cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

fsldma.c (35575B)


      1// SPDX-License-Identifier: GPL-2.0-or-later
      2/*
      3 * Freescale MPC85xx, MPC83xx DMA Engine support
      4 *
      5 * Copyright (C) 2007-2010 Freescale Semiconductor, Inc. All rights reserved.
      6 *
      7 * Author:
      8 *   Zhang Wei <wei.zhang@freescale.com>, Jul 2007
      9 *   Ebony Zhu <ebony.zhu@freescale.com>, May 2007
     10 *
     11 * Description:
     12 *   DMA engine driver for Freescale MPC8540 DMA controller, which is
     13 *   also fit for MPC8560, MPC8555, MPC8548, MPC8641, and etc.
     14 *   The support for MPC8349 DMA controller is also added.
     15 *
     16 * This driver instructs the DMA controller to issue the PCI Read Multiple
     17 * command for PCI read operations, instead of using the default PCI Read Line
     18 * command. Please be aware that this setting may result in read pre-fetching
     19 * on some platforms.
     20 */
     21
     22#include <linux/init.h>
     23#include <linux/module.h>
     24#include <linux/pci.h>
     25#include <linux/slab.h>
     26#include <linux/interrupt.h>
     27#include <linux/dmaengine.h>
     28#include <linux/delay.h>
     29#include <linux/dma-mapping.h>
     30#include <linux/dmapool.h>
     31#include <linux/of_address.h>
     32#include <linux/of_irq.h>
     33#include <linux/of_platform.h>
     34#include <linux/fsldma.h>
     35#include "dmaengine.h"
     36#include "fsldma.h"
     37
     38#define chan_dbg(chan, fmt, arg...)					\
     39	dev_dbg(chan->dev, "%s: " fmt, chan->name, ##arg)
     40#define chan_err(chan, fmt, arg...)					\
     41	dev_err(chan->dev, "%s: " fmt, chan->name, ##arg)
     42
     43static const char msg_ld_oom[] = "No free memory for link descriptor";
     44
     45/*
     46 * Register Helpers
     47 */
     48
     49static void set_sr(struct fsldma_chan *chan, u32 val)
     50{
     51	FSL_DMA_OUT(chan, &chan->regs->sr, val, 32);
     52}
     53
     54static u32 get_sr(struct fsldma_chan *chan)
     55{
     56	return FSL_DMA_IN(chan, &chan->regs->sr, 32);
     57}
     58
     59static void set_mr(struct fsldma_chan *chan, u32 val)
     60{
     61	FSL_DMA_OUT(chan, &chan->regs->mr, val, 32);
     62}
     63
     64static u32 get_mr(struct fsldma_chan *chan)
     65{
     66	return FSL_DMA_IN(chan, &chan->regs->mr, 32);
     67}
     68
     69static void set_cdar(struct fsldma_chan *chan, dma_addr_t addr)
     70{
     71	FSL_DMA_OUT(chan, &chan->regs->cdar, addr | FSL_DMA_SNEN, 64);
     72}
     73
     74static dma_addr_t get_cdar(struct fsldma_chan *chan)
     75{
     76	return FSL_DMA_IN(chan, &chan->regs->cdar, 64) & ~FSL_DMA_SNEN;
     77}
     78
     79static void set_bcr(struct fsldma_chan *chan, u32 val)
     80{
     81	FSL_DMA_OUT(chan, &chan->regs->bcr, val, 32);
     82}
     83
     84static u32 get_bcr(struct fsldma_chan *chan)
     85{
     86	return FSL_DMA_IN(chan, &chan->regs->bcr, 32);
     87}
     88
     89/*
     90 * Descriptor Helpers
     91 */
     92
     93static void set_desc_cnt(struct fsldma_chan *chan,
     94				struct fsl_dma_ld_hw *hw, u32 count)
     95{
     96	hw->count = CPU_TO_DMA(chan, count, 32);
     97}
     98
     99static void set_desc_src(struct fsldma_chan *chan,
    100			 struct fsl_dma_ld_hw *hw, dma_addr_t src)
    101{
    102	u64 snoop_bits;
    103
    104	snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
    105		? ((u64)FSL_DMA_SATR_SREADTYPE_SNOOP_READ << 32) : 0;
    106	hw->src_addr = CPU_TO_DMA(chan, snoop_bits | src, 64);
    107}
    108
    109static void set_desc_dst(struct fsldma_chan *chan,
    110			 struct fsl_dma_ld_hw *hw, dma_addr_t dst)
    111{
    112	u64 snoop_bits;
    113
    114	snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
    115		? ((u64)FSL_DMA_DATR_DWRITETYPE_SNOOP_WRITE << 32) : 0;
    116	hw->dst_addr = CPU_TO_DMA(chan, snoop_bits | dst, 64);
    117}
    118
    119static void set_desc_next(struct fsldma_chan *chan,
    120			  struct fsl_dma_ld_hw *hw, dma_addr_t next)
    121{
    122	u64 snoop_bits;
    123
    124	snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX)
    125		? FSL_DMA_SNEN : 0;
    126	hw->next_ln_addr = CPU_TO_DMA(chan, snoop_bits | next, 64);
    127}
    128
    129static void set_ld_eol(struct fsldma_chan *chan, struct fsl_desc_sw *desc)
    130{
    131	u64 snoop_bits;
    132
    133	snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX)
    134		? FSL_DMA_SNEN : 0;
    135
    136	desc->hw.next_ln_addr = CPU_TO_DMA(chan,
    137		DMA_TO_CPU(chan, desc->hw.next_ln_addr, 64) | FSL_DMA_EOL
    138			| snoop_bits, 64);
    139}
    140
    141/*
    142 * DMA Engine Hardware Control Helpers
    143 */
    144
    145static void dma_init(struct fsldma_chan *chan)
    146{
    147	/* Reset the channel */
    148	set_mr(chan, 0);
    149
    150	switch (chan->feature & FSL_DMA_IP_MASK) {
    151	case FSL_DMA_IP_85XX:
    152		/* Set the channel to below modes:
    153		 * EIE - Error interrupt enable
    154		 * EOLNIE - End of links interrupt enable
    155		 * BWC - Bandwidth sharing among channels
    156		 */
    157		set_mr(chan, FSL_DMA_MR_BWC | FSL_DMA_MR_EIE
    158			| FSL_DMA_MR_EOLNIE);
    159		break;
    160	case FSL_DMA_IP_83XX:
    161		/* Set the channel to below modes:
    162		 * EOTIE - End-of-transfer interrupt enable
    163		 * PRC_RM - PCI read multiple
    164		 */
    165		set_mr(chan, FSL_DMA_MR_EOTIE | FSL_DMA_MR_PRC_RM);
    166		break;
    167	}
    168}
    169
    170static int dma_is_idle(struct fsldma_chan *chan)
    171{
    172	u32 sr = get_sr(chan);
    173	return (!(sr & FSL_DMA_SR_CB)) || (sr & FSL_DMA_SR_CH);
    174}
    175
    176/*
    177 * Start the DMA controller
    178 *
    179 * Preconditions:
    180 * - the CDAR register must point to the start descriptor
    181 * - the MRn[CS] bit must be cleared
    182 */
    183static void dma_start(struct fsldma_chan *chan)
    184{
    185	u32 mode;
    186
    187	mode = get_mr(chan);
    188
    189	if (chan->feature & FSL_DMA_CHAN_PAUSE_EXT) {
    190		set_bcr(chan, 0);
    191		mode |= FSL_DMA_MR_EMP_EN;
    192	} else {
    193		mode &= ~FSL_DMA_MR_EMP_EN;
    194	}
    195
    196	if (chan->feature & FSL_DMA_CHAN_START_EXT) {
    197		mode |= FSL_DMA_MR_EMS_EN;
    198	} else {
    199		mode &= ~FSL_DMA_MR_EMS_EN;
    200		mode |= FSL_DMA_MR_CS;
    201	}
    202
    203	set_mr(chan, mode);
    204}
    205
    206static void dma_halt(struct fsldma_chan *chan)
    207{
    208	u32 mode;
    209	int i;
    210
    211	/* read the mode register */
    212	mode = get_mr(chan);
    213
    214	/*
    215	 * The 85xx controller supports channel abort, which will stop
    216	 * the current transfer. On 83xx, this bit is the transfer error
    217	 * mask bit, which should not be changed.
