215	size_t			num_channels;
    216	struct ep93xx_dma_chan	channels[];
    217};
    218
    219static inline struct device *chan2dev(struct ep93xx_dma_chan *edmac)
    220{
    221	return &edmac->chan.dev->device;
    222}
    223
    224static struct ep93xx_dma_chan *to_ep93xx_dma_chan(struct dma_chan *chan)
    225{
    226	return container_of(chan, struct ep93xx_dma_chan, chan);
    227}
    228
    229/**
    230 * ep93xx_dma_set_active - set new active descriptor chain
    231 * @edmac: channel
    232 * @desc: head of the new active descriptor chain
    233 *
    234 * Sets @desc to be the head of the new active descriptor chain. This is the
    235 * chain which is processed next. The active list must be empty before calling
    236 * this function.
    237 *
    238 * Called with @edmac->lock held and interrupts disabled.
    239 */
    240static void ep93xx_dma_set_active(struct ep93xx_dma_chan *edmac,
    241				  struct ep93xx_dma_desc *desc)
    242{
    243	BUG_ON(!list_empty(&edmac->active));
    244
    245	list_add_tail(&desc->node, &edmac->active);
    246
    247	/* Flatten the @desc->tx_list chain into @edmac->active list */
    248	while (!list_empty(&desc->tx_list)) {
    249		struct ep93xx_dma_desc *d = list_first_entry(&desc->tx_list,
    250			struct ep93xx_dma_desc, node);
    251
    252		/*
    253		 * We copy the callback parameters from the first descriptor
    254		 * to all the chained descriptors. This way we can call the
    255		 * callback without having to find out the first descriptor in
    256		 * the chain. Useful for cyclic transfers.
    257		 */
    258		d->txd.callback = desc->txd.callback;
    259		d->txd.callback_param = desc->txd.callback_param;
    260
    261		list_move_tail(&d->node, &edmac->active);
    262	}
    263}
    264
    265/* Called with @edmac->lock held and interrupts disabled */
    266static struct ep93xx_dma_desc *
    267ep93xx_dma_get_active(struct ep93xx_dma_chan *edmac)
    268{
    269	return list_first_entry_or_null(&edmac->active,
    270					struct ep93xx_dma_desc, node);
    271}
    272
    273/**
    274 * ep93xx_dma_advance_active - advances to the next active descriptor
    275 * @edmac: channel
    276 *
    277 * Function advances active descriptor to the next in the @edmac->active and
    278 * returns %true if we still have descriptors in the chain to process.
    279 * Otherwise returns %false.
    280 *
    281 * When the channel is in cyclic mode always returns %true.
    282 *
    283 * Called with @edmac->lock held and interrupts disabled.
    284 */
    285static bool ep93xx_dma_advance_active(struct ep93xx_dma_chan *edmac)
    286{
    287	struct ep93xx_dma_desc *desc;
    288
    289	list_rotate_left(&edmac->active);
    290
    291	if (test_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags))
    292		return true;
    293
    294	desc = ep93xx_dma_get_active(edmac);
    295	if (!desc)
    296		return false;
    297
    298	/*
    299	 * If txd.cookie is set it means that we are back in the first
    300	 * descriptor in the chain and hence done with it.
    301	 */
    302	return !desc->txd.cookie;
    303}
    304
    305/*
    306 * M2P DMA implementation
    307 */
    308
    309static void m2p_set_control(struct ep93xx_dma_chan *edmac, u32 control)
    310{
    311	writel(control, edmac->regs + M2P_CONTROL);
    312	/*
    313	 * EP93xx User's Guide states that we must perform a dummy read after
    314	 * write to the control register.
    315	 */
    316	readl(edmac->regs + M2P_CONTROL);
    317}
    318
    319static int m2p_hw_setup(struct ep93xx_dma_chan *edmac)
    320{
    321	struct ep93xx_dma_data *data = edmac->chan.private;
    322	u32 control;
    323
    324	writel(data->port & 0xf, edmac->regs + M2P_PPALLOC);
    325
    326	control = M2P_CONTROL_CH_ERROR_INT | M2P_CONTROL_ICE
    327		| M2P_CONTROL_ENABLE;
    328	m2p_set_control(edmac, control);
    329
    330	edmac->buffer = 0;
    331
    332	return 0;
    333}
    334
    335static inline u32 m2p_channel_state(struct ep93xx_dma_chan *edmac)
    336{
    337	return (readl(edmac->regs + M2P_STATUS) >> 4) & 0x3;
    338}
    339
    340static void m2p_hw_synchronize(struct ep93xx_dma_chan *edmac)
    341{
    342	unsigned long flags;
    343	u32 control;
    344
    345	spin_lock_irqsave(&edmac->lock, flags);
    346	control = readl(edmac->regs + M2P_CONTROL);
    347	control &= ~(M2P_CONTROL_STALLINT | M2P_CONTROL_NFBINT);
    348	m2p_set_control(edmac, control);
    349	spin_unlock_irqrestore(&edmac->lock, flags);
    350
    351	while (m2p_channel_state(edmac) >= M2P_STATE_ON)
    352		schedule();
    353}
    354
    355static void m2p_hw_shutdown(struct ep93xx_dma_chan *edmac)
    356{
    357	m2p_set_control(edmac, 0);
    358
    359	while (m2p_channel_state(edmac) != M2P_STATE_IDLE)
    360		dev_warn(chan2dev(edmac), "M2P: Not yet IDLE\n");
    361}
    362
    363static void m2p_fill_desc(struct ep93xx_dma_chan *edmac)
    364{
    365	struct ep93xx_dma_desc *desc;
    366	u32 bus_addr;
    367
    368	desc = ep93xx_dma_get_active(edmac);
    369	if (!desc) {
    370		dev_warn(chan2dev(edmac), "M2P: empty descriptor list\n");
    371		return;
    372	}
    373
    374	if (ep93xx_dma_chan_direction(&edmac->chan) == DMA_MEM_TO_DEV)
    375		bus_addr = desc->src_addr;
    376	else
    377		bus_addr = desc->dst_addr;
    378
    379	if (edmac->buffer == 0) {
    380		writel(desc->size, edmac->regs + M2P_MAXCNT0);
    381		writel(bus_addr, edmac->regs + M2P_BASE0);
    382	} else {
    383		writel(desc->size, edmac->regs + M2P_MAXCNT1);
    384		writel(bus_addr, edmac->regs + M2P_BASE1);
    385	}
    386
    387	edmac->buffer ^= 1;
    388}
    389
    390static void m2p_hw_submit(struct ep93xx_dma_chan *edmac)
    391{
    392	u32 control = readl(edmac->regs + M2P_CONTROL);
    393
    394	m2p_fill_desc(edmac);
    395	control |= M2P_CONTROL_STALLINT;
    396
    397	if (ep93xx_dma_advance_active(edmac)) {
    398		m2p_fill_desc(edmac);
    399		control |= M2P_CONTROL_NFBINT;
    400	}
    401
    402	m2p_set_control(edmac, control);
    403}
    404
    405static int m2p_hw_interrupt(struct ep93xx_dma_chan *edmac)
    406{
    407	u32 irq_status = readl(edmac->regs + M2P_INTERRUPT);
    408	u32 control;
    409
    410	if (irq_status & M2P_INTERRUPT_ERROR) {
    411		struct ep93xx_dma_desc *desc = ep93xx_dma_get_active(edmac);
    412
    413		/* Clear the error interrupt */
    414		writel(1, edmac->regs + M2P_INTERRUPT);
    415
    416		/*
    417		 * It seems that there is no easy way of reporting errors back
    418		 * to client so we just report the error here and continue as
    419		 * usual.
