cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

fsl_raid.c (25645B)


      1/*
      2 * drivers/dma/fsl_raid.c
      3 *
      4 * Freescale RAID Engine device driver
      5 *
      6 * Author:
      7 *	Harninder Rai <harninder.rai@freescale.com>
      8 *	Naveen Burmi <naveenburmi@freescale.com>
      9 *
     10 * Rewrite:
     11 *	Xuelin Shi <xuelin.shi@freescale.com>
     12 *
     13 * Copyright (c) 2010-2014 Freescale Semiconductor, Inc.
     14 *
     15 * Redistribution and use in source and binary forms, with or without
     16 * modification, are permitted provided that the following conditions are met:
     17 *     * Redistributions of source code must retain the above copyright
     18 *       notice, this list of conditions and the following disclaimer.
     19 *     * Redistributions in binary form must reproduce the above copyright
     20 *       notice, this list of conditions and the following disclaimer in the
     21 *       documentation and/or other materials provided with the distribution.
     22 *     * Neither the name of Freescale Semiconductor nor the
     23 *       names of its contributors may be used to endorse or promote products
     24 *       derived from this software without specific prior written permission.
     25 *
     26 * ALTERNATIVELY, this software may be distributed under the terms of the
     27 * GNU General Public License ("GPL") as published by the Free Software
     28 * Foundation, either version 2 of that License or (at your option) any
     29 * later version.
     30 *
     31 * THIS SOFTWARE IS PROVIDED BY Freescale Semiconductor ``AS IS'' AND ANY
     32 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
     33 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
     34 * DISCLAIMED. IN NO EVENT SHALL Freescale Semiconductor BE LIABLE FOR ANY
     35 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     36 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
     37 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
     38 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     39 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
     40 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     41 *
     42 * Theory of operation:
     43 *
     44 * General capabilities:
     45 *	RAID Engine (RE) block is capable of offloading XOR, memcpy and P/Q
     46 *	calculations required in RAID5 and RAID6 operations. RE driver
     47 *	registers with Linux's ASYNC layer as dma driver. RE hardware
     48 *	maintains strict ordering of the requests through chained
     49 *	command queueing.
     50 *
     51 * Data flow:
     52 *	Software RAID layer of Linux (MD layer) maintains RAID partitions,
     53 *	strips, stripes etc. It sends requests to the underlying ASYNC layer
     54 *	which further passes it to RE driver. ASYNC layer decides which request
     55 *	goes to which job ring of RE hardware. For every request processed by
     56 *	RAID Engine, driver gets an interrupt unless coalescing is set. The
     57 *	per job ring interrupt handler checks the status register for errors,
     58 *	clears the interrupt and leave the post interrupt processing to the irq
     59 *	thread.
     60 */
     61#include <linux/interrupt.h>
     62#include <linux/module.h>
     63#include <linux/of_irq.h>
     64#include <linux/of_address.h>
     65#include <linux/of_platform.h>
     66#include <linux/dma-mapping.h>
     67#include <linux/dmapool.h>
     68#include <linux/dmaengine.h>
     69#include <linux/io.h>
     70#include <linux/spinlock.h>
     71#include <linux/slab.h>
     72
     73#include "dmaengine.h"
     74#include "fsl_raid.h"
     75
     76#define FSL_RE_MAX_XOR_SRCS	16
     77#define FSL_RE_MAX_PQ_SRCS	16
     78#define FSL_RE_MIN_DESCS	256
     79#define FSL_RE_MAX_DESCS	(4 * FSL_RE_MIN_DESCS)
     80#define FSL_RE_FRAME_FORMAT	0x1
     81#define FSL_RE_MAX_DATA_LEN	(1024*1024)
     82