    218	 */
    219	if ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) {
    220		mode |= FSL_DMA_MR_CA;
    221		set_mr(chan, mode);
    222
    223		mode &= ~FSL_DMA_MR_CA;
    224	}
    225
    226	/* stop the DMA controller */
    227	mode &= ~(FSL_DMA_MR_CS | FSL_DMA_MR_EMS_EN);
    228	set_mr(chan, mode);
    229
    230	/* wait for the DMA controller to become idle */
    231	for (i = 0; i < 100; i++) {
    232		if (dma_is_idle(chan))
    233			return;
    234
    235		udelay(10);
    236	}
    237
    238	if (!dma_is_idle(chan))
    239		chan_err(chan, "DMA halt timeout!\n");
    240}
    241
    242/**
    243 * fsl_chan_set_src_loop_size - Set source address hold transfer size
    244 * @chan : Freescale DMA channel
    245 * @size     : Address loop size, 0 for disable loop
    246 *
    247 * The set source address hold transfer size. The source
    248 * address hold or loop transfer size is when the DMA transfer
    249 * data from source address (SA), if the loop size is 4, the DMA will
    250 * read data from SA, SA + 1, SA + 2, SA + 3, then loop back to SA,
    251 * SA + 1 ... and so on.
    252 */
    253static void fsl_chan_set_src_loop_size(struct fsldma_chan *chan, int size)
    254{
    255	u32 mode;
    256
    257	mode = get_mr(chan);
    258
    259	switch (size) {
    260	case 0:
    261		mode &= ~FSL_DMA_MR_SAHE;
    262		break;
    263	case 1:
    264	case 2:
    265	case 4:
    266	case 8:
    267		mode &= ~FSL_DMA_MR_SAHTS_MASK;
    268		mode |= FSL_DMA_MR_SAHE | (__ilog2(size) << 14);
    269		break;
    270	}
    271
    272	set_mr(chan, mode);
    273}
    274
    275/**
    276 * fsl_chan_set_dst_loop_size - Set destination address hold transfer size
    277 * @chan : Freescale DMA channel
    278 * @size     : Address loop size, 0 for disable loop
    279 *
    280 * The set destination address hold transfer size. The destination
    281 * address hold or loop transfer size is when the DMA transfer
    282 * data to destination address (TA), if the loop size is 4, the DMA will
    283 * write data to TA, TA + 1, TA + 2, TA + 3, then loop back to TA,
    284 * TA + 1 ... and so on.
    285 */
    286static void fsl_chan_set_dst_loop_size(struct fsldma_chan *chan, int size)
    287{
    288	u32 mode;
    289
    290	mode = get_mr(chan);
    291
    292	switch (size) {
    293	case 0:
    294		mode &= ~FSL_DMA_MR_DAHE;
    295		break;
    296	case 1:
    297	case 2:
    298	case 4:
    299	case 8:
    300		mode &= ~FSL_DMA_MR_DAHTS_MASK;
    301		mode |= FSL_DMA_MR_DAHE | (__ilog2(size) << 16);
    302		break;
    303	}
    304
    305	set_mr(chan, mode);
    306}
    307
    308/**
    309 * fsl_chan_set_request_count - Set DMA Request Count for external control
    310 * @chan : Freescale DMA channel
    311 * @size     : Number of bytes to transfer in a single request
    312 *
    313 * The Freescale DMA channel can be controlled by the external signal DREQ#.
    314 * The DMA request count is how many bytes are allowed to transfer before
    315 * pausing the channel, after which a new assertion of DREQ# resumes channel
    316 * operation.
    317 *
    318 * A size of 0 disables external pause control. The maximum size is 1024.
    319 */
    320static void fsl_chan_set_request_count(struct fsldma_chan *chan, int size)
    321{
    322	u32 mode;
    323
    324	BUG_ON(size > 1024);
    325
    326	mode = get_mr(chan);
    327	mode &= ~FSL_DMA_MR_BWC_MASK;
    328	mode |= (__ilog2(size) << 24) & FSL_DMA_MR_BWC_MASK;
    329
    330	set_mr(chan, mode);
    331}
    332
    333/**
    334 * fsl_chan_toggle_ext_pause - Toggle channel external pause status
    335 * @chan : Freescale DMA channel
    336 * @enable   : 0 is disabled, 1 is enabled.
    337 *
    338 * The Freescale DMA channel can be controlled by the external signal DREQ#.
    339 * The DMA Request Count feature should be used in addition to this feature
    340 * to set the number of bytes to transfer before pausing the channel.
    341 */
    342static void fsl_chan_toggle_ext_pause(struct fsldma_chan *chan, int enable)
    343{
    344	if (enable)
    345		chan->feature |= FSL_DMA_CHAN_PAUSE_EXT;
    346	else
    347		chan->feature &= ~FSL_DMA_CHAN_PAUSE_EXT;
    348}
    349
    350/**
    351 * fsl_chan_toggle_ext_start - Toggle channel external start status
    352 * @chan : Freescale DMA channel
    353 * @enable   : 0 is disabled, 1 is enabled.
