cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

mtk-hsdma.c (29040B)


      1// SPDX-License-Identifier: GPL-2.0
      2// Copyright (c) 2017-2018 MediaTek Inc.
      3
      4/*
      5 * Driver for MediaTek High-Speed DMA Controller
      6 *
      7 * Author: Sean Wang <sean.wang@mediatek.com>
      8 *
      9 */
     10
     11#include <linux/bitops.h>
     12#include <linux/clk.h>
     13#include <linux/dmaengine.h>
     14#include <linux/dma-mapping.h>
     15#include <linux/err.h>
     16#include <linux/iopoll.h>
     17#include <linux/list.h>
     18#include <linux/module.h>
     19#include <linux/of.h>
     20#include <linux/of_device.h>
     21#include <linux/of_dma.h>
     22#include <linux/platform_device.h>
     23#include <linux/pm_runtime.h>
     24#include <linux/refcount.h>
     25#include <linux/slab.h>
     26
     27#include "../virt-dma.h"
     28
     29#define MTK_HSDMA_USEC_POLL		20
     30#define MTK_HSDMA_TIMEOUT_POLL		200000
     31#define MTK_HSDMA_DMA_BUSWIDTHS		BIT(DMA_SLAVE_BUSWIDTH_4_BYTES)
     32
     33/* The default number of virtual channel */
     34#define MTK_HSDMA_NR_VCHANS		3
     35
     36/* Only one physical channel supported */
     37#define MTK_HSDMA_NR_MAX_PCHANS		1
     38
     39/* Macro for physical descriptor (PD) manipulation */
     40/* The number of PD which must be 2 of power */
     41#define MTK_DMA_SIZE			64
     42#define MTK_HSDMA_NEXT_DESP_IDX(x, y)	(((x) + 1) & ((y) - 1))
     43#define MTK_HSDMA_LAST_DESP_IDX(x, y)	(((x) - 1) & ((y) - 1))
     44#define MTK_HSDMA_MAX_LEN		0x3f80
     45#define MTK_HSDMA_ALIGN_SIZE		4
     46#define MTK_HSDMA_PLEN_MASK		0x3fff
     47#define MTK_HSDMA_DESC_PLEN(x)		(((x) & MTK_HSDMA_PLEN_MASK) << 16)
     48#define MTK_HSDMA_DESC_PLEN_GET(x)	(((x) >> 16) & MTK_HSDMA_PLEN_MASK)
     49
     50/* Registers for underlying ring manipulation */
     51#define MTK_HSDMA_TX_BASE		0x0
     52#define MTK_HSDMA_TX_CNT		0x4
     53#define MTK_HSDMA_TX_CPU		0x8
     54#define MTK_HSDMA_TX_DMA		0xc
     55#define MTK_HSDMA_RX_BASE		0x100
     56#define MTK_HSDMA_RX_CNT		0x104
     57#define MTK_HSDMA_RX_CPU		0x108
     58#define MTK_HSDMA_RX_DMA		0x10c
     59
     60/* Registers for global setup */
     61#define MTK_HSDMA_GLO			0x204
     62#define MTK_HSDMA_GLO_MULTI_DMA		BIT(10)
     63#define MTK_HSDMA_TX_WB_DDONE		BIT(6)
     64#define MTK_HSDMA_BURST_64BYTES		(0x2 << 4)
     65#define MTK_HSDMA_GLO_RX_BUSY		BIT(3)
     66#define MTK_HSDMA_GLO_RX_DMA		BIT(2)
     67#define MTK_HSDMA_GLO_TX_BUSY		BIT(1)
     68#define MTK_HSDMA_GLO_TX_DMA		BIT(0)
     69#define MTK_HSDMA_GLO_DMA		(MTK_HSDMA_GLO_TX_DMA |	\
     70					 MTK_HSDMA_GLO_RX_DMA)
     71#define MTK_HSDMA_GLO_BUSY		(MTK_HSDMA_GLO_RX_BUSY | \
     72					 MTK_HSDMA_GLO_TX_BUSY)
     73#define MTK_HSDMA_GLO_DEFAULT		(MTK_HSDMA_GLO_TX_DMA | \
     74					 MTK_HSDMA_GLO_RX_DMA | \
     75					 MTK_HSDMA_TX_WB_DDONE | \
     76					 MTK_HSDMA_BURST_64BYTES | \
     77					 MTK_HSDMA_GLO_MULTI_DMA)
     78
     79/* Registers for reset */
     80#define MTK_HSDMA_RESET			0x208
     81#define MTK_HSDMA_RST_TX		BIT(0)
     82#define MTK_HSDMA_RST_RX		BIT(16)
     83
     84/* Registers for interrupt control */
     85#define MTK_HSDMA_DLYINT		0x20c
     86#define MTK_HSDMA_RXDLY_INT_EN		BIT(15)
     87
     88/* Interrupt fires when the pending number's more than the specified */
     89#define MTK_HSDMA_RXMAX_PINT(x)		(((x) & 0x7f) << 8)
     90
     91/* Interrupt fires when the pending time's more than the specified in 20 us */
     92#define MTK_HSDMA_RXMAX_PTIME(x)	((x) & 0x7f)
     93#define MTK_HSDMA_DLYINT_DEFAULT	(MTK_HSDMA_RXDLY_INT_EN | \
     94					 MTK_HSDMA_RXMAX_PINT(20) | \
     95					 MTK_HSDMA_RXMAX_PTIME(20))
     96#define MTK_HSDMA_INT_STATUS		0x220
     97#define MTK_HSDMA_INT_ENABLE		0x228
     98#define MTK_HSDMA_INT_RXDONE		BIT(16)
     99
    100enum mtk_hsdma_vdesc_flag {
    101	MTK_HSDMA_VDESC_FINISHED	= 0x01,
    102};
    103
    104#define IS_MTK_HSDMA_VDESC_FINISHED(x) ((x) == MTK_HSDMA_VDESC_FINISHED)
    105
    106/**
    107 * struct mtk_hsdma_pdesc - This is the struct holding info describing physical
    108 *			    descriptor (PD) and its placement must be kept at
    109 *			    4-bytes alignment in little endian order.