    420		 *
    421		 * Revisit this when there is a mechanism to report back the
    422		 * errors.
    423		 */
    424		dev_err(chan2dev(edmac),
    425			"DMA transfer failed! Details:\n"
    426			"\tcookie	: %d\n"
    427			"\tsrc_addr	: 0x%08x\n"
    428			"\tdst_addr	: 0x%08x\n"
    429			"\tsize		: %zu\n",
    430			desc->txd.cookie, desc->src_addr, desc->dst_addr,
    431			desc->size);
    432	}
    433
    434	/*
    435	 * Even latest E2 silicon revision sometimes assert STALL interrupt
    436	 * instead of NFB. Therefore we treat them equally, basing on the
    437	 * amount of data we still have to transfer.
    438	 */
    439	if (!(irq_status & (M2P_INTERRUPT_STALL | M2P_INTERRUPT_NFB)))
    440		return INTERRUPT_UNKNOWN;
    441
    442	if (ep93xx_dma_advance_active(edmac)) {
    443		m2p_fill_desc(edmac);
    444		return INTERRUPT_NEXT_BUFFER;
    445	}
    446
    447	/* Disable interrupts */
    448	control = readl(edmac->regs + M2P_CONTROL);
    449	control &= ~(M2P_CONTROL_STALLINT | M2P_CONTROL_NFBINT);
    450	m2p_set_control(edmac, control);
    451
    452	return INTERRUPT_DONE;
    453}
    454
    455/*
    456 * M2M DMA implementation
    457 */
    458
    459static int m2m_hw_setup(struct ep93xx_dma_chan *edmac)
    460{
    461	const struct ep93xx_dma_data *data = edmac->chan.private;
    462	u32 control = 0;
    463
    464	if (!data) {
    465		/* This is memcpy channel, nothing to configure */
    466		writel(control, edmac->regs + M2M_CONTROL);
    467		return 0;
    468	}
    469
    470	switch (data->port) {
    471	case EP93XX_DMA_SSP:
    472		/*
    473		 * This was found via experimenting - anything less than 5
    474		 * causes the channel to perform only a partial transfer which
    475		 * leads to problems since we don't get DONE interrupt then.
    476		 */
    477		control = (5 << M2M_CONTROL_PWSC_SHIFT);
    478		control |= M2M_CONTROL_NO_HDSK;
    479
    480		if (data->direction == DMA_MEM_TO_DEV) {
    481			control |= M2M_CONTROL_DAH;
    482			control |= M2M_CONTROL_TM_TX;
    483			control |= M2M_CONTROL_RSS_SSPTX;
    484		} else {
    485			control |= M2M_CONTROL_SAH;
    486			control |= M2M_CONTROL_TM_RX;
    487			control |= M2M_CONTROL_RSS_SSPRX;
    488		}
    489		break;
    490
    491	case EP93XX_DMA_IDE:
    492		/*
    493		 * This IDE part is totally untested. Values below are taken
    494		 * from the EP93xx Users's Guide and might not be correct.
    495		 */
    496		if (data->direction == DMA_MEM_TO_DEV) {
    497			/* Worst case from the UG */
    498			control = (3 << M2M_CONTROL_PWSC_SHIFT);
    499			control |= M2M_CONTROL_DAH;
    500			control |= M2M_CONTROL_TM_TX;
    501		} else {
    502			control = (2 << M2M_CONTROL_PWSC_SHIFT);
    503			control |= M2M_CONTROL_SAH;
    504			control |= M2M_CONTROL_TM_RX;
    505		}
    506
    507		control |= M2M_CONTROL_NO_HDSK;
    508		control |= M2M_CONTROL_RSS_IDE;
    509		control |= M2M_CONTROL_PW_16;
    510		break;
    511
    512	default:
    513		return -EINVAL;
    514	}
    515
    516	writel(control, edmac->regs + M2M_CONTROL);
    517	return 0;
    518}
    519
    520static void m2m_hw_shutdown(struct ep93xx_dma_chan *edmac)
    521{
    522	/* Just disable the channel */
    523	writel(0, edmac->regs + M2M_CONTROL);
    524}
    525
    526static void m2m_fill_desc(struct ep93xx_dma_chan *edmac)
    527{
    528	struct ep93xx_dma_desc *desc;
    529
    530	desc = ep93xx_dma_get_active(edmac);
    531	if (!desc) {
    532		dev_warn(chan2dev(edmac), "M2M: empty descriptor list\n");
    533		return;
    534	}
    535
    536	if (edmac->buffer == 0) {
    537		writel(desc->src_addr, edmac->regs + M2M_SAR_BASE0);
    538		writel(desc->dst_addr, edmac->regs + M2M_DAR_BASE0);
    539		writel(desc->size, edmac->regs + M2M_BCR0);
    540	} else {
    541		writel(desc->src_addr, edmac->regs + M2M_SAR_BASE1);
    542		writel(desc->dst_addr, edmac->regs + M2M_DAR_BASE1);
    543		writel(desc->size, edmac->regs + M2M_BCR1);
    544	}
    545
    546	edmac->buffer ^= 1;
    547}
    548
    549static void m2m_hw_submit(struct ep93xx_dma_chan *edmac)
    550{
    551	struct ep93xx_dma_data *data = edmac->chan.private;
    552	u32 control = readl(edmac->regs + M2M_CONTROL);
    553
    554	/*
    555	 * Since we allow clients to configure PW (peripheral width) we always
    556	 * clear PW bits here and then set them according what is given in
    557	 * the runtime configuration.