     83#define to_fsl_re_dma_desc(tx) container_of(tx, struct fsl_re_desc, async_tx)
     84
     85/* Add descriptors into per chan software queue - submit_q */
     86static dma_cookie_t fsl_re_tx_submit(struct dma_async_tx_descriptor *tx)
     87{
     88	struct fsl_re_desc *desc;
     89	struct fsl_re_chan *re_chan;
     90	dma_cookie_t cookie;
     91	unsigned long flags;
     92
     93	desc = to_fsl_re_dma_desc(tx);
     94	re_chan = container_of(tx->chan, struct fsl_re_chan, chan);
     95
     96	spin_lock_irqsave(&re_chan->desc_lock, flags);
     97	cookie = dma_cookie_assign(tx);
     98	list_add_tail(&desc->node, &re_chan->submit_q);
     99	spin_unlock_irqrestore(&re_chan->desc_lock, flags);
    100
    101	return cookie;
    102}
    103
    104/* Copy descriptor from per chan software queue into hardware job ring */
    105static void fsl_re_issue_pending(struct dma_chan *chan)
    106{
    107	struct fsl_re_chan *re_chan;
    108	int avail;
    109	struct fsl_re_desc *desc, *_desc;
    110	unsigned long flags;
    111
    112	re_chan = container_of(chan, struct fsl_re_chan, chan);
    113
    114	spin_lock_irqsave(&re_chan->desc_lock, flags);
    115	avail = FSL_RE_SLOT_AVAIL(
    116		in_be32(&re_chan->jrregs->inbring_slot_avail));
    117
    118	list_for_each_entry_safe(desc, _desc, &re_chan->submit_q, node) {
    119		if (!avail)
    120			break;
    121
    122		list_move_tail(&desc->node, &re_chan->active_q);
    123
    124		memcpy(&re_chan->inb_ring_virt_addr[re_chan->inb_count],
    125		       &desc->hwdesc, sizeof(struct fsl_re_hw_desc));
    126
    127		re_chan->inb_count = (re_chan->inb_count + 1) &
    128						FSL_RE_RING_SIZE_MASK;
    129		out_be32(&re_chan->jrregs->inbring_add_job, FSL_RE_ADD_JOB(1));
    130		avail--;
    131	}
    132	spin_unlock_irqrestore(&re_chan->desc_lock, flags);
    133}
    134
    135static void fsl_re_desc_done(struct fsl_re_desc *desc)
    136{
    137	dma_cookie_complete(&desc->async_tx);
    138	dma_descriptor_unmap(&desc->async_tx);
    139	dmaengine_desc_get_callback_invoke(&desc->async_tx, NULL);
    140}
    141
    142static void fsl_re_cleanup_descs(struct fsl_re_chan *re_chan)
    143{
    144	struct fsl_re_desc *desc, *_desc;
    145	unsigned long flags;
    146
    147	spin_lock_irqsave(&re_chan->desc_lock, flags);
    148	list_for_each_entry_safe(desc, _desc, &re_chan->ack_q, node) {
    149		if (async_tx_test_ack(&desc->async_tx))
    150			list_move_tail(&desc->node, &re_chan->free_q);
    151	}
    152	spin_unlock_irqrestore(&re_chan->desc_lock, flags);
    153
    154	fsl_re_issue_pending(&re_chan->chan);
    155}
    156
    157static void fsl_re_dequeue(struct tasklet_struct *t)
    158{
    159	struct fsl_re_chan *re_chan = from_tasklet(re_chan, t, irqtask);
    160	struct fsl_re_desc *desc, *_desc;
    161	struct fsl_re_hw_desc *hwdesc;
    162	unsigned long flags;
    163	unsigned int count, oub_count;
    164	int found;
    165
    166	fsl_re_cleanup_descs(re_chan);
    167
    168	spin_lock_irqsave(&re_chan->desc_lock, flags);
    169	count =	FSL_RE_SLOT_FULL(in_be32(&re_chan->jrregs->oubring_slot_full));
    170	while (count--) {
    171		found = 0;
    172		hwdesc = &re_chan->oub_ring_virt_addr[re_chan->oub_count];
    173		list_for_each_entry_safe(desc, _desc, &re_chan->active_q,
    174					 node) {
    175			/* compare the hw dma addr to find the completed */
    176			if (desc->hwdesc.lbea32 == hwdesc->lbea32 &&
    177			    desc->hwdesc.addr_low == hwdesc->addr_low) {
    178				found = 1;
    179				break;
    180			}
    181		}
    182
    183		if (found) {
    184			fsl_re_desc_done(desc);
    185			list_move_tail(&desc->node, &re_chan->ack_q);
    186		} else {
    187			dev_err(re_chan->dev,
    188				"found hwdesc not in sw queue, discard it\n");
    189		}
    190
    191		oub_count = (re_chan->oub_count + 1) & FSL_RE_RING_SIZE_MASK;
    192		re_chan->oub_count = oub_count;
    193
    194		out_be32(&re_chan->jrregs->oubring_job_rmvd,
    195			 FSL_RE_RMVD_JOB(1));