    354 *
    355 * If enable the external start, the channel can be started by an
    356 * external DMA start pin. So the dma_start() does not start the
    357 * transfer immediately. The DMA channel will wait for the
    358 * control pin asserted.
    359 */
    360static void fsl_chan_toggle_ext_start(struct fsldma_chan *chan, int enable)
    361{
    362	if (enable)
    363		chan->feature |= FSL_DMA_CHAN_START_EXT;
    364	else
    365		chan->feature &= ~FSL_DMA_CHAN_START_EXT;
    366}
    367
    368int fsl_dma_external_start(struct dma_chan *dchan, int enable)
    369{
    370	struct fsldma_chan *chan;
    371
    372	if (!dchan)
    373		return -EINVAL;
    374
    375	chan = to_fsl_chan(dchan);
    376
    377	fsl_chan_toggle_ext_start(chan, enable);
    378	return 0;
    379}
    380EXPORT_SYMBOL_GPL(fsl_dma_external_start);
    381
    382static void append_ld_queue(struct fsldma_chan *chan, struct fsl_desc_sw *desc)
    383{
    384	struct fsl_desc_sw *tail = to_fsl_desc(chan->ld_pending.prev);
    385
    386	if (list_empty(&chan->ld_pending))
    387		goto out_splice;
    388
    389	/*
    390	 * Add the hardware descriptor to the chain of hardware descriptors
    391	 * that already exists in memory.
    392	 *
    393	 * This will un-set the EOL bit of the existing transaction, and the
    394	 * last link in this transaction will become the EOL descriptor.
    395	 */
    396	set_desc_next(chan, &tail->hw, desc->async_tx.phys);
    397
    398	/*
    399	 * Add the software descriptor and all children to the list
    400	 * of pending transactions
    401	 */
    402out_splice:
    403	list_splice_tail_init(&desc->tx_list, &chan->ld_pending);
    404}
    405
    406static dma_cookie_t fsl_dma_tx_submit(struct dma_async_tx_descriptor *tx)
    407{
    408	struct fsldma_chan *chan = to_fsl_chan(tx->chan);
    409	struct fsl_desc_sw *desc = tx_to_fsl_desc(tx);
    410	struct fsl_desc_sw *child;
    411	dma_cookie_t cookie = -EINVAL;
    412
    413	spin_lock_bh(&chan->desc_lock);
    414
    415#ifdef CONFIG_PM
    416	if (unlikely(chan->pm_state != RUNNING)) {
    417		chan_dbg(chan, "cannot submit due to suspend\n");
    418		spin_unlock_bh(&chan->desc_lock);
    419		return -1;
    420	}
    421#endif
    422
    423	/*
    424	 * assign cookies to all of the software descriptors
    425	 * that make up this transaction
    426	 */
    427	list_for_each_entry(child, &desc->tx_list, node) {
    428		cookie = dma_cookie_assign(&child->async_tx);
    429	}
    430
    431	/* put this transaction onto the tail of the pending queue */
    432	append_ld_queue(chan, desc);
    433
    434	spin_unlock_bh(&chan->desc_lock);
    435
    436	return cookie;
    437}
    438
    439/**
    440 * fsl_dma_free_descriptor - Free descriptor from channel's DMA pool.
    441 * @chan : Freescale DMA channel
    442 * @desc: descriptor to be freed
    443 */
    444static void fsl_dma_free_descriptor(struct fsldma_chan *chan,
    445		struct fsl_desc_sw *desc)
    446{
    447	list_del(&desc->node);
    448	chan_dbg(chan, "LD %p free\n", desc);
    449	dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys);
    450}
    451
    452/**
    453 * fsl_dma_alloc_descriptor - Allocate descriptor from channel's DMA pool.
    454 * @chan : Freescale DMA channel
    455 *
    456 * Return - The descriptor allocated. NULL for failed.
    457 */
    458static struct fsl_desc_sw *fsl_dma_alloc_descriptor(struct fsldma_chan *chan)
    459{
    460	struct fsl_desc_sw *desc;
    461	dma_addr_t pdesc;
    462
    463	desc = dma_pool_zalloc(chan->desc_pool, GFP_ATOMIC, &pdesc);
    464	if (!desc) {
    465		chan_dbg(chan, "out of memory for link descriptor\n");
    466		return NULL;
    467	}
    468
    469	INIT_LIST_HEAD(&desc->tx_list);
    470	dma_async_tx_descriptor_init(&desc->async_tx, &chan->common);
    471	desc->async_tx.tx_submit = fsl_dma_tx_submit;
    472	desc->async_tx.phys = pdesc;
    473
    474	chan_dbg(chan, "LD %p allocated\n", desc);
    475
    476	return desc;
    477}
    478
    479/**
    480 * fsldma_clean_completed_descriptor - free all descriptors which
    481 * has been completed and acked
    482 * @chan: Freescale DMA channel
    483 *
    484 * This function is used on all completed and acked descriptors.
    485 * All descriptors should only be freed in this function.
    486 */
    487static void fsldma_clean_completed_descriptor(struct fsldma_chan *chan)
    488{
    489	struct fsl_desc_sw *desc, *_desc;
    490
    491	/* Run the callback for each descriptor, in order */
    492	list_for_each_entry_safe(desc, _desc, &chan->ld_completed, node)
    493		if (async_tx_test_ack(&desc->async_tx))
    494			fsl_dma_free_descriptor(chan, desc);
    495}
    496
    497/**
    498 * fsldma_run_tx_complete_actions - cleanup a single link descriptor
    499 * @chan: Freescale DMA channel
    500 * @desc: descriptor to cleanup and free
    501 * @cookie: Freescale DMA transaction identifier
    502 *
    503 * This function is used on a descriptor which has been executed by the DMA
    504 * controller. It will run any callbacks, submit any dependencies.
    505 */
    506static dma_cookie_t fsldma_run_tx_complete_actions(struct fsldma_chan *chan,
    507		struct fsl_desc_sw *desc, dma_cookie_t cookie)
    508{
    509	struct dma_async_tx_descriptor *txd = &desc->async_tx;
    510	dma_cookie_t ret = cookie;
    511
    512	BUG_ON(txd->cookie < 0);
    513
    514	if (txd->cookie > 0) {
    515		ret = txd->cookie;
    516
    517		dma_descriptor_unmap(txd);
    518		/* Run the link descriptor callback function */
    519		dmaengine_desc_get_callback_invoke(txd, NULL);
    520	}
    521
    522	/* Run any dependencies */
    523	dma_run_dependencies(txd);
    524
    525	return ret;
    526}
    527
    528/**
    529 * fsldma_clean_running_descriptor - move the completed descriptor from
    530 * ld_running to ld_completed
    531 * @chan: Freescale DMA channel
    532 * @desc: the descriptor which is completed
    533 *
    534 * Free the descriptor directly if acked by async_tx api, or move it to
    535 * queue ld_completed.