    110 * @desc1:		    | The control pad used to indicate hardware how to
    111 * @desc2:		    | deal with the descriptor such as source and
    112 * @desc3:		    | destination address and data length. The maximum
    113 * @desc4:		    | data length each pdesc can handle is 0x3f80 bytes
    114 */
    115struct mtk_hsdma_pdesc {
    116	__le32 desc1;
    117	__le32 desc2;
    118	__le32 desc3;
    119	__le32 desc4;
    120} __packed __aligned(4);
    121
    122/**
    123 * struct mtk_hsdma_vdesc - This is the struct holding info describing virtual
    124 *			    descriptor (VD)
    125 * @vd:			    An instance for struct virt_dma_desc
    126 * @len:		    The total data size device wants to move
    127 * @residue:		    The remaining data size device will move
    128 * @dest:		    The destination address device wants to move to
    129 * @src:		    The source address device wants to move from
    130 */
    131struct mtk_hsdma_vdesc {
    132	struct virt_dma_desc vd;
    133	size_t len;
    134	size_t residue;
    135	dma_addr_t dest;
    136	dma_addr_t src;
    137};
    138
    139/**
    140 * struct mtk_hsdma_cb - This is the struct holding extra info required for RX
    141 *			 ring to know what relevant VD the the PD is being
    142 *			 mapped to.
    143 * @vd:			 Pointer to the relevant VD.
    144 * @flag:		 Flag indicating what action should be taken when VD
    145 *			 is completed.
    146 */
    147struct mtk_hsdma_cb {
    148	struct virt_dma_desc *vd;
    149	enum mtk_hsdma_vdesc_flag flag;
    150};
    151
    152/**
    153 * struct mtk_hsdma_ring - This struct holds info describing underlying ring
    154 *			   space
    155 * @txd:		   The descriptor TX ring which describes DMA source
    156 *			   information
    157 * @rxd:		   The descriptor RX ring which describes DMA
    158 *			   destination information
    159 * @cb:			   The extra information pointed at by RX ring
    160 * @tphys:		   The physical addr of TX ring
    161 * @rphys:		   The physical addr of RX ring
    162 * @cur_tptr:		   Pointer to the next free descriptor used by the host
    163 * @cur_rptr:		   Pointer to the last done descriptor by the device
    164 */
    165struct mtk_hsdma_ring {
    166	struct mtk_hsdma_pdesc *txd;
    167	struct mtk_hsdma_pdesc *rxd;
    168	struct mtk_hsdma_cb *cb;
    169	dma_addr_t tphys;
    170	dma_addr_t rphys;
    171	u16 cur_tptr;
    172	u16 cur_rptr;
    173};
    174
    175/**
    176 * struct mtk_hsdma_pchan - This is the struct holding info describing physical
    177 *			   channel (PC)
    178 * @ring:		   An instance for the underlying ring
    179 * @sz_ring:		   Total size allocated for the ring
    180 * @nr_free:		   Total number of free rooms in the ring. It would
    181 *			   be accessed and updated frequently between IRQ
    182 *			   context and user context to reflect whether ring
    183 *			   can accept requests from VD.