    196	}
    197	spin_unlock_irqrestore(&re_chan->desc_lock, flags);
    198}
    199
    200/* Per Job Ring interrupt handler */
    201static irqreturn_t fsl_re_isr(int irq, void *data)
    202{
    203	struct fsl_re_chan *re_chan;
    204	u32 irqstate, status;
    205
    206	re_chan = dev_get_drvdata((struct device *)data);
    207
    208	irqstate = in_be32(&re_chan->jrregs->jr_interrupt_status);
    209	if (!irqstate)
    210		return IRQ_NONE;
    211
    212	/*
    213	 * There's no way in upper layer (read MD layer) to recover from
    214	 * error conditions except restart everything. In long term we
    215	 * need to do something more than just crashing
    216	 */
    217	if (irqstate & FSL_RE_ERROR) {
    218		status = in_be32(&re_chan->jrregs->jr_status);
    219		dev_err(re_chan->dev, "chan error irqstate: %x, status: %x\n",
    220			irqstate, status);
    221	}
    222
    223	/* Clear interrupt */
    224	out_be32(&re_chan->jrregs->jr_interrupt_status, FSL_RE_CLR_INTR);
    225
    226	tasklet_schedule(&re_chan->irqtask);
    227
    228	return IRQ_HANDLED;
    229}
    230
    231static enum dma_status fsl_re_tx_status(struct dma_chan *chan,
    232					dma_cookie_t cookie,
    233					struct dma_tx_state *txstate)
    234{
    235	return dma_cookie_status(chan, cookie, txstate);
    236}
    237
    238static void fill_cfd_frame(struct fsl_re_cmpnd_frame *cf, u8 index,
    239			   size_t length, dma_addr_t addr, bool final)
    240{
    241	u32 efrl = length & FSL_RE_CF_LENGTH_MASK;
    242
    243	efrl |= final << FSL_RE_CF_FINAL_SHIFT;
    244	cf[index].efrl32 = efrl;
    245	cf[index].addr_high = upper_32_bits(addr);
    246	cf[index].addr_low = lower_32_bits(addr);
    247}
    248
    249static struct fsl_re_desc *fsl_re_init_desc(struct fsl_re_chan *re_chan,
    250					    struct fsl_re_desc *desc,
    251					    void *cf, dma_addr_t paddr)
    252{
    253	desc->re_chan = re_chan;
    254	desc->async_tx.tx_submit = fsl_re_tx_submit;
    255	dma_async_tx_descriptor_init(&desc->async_tx, &re_chan->chan);
    256	INIT_LIST_HEAD(&desc->node);
    257
    258	desc->hwdesc.fmt32 = FSL_RE_FRAME_FORMAT << FSL_RE_HWDESC_FMT_SHIFT;
    259	desc->hwdesc.lbea32 = upper_32_bits(paddr);
    260	desc->hwdesc.addr_low = lower_32_bits(paddr);
    261	desc->cf_addr = cf;
    262	desc->cf_paddr = paddr;
    263
    264	desc->cdb_addr = (void *)(cf + FSL_RE_CF_DESC_SIZE);
    265	desc->cdb_paddr = paddr + FSL_RE_CF_DESC_SIZE;
    266
    267	return desc;
    268}
    269
    270static struct fsl_re_desc *fsl_re_chan_alloc_desc(struct fsl_re_chan *re_chan,
    271						  unsigned long flags)
    272{
    273	struct fsl_re_desc *desc = NULL;
    274	void *cf;
    275	dma_addr_t paddr;
    276	unsigned long lock_flag;
    277
    278	fsl_re_cleanup_descs(re_chan);
    279
    280	spin_lock_irqsave(&re_chan->desc_lock, lock_flag);
    281	if (!list_empty(&re_chan->free_q)) {
    282		/* take one desc from free_q */
    283		desc = list_first_entry(&re_chan->free_q,
    284					struct fsl_re_desc, node);
    285		list_del(&desc->node);
    286
    287		desc->async_tx.flags = flags;
    288	}
    289	spin_unlock_irqrestore(&re_chan->desc_lock, lock_flag);
    290
    291	if (!desc) {
    292		desc = kzalloc(sizeof(*desc), GFP_NOWAIT);
    293		if (!desc)
    294			return NULL;
    295
    296		cf = dma_pool_alloc(re_chan->re_dev->cf_desc_pool, GFP_NOWAIT,
    297				    &paddr);
    298		if (!cf) {
    299			kfree(desc);
    300			return NULL;
    301		}
    302
    303		desc = fsl_re_init_desc(re_chan, desc, cf, paddr);
    304		desc->async_tx.flags = flags;
    305
    306		spin_lock_irqsave(&re_chan->desc_lock, lock_flag);
    307		re_chan->alloc_count++;
    308		spin_unlock_irqrestore(&re_chan->desc_lock, lock_flag);
    309	}
    310
    311	return desc;
    312}
    313
    314static struct dma_async_tx_descriptor *fsl_re_prep_dma_genq(
    315		struct dma_chan *chan, dma_addr_t dest, dma_addr_t *src,