    536 */
    537static void fsldma_clean_running_descriptor(struct fsldma_chan *chan,
    538		struct fsl_desc_sw *desc)
    539{
    540	/* Remove from the list of transactions */
    541	list_del(&desc->node);
    542
    543	/*
    544	 * the client is allowed to attach dependent operations
    545	 * until 'ack' is set
    546	 */
    547	if (!async_tx_test_ack(&desc->async_tx)) {
    548		/*
    549		 * Move this descriptor to the list of descriptors which is
    550		 * completed, but still awaiting the 'ack' bit to be set.
    551		 */
    552		list_add_tail(&desc->node, &chan->ld_completed);
    553		return;
    554	}
    555
    556	dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys);
    557}
    558
    559/**
    560 * fsl_chan_xfer_ld_queue - transfer any pending transactions
    561 * @chan : Freescale DMA channel
    562 *
    563 * HARDWARE STATE: idle
    564 * LOCKING: must hold chan->desc_lock
    565 */
    566static void fsl_chan_xfer_ld_queue(struct fsldma_chan *chan)
    567{
    568	struct fsl_desc_sw *desc;
    569
    570	/*
    571	 * If the list of pending descriptors is empty, then we
    572	 * don't need to do any work at all
    573	 */
    574	if (list_empty(&chan->ld_pending)) {
    575		chan_dbg(chan, "no pending LDs\n");
    576		return;
    577	}
    578
    579	/*
    580	 * The DMA controller is not idle, which means that the interrupt
    581	 * handler will start any queued transactions when it runs after
    582	 * this transaction finishes
    583	 */
    584	if (!chan->idle) {
    585		chan_dbg(chan, "DMA controller still busy\n");
    586		return;
    587	}
    588
    589	/*
    590	 * If there are some link descriptors which have not been
    591	 * transferred, we need to start the controller
    592	 */
    593
    594	/*
    595	 * Move all elements from the queue of pending transactions
    596	 * onto the list of running transactions
    597	 */
    598	chan_dbg(chan, "idle, starting controller\n");
    599	desc = list_first_entry(&chan->ld_pending, struct fsl_desc_sw, node);
    600	list_splice_tail_init(&chan->ld_pending, &chan->ld_running);
    601
    602	/*
    603	 * The 85xx DMA controller doesn't clear the channel start bit
    604	 * automatically at the end of a transfer. Therefore we must clear
    605	 * it in software before starting the transfer.
    606	 */
    607	if ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) {
    608		u32 mode;
    609
    610		mode = get_mr(chan);
    611		mode &= ~FSL_DMA_MR_CS;
    612		set_mr(chan, mode);
    613	}
    614
    615	/*
    616	 * Program the descriptor's address into the DMA controller,
    617	 * then start the DMA transaction
    618	 */
    619	set_cdar(chan, desc->async_tx.phys);
    620	get_cdar(chan);
    621
    622	dma_start(chan);
    623	chan->idle = false;
    624}
    625
    626/**
    627 * fsldma_cleanup_descriptors - cleanup link descriptors which are completed
    628 * and move them to ld_completed to free until flag 'ack' is set
    629 * @chan: Freescale DMA channel
    630 *
    631 * This function is used on descriptors which have been executed by the DMA
    632 * controller. It will run any callbacks, submit any dependencies, then
    633 * free these descriptors if flag 'ack' is set.
    634 */
    635static void fsldma_cleanup_descriptors(struct fsldma_chan *chan)
    636{
    637	struct fsl_desc_sw *desc, *_desc;
    638	dma_cookie_t cookie = 0;
    639	dma_addr_t curr_phys = get_cdar(chan);
    640	int seen_current = 0;
    641
    642	fsldma_clean_completed_descriptor(chan);
    643
    644	/* Run the callback for each descriptor, in order */
    645	list_for_each_entry_safe(desc, _desc, &chan->ld_running, node) {
    646		/*
    647		 * do not advance past the current descriptor loaded into the
    648		 * hardware channel, subsequent descriptors are either in
    649		 * process or have not been submitted
    650		 */
    651		if (seen_current)
    652			break;
    653
    654		/*
    655		 * stop the search if we reach the current descriptor and the
    656		 * channel is busy
    657		 */
    658		if (desc->async_tx.phys == curr_phys) {
    659			seen_current = 1;
    660			if (!dma_is_idle(chan))
    661				break;
    662		}
    663
    664		cookie = fsldma_run_tx_complete_actions(chan, desc, cookie);
    665
    666		fsldma_clean_running_descriptor(chan, desc);
    667	}
    668
    669	/*
    670	 * Start any pending transactions automatically
    671	 *
    672	 * In the ideal case, we keep the DMA controller busy while we go
    673	 * ahead and free the descriptors below.
    674	 */
    675	fsl_chan_xfer_ld_queue(chan);
    676
    677	if (cookie > 0)
    678		chan->common.completed_cookie = cookie;
    679}
    680
    681/**
    682 * fsl_dma_alloc_chan_resources - Allocate resources for DMA channel.
    683 * @chan : Freescale DMA channel
    684 *
    685 * This function will create a dma pool for descriptor allocation.
    686 *
    687 * Return - The number of descriptors allocated.
    688 */
    689static int fsl_dma_alloc_chan_resources(struct dma_chan *dchan)
    690{
    691	struct fsldma_chan *chan = to_fsl_chan(dchan);
    692
    693	/* Has this channel already been allocated? */
    694	if (chan->desc_pool)
    695		return 1;
    696
    697	/*
    698	 * We need the descriptor to be aligned to 32bytes
    699	 * for meeting FSL DMA specification requirement.
    700	 */
    701	chan->desc_pool = dma_pool_create(chan->name, chan->dev,
    702					  sizeof(struct fsl_desc_sw),
    703					  __alignof__(struct fsl_desc_sw), 0);
    704	if (!chan->desc_pool) {
    705		chan_err(chan, "unable to allocate descriptor pool\n");
    706		return -ENOMEM;
    707	}
    708
    709	/* there is at least one descriptor free to be allocated */
    710	return 1;
    711}
    712
    713/**
    714 * fsldma_free_desc_list - Free all descriptors in a queue
    715 * @chan: Freescae DMA channel
    716 * @list: the list to free
    717 *
    718 * LOCKING: must hold chan->desc_lock
    719 */
    720static void fsldma_free_desc_list(struct fsldma_chan *chan,
    721				  struct list_head *list)
    722{
    723	struct fsl_desc_sw *desc, *_desc;
    724
    725	list_for_each_entry_safe(desc, _desc, list, node)
    726		fsl_dma_free_descriptor(chan, desc);
    727}
    728
    729static void fsldma_free_desc_list_reverse(struct fsldma_chan *chan,
    730					  struct list_head *list)
    731{
    732	struct fsl_desc_sw *desc, *_desc;
    733
    734	list_for_each_entry_safe_reverse(desc, _desc, list, node)
    735		fsl_dma_free_descriptor(chan, desc);
    736}
    737
    738/**
    739 * fsl_dma_free_chan_resources - Free all resources of the channel.