    558	 */
    559	control &= ~M2M_CONTROL_PW_MASK;
    560	control |= edmac->runtime_ctrl;
    561
    562	m2m_fill_desc(edmac);
    563	control |= M2M_CONTROL_DONEINT;
    564
    565	if (ep93xx_dma_advance_active(edmac)) {
    566		m2m_fill_desc(edmac);
    567		control |= M2M_CONTROL_NFBINT;
    568	}
    569
    570	/*
    571	 * Now we can finally enable the channel. For M2M channel this must be
    572	 * done _after_ the BCRx registers are programmed.
    573	 */
    574	control |= M2M_CONTROL_ENABLE;
    575	writel(control, edmac->regs + M2M_CONTROL);
    576
    577	if (!data) {
    578		/*
    579		 * For memcpy channels the software trigger must be asserted
    580		 * in order to start the memcpy operation.
    581		 */
    582		control |= M2M_CONTROL_START;
    583		writel(control, edmac->regs + M2M_CONTROL);
    584	}
    585}
    586
    587/*
    588 * According to EP93xx User's Guide, we should receive DONE interrupt when all
    589 * M2M DMA controller transactions complete normally. This is not always the
    590 * case - sometimes EP93xx M2M DMA asserts DONE interrupt when the DMA channel
    591 * is still running (channel Buffer FSM in DMA_BUF_ON state, and channel
    592 * Control FSM in DMA_MEM_RD state, observed at least in IDE-DMA operation).
    593 * In effect, disabling the channel when only DONE bit is set could stop
    594 * currently running DMA transfer. To avoid this, we use Buffer FSM and
    595 * Control FSM to check current state of DMA channel.
    596 */
    597static int m2m_hw_interrupt(struct ep93xx_dma_chan *edmac)
    598{
    599	u32 status = readl(edmac->regs + M2M_STATUS);
    600	u32 ctl_fsm = status & M2M_STATUS_CTL_MASK;
    601	u32 buf_fsm = status & M2M_STATUS_BUF_MASK;
    602	bool done = status & M2M_STATUS_DONE;
    603	bool last_done;
    604	u32 control;
    605	struct ep93xx_dma_desc *desc;
    606
    607	/* Accept only DONE and NFB interrupts */
    608	if (!(readl(edmac->regs + M2M_INTERRUPT) & M2M_INTERRUPT_MASK))
    609		return INTERRUPT_UNKNOWN;
    610
    611	if (done) {
    612		/* Clear the DONE bit */
    613		writel(0, edmac->regs + M2M_INTERRUPT);
    614	}
    615
    616	/*
    617	 * Check whether we are done with descriptors or not. This, together
    618	 * with DMA channel state, determines action to take in interrupt.
    619	 */
    620	desc = ep93xx_dma_get_active(edmac);
    621	last_done = !desc || desc->txd.cookie;
    622
    623	/*
    624	 * Use M2M DMA Buffer FSM and Control FSM to check current state of
    625	 * DMA channel. Using DONE and NFB bits from channel status register
    626	 * or bits from channel interrupt register is not reliable.
    627	 */
    628	if (!last_done &&
    629	    (buf_fsm == M2M_STATUS_BUF_NO ||
    630	     buf_fsm == M2M_STATUS_BUF_ON)) {
    631		/*
    632		 * Two buffers are ready for update when Buffer FSM is in
    633		 * DMA_NO_BUF state. Only one buffer can be prepared without
    634		 * disabling the channel or polling the DONE bit.
    635		 * To simplify things, always prepare only one buffer.
    636		 */
    637		if (ep93xx_dma_advance_active(edmac)) {
    638			m2m_fill_desc(edmac);
    639			if (done && !edmac->chan.private) {
    640				/* Software trigger for memcpy channel */
    641				control = readl(edmac->regs + M2M_CONTROL);
    642				control |= M2M_CONTROL_START;
    643				writel(control, edmac->regs + M2M_CONTROL);
    644			}
    645			return INTERRUPT_NEXT_BUFFER;
    646		} else {
    647			last_done = true;
    648		}
    649	}
    650
    651	/*
    652	 * Disable the channel only when Buffer FSM is in DMA_NO_BUF state
    653	 * and Control FSM is in DMA_STALL state.
    654	 */
    655	if (last_done &&
    656	    buf_fsm == M2M_STATUS_BUF_NO &&
    657	    ctl_fsm == M2M_STATUS_CTL_STALL) {
    658		/* Disable interrupts and the channel */
    659		control = readl(edmac->regs + M2M_CONTROL);
    660		control &= ~(M2M_CONTROL_DONEINT | M2M_CONTROL_NFBINT
    661			    | M2M_CONTROL_ENABLE);
    662		writel(control, edmac->regs + M2M_CONTROL);
    663		return INTERRUPT_DONE;
    664	}
    665
    666	/*
    667	 * Nothing to do this time.