    316		unsigned int src_cnt, const unsigned char *scf, size_t len,
    317		unsigned long flags)
    318{
    319	struct fsl_re_chan *re_chan;
    320	struct fsl_re_desc *desc;
    321	struct fsl_re_xor_cdb *xor;
    322	struct fsl_re_cmpnd_frame *cf;
    323	u32 cdb;
    324	unsigned int i, j;
    325	unsigned int save_src_cnt = src_cnt;
    326	int cont_q = 0;
    327
    328	re_chan = container_of(chan, struct fsl_re_chan, chan);
    329	if (len > FSL_RE_MAX_DATA_LEN) {
    330		dev_err(re_chan->dev, "genq tx length %zu, max length %d\n",
    331			len, FSL_RE_MAX_DATA_LEN);
    332		return NULL;
    333	}
    334
    335	desc = fsl_re_chan_alloc_desc(re_chan, flags);
    336	if (desc <= 0)
    337		return NULL;
    338
    339	if (scf && (flags & DMA_PREP_CONTINUE)) {
    340		cont_q = 1;
    341		src_cnt += 1;
    342	}
    343
    344	/* Filling xor CDB */
    345	cdb = FSL_RE_XOR_OPCODE << FSL_RE_CDB_OPCODE_SHIFT;
    346	cdb |= (src_cnt - 1) << FSL_RE_CDB_NRCS_SHIFT;
    347	cdb |= FSL_RE_BLOCK_SIZE << FSL_RE_CDB_BLKSIZE_SHIFT;
    348	cdb |= FSL_RE_INTR_ON_ERROR << FSL_RE_CDB_ERROR_SHIFT;
    349	cdb |= FSL_RE_DATA_DEP << FSL_RE_CDB_DEPEND_SHIFT;
    350	xor = desc->cdb_addr;
    351	xor->cdb32 = cdb;
    352
    353	if (scf) {
    354		/* compute q = src0*coef0^src1*coef1^..., * is GF(8) mult */
    355		for (i = 0; i < save_src_cnt; i++)
    356			xor->gfm[i] = scf[i];
    357		if (cont_q)
    358			xor->gfm[i++] = 1;
    359	} else {
    360		/* compute P, that is XOR all srcs */
    361		for (i = 0; i < src_cnt; i++)
    362			xor->gfm[i] = 1;
    363	}
    364
    365	/* Filling frame 0 of compound frame descriptor with CDB */
    366	cf = desc->cf_addr;
    367	fill_cfd_frame(cf, 0, sizeof(*xor), desc->cdb_paddr, 0);
    368
    369	/* Fill CFD's 1st frame with dest buffer */
    370	fill_cfd_frame(cf, 1, len, dest, 0);
    371
    372	/* Fill CFD's rest of the frames with source buffers */
    373	for (i = 2, j = 0; j < save_src_cnt; i++, j++)
    374		fill_cfd_frame(cf, i, len, src[j], 0);
    375
    376	if (cont_q)
    377		fill_cfd_frame(cf, i++, len, dest, 0);
    378
    379	/* Setting the final bit in the last source buffer frame in CFD */
    380	cf[i - 1].efrl32 |= 1 << FSL_RE_CF_FINAL_SHIFT;
    381
    382	return &desc->async_tx;
    383}
    384
    385/*
    386 * Prep function for P parity calculation.In RAID Engine terminology,
    387 * XOR calculation is called GenQ calculation done through GenQ command
    388 */
    389static struct dma_async_tx_descriptor *fsl_re_prep_dma_xor(
    390		struct dma_chan *chan, dma_addr_t dest, dma_addr_t *src,
    391		unsigned int src_cnt, size_t len, unsigned long flags)
    392{
    393	/* NULL let genq take all coef as 1 */
    394	return fsl_re_prep_dma_genq(chan, dest, src, src_cnt, NULL, len, flags);
    395}
    396
    397/*
    398 * Prep function for P/Q parity calculation.In RAID Engine terminology,
    399 * P/Q calculation is called GenQQ done through GenQQ command
    400 */
    401static struct dma_async_tx_descriptor *fsl_re_prep_dma_pq(
    402		struct dma_chan *chan, dma_addr_t *dest, dma_addr_t *src,
    403		unsigned int src_cnt, const unsigned char *scf, size_t len,
    404		unsigned long flags)
    405{
    406	struct fsl_re_chan *re_chan;
    407	struct fsl_re_desc *desc;
    408	struct fsl_re_pq_cdb *pq;
    409	struct fsl_re_cmpnd_frame *cf;
    410	u32 cdb;
    411	u8 *p;
    412	int gfmq_len, i, j;
    413	unsigned int save_src_cnt = src_cnt;
    414
    415	re_chan = container_of(chan, struct fsl_re_chan, chan);
    416	if (len > FSL_RE_MAX_DATA_LEN) {
    417		dev_err(re_chan->dev, "pq tx length is %zu, max length is %d\n",
    418			len, FSL_RE_MAX_DATA_LEN);
    419		return NULL;
    420	}
    421
    422	/*
    423	 * RE requires at least 2 sources, if given only one source, we pass the
    424	 * second source same as the first one.
    425	 * With only one source, generating P is meaningless, only generate Q.