    740 * @chan : Freescale DMA channel
    741 */
    742static void fsl_dma_free_chan_resources(struct dma_chan *dchan)
    743{
    744	struct fsldma_chan *chan = to_fsl_chan(dchan);
    745
    746	chan_dbg(chan, "free all channel resources\n");
    747	spin_lock_bh(&chan->desc_lock);
    748	fsldma_cleanup_descriptors(chan);
    749	fsldma_free_desc_list(chan, &chan->ld_pending);
    750	fsldma_free_desc_list(chan, &chan->ld_running);
    751	fsldma_free_desc_list(chan, &chan->ld_completed);
    752	spin_unlock_bh(&chan->desc_lock);
    753
    754	dma_pool_destroy(chan->desc_pool);
    755	chan->desc_pool = NULL;
    756}
    757
    758static struct dma_async_tx_descriptor *
    759fsl_dma_prep_memcpy(struct dma_chan *dchan,
    760	dma_addr_t dma_dst, dma_addr_t dma_src,
    761	size_t len, unsigned long flags)
    762{
    763	struct fsldma_chan *chan;
    764	struct fsl_desc_sw *first = NULL, *prev = NULL, *new;
    765	size_t copy;
    766
    767	if (!dchan)
    768		return NULL;
    769
    770	if (!len)
    771		return NULL;
    772
    773	chan = to_fsl_chan(dchan);
    774
    775	do {
    776
    777		/* Allocate the link descriptor from DMA pool */
    778		new = fsl_dma_alloc_descriptor(chan);
    779		if (!new) {
    780			chan_err(chan, "%s\n", msg_ld_oom);
    781			goto fail;
    782		}
    783
    784		copy = min(len, (size_t)FSL_DMA_BCR_MAX_CNT);
    785
    786		set_desc_cnt(chan, &new->hw, copy);
    787		set_desc_src(chan, &new->hw, dma_src);
    788		set_desc_dst(chan, &new->hw, dma_dst);
    789
    790		if (!first)
    791			first = new;
    792		else
    793			set_desc_next(chan, &prev->hw, new->async_tx.phys);
    794
    795		new->async_tx.cookie = 0;
    796		async_tx_ack(&new->async_tx);
    797
    798		prev = new;
    799		len -= copy;
    800		dma_src += copy;
    801		dma_dst += copy;
    802
    803		/* Insert the link descriptor to the LD ring */
    804		list_add_tail(&new->node, &first->tx_list);
    805	} while (len);
    806
    807	new->async_tx.flags = flags; /* client is in control of this ack */
    808	new->async_tx.cookie = -EBUSY;
    809
    810	/* Set End-of-link to the last link descriptor of new list */
    811	set_ld_eol(chan, new);
    812
    813	return &first->async_tx;
    814
    815fail:
    816	if (!first)
    817		return NULL;
    818
    819	fsldma_free_desc_list_reverse(chan, &first->tx_list);
    820	return NULL;
    821}
    822
    823static int fsl_dma_device_terminate_all(struct dma_chan *dchan)
    824{
    825	struct fsldma_chan *chan;
    826
    827	if (!dchan)
    828		return -EINVAL;
    829
    830	chan = to_fsl_chan(dchan);
    831
    832	spin_lock_bh(&chan->desc_lock);
    833
    834	/* Halt the DMA engine */
    835	dma_halt(chan);
    836
    837	/* Remove and free all of the descriptors in the LD queue */
    838	fsldma_free_desc_list(chan, &chan->ld_pending);
    839	fsldma_free_desc_list(chan, &chan->ld_running);
    840	fsldma_free_desc_list(chan, &chan->ld_completed);
    841	chan->idle = true;
    842
    843	spin_unlock_bh(&chan->desc_lock);
    844	return 0;
    845}
    846
    847static int fsl_dma_device_config(struct dma_chan *dchan,
    848				 struct dma_slave_config *config)
    849{
    850	struct fsldma_chan *chan;
    851	int size;
    852
    853	if (!dchan)
    854		return -EINVAL;
    855
    856	chan = to_fsl_chan(dchan);
    857
    858	/* make sure the channel supports setting burst size */
    859	if (!chan->set_request_count)
    860		return -ENXIO;
    861
    862	/* we set the controller burst size depending on direction */
    863	if (config->direction == DMA_MEM_TO_DEV)
    864		size = config->dst_addr_width * config->dst_maxburst;
    865	else
    866		size = config->src_addr_width * config->src_maxburst;
    867
    868	chan->set_request_count(chan, size);
    869	return 0;
    870}
    871
    872
    873/**
    874 * fsl_dma_memcpy_issue_pending - Issue the DMA start command
    875 * @chan : Freescale DMA channel
    876 */
    877static void fsl_dma_memcpy_issue_pending(struct dma_chan *dchan)
    878{
    879	struct fsldma_chan *chan = to_fsl_chan(dchan);
    880
    881	spin_lock_bh(&chan->desc_lock);
    882	fsl_chan_xfer_ld_queue(chan);
    883	spin_unlock_bh(&chan->desc_lock);
    884}
    885
    886/**
    887 * fsl_tx_status - Determine the DMA status
    888 * @chan : Freescale DMA channel
    889 */
    890static enum dma_status fsl_tx_status(struct dma_chan *dchan,
    891					dma_cookie_t cookie,
    892					struct dma_tx_state *txstate)
    893{
    894	struct fsldma_chan *chan = to_fsl_chan(dchan);
    895	enum dma_status ret;
    896
    897	ret = dma_cookie_status(dchan, cookie, txstate);
    898	if (ret == DMA_COMPLETE)
    899		return ret;
    900
    901	spin_lock_bh(&chan->desc_lock);
    902	fsldma_cleanup_descriptors(chan);
    903	spin_unlock_bh(&chan->desc_lock);
    904
    905	return dma_cookie_status(dchan, cookie, txstate);
    906}
    907
    908/*----------------------------------------------------------------------------*/
    909/* Interrupt Handling                                                         */
    910/*----------------------------------------------------------------------------*/
    911
    912static irqreturn_t fsldma_chan_irq(int irq, void *data)
    913{
    914	struct fsldma_chan *chan = data;
    915	u32 stat;
    916
    917	/* save and clear the status register */
    918	stat = get_sr(chan);
    919	set_sr(chan, stat);
    920	chan_dbg(chan, "irq: stat = 0x%x\n", stat);
    921
    922	/* check that this was really our device */
    923	stat &= ~(FSL_DMA_SR_CB | FSL_DMA_SR_CH);
    924	if (!stat)
    925		return IRQ_NONE;
    926
    927	if (stat & FSL_DMA_SR_TE)
    928		chan_err(chan, "Transfer Error!\n");
    929
    930	/*
    931	 * Programming Error
    932	 * The DMA_INTERRUPT async_tx is a NULL transfer, which will
    933	 * trigger a PE interrupt.