    184 */
    185struct mtk_hsdma_pchan {
    186	struct mtk_hsdma_ring ring;
    187	size_t sz_ring;
    188	atomic_t nr_free;
    189};
    190
    191/**
    192 * struct mtk_hsdma_vchan - This is the struct holding info describing virtual
    193 *			   channel (VC)
    194 * @vc:			   An instance for struct virt_dma_chan
    195 * @issue_completion:	   The wait for all issued descriptors completited
    196 * @issue_synchronize:	   Bool indicating channel synchronization starts
    197 * @desc_hw_processing:	   List those descriptors the hardware is processing,
    198 *			   which is protected by vc.lock
    199 */
    200struct mtk_hsdma_vchan {
    201	struct virt_dma_chan vc;
    202	struct completion issue_completion;
    203	bool issue_synchronize;
    204	struct list_head desc_hw_processing;
    205};
    206
    207/**
    208 * struct mtk_hsdma_soc - This is the struct holding differences among SoCs
    209 * @ddone:		  Bit mask for DDONE
    210 * @ls0:		  Bit mask for LS0
    211 */
    212struct mtk_hsdma_soc {
    213	__le32 ddone;
    214	__le32 ls0;
    215};
    216
    217/**
    218 * struct mtk_hsdma_device - This is the struct holding info describing HSDMA
    219 *			     device
    220 * @ddev:		     An instance for struct dma_device
    221 * @base:		     The mapped register I/O base
    222 * @clk:		     The clock that device internal is using
    223 * @irq:		     The IRQ that device are using
    224 * @dma_requests:	     The number of VCs the device supports to
    225 * @vc:			     The pointer to all available VCs
    226 * @pc:			     The pointer to the underlying PC
    227 * @pc_refcnt:		     Track how many VCs are using the PC
    228 * @lock:		     Lock protect agaisting multiple VCs access PC
    229 * @soc:		     The pointer to area holding differences among
    230 *			     vaious platform
    231 */
    232struct mtk_hsdma_device {
    233	struct dma_device ddev;
    234	void __iomem *base;
    235	struct clk *clk;
    236	u32 irq;
    237
    238	u32 dma_requests;
    239	struct mtk_hsdma_vchan *vc;
    240	struct mtk_hsdma_pchan *pc;
    241	refcount_t pc_refcnt;
    242
    243	/* Lock used to protect against multiple VCs access PC */
    244	spinlock_t lock;
    245
    246	const struct mtk_hsdma_soc *soc;
    247};
    248
    249static struct mtk_hsdma_device *to_hsdma_dev(struct dma_chan *chan)
    250{
    251	return container_of(chan->device, struct mtk_hsdma_device, ddev);
    252}
    253
    254static inline struct mtk_hsdma_vchan *to_hsdma_vchan(struct dma_chan *chan)
    255{
    256	return container_of(chan, struct mtk_hsdma_vchan, vc.chan);
    257}
    258
    259static struct mtk_hsdma_vdesc *to_hsdma_vdesc(struct virt_dma_desc *vd)
    260{
    261	return container_of(vd, struct mtk_hsdma_vdesc, vd);
    262}
    263
    264static struct device *hsdma2dev(struct mtk_hsdma_device *hsdma)
    265{
    266	return hsdma->ddev.dev;
    267}
    268
    269static u32 mtk_dma_read(struct mtk_hsdma_device *hsdma, u32 reg)
    270{
    271	return readl(hsdma->base + reg);
    272}
    273
    274static void mtk_dma_write(struct mtk_hsdma_device *hsdma, u32 reg, u32 val)
    275{
    276	writel(val, hsdma->base + reg);
    277}
    278
    279static void mtk_dma_rmw(struct mtk_hsdma_device *hsdma, u32 reg,
    280			u32 mask, u32 set)
    281{
    282	u32 val;
    283
    284	val = mtk_dma_read(hsdma, reg);
    285	val &= ~mask;
    286	val |= set;
    287	mtk_dma_write(hsdma, reg, val);
    288}
    289
    290static void mtk_dma_set(struct mtk_hsdma_device *hsdma, u32 reg, u32 val)
    291{
    292	mtk_dma_rmw(hsdma, reg, 0, val);
    293}
    294
    295static void mtk_dma_clr(struct mtk_hsdma_device *hsdma, u32 reg, u32 val)
    296{
    297	mtk_dma_rmw(hsdma, reg, val, 0);
    298}
    299
    300static void mtk_hsdma_vdesc_free(struct virt_dma_desc *vd)
    301{
    302	kfree(container_of(vd, struct mtk_hsdma_vdesc, vd));
    303}
    304
    305static int mtk_hsdma_busy_wait(struct mtk_hsdma_device *hsdma)
    306{
    307	u32 status = 0;
    308
    309	return readl_poll_timeout(hsdma->base + MTK_HSDMA_GLO, status,
    310				  !(status & MTK_HSDMA_GLO_BUSY),
    311				  MTK_HSDMA_USEC_POLL,
    312				  MTK_HSDMA_TIMEOUT_POLL);
    313}
    314
    315static int mtk_hsdma_alloc_pchan(struct mtk_hsdma_device *hsdma,
    316				 struct mtk_hsdma_pchan *pc)
    317{
    318	struct mtk_hsdma_ring *ring = &pc->ring;
    319	int err;
    320
    321	memset(pc, 0, sizeof(*pc));
    322
    323	/*
    324	 * Allocate ring space where [0 ... MTK_DMA_SIZE - 1] is for TX ring
    325	 * and [MTK_DMA_SIZE ... 2 * MTK_DMA_SIZE - 1] is for RX ring.