    426	 */
    427	if (src_cnt == 1) {
    428		struct dma_async_tx_descriptor *tx;
    429		dma_addr_t dma_src[2];
    430		unsigned char coef[2];
    431
    432		dma_src[0] = *src;
    433		coef[0] = *scf;
    434		dma_src[1] = *src;
    435		coef[1] = 0;
    436		tx = fsl_re_prep_dma_genq(chan, dest[1], dma_src, 2, coef, len,
    437					  flags);
    438		if (tx)
    439			desc = to_fsl_re_dma_desc(tx);
    440
    441		return tx;
    442	}
    443
    444	/*
    445	 * During RAID6 array creation, Linux's MD layer gets P and Q
    446	 * calculated separately in two steps. But our RAID Engine has
    447	 * the capability to calculate both P and Q with a single command
    448	 * Hence to merge well with MD layer, we need to provide a hook
    449	 * here and call re_jq_prep_dma_genq() function
    450	 */
    451
    452	if (flags & DMA_PREP_PQ_DISABLE_P)
    453		return fsl_re_prep_dma_genq(chan, dest[1], src, src_cnt,
    454				scf, len, flags);
    455
    456	if (flags & DMA_PREP_CONTINUE)
    457		src_cnt += 3;
    458
    459	desc = fsl_re_chan_alloc_desc(re_chan, flags);
    460	if (desc <= 0)
    461		return NULL;
    462
    463	/* Filling GenQQ CDB */
    464	cdb = FSL_RE_PQ_OPCODE << FSL_RE_CDB_OPCODE_SHIFT;
    465	cdb |= (src_cnt - 1) << FSL_RE_CDB_NRCS_SHIFT;
    466	cdb |= FSL_RE_BLOCK_SIZE << FSL_RE_CDB_BLKSIZE_SHIFT;
    467	cdb |= FSL_RE_BUFFER_OUTPUT << FSL_RE_CDB_BUFFER_SHIFT;
    468	cdb |= FSL_RE_DATA_DEP << FSL_RE_CDB_DEPEND_SHIFT;
    469
    470	pq = desc->cdb_addr;
    471	pq->cdb32 = cdb;
    472
    473	p = pq->gfm_q1;
    474	/* Init gfm_q1[] */
    475	for (i = 0; i < src_cnt; i++)
    476		p[i] = 1;
    477
    478	/* Align gfm[] to 32bit */
    479	gfmq_len = ALIGN(src_cnt, 4);
    480
    481	/* Init gfm_q2[] */
    482	p += gfmq_len;
    483	for (i = 0; i < src_cnt; i++)
    484		p[i] = scf[i];
    485
    486	/* Filling frame 0 of compound frame descriptor with CDB */
    487	cf = desc->cf_addr;
    488	fill_cfd_frame(cf, 0, sizeof(struct fsl_re_pq_cdb), desc->cdb_paddr, 0);
    489
    490	/* Fill CFD's 1st & 2nd frame with dest buffers */
    491	for (i = 1, j = 0; i < 3; i++, j++)
    492		fill_cfd_frame(cf, i, len, dest[j], 0);
    493
    494	/* Fill CFD's rest of the frames with source buffers */
    495	for (i = 3, j = 0; j < save_src_cnt; i++, j++)
    496		fill_cfd_frame(cf, i, len, src[j], 0);
    497
    498	/* PQ computation continuation */
    499	if (flags & DMA_PREP_CONTINUE) {
    500		if (src_cnt - save_src_cnt == 3) {
    501			p[save_src_cnt] = 0;
    502			p[save_src_cnt + 1] = 0;
    503			p[save_src_cnt + 2] = 1;
    504			fill_cfd_frame(cf, i++, len, dest[0], 0);
    505			fill_cfd_frame(cf, i++, len, dest[1], 0);
    506			fill_cfd_frame(cf, i++, len, dest[1], 0);
    507		} else {
    508			dev_err(re_chan->dev, "PQ tx continuation error!\n");
    509			return NULL;
    510		}
    511	}
    512
    513	/* Setting the final bit in the last source buffer frame in CFD */
    514	cf[i - 1].efrl32 |= 1 << FSL_RE_CF_FINAL_SHIFT;
    515
    516	return &desc->async_tx;
    517}
    518
    519/*
    520 * Prep function for memcpy. In RAID Engine, memcpy is done through MOVE
    521 * command. Logic of this function will need to be modified once multipage
    522 * support is added in Linux's MD/ASYNC Layer
    523 */
    524static struct dma_async_tx_descriptor *fsl_re_prep_dma_memcpy(
    525		struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
    526		size_t len, unsigned long flags)
    527{
    528	struct fsl_re_chan *re_chan;
    529	struct fsl_re_desc *desc;
    530	size_t length;
    531	struct fsl_re_cmpnd_frame *cf;
    532	struct fsl_re_move_cdb *move;
    533	u32 cdb;
    534
    535	re_chan = container_of(chan, struct fsl_re_chan, chan);
    536
    537	if (len > FSL_RE_MAX_DATA_LEN) {
    538		dev_err(re_chan->dev, "cp tx length is %zu, max length is %d\n",
    539			len, FSL_RE_MAX_DATA_LEN);
    540		return NULL;