    668	 */
    669	return INTERRUPT_NEXT_BUFFER;
    670}
    671
    672/*
    673 * DMA engine API implementation
    674 */
    675
    676static struct ep93xx_dma_desc *
    677ep93xx_dma_desc_get(struct ep93xx_dma_chan *edmac)
    678{
    679	struct ep93xx_dma_desc *desc, *_desc;
    680	struct ep93xx_dma_desc *ret = NULL;
    681	unsigned long flags;
    682
    683	spin_lock_irqsave(&edmac->lock, flags);
    684	list_for_each_entry_safe(desc, _desc, &edmac->free_list, node) {
    685		if (async_tx_test_ack(&desc->txd)) {
    686			list_del_init(&desc->node);
    687
    688			/* Re-initialize the descriptor */
    689			desc->src_addr = 0;
    690			desc->dst_addr = 0;
    691			desc->size = 0;
    692			desc->complete = false;
    693			desc->txd.cookie = 0;
    694			desc->txd.callback = NULL;
    695			desc->txd.callback_param = NULL;
    696
    697			ret = desc;
    698			break;
    699		}
    700	}
    701	spin_unlock_irqrestore(&edmac->lock, flags);
    702	return ret;
    703}
    704
    705static void ep93xx_dma_desc_put(struct ep93xx_dma_chan *edmac,
    706				struct ep93xx_dma_desc *desc)
    707{
    708	if (desc) {
    709		unsigned long flags;
    710
    711		spin_lock_irqsave(&edmac->lock, flags);
    712		list_splice_init(&desc->tx_list, &edmac->free_list);
    713		list_add(&desc->node, &edmac->free_list);
    714		spin_unlock_irqrestore(&edmac->lock, flags);
    715	}
    716}
    717
    718/**
    719 * ep93xx_dma_advance_work - start processing the next pending transaction
    720 * @edmac: channel
    721 *
    722 * If we have pending transactions queued and we are currently idling, this
    723 * function takes the next queued transaction from the @edmac->queue and
    724 * pushes it to the hardware for execution.
    725 */
    726static void ep93xx_dma_advance_work(struct ep93xx_dma_chan *edmac)
    727{
    728	struct ep93xx_dma_desc *new;
    729	unsigned long flags;
    730
    731	spin_lock_irqsave(&edmac->lock, flags);
    732	if (!list_empty(&edmac->active) || list_empty(&edmac->queue)) {
    733		spin_unlock_irqrestore(&edmac->lock, flags);
    734		return;
    735	}
    736
    737	/* Take the next descriptor from the pending queue */
    738	new = list_first_entry(&edmac->queue, struct ep93xx_dma_desc, node);
    739	list_del_init(&new->node);
    740
    741	ep93xx_dma_set_active(edmac, new);
    742
    743	/* Push it to the hardware */
    744	edmac->edma->hw_submit(edmac);
    745	spin_unlock_irqrestore(&edmac->lock, flags);
    746}
    747
    748static void ep93xx_dma_tasklet(struct tasklet_struct *t)
    749{
    750	struct ep93xx_dma_chan *edmac = from_tasklet(edmac, t, tasklet);
    751	struct ep93xx_dma_desc *desc, *d;
    752	struct dmaengine_desc_callback cb;
    753	LIST_HEAD(list);
    754
    755	memset(&cb, 0, sizeof(cb));
    756	spin_lock_irq(&edmac->lock);
    757	/*
    758	 * If dma_terminate_all() was called before we get to run, the active
    759	 * list has become empty. If that happens we aren't supposed to do
    760	 * anything more than call ep93xx_dma_advance_work().
    761	 */
    762	desc = ep93xx_dma_get_active(edmac);
    763	if (desc) {
    764		if (desc->complete) {
    765			/* mark descriptor complete for non cyclic case only */
    766			if (!test_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags))
    767				dma_cookie_complete(&desc->txd);
    768			list_splice_init(&edmac->active, &list);
    769		}
    770		dmaengine_desc_get_callback(&desc->txd, &cb);
    771	}
    772	spin_unlock_irq(&edmac->lock);
    773
    774	/* Pick up the next descriptor from the queue */
    775	ep93xx_dma_advance_work(edmac);
    776
    777	/* Now we can release all the chained descriptors */
    778	list_for_each_entry_safe(desc, d, &list, node) {
    779		dma_descriptor_unmap(&desc->txd);
    780		ep93xx_dma_desc_put(edmac, desc);
    781	}
    782
    783	dmaengine_desc_callback_invoke(&cb, NULL);
    784}
    785
    786static irqreturn_t ep93xx_dma_interrupt(int irq, void *dev_id)
    787{
    788	struct ep93xx_dma_chan *edmac = dev_id;
    789	struct ep93xx_dma_desc *desc;
    790	irqreturn_t ret = IRQ_HANDLED;
    791
    792	spin_lock(&edmac->lock);
    793
    794	desc = ep93xx_dma_get_active(edmac);
    795	if (!desc) {
    796		dev_warn(chan2dev(edmac),
    797			 "got interrupt while active list is empty\n");
    798		spin_unlock(&edmac->lock);
    799		return IRQ_NONE;
    800	}
    801
    802	switch (edmac->edma->hw_interrupt(edmac)) {
    803	case INTERRUPT_DONE:
    804		desc->complete = true;
    805		tasklet_schedule(&edmac->tasklet);
    806		break;
    807
    808	case INTERRUPT_NEXT_BUFFER:
    809		if (test_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags))
    810			tasklet_schedule(&edmac->tasklet);
    811		break;
    812
    813	default:
    814		dev_warn(chan2dev(edmac), "unknown interrupt!\n");
    815		ret = IRQ_NONE;
    816		break;
    817	}
    818
    819	spin_unlock(&edmac->lock);
    820	return ret;
    821}
    822
    823/**
    824 * ep93xx_dma_tx_submit - set the prepared descriptor(s) to be executed
    825 * @tx: descriptor to be executed
    826 *
    827 * Function will execute given descriptor on the hardware or if the hardware
    828 * is busy, queue the descriptor to be executed later on. Returns cookie which
    829 * can be used to poll the status of the descriptor.