    326	 */
    327	pc->sz_ring = 2 * MTK_DMA_SIZE * sizeof(*ring->txd);
    328	ring->txd = dma_alloc_coherent(hsdma2dev(hsdma), pc->sz_ring,
    329				       &ring->tphys, GFP_NOWAIT);
    330	if (!ring->txd)
    331		return -ENOMEM;
    332
    333	ring->rxd = &ring->txd[MTK_DMA_SIZE];
    334	ring->rphys = ring->tphys + MTK_DMA_SIZE * sizeof(*ring->txd);
    335	ring->cur_tptr = 0;
    336	ring->cur_rptr = MTK_DMA_SIZE - 1;
    337
    338	ring->cb = kcalloc(MTK_DMA_SIZE, sizeof(*ring->cb), GFP_NOWAIT);
    339	if (!ring->cb) {
    340		err = -ENOMEM;
    341		goto err_free_dma;
    342	}
    343
    344	atomic_set(&pc->nr_free, MTK_DMA_SIZE - 1);
    345
    346	/* Disable HSDMA and wait for the completion */
    347	mtk_dma_clr(hsdma, MTK_HSDMA_GLO, MTK_HSDMA_GLO_DMA);
    348	err = mtk_hsdma_busy_wait(hsdma);
    349	if (err)
    350		goto err_free_cb;
    351
    352	/* Reset */
    353	mtk_dma_set(hsdma, MTK_HSDMA_RESET,
    354		    MTK_HSDMA_RST_TX | MTK_HSDMA_RST_RX);
    355	mtk_dma_clr(hsdma, MTK_HSDMA_RESET,
    356		    MTK_HSDMA_RST_TX | MTK_HSDMA_RST_RX);
    357
    358	/* Setup HSDMA initial pointer in the ring */
    359	mtk_dma_write(hsdma, MTK_HSDMA_TX_BASE, ring->tphys);
    360	mtk_dma_write(hsdma, MTK_HSDMA_TX_CNT, MTK_DMA_SIZE);
    361	mtk_dma_write(hsdma, MTK_HSDMA_TX_CPU, ring->cur_tptr);
    362	mtk_dma_write(hsdma, MTK_HSDMA_TX_DMA, 0);
    363	mtk_dma_write(hsdma, MTK_HSDMA_RX_BASE, ring->rphys);
    364	mtk_dma_write(hsdma, MTK_HSDMA_RX_CNT, MTK_DMA_SIZE);
    365	mtk_dma_write(hsdma, MTK_HSDMA_RX_CPU, ring->cur_rptr);
    366	mtk_dma_write(hsdma, MTK_HSDMA_RX_DMA, 0);
    367
    368	/* Enable HSDMA */
    369	mtk_dma_set(hsdma, MTK_HSDMA_GLO, MTK_HSDMA_GLO_DMA);
    370
    371	/* Setup delayed interrupt */
    372	mtk_dma_write(hsdma, MTK_HSDMA_DLYINT, MTK_HSDMA_DLYINT_DEFAULT);
    373
    374	/* Enable interrupt */
    375	mtk_dma_set(hsdma, MTK_HSDMA_INT_ENABLE, MTK_HSDMA_INT_RXDONE);
    376
    377	return 0;
    378
    379err_free_cb:
    380	kfree(ring->cb);
    381
    382err_free_dma:
    383	dma_free_coherent(hsdma2dev(hsdma),
    384			  pc->sz_ring, ring->txd, ring->tphys);
    385	return err;
    386}
    387
    388static void mtk_hsdma_free_pchan(struct mtk_hsdma_device *hsdma,
    389				 struct mtk_hsdma_pchan *pc)
    390{
    391	struct mtk_hsdma_ring *ring = &pc->ring;
    392
    393	/* Disable HSDMA and then wait for the completion */
    394	mtk_dma_clr(hsdma, MTK_HSDMA_GLO, MTK_HSDMA_GLO_DMA);
    395	mtk_hsdma_busy_wait(hsdma);
    396
    397	/* Reset pointer in the ring */
    398	mtk_dma_clr(hsdma, MTK_HSDMA_INT_ENABLE, MTK_HSDMA_INT_RXDONE);
    399	mtk_dma_write(hsdma, MTK_HSDMA_TX_BASE, 0);
    400	mtk_dma_write(hsdma, MTK_HSDMA_TX_CNT, 0);
    401	mtk_dma_write(hsdma, MTK_HSDMA_TX_CPU, 0);
    402	mtk_dma_write(hsdma, MTK_HSDMA_RX_BASE, 0);
    403	mtk_dma_write(hsdma, MTK_HSDMA_RX_CNT, 0);
    404	mtk_dma_write(hsdma, MTK_HSDMA_RX_CPU, MTK_DMA_SIZE - 1);
    405
    406	kfree(ring->cb);
    407
    408	dma_free_coherent(hsdma2dev(hsdma),
    409			  pc->sz_ring, ring->txd, ring->tphys);
    410}
    411
    412static int mtk_hsdma_issue_pending_vdesc(struct mtk_hsdma_device *hsdma,
    413					 struct mtk_hsdma_pchan *pc,
    414					 struct mtk_hsdma_vdesc *hvd)
    415{
    416	struct mtk_hsdma_ring *ring = &pc->ring;
    417	struct mtk_hsdma_pdesc *txd, *rxd;
    418	u16 reserved, prev, tlen, num_sgs;
    419	unsigned long flags;
    420
    421	/* Protect against PC is accessed by multiple VCs simultaneously */
    422	spin_lock_irqsave(&hsdma->lock, flags);
    423
    424	/*
    425	 * Reserve rooms, where pc->nr_free is used to track how many free
    426	 * rooms in the ring being updated in user and IRQ context.
    427	 */
    428	num_sgs = DIV_ROUND_UP(hvd->len, MTK_HSDMA_MAX_LEN);
    429	reserved = min_t(u16, num_sgs, atomic_read(&pc->nr_free));
    430
    431	if (!reserved) {
    432		spin_unlock_irqrestore(&hsdma->lock, flags);
    433		return -ENOSPC;
    434	}
    435
    436	atomic_sub(reserved, &pc->nr_free);
    437
    438	while (reserved--) {
    439		/* Limit size by PD capability for valid data moving */
    440		tlen = (hvd->len > MTK_HSDMA_MAX_LEN) ?
    441		       MTK_HSDMA_MAX_LEN : hvd->len;
    442
    443		/*
    444		 * Setup PDs using the remaining VD info mapped on those
    445		 * reserved rooms. And since RXD is shared memory between the
    446		 * host and the device allocated by dma_alloc_coherent call,
    447		 * the helper macro WRITE_ONCE can ensure the data written to
    448		 * RAM would really happens.