    934	 */
    935	if (stat & FSL_DMA_SR_PE) {
    936		chan_dbg(chan, "irq: Programming Error INT\n");
    937		stat &= ~FSL_DMA_SR_PE;
    938		if (get_bcr(chan) != 0)
    939			chan_err(chan, "Programming Error!\n");
    940	}
    941
    942	/*
    943	 * For MPC8349, EOCDI event need to update cookie
    944	 * and start the next transfer if it exist.
    945	 */
    946	if (stat & FSL_DMA_SR_EOCDI) {
    947		chan_dbg(chan, "irq: End-of-Chain link INT\n");
    948		stat &= ~FSL_DMA_SR_EOCDI;
    949	}
    950
    951	/*
    952	 * If it current transfer is the end-of-transfer,
    953	 * we should clear the Channel Start bit for
    954	 * prepare next transfer.
    955	 */
    956	if (stat & FSL_DMA_SR_EOLNI) {
    957		chan_dbg(chan, "irq: End-of-link INT\n");
    958		stat &= ~FSL_DMA_SR_EOLNI;
    959	}
    960
    961	/* check that the DMA controller is really idle */
    962	if (!dma_is_idle(chan))
    963		chan_err(chan, "irq: controller not idle!\n");
    964
    965	/* check that we handled all of the bits */
    966	if (stat)
    967		chan_err(chan, "irq: unhandled sr 0x%08x\n", stat);
    968
    969	/*
    970	 * Schedule the tasklet to handle all cleanup of the current
    971	 * transaction. It will start a new transaction if there is
    972	 * one pending.
    973	 */
    974	tasklet_schedule(&chan->tasklet);
    975	chan_dbg(chan, "irq: Exit\n");
    976	return IRQ_HANDLED;
    977}
    978
    979static void dma_do_tasklet(struct tasklet_struct *t)
    980{
    981	struct fsldma_chan *chan = from_tasklet(chan, t, tasklet);
    982
    983	chan_dbg(chan, "tasklet entry\n");
    984
    985	spin_lock(&chan->desc_lock);
    986
    987	/* the hardware is now idle and ready for more */
    988	chan->idle = true;
    989
    990	/* Run all cleanup for descriptors which have been completed */
    991	fsldma_cleanup_descriptors(chan);
    992
    993	spin_unlock(&chan->desc_lock);
    994
    995	chan_dbg(chan, "tasklet exit\n");
    996}
    997
    998static irqreturn_t fsldma_ctrl_irq(int irq, void *data)
    999{
   1000	struct fsldma_device *fdev = data;
   1001	struct fsldma_chan *chan;
   1002	unsigned int handled = 0;
   1003	u32 gsr, mask;
   1004	int i;
   1005
   1006	gsr = (fdev->feature & FSL_DMA_BIG_ENDIAN) ? in_be32(fdev->regs)
   1007						   : in_le32(fdev->regs);
   1008	mask = 0xff000000;
   1009	dev_dbg(fdev->dev, "IRQ: gsr 0x%.8x\n", gsr);
   1010
   1011	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
   1012		chan = fdev->chan[i];
   1013		if (!chan)
   1014			continue;
   1015
   1016		if (gsr & mask) {
   1017			dev_dbg(fdev->dev, "IRQ: chan %d\n", chan->id);
   1018			fsldma_chan_irq(irq, chan);
   1019			handled++;
   1020		}
   1021
   1022		gsr &= ~mask;
   1023		mask >>= 8;
   1024	}
   1025
   1026	return IRQ_RETVAL(handled);
   1027}
   1028
   1029static void fsldma_free_irqs(struct fsldma_device *fdev)
   1030{
   1031	struct fsldma_chan *chan;
   1032	int i;
   1033
   1034	if (fdev->irq) {
   1035		dev_dbg(fdev->dev, "free per-controller IRQ\n");
   1036		free_irq(fdev->irq, fdev);
   1037		return;
   1038	}
   1039
   1040	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
   1041		chan = fdev->chan[i];
   1042		if (chan && chan->irq) {
   1043			chan_dbg(chan, "free per-channel IRQ\n");
   1044			free_irq(chan->irq, chan);
   1045		}
   1046	}
   1047}
   1048
   1049static int fsldma_request_irqs(struct fsldma_device *fdev)
   1050{
   1051	struct fsldma_chan *chan;
   1052	int ret;
   1053	int i;
   1054
   1055	/* if we have a per-controller IRQ, use that */
   1056	if (fdev->irq) {
   1057		dev_dbg(fdev->dev, "request per-controller IRQ\n");
   1058		ret = request_irq(fdev->irq, fsldma_ctrl_irq, IRQF_SHARED,
   1059				  "fsldma-controller", fdev);
   1060		return ret;
   1061	}
   1062
   1063	/* no per-controller IRQ, use the per-channel IRQs */
   1064	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
   1065		chan = fdev->chan[i];
   1066		if (!chan)
   1067			continue;
   1068
   1069		if (!chan->irq) {
   1070			chan_err(chan, "interrupts property missing in device tree\n");
   1071			ret = -ENODEV;
   1072			goto out_unwind;
   1073		}
   1074
   1075		chan_dbg(chan, "request per-channel IRQ\n");
   1076		ret = request_irq(chan->irq, fsldma_chan_irq, IRQF_SHARED,
   1077				  "fsldma-chan", chan);
   1078		if (ret) {
   1079			chan_err(chan, "unable to request per-channel IRQ\n");
   1080			goto out_unwind;
   1081		}
   1082	}
   1083
   1084	return 0;
   1085
   1086out_unwind:
   1087	for (/* none */; i >= 0; i--) {
   1088		chan = fdev->chan[i];
   1089		if (!chan)
   1090			continue;
   1091
   1092		if (!chan->irq)
   1093			continue;
   1094
   1095		free_irq(chan->irq, chan);
   1096	}
   1097
   1098	return ret;
   1099}
   1100
   1101/*----------------------------------------------------------------------------*/
   1102/* OpenFirmware Subsystem                                                     */
   1103/*----------------------------------------------------------------------------*/
   1104
   1105static int fsl_dma_chan_probe(struct fsldma_device *fdev,
   1106	struct device_node *node, u32 feature, const char *compatible)
   1107{
   1108	struct fsldma_chan *chan;
   1109	struct resource res;
   1110	int err;
   1111
   1112	/* alloc channel */
   1113	chan = kzalloc(sizeof(*chan), GFP_KERNEL);
   1114	if (!chan) {
   1115		err = -ENOMEM;
   1116		goto out_return;
   1117	}
   1118
   1119	/* ioremap registers for use */
   1120	chan->regs = of_iomap(node, 0);
   1121	if (!chan->regs) {
   1122		dev_err(fdev->dev, "unable to ioremap registers\n");
   1123		err = -ENOMEM;
   1124		goto out_free_chan;
   1125	}
   1126
   1127	err = of_address_to_resource(node, 0, &res);
   1128	if (err) {
   1129		dev_err(fdev->dev, "unable to find 'reg' property\n");
   1130		goto out_iounmap_regs;
   1131	}
   1132
   1133	chan->feature = feature;
   1134	if (!fdev->feature)
   1135		fdev->feature = chan->feature;
   1136
   1137	/*
   1138	 * If the DMA device's feature is different than the feature
   1139	 * of its channels, report the bug
   1140	 */
   1141	WARN_ON(fdev->feature != chan->feature);
   1142
   1143	chan->dev = fdev->dev;
   1144	chan->id = (res.start & 0xfff) < 0x300 ?