    830 */
    831static dma_cookie_t ep93xx_dma_tx_submit(struct dma_async_tx_descriptor *tx)
    832{
    833	struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(tx->chan);
    834	struct ep93xx_dma_desc *desc;
    835	dma_cookie_t cookie;
    836	unsigned long flags;
    837
    838	spin_lock_irqsave(&edmac->lock, flags);
    839	cookie = dma_cookie_assign(tx);
    840
    841	desc = container_of(tx, struct ep93xx_dma_desc, txd);
    842
    843	/*
    844	 * If nothing is currently prosessed, we push this descriptor
    845	 * directly to the hardware. Otherwise we put the descriptor
    846	 * to the pending queue.
    847	 */
    848	if (list_empty(&edmac->active)) {
    849		ep93xx_dma_set_active(edmac, desc);
    850		edmac->edma->hw_submit(edmac);
    851	} else {
    852		list_add_tail(&desc->node, &edmac->queue);
    853	}
    854
    855	spin_unlock_irqrestore(&edmac->lock, flags);
    856	return cookie;
    857}
    858
    859/**
    860 * ep93xx_dma_alloc_chan_resources - allocate resources for the channel
    861 * @chan: channel to allocate resources
    862 *
    863 * Function allocates necessary resources for the given DMA channel and
    864 * returns number of allocated descriptors for the channel. Negative errno
    865 * is returned in case of failure.
    866 */
    867static int ep93xx_dma_alloc_chan_resources(struct dma_chan *chan)
    868{
    869	struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
    870	struct ep93xx_dma_data *data = chan->private;
    871	const char *name = dma_chan_name(chan);
    872	int ret, i;
    873
    874	/* Sanity check the channel parameters */
    875	if (!edmac->edma->m2m) {
    876		if (!data)
    877			return -EINVAL;
    878		if (data->port < EP93XX_DMA_I2S1 ||
    879		    data->port > EP93XX_DMA_IRDA)
    880			return -EINVAL;
    881		if (data->direction != ep93xx_dma_chan_direction(chan))
    882			return -EINVAL;
    883	} else {
    884		if (data) {
    885			switch (data->port) {
    886			case EP93XX_DMA_SSP:
    887			case EP93XX_DMA_IDE:
    888				if (!is_slave_direction(data->direction))
    889					return -EINVAL;
    890				break;
    891			default:
    892				return -EINVAL;
    893			}
    894		}
    895	}
    896
    897	if (data && data->name)
    898		name = data->name;
    899
    900	ret = clk_prepare_enable(edmac->clk);
    901	if (ret)
    902		return ret;
    903
    904	ret = request_irq(edmac->irq, ep93xx_dma_interrupt, 0, name, edmac);
    905	if (ret)
    906		goto fail_clk_disable;
    907
    908	spin_lock_irq(&edmac->lock);
    909	dma_cookie_init(&edmac->chan);
    910	ret = edmac->edma->hw_setup(edmac);
    911	spin_unlock_irq(&edmac->lock);
    912
    913	if (ret)
    914		goto fail_free_irq;
    915
    916	for (i = 0; i < DMA_MAX_CHAN_DESCRIPTORS; i++) {
    917		struct ep93xx_dma_desc *desc;
    918
    919		desc = kzalloc(sizeof(*desc), GFP_KERNEL);
    920		if (!desc) {
    921			dev_warn(chan2dev(edmac), "not enough descriptors\n");
    922			break;
    923		}
    924
    925		INIT_LIST_HEAD(&desc->tx_list);
    926
    927		dma_async_tx_descriptor_init(&desc->txd, chan);
    928		desc->txd.flags = DMA_CTRL_ACK;
    929		desc->txd.tx_submit = ep93xx_dma_tx_submit;
    930
    931		ep93xx_dma_desc_put(edmac, desc);
    932	}
    933
    934	return i;
    935
    936fail_free_irq:
    937	free_irq(edmac->irq, edmac);
    938fail_clk_disable:
    939	clk_disable_unprepare(edmac->clk);
    940
    941	return ret;
    942}
    943
    944/**
    945 * ep93xx_dma_free_chan_resources - release resources for the channel
    946 * @chan: channel
    947 *
    948 * Function releases all the resources allocated for the given channel.
    949 * The channel must be idle when this is called.
    950 */
    951static void ep93xx_dma_free_chan_resources(struct dma_chan *chan)
    952{
    953	struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
    954	struct ep93xx_dma_desc *desc, *d;
    955	unsigned long flags;
    956	LIST_HEAD(list);
    957
    958	BUG_ON(!list_empty(&edmac->active));
    959	BUG_ON(!list_empty(&edmac->queue));
    960
    961	spin_lock_irqsave(&edmac->lock, flags);
    962	edmac->edma->hw_shutdown(edmac);
    963	edmac->runtime_addr = 0;
    964	edmac->runtime_ctrl = 0;
    965	edmac->buffer = 0;
    966	list_splice_init(&edmac->free_list, &list);
    967	spin_unlock_irqrestore(&edmac->lock, flags);
    968
    969	list_for_each_entry_safe(desc, d, &list, node)
    970		kfree(desc);
    971
    972	clk_disable_unprepare(edmac->clk);
    973	free_irq(edmac->irq, edmac);
    974}
    975
    976/**
    977 * ep93xx_dma_prep_dma_memcpy - prepare a memcpy DMA operation
    978 * @chan: channel
    979 * @dest: destination bus address
    980 * @src: source bus address
    981 * @len: size of the transaction
    982 * @flags: flags for the descriptor
    983 *
    984 * Returns a valid DMA descriptor or %NULL in case of failure.