    449		 */
    450		txd = &ring->txd[ring->cur_tptr];
    451		WRITE_ONCE(txd->desc1, hvd->src);
    452		WRITE_ONCE(txd->desc2,
    453			   hsdma->soc->ls0 | MTK_HSDMA_DESC_PLEN(tlen));
    454
    455		rxd = &ring->rxd[ring->cur_tptr];
    456		WRITE_ONCE(rxd->desc1, hvd->dest);
    457		WRITE_ONCE(rxd->desc2, MTK_HSDMA_DESC_PLEN(tlen));
    458
    459		/* Associate VD, the PD belonged to */
    460		ring->cb[ring->cur_tptr].vd = &hvd->vd;
    461
    462		/* Move forward the pointer of TX ring */
    463		ring->cur_tptr = MTK_HSDMA_NEXT_DESP_IDX(ring->cur_tptr,
    464							 MTK_DMA_SIZE);
    465
    466		/* Update VD with remaining data */
    467		hvd->src  += tlen;
    468		hvd->dest += tlen;
    469		hvd->len  -= tlen;
    470	}
    471
    472	/*
    473	 * Tagging flag for the last PD for VD will be responsible for
    474	 * completing VD.
    475	 */
    476	if (!hvd->len) {
    477		prev = MTK_HSDMA_LAST_DESP_IDX(ring->cur_tptr, MTK_DMA_SIZE);
    478		ring->cb[prev].flag = MTK_HSDMA_VDESC_FINISHED;
    479	}
    480
    481	/* Ensure all changes indeed done before we're going on */
    482	wmb();
    483
    484	/*
    485	 * Updating into hardware the pointer of TX ring lets HSDMA to take
    486	 * action for those pending PDs.
    487	 */
    488	mtk_dma_write(hsdma, MTK_HSDMA_TX_CPU, ring->cur_tptr);
    489
    490	spin_unlock_irqrestore(&hsdma->lock, flags);
    491
    492	return 0;
    493}
    494
    495static void mtk_hsdma_issue_vchan_pending(struct mtk_hsdma_device *hsdma,
    496					  struct mtk_hsdma_vchan *hvc)
    497{
    498	struct virt_dma_desc *vd, *vd2;
    499	int err;
    500
    501	lockdep_assert_held(&hvc->vc.lock);
    502
    503	list_for_each_entry_safe(vd, vd2, &hvc->vc.desc_issued, node) {
    504		struct mtk_hsdma_vdesc *hvd;
    505
    506		hvd = to_hsdma_vdesc(vd);
    507
    508		/* Map VD into PC and all VCs shares a single PC */
    509		err = mtk_hsdma_issue_pending_vdesc(hsdma, hsdma->pc, hvd);
    510
    511		/*
    512		 * Move VD from desc_issued to desc_hw_processing when entire
    513		 * VD is fit into available PDs. Otherwise, the uncompleted
    514		 * VDs would stay in list desc_issued and then restart the
    515		 * processing as soon as possible once underlying ring space
    516		 * got freed.
    517		 */
    518		if (err == -ENOSPC || hvd->len > 0)
    519			break;
    520
    521		/*
    522		 * The extra list desc_hw_processing is used because
    523		 * hardware can't provide sufficient information allowing us
    524		 * to know what VDs are still working on the underlying ring.
    525		 * Through the additional list, it can help us to implement
    526		 * terminate_all, residue calculation and such thing needed
    527		 * to know detail descriptor status on the hardware.
    528		 */
    529		list_move_tail(&vd->node, &hvc->desc_hw_processing);
    530	}
    531}
    532
    533static void mtk_hsdma_free_rooms_in_ring(struct mtk_hsdma_device *hsdma)
    534{
    535	struct mtk_hsdma_vchan *hvc;
    536	struct mtk_hsdma_pdesc *rxd;
    537	struct mtk_hsdma_vdesc *hvd;
    538	struct mtk_hsdma_pchan *pc;
    539	struct mtk_hsdma_cb *cb;
    540	int i = MTK_DMA_SIZE;
    541	__le32 desc2;
    542	u32 status;
    543	u16 next;
    544
    545	/* Read IRQ status */
    546	status = mtk_dma_read(hsdma, MTK_HSDMA_INT_STATUS);
    547	if (unlikely(!(status & MTK_HSDMA_INT_RXDONE)))
    548		goto rx_done;
    549
    550	pc = hsdma->pc;
    551
    552	/*
    553	 * Using a fail-safe loop with iterations of up to MTK_DMA_SIZE to
    554	 * reclaim these finished descriptors: The most number of PDs the ISR
    555	 * can handle at one time shouldn't be more than MTK_DMA_SIZE so we
    556	 * take it as limited count instead of just using a dangerous infinite
    557	 * poll.
    558	 */
    559	while (i--) {
    560		next = MTK_HSDMA_NEXT_DESP_IDX(pc->ring.cur_rptr,
    561					       MTK_DMA_SIZE);
    562		rxd = &pc->ring.rxd[next];
    563
    564		/*
    565		 * If MTK_HSDMA_DESC_DDONE is no specified, that means data
    566		 * moving for the PD is still under going.