    541	}
    542
    543	desc = fsl_re_chan_alloc_desc(re_chan, flags);
    544	if (desc <= 0)
    545		return NULL;
    546
    547	/* Filling move CDB */
    548	cdb = FSL_RE_MOVE_OPCODE << FSL_RE_CDB_OPCODE_SHIFT;
    549	cdb |= FSL_RE_BLOCK_SIZE << FSL_RE_CDB_BLKSIZE_SHIFT;
    550	cdb |= FSL_RE_INTR_ON_ERROR << FSL_RE_CDB_ERROR_SHIFT;
    551	cdb |= FSL_RE_DATA_DEP << FSL_RE_CDB_DEPEND_SHIFT;
    552
    553	move = desc->cdb_addr;
    554	move->cdb32 = cdb;
    555
    556	/* Filling frame 0 of CFD with move CDB */
    557	cf = desc->cf_addr;
    558	fill_cfd_frame(cf, 0, sizeof(*move), desc->cdb_paddr, 0);
    559
    560	length = min_t(size_t, len, FSL_RE_MAX_DATA_LEN);
    561
    562	/* Fill CFD's 1st frame with dest buffer */
    563	fill_cfd_frame(cf, 1, length, dest, 0);
    564
    565	/* Fill CFD's 2nd frame with src buffer */
    566	fill_cfd_frame(cf, 2, length, src, 1);
    567
    568	return &desc->async_tx;
    569}
    570
    571static int fsl_re_alloc_chan_resources(struct dma_chan *chan)
    572{
    573	struct fsl_re_chan *re_chan;
    574	struct fsl_re_desc *desc;
    575	void *cf;
    576	dma_addr_t paddr;
    577	int i;
    578
    579	re_chan = container_of(chan, struct fsl_re_chan, chan);
    580	for (i = 0; i < FSL_RE_MIN_DESCS; i++) {
    581		desc = kzalloc(sizeof(*desc), GFP_KERNEL);
    582		if (!desc)
    583			break;
    584
    585		cf = dma_pool_alloc(re_chan->re_dev->cf_desc_pool, GFP_KERNEL,
    586				    &paddr);
    587		if (!cf) {
    588			kfree(desc);
    589			break;
    590		}
    591
    592		INIT_LIST_HEAD(&desc->node);
    593		fsl_re_init_desc(re_chan, desc, cf, paddr);
    594
    595		list_add_tail(&desc->node, &re_chan->free_q);
    596		re_chan->alloc_count++;
    597	}
    598	return re_chan->alloc_count;
    599}
    600
    601static void fsl_re_free_chan_resources(struct dma_chan *chan)
    602{
    603	struct fsl_re_chan *re_chan;
    604	struct fsl_re_desc *desc;
    605
    606	re_chan = container_of(chan, struct fsl_re_chan, chan);
    607	while (re_chan->alloc_count--) {
    608		desc = list_first_entry(&re_chan->free_q,
    609					struct fsl_re_desc,
    610					node);
    611
    612		list_del(&desc->node);
    613		dma_pool_free(re_chan->re_dev->cf_desc_pool, desc->cf_addr,
    614			      desc->cf_paddr);
    615		kfree(desc);
    616	}
    617
    618	if (!list_empty(&re_chan->free_q))
    619		dev_err(re_chan->dev, "chan resource cannot be cleaned!\n");
    620}
    621
    622static int fsl_re_chan_probe(struct platform_device *ofdev,
    623		      struct device_node *np, u8 q, u32 off)
    624{
    625	struct device *dev, *chandev;
    626	struct fsl_re_drv_private *re_priv;
    627	struct fsl_re_chan *chan;
    628	struct dma_device *dma_dev;
    629	u32 ptr;
    630	u32 status;
    631	int ret = 0, rc;
    632	struct platform_device *chan_ofdev;
    633
    634	dev = &ofdev->dev;
    635	re_priv = dev_get_drvdata(dev);
    636	dma_dev = &re_priv->dma_dev;
    637
    638	chan = devm_kzalloc(dev, sizeof(*chan), GFP_KERNEL);
    639	if (!chan)
    640		return -ENOMEM;
    641
    642	/* create platform device for chan node */
    643	chan_ofdev = of_platform_device_create(np, NULL, dev);
    644	if (!chan_ofdev) {
    645		dev_err(dev, "Not able to create ofdev for jr %d\n", q);
    646		ret = -EINVAL;
    647		goto err_free;
    648	}
    649
    650	/* read reg property from dts */
    651	rc = of_property_read_u32(np, "reg", &ptr);
    652	if (rc) {
    653		dev_err(dev, "Reg property not found in jr %d\n", q);
    654		ret = -ENODEV;
    655		goto err_free;
    656	}
    657
    658	chan->jrregs = (struct fsl_re_chan_cfg *)((u8 *)re_priv->re_regs +
    659			off + ptr);
    660
    661	/* read irq property from dts */
    662	chan->irq = irq_of_parse_and_map(np, 0);
    663	if (!chan->irq) {
    664		dev_err(dev, "No IRQ defined for JR %d\n", q);
    665		ret = -ENODEV;
    666		goto err_free;
    667	}
    668