   1145		   ((res.start - 0x100) & 0xfff) >> 7 :
   1146		   ((res.start - 0x200) & 0xfff) >> 7;
   1147	if (chan->id >= FSL_DMA_MAX_CHANS_PER_DEVICE) {
   1148		dev_err(fdev->dev, "too many channels for device\n");
   1149		err = -EINVAL;
   1150		goto out_iounmap_regs;
   1151	}
   1152
   1153	fdev->chan[chan->id] = chan;
   1154	tasklet_setup(&chan->tasklet, dma_do_tasklet);
   1155	snprintf(chan->name, sizeof(chan->name), "chan%d", chan->id);
   1156
   1157	/* Initialize the channel */
   1158	dma_init(chan);
   1159
   1160	/* Clear cdar registers */
   1161	set_cdar(chan, 0);
   1162
   1163	switch (chan->feature & FSL_DMA_IP_MASK) {
   1164	case FSL_DMA_IP_85XX:
   1165		chan->toggle_ext_pause = fsl_chan_toggle_ext_pause;
   1166		fallthrough;
   1167	case FSL_DMA_IP_83XX:
   1168		chan->toggle_ext_start = fsl_chan_toggle_ext_start;
   1169		chan->set_src_loop_size = fsl_chan_set_src_loop_size;
   1170		chan->set_dst_loop_size = fsl_chan_set_dst_loop_size;
   1171		chan->set_request_count = fsl_chan_set_request_count;
   1172	}
   1173
   1174	spin_lock_init(&chan->desc_lock);
   1175	INIT_LIST_HEAD(&chan->ld_pending);
   1176	INIT_LIST_HEAD(&chan->ld_running);
   1177	INIT_LIST_HEAD(&chan->ld_completed);
   1178	chan->idle = true;
   1179#ifdef CONFIG_PM
   1180	chan->pm_state = RUNNING;
   1181#endif
   1182
   1183	chan->common.device = &fdev->common;
   1184	dma_cookie_init(&chan->common);
   1185
   1186	/* find the IRQ line, if it exists in the device tree */
   1187	chan->irq = irq_of_parse_and_map(node, 0);
   1188
   1189	/* Add the channel to DMA device channel list */
   1190	list_add_tail(&chan->common.device_node, &fdev->common.channels);
   1191
   1192	dev_info(fdev->dev, "#%d (%s), irq %d\n", chan->id, compatible,
   1193		 chan->irq ? chan->irq : fdev->irq);
   1194
   1195	return 0;
   1196
   1197out_iounmap_regs:
   1198	iounmap(chan->regs);
   1199out_free_chan:
   1200	kfree(chan);
   1201out_return:
   1202	return err;
   1203}
   1204
   1205static void fsl_dma_chan_remove(struct fsldma_chan *chan)
   1206{
   1207	irq_dispose_mapping(chan->irq);
   1208	list_del(&chan->common.device_node);
   1209	iounmap(chan->regs);
   1210	kfree(chan);
   1211}
   1212
   1213static int fsldma_of_probe(struct platform_device *op)
   1214{
   1215	struct fsldma_device *fdev;
   1216	struct device_node *child;
   1217	unsigned int i;
   1218	int err;
   1219
   1220	fdev = kzalloc(sizeof(*fdev), GFP_KERNEL);
   1221	if (!fdev) {
   1222		err = -ENOMEM;
   1223		goto out_return;
   1224	}
   1225
   1226	fdev->dev = &op->dev;
   1227	INIT_LIST_HEAD(&fdev->common.channels);
   1228
   1229	/* ioremap the registers for use */
   1230	fdev->regs = of_iomap(op->dev.of_node, 0);
   1231	if (!fdev->regs) {
   1232		dev_err(&op->dev, "unable to ioremap registers\n");
   1233		err = -ENOMEM;
   1234		goto out_free;
   1235	}
   1236
   1237	/* map the channel IRQ if it exists, but don't hookup the handler yet */
   1238	fdev->irq = irq_of_parse_and_map(op->dev.of_node, 0);
   1239
   1240	dma_cap_set(DMA_MEMCPY, fdev->common.cap_mask);
   1241	dma_cap_set(DMA_SLAVE, fdev->common.cap_mask);
   1242	fdev->common.device_alloc_chan_resources = fsl_dma_alloc_chan_resources;
   1243	fdev->common.device_free_chan_resources = fsl_dma_free_chan_resources;
   1244	fdev->common.device_prep_dma_memcpy = fsl_dma_prep_memcpy;
   1245	fdev->common.device_tx_status = fsl_tx_status;
   1246	fdev->common.device_issue_pending = fsl_dma_memcpy_issue_pending;
   1247	fdev->common.device_config = fsl_dma_device_config;
   1248	fdev->common.device_terminate_all = fsl_dma_device_terminate_all;
   1249	fdev->common.dev = &op->dev;
   1250
   1251	fdev->common.src_addr_widths = FSL_DMA_BUSWIDTHS;
   1252	fdev->common.dst_addr_widths = FSL_DMA_BUSWIDTHS;
   1253	fdev->common.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
   1254	fdev->common.residue_granularity = DMA_RESIDUE_GRANULARITY_DESCRIPTOR;
   1255
   1256	dma_set_mask(&(op->dev), DMA_BIT_MASK(36));
   1257
   1258	platform_set_drvdata(op, fdev);
   1259
   1260	/*
   1261	 * We cannot use of_platform_bus_probe() because there is no
   1262	 * of_platform_bus_remove(). Instead, we manually instantiate every DMA
   1263	 * channel object.