    567		 */
    568		desc2 = READ_ONCE(rxd->desc2);
    569		if (!(desc2 & hsdma->soc->ddone))
    570			break;
    571
    572		cb = &pc->ring.cb[next];
    573		if (unlikely(!cb->vd)) {
    574			dev_err(hsdma2dev(hsdma), "cb->vd cannot be null\n");
    575			break;
    576		}
    577
    578		/* Update residue of VD the associated PD belonged to */
    579		hvd = to_hsdma_vdesc(cb->vd);
    580		hvd->residue -= MTK_HSDMA_DESC_PLEN_GET(rxd->desc2);
    581
    582		/* Complete VD until the relevant last PD is finished */
    583		if (IS_MTK_HSDMA_VDESC_FINISHED(cb->flag)) {
    584			hvc = to_hsdma_vchan(cb->vd->tx.chan);
    585
    586			spin_lock(&hvc->vc.lock);
    587
    588			/* Remove VD from list desc_hw_processing */
    589			list_del(&cb->vd->node);
    590
    591			/* Add VD into list desc_completed */
    592			vchan_cookie_complete(cb->vd);
    593
    594			if (hvc->issue_synchronize &&
    595			    list_empty(&hvc->desc_hw_processing)) {
    596				complete(&hvc->issue_completion);
    597				hvc->issue_synchronize = false;
    598			}
    599			spin_unlock(&hvc->vc.lock);
    600
    601			cb->flag = 0;
    602		}
    603
    604		cb->vd = NULL;
    605
    606		/*
    607		 * Recycle the RXD with the helper WRITE_ONCE that can ensure
    608		 * data written into RAM would really happens.
    609		 */
    610		WRITE_ONCE(rxd->desc1, 0);
    611		WRITE_ONCE(rxd->desc2, 0);
    612		pc->ring.cur_rptr = next;
    613
    614		/* Release rooms */
    615		atomic_inc(&pc->nr_free);
    616	}
    617
    618	/* Ensure all changes indeed done before we're going on */
    619	wmb();
    620
    621	/* Update CPU pointer for those completed PDs */
    622	mtk_dma_write(hsdma, MTK_HSDMA_RX_CPU, pc->ring.cur_rptr);
    623
    624	/*
    625	 * Acking the pending IRQ allows hardware no longer to keep the used
    626	 * IRQ line in certain trigger state when software has completed all
    627	 * the finished physical descriptors.
    628	 */
    629	if (atomic_read(&pc->nr_free) >= MTK_DMA_SIZE - 1)
    630		mtk_dma_write(hsdma, MTK_HSDMA_INT_STATUS, status);
    631
    632	/* ASAP handles pending VDs in all VCs after freeing some rooms */
    633	for (i = 0; i < hsdma->dma_requests; i++) {
    634		hvc = &hsdma->vc[i];
    635		spin_lock(&hvc->vc.lock);
    636		mtk_hsdma_issue_vchan_pending(hsdma, hvc);
    637		spin_unlock(&hvc->vc.lock);
    638	}
    639
    640rx_done:
    641	/* All completed PDs are cleaned up, so enable interrupt again */
    642	mtk_dma_set(hsdma, MTK_HSDMA_INT_ENABLE, MTK_HSDMA_INT_RXDONE);
    643}
    644
    645static irqreturn_t mtk_hsdma_irq(int irq, void *devid)
    646{
    647	struct mtk_hsdma_device *hsdma = devid;
    648
    649	/*
    650	 * Disable interrupt until all completed PDs are cleaned up in
    651	 * mtk_hsdma_free_rooms call.
    652	 */
    653	mtk_dma_clr(hsdma, MTK_HSDMA_INT_ENABLE, MTK_HSDMA_INT_RXDONE);
    654
    655	mtk_hsdma_free_rooms_in_ring(hsdma);
    656
    657	return IRQ_HANDLED;
    658}
    659
    660static struct virt_dma_desc *mtk_hsdma_find_active_desc(struct dma_chan *c,
    661							dma_cookie_t cookie)
    662{
    663	struct mtk_hsdma_vchan *hvc = to_hsdma_vchan(c);
    664	struct virt_dma_desc *vd;
    665
    666	list_for_each_entry(vd, &hvc->desc_hw_processing, node)
    667		if (vd->tx.cookie == cookie)
    668			return vd;
    669
    670	list_for_each_entry(vd, &hvc->vc.desc_issued, node)
    671		if (vd->tx.cookie == cookie)
    672			return vd;
    673
    674	return NULL;
    675}
    676
    677static enum dma_status mtk_hsdma_tx_status(struct dma_chan *c,
    678					   dma_cookie_t cookie,
    679					   struct dma_tx_state *txstate)
    680{
    681	struct mtk_hsdma_vchan *hvc = to_hsdma_vchan(c);
    682	struct mtk_hsdma_vdesc *hvd;
    683	struct virt_dma_desc *vd;
    684	enum dma_status ret;
    685	unsigned long flags;
    686	size_t bytes = 0;
    687
    688	ret = dma_cookie_status(c, cookie, txstate);
    689	if (ret == DMA_COMPLETE || !txstate)
    690		return ret;
    691
    692	spin_lock_irqsave(&hvc->vc.lock, flags);
    693	vd = mtk_hsdma_find_active_desc(c, cookie);
    694	spin_unlock_irqrestore(&hvc->vc.lock, flags);
    695
    696	if (vd) {
    697		hvd = to_hsdma_vdesc(vd);