    669	snprintf(chan->name, sizeof(chan->name), "re_jr%02d", q);
    670
    671	chandev = &chan_ofdev->dev;
    672	tasklet_setup(&chan->irqtask, fsl_re_dequeue);
    673
    674	ret = request_irq(chan->irq, fsl_re_isr, 0, chan->name, chandev);
    675	if (ret) {
    676		dev_err(dev, "Unable to register interrupt for JR %d\n", q);
    677		ret = -EINVAL;
    678		goto err_free;
    679	}
    680
    681	re_priv->re_jrs[q] = chan;
    682	chan->chan.device = dma_dev;
    683	chan->chan.private = chan;
    684	chan->dev = chandev;
    685	chan->re_dev = re_priv;
    686
    687	spin_lock_init(&chan->desc_lock);
    688	INIT_LIST_HEAD(&chan->ack_q);
    689	INIT_LIST_HEAD(&chan->active_q);
    690	INIT_LIST_HEAD(&chan->submit_q);
    691	INIT_LIST_HEAD(&chan->free_q);
    692
    693	chan->inb_ring_virt_addr = dma_pool_alloc(chan->re_dev->hw_desc_pool,
    694		GFP_KERNEL, &chan->inb_phys_addr);
    695	if (!chan->inb_ring_virt_addr) {
    696		dev_err(dev, "No dma memory for inb_ring_virt_addr\n");
    697		ret = -ENOMEM;
    698		goto err_free;
    699	}
    700
    701	chan->oub_ring_virt_addr = dma_pool_alloc(chan->re_dev->hw_desc_pool,
    702		GFP_KERNEL, &chan->oub_phys_addr);
    703	if (!chan->oub_ring_virt_addr) {
    704		dev_err(dev, "No dma memory for oub_ring_virt_addr\n");
    705		ret = -ENOMEM;
    706		goto err_free_1;
    707	}
    708
    709	/* Program the Inbound/Outbound ring base addresses and size */
    710	out_be32(&chan->jrregs->inbring_base_h,
    711		 chan->inb_phys_addr & FSL_RE_ADDR_BIT_MASK);
    712	out_be32(&chan->jrregs->oubring_base_h,
    713		 chan->oub_phys_addr & FSL_RE_ADDR_BIT_MASK);
    714	out_be32(&chan->jrregs->inbring_base_l,
    715		 chan->inb_phys_addr >> FSL_RE_ADDR_BIT_SHIFT);
    716	out_be32(&chan->jrregs->oubring_base_l,
    717		 chan->oub_phys_addr >> FSL_RE_ADDR_BIT_SHIFT);
    718	out_be32(&chan->jrregs->inbring_size,
    719		 FSL_RE_RING_SIZE << FSL_RE_RING_SIZE_SHIFT);
    720	out_be32(&chan->jrregs->oubring_size,
    721		 FSL_RE_RING_SIZE << FSL_RE_RING_SIZE_SHIFT);
    722
    723	/* Read LIODN value from u-boot */
    724	status = in_be32(&chan->jrregs->jr_config_1) & FSL_RE_REG_LIODN_MASK;
    725
    726	/* Program the CFG reg */
    727	out_be32(&chan->jrregs->jr_config_1,
    728		 FSL_RE_CFG1_CBSI | FSL_RE_CFG1_CBS0 | status);
    729
    730	dev_set_drvdata(chandev, chan);
    731
    732	/* Enable RE/CHAN */
    733	out_be32(&chan->jrregs->jr_command, FSL_RE_ENABLE);
    734
    735	return 0;
    736
    737err_free_1:
    738	dma_pool_free(chan->re_dev->hw_desc_pool, chan->inb_ring_virt_addr,
    739		      chan->inb_phys_addr);
    740err_free:
    741	return ret;
    742}
    743
    744/* Probe function for RAID Engine */
    745static int fsl_re_probe(struct platform_device *ofdev)
    746{
    747	struct fsl_re_drv_private *re_priv;
    748	struct device_node *np;
    749	struct device_node *child;
    750	u32 off;
    751	u8 ridx = 0;
    752	struct dma_device *dma_dev;
    753	struct resource *res;
    754	int rc;
    755	struct device *dev = &ofdev->dev;
    756
    757	re_priv = devm_kzalloc(dev, sizeof(*re_priv), GFP_KERNEL);
    758	if (!re_priv)
    759		return -ENOMEM;
    760
    761	res = platform_get_resource(ofdev, IORESOURCE_MEM, 0);
    762	if (!res)
    763		return -ENODEV;
    764
    765	/* IOMAP the entire RAID Engine region */
    766	re_priv->re_regs = devm_ioremap(dev, res->start, resource_size(res));
    767	if (!re_priv->re_regs)
    768		return -EBUSY;
    769
    770	/* Program the RE mode */
    771	out_be32(&re_priv->re_regs->global_config, FSL_RE_NON_DPAA_MODE);
    772
    773	/* Program Galois Field polynomial */
    774	out_be32(&re_priv->re_regs->galois_field_config, FSL_RE_GFM_POLY);
    775
    776	dev_info(dev, "version %x, mode %x, gfp %x\n",
    777		 in_be32(&re_priv->re_regs->re_version_id),
    778		 in_be32(&re_priv->re_regs->global_config),