    985 */
    986static struct dma_async_tx_descriptor *
    987ep93xx_dma_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest,
    988			   dma_addr_t src, size_t len, unsigned long flags)
    989{
    990	struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
    991	struct ep93xx_dma_desc *desc, *first;
    992	size_t bytes, offset;
    993
    994	first = NULL;
    995	for (offset = 0; offset < len; offset += bytes) {
    996		desc = ep93xx_dma_desc_get(edmac);
    997		if (!desc) {
    998			dev_warn(chan2dev(edmac), "couldn't get descriptor\n");
    999			goto fail;
   1000		}
   1001
   1002		bytes = min_t(size_t, len - offset, DMA_MAX_CHAN_BYTES);
   1003
   1004		desc->src_addr = src + offset;
   1005		desc->dst_addr = dest + offset;
   1006		desc->size = bytes;
   1007
   1008		if (!first)
   1009			first = desc;
   1010		else
   1011			list_add_tail(&desc->node, &first->tx_list);
   1012	}
   1013
   1014	first->txd.cookie = -EBUSY;
   1015	first->txd.flags = flags;
   1016
   1017	return &first->txd;
   1018fail:
   1019	ep93xx_dma_desc_put(edmac, first);
   1020	return NULL;
   1021}
   1022
   1023/**
   1024 * ep93xx_dma_prep_slave_sg - prepare a slave DMA operation
   1025 * @chan: channel
   1026 * @sgl: list of buffers to transfer
   1027 * @sg_len: number of entries in @sgl
   1028 * @dir: direction of tha DMA transfer
   1029 * @flags: flags for the descriptor
   1030 * @context: operation context (ignored)
   1031 *
   1032 * Returns a valid DMA descriptor or %NULL in case of failure.
   1033 */
   1034static struct dma_async_tx_descriptor *
   1035ep93xx_dma_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
   1036			 unsigned int sg_len, enum dma_transfer_direction dir,
   1037			 unsigned long flags, void *context)
   1038{
   1039	struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
   1040	struct ep93xx_dma_desc *desc, *first;
   1041	struct scatterlist *sg;
   1042	int i;
   1043
   1044	if (!edmac->edma->m2m && dir != ep93xx_dma_chan_direction(chan)) {
   1045		dev_warn(chan2dev(edmac),
   1046			 "channel was configured with different direction\n");
   1047		return NULL;
   1048	}
   1049
   1050	if (test_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags)) {
   1051		dev_warn(chan2dev(edmac),
   1052			 "channel is already used for cyclic transfers\n");
   1053		return NULL;
   1054	}
   1055
   1056	ep93xx_dma_slave_config_write(chan, dir, &edmac->slave_config);
   1057
   1058	first = NULL;
   1059	for_each_sg(sgl, sg, sg_len, i) {
   1060		size_t len = sg_dma_len(sg);
   1061
   1062		if (len > DMA_MAX_CHAN_BYTES) {
   1063			dev_warn(chan2dev(edmac), "too big transfer size %zu\n",
   1064				 len);
   1065			goto fail;
   1066		}
   1067
   1068		desc = ep93xx_dma_desc_get(edmac);
   1069		if (!desc) {
   1070			dev_warn(chan2dev(edmac), "couldn't get descriptor\n");
   1071			goto fail;
   1072		}
   1073
   1074		if (dir == DMA_MEM_TO_DEV) {
   1075			desc->src_addr = sg_dma_address(sg);
   1076			desc->dst_addr = edmac->runtime_addr;
   1077		} else {
   1078			desc->src_addr = edmac->runtime_addr;
   1079			desc->dst_addr = sg_dma_address(sg);
   1080		}
   1081		desc->size = len;
   1082
   1083		if (!first)
   1084			first = desc;
   1085		else
   1086			list_add_tail(&desc->node, &first->tx_list);
   1087	}
   1088
   1089	first->txd.cookie = -EBUSY;
   1090	first->txd.flags = flags;
   1091
   1092	return &first->txd;
   1093
   1094fail:
   1095	ep93xx_dma_desc_put(edmac, first);
   1096	return NULL;
   1097}
   1098
   1099/**
   1100 * ep93xx_dma_prep_dma_cyclic - prepare a cyclic DMA operation
   1101 * @chan: channel
   1102 * @dma_addr: DMA mapped address of the buffer
   1103 * @buf_len: length of the buffer (in bytes)
   1104 * @period_len: length of a single period
   1105 * @dir: direction of the operation
   1106 * @flags: tx descriptor status flags
   1107 *
   1108 * Prepares a descriptor for cyclic DMA operation. This means that once the
   1109 * descriptor is submitted, we will be submitting in a @period_len sized
   1110 * buffers and calling callback once the period has been elapsed. Transfer
   1111 * terminates only when client calls dmaengine_terminate_all() for this
   1112 * channel.
   1113 *
   1114 * Returns a valid DMA descriptor or %NULL in case of failure.
   1115 */
   1116static struct dma_async_tx_descriptor *
   1117ep93xx_dma_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t dma_addr,
   1118			   size_t buf_len, size_t period_len,
   1119			   enum dma_transfer_direction dir, unsigned long flags)
   1120{
   1121	struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
   1122	struct ep93xx_dma_desc *desc, *first;
   1123	size_t offset = 0;
   1124
   1125	if (!edmac->edma->m2m && dir != ep93xx_dma_chan_direction(chan)) {
   1126		dev_warn(chan2dev(edmac),
   1127			 "channel was configured with different direction\n");
   1128		return NULL;
   1129	}
   1130
   1131	if (test_and_set_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags)) {
   1132		dev_warn(chan2dev(edmac),
   1133			 "channel is already used for cyclic transfers\n");
   1134		return NULL;
   1135	}
   1136
   1137	if (period_len > DMA_MAX_CHAN_BYTES) {
   1138		dev_warn(chan2dev(edmac), "too big period length %zu\n",
   1139			 period_len);
   1140		return NULL;
   1141	}
   1142
   1143	ep93xx_dma_slave_config_write(chan, dir, &edmac->slave_config);
   1144
   1145	/* Split the buffer into period size chunks */
   1146	first = NULL;
   1147	for (offset = 0; offset < buf_len; offset += period_len) {
   1148		desc = ep93xx_dma_desc_get(edmac);
   1149		if (!desc) {
   1150			dev_warn(chan2dev(edmac), "couldn't get descriptor\n");
   1151			goto fail;
   1152		}
   1153
   1154		if (dir == DMA_MEM_TO_DEV) {
   1155			desc->src_addr = dma_addr + offset;
   1156			desc->dst_addr = edmac->runtime_addr;
   1157		} else {
   1158			desc->src_addr = edmac->runtime_addr;
   1159			desc->dst_addr = dma_addr + offset;
   1160		}
   1161
   1162		desc->size = period_len;
   1163
   1164		if (!first)
   1165			first = desc;
   1166		else
   1167			list_add_tail(&desc->node, &first->tx_list);
   1168	}
   1169
   1170	first->txd.cookie = -EBUSY;
   1171
   1172	return &first->txd;
   1173
   1174fail:
   1175	ep93xx_dma_desc_put(edmac, first);
   1176	return NULL;
   1177}
   1178
   1179/**
   1180 * ep93xx_dma_synchronize - Synchronizes the termination of transfers to the
   1181 * current context.