    698		bytes = hvd->residue;
    699	}
    700
    701	dma_set_residue(txstate, bytes);
    702
    703	return ret;
    704}
    705
    706static void mtk_hsdma_issue_pending(struct dma_chan *c)
    707{
    708	struct mtk_hsdma_device *hsdma = to_hsdma_dev(c);
    709	struct mtk_hsdma_vchan *hvc = to_hsdma_vchan(c);
    710	unsigned long flags;
    711
    712	spin_lock_irqsave(&hvc->vc.lock, flags);
    713
    714	if (vchan_issue_pending(&hvc->vc))
    715		mtk_hsdma_issue_vchan_pending(hsdma, hvc);
    716
    717	spin_unlock_irqrestore(&hvc->vc.lock, flags);
    718}
    719
    720static struct dma_async_tx_descriptor *
    721mtk_hsdma_prep_dma_memcpy(struct dma_chan *c, dma_addr_t dest,
    722			  dma_addr_t src, size_t len, unsigned long flags)
    723{
    724	struct mtk_hsdma_vdesc *hvd;
    725
    726	hvd = kzalloc(sizeof(*hvd), GFP_NOWAIT);
    727	if (!hvd)
    728		return NULL;
    729
    730	hvd->len = len;
    731	hvd->residue = len;
    732	hvd->src = src;
    733	hvd->dest = dest;
    734
    735	return vchan_tx_prep(to_virt_chan(c), &hvd->vd, flags);
    736}
    737
    738static int mtk_hsdma_free_inactive_desc(struct dma_chan *c)
    739{
    740	struct virt_dma_chan *vc = to_virt_chan(c);
    741	unsigned long flags;
    742	LIST_HEAD(head);
    743
    744	spin_lock_irqsave(&vc->lock, flags);
    745	list_splice_tail_init(&vc->desc_allocated, &head);
    746	list_splice_tail_init(&vc->desc_submitted, &head);
    747	list_splice_tail_init(&vc->desc_issued, &head);
    748	spin_unlock_irqrestore(&vc->lock, flags);
    749
    750	/* At the point, we don't expect users put descriptor into VC again */
    751	vchan_dma_desc_free_list(vc, &head);
    752
    753	return 0;
    754}
    755
    756static void mtk_hsdma_free_active_desc(struct dma_chan *c)
    757{
    758	struct mtk_hsdma_vchan *hvc = to_hsdma_vchan(c);
    759	bool sync_needed = false;
    760
    761	/*
    762	 * Once issue_synchronize is being set, which means once the hardware
    763	 * consumes all descriptors for the channel in the ring, the
    764	 * synchronization must be be notified immediately it is completed.
    765	 */
    766	spin_lock(&hvc->vc.lock);
    767	if (!list_empty(&hvc->desc_hw_processing)) {
    768		hvc->issue_synchronize = true;
    769		sync_needed = true;
    770	}
    771	spin_unlock(&hvc->vc.lock);
    772
    773	if (sync_needed)
    774		wait_for_completion(&hvc->issue_completion);
    775	/*
    776	 * At the point, we expect that all remaining descriptors in the ring
    777	 * for the channel should be all processing done.
    778	 */
    779	WARN_ONCE(!list_empty(&hvc->desc_hw_processing),
    780		  "Desc pending still in list desc_hw_processing\n");
    781
    782	/* Free all descriptors in list desc_completed */
    783	vchan_synchronize(&hvc->vc);
    784
    785	WARN_ONCE(!list_empty(&hvc->vc.desc_completed),
    786		  "Desc pending still in list desc_completed\n");
    787}
    788
    789static int mtk_hsdma_terminate_all(struct dma_chan *c)
    790{
    791	/*
    792	 * Free pending descriptors not processed yet by hardware that have
    793	 * previously been submitted to the channel.
    794	 */
    795	mtk_hsdma_free_inactive_desc(c);
    796
    797	/*
    798	 * However, the DMA engine doesn't provide any way to stop these
    799	 * descriptors being processed currently by hardware. The only way is
    800	 * to just waiting until these descriptors are all processed completely
    801	 * through mtk_hsdma_free_active_desc call.
    802	 */
    803	mtk_hsdma_free_active_desc(c);
    804
    805	return 0;
    806}
    807
    808static int mtk_hsdma_alloc_chan_resources(struct dma_chan *c)
    809{
    810	struct mtk_hsdma_device *hsdma = to_hsdma_dev(c);
    811	int err;
    812
    813	/*
    814	 * Since HSDMA has only one PC, the resource for PC is being allocated
    815	 * when the first VC is being created and the other VCs would run on
    816	 * the same PC.
    817	 */
    818	if (!refcount_read(&hsdma->pc_refcnt)) {
    819		err = mtk_hsdma_alloc_pchan(hsdma, hsdma->pc);
    820		if (err)
    821			return err;
    822		/*
    823		 * refcount_inc would complain increment on 0; use-after-free.
    824		 * Thus, we need to explicitly set it as 1 initially.