    779		 in_be32(&re_priv->re_regs->galois_field_config));
    780
    781	dma_dev = &re_priv->dma_dev;
    782	dma_dev->dev = dev;
    783	INIT_LIST_HEAD(&dma_dev->channels);
    784	dma_set_mask(dev, DMA_BIT_MASK(40));
    785
    786	dma_dev->device_alloc_chan_resources = fsl_re_alloc_chan_resources;
    787	dma_dev->device_tx_status = fsl_re_tx_status;
    788	dma_dev->device_issue_pending = fsl_re_issue_pending;
    789
    790	dma_dev->max_xor = FSL_RE_MAX_XOR_SRCS;
    791	dma_dev->device_prep_dma_xor = fsl_re_prep_dma_xor;
    792	dma_cap_set(DMA_XOR, dma_dev->cap_mask);
    793
    794	dma_dev->max_pq = FSL_RE_MAX_PQ_SRCS;
    795	dma_dev->device_prep_dma_pq = fsl_re_prep_dma_pq;
    796	dma_cap_set(DMA_PQ, dma_dev->cap_mask);
    797
    798	dma_dev->device_prep_dma_memcpy = fsl_re_prep_dma_memcpy;
    799	dma_cap_set(DMA_MEMCPY, dma_dev->cap_mask);
    800
    801	dma_dev->device_free_chan_resources = fsl_re_free_chan_resources;
    802
    803	re_priv->total_chans = 0;
    804
    805	re_priv->cf_desc_pool = dmam_pool_create("fsl_re_cf_desc_pool", dev,
    806					FSL_RE_CF_CDB_SIZE,
    807					FSL_RE_CF_CDB_ALIGN, 0);
    808
    809	if (!re_priv->cf_desc_pool) {
    810		dev_err(dev, "No memory for fsl re_cf desc pool\n");
    811		return -ENOMEM;
    812	}
    813
    814	re_priv->hw_desc_pool = dmam_pool_create("fsl_re_hw_desc_pool", dev,
    815			sizeof(struct fsl_re_hw_desc) * FSL_RE_RING_SIZE,
    816			FSL_RE_FRAME_ALIGN, 0);
    817	if (!re_priv->hw_desc_pool) {
    818		dev_err(dev, "No memory for fsl re_hw desc pool\n");
    819		return -ENOMEM;
    820	}
    821
    822	dev_set_drvdata(dev, re_priv);
    823
    824	/* Parse Device tree to find out the total number of JQs present */
    825	for_each_compatible_node(np, NULL, "fsl,raideng-v1.0-job-queue") {
    826		rc = of_property_read_u32(np, "reg", &off);
    827		if (rc) {
    828			dev_err(dev, "Reg property not found in JQ node\n");
    829			of_node_put(np);
    830			return -ENODEV;
    831		}
    832		/* Find out the Job Rings present under each JQ */
    833		for_each_child_of_node(np, child) {
    834			rc = of_device_is_compatible(child,
    835					     "fsl,raideng-v1.0-job-ring");
    836			if (rc) {
    837				fsl_re_chan_probe(ofdev, child, ridx++, off);
    838				re_priv->total_chans++;
    839			}
    840		}
    841	}
    842
    843	dma_async_device_register(dma_dev);
    844
    845	return 0;
    846}
    847
    848static void fsl_re_remove_chan(struct fsl_re_chan *chan)
    849{
    850	tasklet_kill(&chan->irqtask);
    851
    852	dma_pool_free(chan->re_dev->hw_desc_pool, chan->inb_ring_virt_addr,
    853		      chan->inb_phys_addr);
    854
    855	dma_pool_free(chan->re_dev->hw_desc_pool, chan->oub_ring_virt_addr,
    856		      chan->oub_phys_addr);
    857}
    858
    859static int fsl_re_remove(struct platform_device *ofdev)
    860{
    861	struct fsl_re_drv_private *re_priv;
    862	struct device *dev;
    863	int i;
    864
    865	dev = &ofdev->dev;
    866	re_priv = dev_get_drvdata(dev);
    867
    868	/* Cleanup chan related memory areas */
    869	for (i = 0; i < re_priv->total_chans; i++)
    870		fsl_re_remove_chan(re_priv->re_jrs[i]);
    871
    872	/* Unregister the driver */
    873	dma_async_device_unregister(&re_priv->dma_dev);
    874
    875	return 0;
    876}
    877
    878static const struct of_device_id fsl_re_ids[] = {
    879	{ .compatible = "fsl,raideng-v1.0", },
    880	{}
    881};
    882MODULE_DEVICE_TABLE(of, fsl_re_ids);
    883
    884static struct platform_driver fsl_re_driver = {
    885	.driver = {
    886		.name = "fsl-raideng",
    887		.of_match_table = fsl_re_ids,
    888	},
    889	.probe = fsl_re_probe,
    890	.remove = fsl_re_remove,
    891};
    892
    893module_platform_driver(fsl_re_driver);
    894
    895MODULE_AUTHOR("Harninder Rai <harninder.rai@freescale.com>");
    896MODULE_LICENSE("GPL v2");
    897MODULE_DESCRIPTION("Freescale RAID Engine Device Driver");