   1182 * @chan: channel
   1183 *
   1184 * Synchronizes the DMA channel termination to the current context. When this
   1185 * function returns it is guaranteed that all transfers for previously issued
   1186 * descriptors have stopped and and it is safe to free the memory associated
   1187 * with them. Furthermore it is guaranteed that all complete callback functions
   1188 * for a previously submitted descriptor have finished running and it is safe to
   1189 * free resources accessed from within the complete callbacks.
   1190 */
   1191static void ep93xx_dma_synchronize(struct dma_chan *chan)
   1192{
   1193	struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
   1194
   1195	if (edmac->edma->hw_synchronize)
   1196		edmac->edma->hw_synchronize(edmac);
   1197}
   1198
   1199/**
   1200 * ep93xx_dma_terminate_all - terminate all transactions
   1201 * @chan: channel
   1202 *
   1203 * Stops all DMA transactions. All descriptors are put back to the
   1204 * @edmac->free_list and callbacks are _not_ called.
   1205 */
   1206static int ep93xx_dma_terminate_all(struct dma_chan *chan)
   1207{
   1208	struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
   1209	struct ep93xx_dma_desc *desc, *_d;
   1210	unsigned long flags;
   1211	LIST_HEAD(list);
   1212
   1213	spin_lock_irqsave(&edmac->lock, flags);
   1214	/* First we disable and flush the DMA channel */
   1215	edmac->edma->hw_shutdown(edmac);
   1216	clear_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags);
   1217	list_splice_init(&edmac->active, &list);
   1218	list_splice_init(&edmac->queue, &list);
   1219	/*
   1220	 * We then re-enable the channel. This way we can continue submitting
   1221	 * the descriptors by just calling ->hw_submit() again.
   1222	 */
   1223	edmac->edma->hw_setup(edmac);
   1224	spin_unlock_irqrestore(&edmac->lock, flags);
   1225
   1226	list_for_each_entry_safe(desc, _d, &list, node)
   1227		ep93xx_dma_desc_put(edmac, desc);
   1228
   1229	return 0;
   1230}
   1231
   1232static int ep93xx_dma_slave_config(struct dma_chan *chan,
   1233				   struct dma_slave_config *config)
   1234{
   1235	struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
   1236
   1237	memcpy(&edmac->slave_config, config, sizeof(*config));
   1238
   1239	return 0;
   1240}
   1241
   1242static int ep93xx_dma_slave_config_write(struct dma_chan *chan,
   1243					 enum dma_transfer_direction dir,
   1244					 struct dma_slave_config *config)
   1245{
   1246	struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
   1247	enum dma_slave_buswidth width;
   1248	unsigned long flags;
   1249	u32 addr, ctrl;
   1250
   1251	if (!edmac->edma->m2m)
   1252		return -EINVAL;
   1253
   1254	switch (dir) {
   1255	case DMA_DEV_TO_MEM:
   1256		width = config->src_addr_width;
   1257		addr = config->src_addr;
   1258		break;
   1259
   1260	case DMA_MEM_TO_DEV:
   1261		width = config->dst_addr_width;
   1262		addr = config->dst_addr;
   1263		break;
   1264
   1265	default:
   1266		return -EINVAL;
   1267	}
   1268
   1269	switch (width) {
   1270	case DMA_SLAVE_BUSWIDTH_1_BYTE:
   1271		ctrl = 0;
   1272		break;
   1273	case DMA_SLAVE_BUSWIDTH_2_BYTES:
   1274		ctrl = M2M_CONTROL_PW_16;
   1275		break;
   1276	case DMA_SLAVE_BUSWIDTH_4_BYTES:
   1277		ctrl = M2M_CONTROL_PW_32;
   1278		break;
   1279	default:
   1280		return -EINVAL;
   1281	}
   1282
   1283	spin_lock_irqsave(&edmac->lock, flags);
   1284	edmac->runtime_addr = addr;
   1285	edmac->runtime_ctrl = ctrl;
   1286	spin_unlock_irqrestore(&edmac->lock, flags);
   1287
   1288	return 0;
   1289}
   1290
   1291/**
   1292 * ep93xx_dma_tx_status - check if a transaction is completed
   1293 * @chan: channel
   1294 * @cookie: transaction specific cookie
   1295 * @state: state of the transaction is stored here if given
   1296 *
   1297 * This function can be used to query state of a given transaction.
   1298 */
   1299static enum dma_status ep93xx_dma_tx_status(struct dma_chan *chan,
   1300					    dma_cookie_t cookie,
   1301					    struct dma_tx_state *state)
   1302{
   1303	return dma_cookie_status(chan, cookie, state);
   1304}
   1305
   1306/**
   1307 * ep93xx_dma_issue_pending - push pending transactions to the hardware
   1308 * @chan: channel
   1309 *
   1310 * When this function is called, all pending transactions are pushed to the
   1311 * hardware and executed.