   1264	 */
   1265	for_each_child_of_node(op->dev.of_node, child) {
   1266		if (of_device_is_compatible(child, "fsl,eloplus-dma-channel")) {
   1267			fsl_dma_chan_probe(fdev, child,
   1268				FSL_DMA_IP_85XX | FSL_DMA_BIG_ENDIAN,
   1269				"fsl,eloplus-dma-channel");
   1270		}
   1271
   1272		if (of_device_is_compatible(child, "fsl,elo-dma-channel")) {
   1273			fsl_dma_chan_probe(fdev, child,
   1274				FSL_DMA_IP_83XX | FSL_DMA_LITTLE_ENDIAN,
   1275				"fsl,elo-dma-channel");
   1276		}
   1277	}
   1278
   1279	/*
   1280	 * Hookup the IRQ handler(s)
   1281	 *
   1282	 * If we have a per-controller interrupt, we prefer that to the
   1283	 * per-channel interrupts to reduce the number of shared interrupt
   1284	 * handlers on the same IRQ line
   1285	 */
   1286	err = fsldma_request_irqs(fdev);
   1287	if (err) {
   1288		dev_err(fdev->dev, "unable to request IRQs\n");
   1289		goto out_free_fdev;
   1290	}
   1291
   1292	dma_async_device_register(&fdev->common);
   1293	return 0;
   1294
   1295out_free_fdev:
   1296	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
   1297		if (fdev->chan[i])
   1298			fsl_dma_chan_remove(fdev->chan[i]);
   1299	}
   1300	irq_dispose_mapping(fdev->irq);
   1301	iounmap(fdev->regs);
   1302out_free:
   1303	kfree(fdev);
   1304out_return:
   1305	return err;
   1306}
   1307
   1308static int fsldma_of_remove(struct platform_device *op)
   1309{
   1310	struct fsldma_device *fdev;
   1311	unsigned int i;
   1312
   1313	fdev = platform_get_drvdata(op);
   1314	dma_async_device_unregister(&fdev->common);
   1315
   1316	fsldma_free_irqs(fdev);
   1317
   1318	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
   1319		if (fdev->chan[i])
   1320			fsl_dma_chan_remove(fdev->chan[i]);
   1321	}
   1322	irq_dispose_mapping(fdev->irq);
   1323
   1324	iounmap(fdev->regs);
   1325	kfree(fdev);
   1326
   1327	return 0;
   1328}
   1329
   1330#ifdef CONFIG_PM
   1331static int fsldma_suspend_late(struct device *dev)
   1332{
   1333	struct fsldma_device *fdev = dev_get_drvdata(dev);
   1334	struct fsldma_chan *chan;
   1335	int i;
   1336
   1337	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
   1338		chan = fdev->chan[i];
   1339		if (!chan)
   1340			continue;
   1341
   1342		spin_lock_bh(&chan->desc_lock);
   1343		if (unlikely(!chan->idle))
   1344			goto out;
   1345		chan->regs_save.mr = get_mr(chan);
   1346		chan->pm_state = SUSPENDED;
   1347		spin_unlock_bh(&chan->desc_lock);
   1348	}
   1349	return 0;
   1350
   1351out:
   1352	for (; i >= 0; i--) {
   1353		chan = fdev->chan[i];
   1354		if (!chan)
   1355			continue;
   1356		chan->pm_state = RUNNING;
   1357		spin_unlock_bh(&chan->desc_lock);
   1358	}
   1359	return -EBUSY;
   1360}
   1361
   1362static int fsldma_resume_early(struct device *dev)
   1363{
   1364	struct fsldma_device *fdev = dev_get_drvdata(dev);
   1365	struct fsldma_chan *chan;
   1366	u32 mode;
   1367	int i;
   1368
   1369	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
   1370		chan = fdev->chan[i];
   1371		if (!chan)
   1372			continue;
   1373
   1374		spin_lock_bh(&chan->desc_lock);
   1375		mode = chan->regs_save.mr
   1376			& ~FSL_DMA_MR_CS & ~FSL_DMA_MR_CC & ~FSL_DMA_MR_CA;
   1377		set_mr(chan, mode);
   1378		chan->pm_state = RUNNING;
   1379		spin_unlock_bh(&chan->desc_lock);
   1380	}
   1381
   1382	return 0;
   1383}
   1384
   1385static const struct dev_pm_ops fsldma_pm_ops = {
   1386	.suspend_late	= fsldma_suspend_late,
   1387	.resume_early	= fsldma_resume_early,
   1388};
   1389#endif
   1390
   1391static const struct of_device_id fsldma_of_ids[] = {
   1392	{ .compatible = "fsl,elo3-dma", },
   1393	{ .compatible = "fsl,eloplus-dma", },
   1394	{ .compatible = "fsl,elo-dma", },
   1395	{}
   1396};
   1397MODULE_DEVICE_TABLE(of, fsldma_of_ids);
   1398
   1399static struct platform_driver fsldma_of_driver = {
   1400	.driver = {
   1401		.name = "fsl-elo-dma",
   1402		.of_match_table = fsldma_of_ids,
   1403#ifdef CONFIG_PM
   1404		.pm = &fsldma_pm_ops,
   1405#endif
   1406	},
   1407	.probe = fsldma_of_probe,
   1408	.remove = fsldma_of_remove,
   1409};
   1410
   1411/*----------------------------------------------------------------------------*/
   1412/* Module Init / Exit                                                         */
   1413/*----------------------------------------------------------------------------*/
   1414
   1415static __init int fsldma_init(void)
   1416{
   1417	pr_info("Freescale Elo series DMA driver\n");
   1418	return platform_driver_register(&fsldma_of_driver);
   1419}
   1420
   1421static void __exit fsldma_exit(void)
   1422{
   1423	platform_driver_unregister(&fsldma_of_driver);
   1424}
   1425
   1426subsys_initcall(fsldma_init);
   1427module_exit(fsldma_exit);
   1428
   1429MODULE_DESCRIPTION("Freescale Elo series DMA driver");
   1430MODULE_LICENSE("GPL");