   1312 */
   1313static void ep93xx_dma_issue_pending(struct dma_chan *chan)
   1314{
   1315	ep93xx_dma_advance_work(to_ep93xx_dma_chan(chan));
   1316}
   1317
   1318static int __init ep93xx_dma_probe(struct platform_device *pdev)
   1319{
   1320	struct ep93xx_dma_platform_data *pdata = dev_get_platdata(&pdev->dev);
   1321	struct ep93xx_dma_engine *edma;
   1322	struct dma_device *dma_dev;
   1323	size_t edma_size;
   1324	int ret, i;
   1325
   1326	edma_size = pdata->num_channels * sizeof(struct ep93xx_dma_chan);
   1327	edma = kzalloc(sizeof(*edma) + edma_size, GFP_KERNEL);
   1328	if (!edma)
   1329		return -ENOMEM;
   1330
   1331	dma_dev = &edma->dma_dev;
   1332	edma->m2m = platform_get_device_id(pdev)->driver_data;
   1333	edma->num_channels = pdata->num_channels;
   1334
   1335	INIT_LIST_HEAD(&dma_dev->channels);
   1336	for (i = 0; i < pdata->num_channels; i++) {
   1337		const struct ep93xx_dma_chan_data *cdata = &pdata->channels[i];
   1338		struct ep93xx_dma_chan *edmac = &edma->channels[i];
   1339
   1340		edmac->chan.device = dma_dev;
   1341		edmac->regs = cdata->base;
   1342		edmac->irq = cdata->irq;
   1343		edmac->edma = edma;
   1344
   1345		edmac->clk = clk_get(NULL, cdata->name);
   1346		if (IS_ERR(edmac->clk)) {
   1347			dev_warn(&pdev->dev, "failed to get clock for %s\n",
   1348				 cdata->name);
   1349			continue;
   1350		}
   1351
   1352		spin_lock_init(&edmac->lock);
   1353		INIT_LIST_HEAD(&edmac->active);
   1354		INIT_LIST_HEAD(&edmac->queue);
   1355		INIT_LIST_HEAD(&edmac->free_list);
   1356		tasklet_setup(&edmac->tasklet, ep93xx_dma_tasklet);
   1357
   1358		list_add_tail(&edmac->chan.device_node,
   1359			      &dma_dev->channels);
   1360	}
   1361
   1362	dma_cap_zero(dma_dev->cap_mask);
   1363	dma_cap_set(DMA_SLAVE, dma_dev->cap_mask);
   1364	dma_cap_set(DMA_CYCLIC, dma_dev->cap_mask);
   1365
   1366	dma_dev->dev = &pdev->dev;
   1367	dma_dev->device_alloc_chan_resources = ep93xx_dma_alloc_chan_resources;
   1368	dma_dev->device_free_chan_resources = ep93xx_dma_free_chan_resources;
   1369	dma_dev->device_prep_slave_sg = ep93xx_dma_prep_slave_sg;
   1370	dma_dev->device_prep_dma_cyclic = ep93xx_dma_prep_dma_cyclic;
   1371	dma_dev->device_config = ep93xx_dma_slave_config;
   1372	dma_dev->device_synchronize = ep93xx_dma_synchronize;
   1373	dma_dev->device_terminate_all = ep93xx_dma_terminate_all;
   1374	dma_dev->device_issue_pending = ep93xx_dma_issue_pending;
   1375	dma_dev->device_tx_status = ep93xx_dma_tx_status;
   1376
   1377	dma_set_max_seg_size(dma_dev->dev, DMA_MAX_CHAN_BYTES);
   1378
   1379	if (edma->m2m) {
   1380		dma_cap_set(DMA_MEMCPY, dma_dev->cap_mask);
   1381		dma_dev->device_prep_dma_memcpy = ep93xx_dma_prep_dma_memcpy;
   1382
   1383		edma->hw_setup = m2m_hw_setup;
   1384		edma->hw_shutdown = m2m_hw_shutdown;
   1385		edma->hw_submit = m2m_hw_submit;
   1386		edma->hw_interrupt = m2m_hw_interrupt;
   1387	} else {
   1388		dma_cap_set(DMA_PRIVATE, dma_dev->cap_mask);
   1389
   1390		edma->hw_synchronize = m2p_hw_synchronize;
   1391		edma->hw_setup = m2p_hw_setup;
   1392		edma->hw_shutdown = m2p_hw_shutdown;
   1393		edma->hw_submit = m2p_hw_submit;
   1394		edma->hw_interrupt = m2p_hw_interrupt;
   1395	}
   1396
   1397	ret = dma_async_device_register(dma_dev);
   1398	if (unlikely(ret)) {
   1399		for (i = 0; i < edma->num_channels; i++) {
   1400			struct ep93xx_dma_chan *edmac = &edma->channels[i];
   1401			if (!IS_ERR_OR_NULL(edmac->clk))
   1402				clk_put(edmac->clk);
   1403		}
   1404		kfree(edma);
   1405	} else {
   1406		dev_info(dma_dev->dev, "EP93xx M2%s DMA ready\n",
   1407			 edma->m2m ? "M" : "P");
   1408	}
   1409
   1410	return ret;
   1411}
   1412
   1413static const struct platform_device_id ep93xx_dma_driver_ids[] = {
   1414	{ "ep93xx-dma-m2p", 0 },
   1415	{ "ep93xx-dma-m2m", 1 },
   1416	{ },
   1417};
   1418
   1419static struct platform_driver ep93xx_dma_driver = {
   1420	.driver		= {
   1421		.name	= "ep93xx-dma",
   1422	},
   1423	.id_table	= ep93xx_dma_driver_ids,
   1424};
   1425
   1426static int __init ep93xx_dma_module_init(void)
   1427{
   1428	return platform_driver_probe(&ep93xx_dma_driver, ep93xx_dma_probe);
   1429}
   1430subsys_initcall(ep93xx_dma_module_init);
   1431
   1432MODULE_AUTHOR("Mika Westerberg <mika.westerberg@iki.fi>");
   1433MODULE_DESCRIPTION("EP93xx DMA driver");
   1434MODULE_LICENSE("GPL");