    825		 */
    826		refcount_set(&hsdma->pc_refcnt, 1);
    827	} else {
    828		refcount_inc(&hsdma->pc_refcnt);
    829	}
    830
    831	return 0;
    832}
    833
    834static void mtk_hsdma_free_chan_resources(struct dma_chan *c)
    835{
    836	struct mtk_hsdma_device *hsdma = to_hsdma_dev(c);
    837
    838	/* Free all descriptors in all lists on the VC */
    839	mtk_hsdma_terminate_all(c);
    840
    841	/* The resource for PC is not freed until all the VCs are destroyed */
    842	if (!refcount_dec_and_test(&hsdma->pc_refcnt))
    843		return;
    844
    845	mtk_hsdma_free_pchan(hsdma, hsdma->pc);
    846}
    847
    848static int mtk_hsdma_hw_init(struct mtk_hsdma_device *hsdma)
    849{
    850	int err;
    851
    852	pm_runtime_enable(hsdma2dev(hsdma));
    853	pm_runtime_get_sync(hsdma2dev(hsdma));
    854
    855	err = clk_prepare_enable(hsdma->clk);
    856	if (err)
    857		return err;
    858
    859	mtk_dma_write(hsdma, MTK_HSDMA_INT_ENABLE, 0);
    860	mtk_dma_write(hsdma, MTK_HSDMA_GLO, MTK_HSDMA_GLO_DEFAULT);
    861
    862	return 0;
    863}
    864
    865static int mtk_hsdma_hw_deinit(struct mtk_hsdma_device *hsdma)
    866{
    867	mtk_dma_write(hsdma, MTK_HSDMA_GLO, 0);
    868
    869	clk_disable_unprepare(hsdma->clk);
    870
    871	pm_runtime_put_sync(hsdma2dev(hsdma));
    872	pm_runtime_disable(hsdma2dev(hsdma));
    873
    874	return 0;
    875}
    876
    877static const struct mtk_hsdma_soc mt7623_soc = {
    878	.ddone = BIT(31),
    879	.ls0 = BIT(30),
    880};
    881
    882static const struct mtk_hsdma_soc mt7622_soc = {
    883	.ddone = BIT(15),
    884	.ls0 = BIT(14),
    885};
    886
    887static const struct of_device_id mtk_hsdma_match[] = {
    888	{ .compatible = "mediatek,mt7623-hsdma", .data = &mt7623_soc},
    889	{ .compatible = "mediatek,mt7622-hsdma", .data = &mt7622_soc},
    890	{ /* sentinel */ }
    891};
    892MODULE_DEVICE_TABLE(of, mtk_hsdma_match);
    893
    894static int mtk_hsdma_probe(struct platform_device *pdev)
    895{
    896	struct mtk_hsdma_device *hsdma;
    897	struct mtk_hsdma_vchan *vc;
    898	struct dma_device *dd;
    899	struct resource *res;
    900	int i, err;
    901
    902	hsdma = devm_kzalloc(&pdev->dev, sizeof(*hsdma), GFP_KERNEL);
    903	if (!hsdma)
    904		return -ENOMEM;
    905
    906	dd = &hsdma->ddev;
    907
    908	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
    909	hsdma->base = devm_ioremap_resource(&pdev->dev, res);
    910	if (IS_ERR(hsdma->base))
    911		return PTR_ERR(hsdma->base);
    912
    913	hsdma->soc = of_device_get_match_data(&pdev->dev);
    914	if (!hsdma->soc) {
    915		dev_err(&pdev->dev, "No device match found\n");
    916		return -ENODEV;
    917	}
    918
    919	hsdma->clk = devm_clk_get(&pdev->dev, "hsdma");
    920	if (IS_ERR(hsdma->clk)) {
    921		dev_err(&pdev->dev, "No clock for %s\n",
    922			dev_name(&pdev->dev));
    923		return PTR_ERR(hsdma->clk);
    924	}
    925
    926	err = platform_get_irq(pdev, 0);
    927	if (err < 0)
    928		return err;
    929	hsdma->irq = err;
    930
    931	refcount_set(&hsdma->pc_refcnt, 0);
    932	spin_lock_init(&hsdma->lock);
    933
    934	dma_cap_set(DMA_MEMCPY, dd->cap_mask);
    935
    936	dd->copy_align = MTK_HSDMA_ALIGN_SIZE;
    937	dd->device_alloc_chan_resources = mtk_hsdma_alloc_chan_resources;
    938	dd->device_free_chan_resources = mtk_hsdma_free_chan_resources;
    939	dd->device_tx_status = mtk_hsdma_tx_status;
    940	dd->device_issue_pending = mtk_hsdma_issue_pending;
    941	dd->device_prep_dma_memcpy = mtk_hsdma_prep_dma_memcpy;
    942	dd->device_terminate_all = mtk_hsdma_terminate_all;
    943	dd->src_addr_widths = MTK_HSDMA_DMA_BUSWIDTHS;
    944	dd->dst_addr_widths = MTK_HSDMA_DMA_BUSWIDTHS;
    945	dd->directions = BIT(DMA_MEM_TO_MEM);
    946	dd->residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT;
    947	dd->dev = &pdev->dev;
    948	INIT_LIST_HEAD(&dd->channels);
    949
    950	hsdma->dma_requests = MTK_HSDMA_NR_VCHANS;
    951	if (pdev->dev.of_node && of_property_read_u32(pdev->dev.of_node,
    952						      "dma-requests",
    953						      &hsdma->dma_requests)) {
    954		dev_info(&pdev->dev,
    955			 "Using %u as missing dma-requests property\n",
    956			 MTK_HSDMA_NR_VCHANS);
    957	}
    958
    959	hsdma->pc = devm_kcalloc(&pdev->dev, MTK_HSDMA_NR_MAX_PCHANS,
    960				 sizeof(*hsdma->pc), GFP_KERNEL);
    961	if (!hsdma->pc)
    962		return -ENOMEM;
    963
    964	hsdma->vc = devm_kcalloc(&pdev->dev, hsdma->dma_requests,
    965				 sizeof(*hsdma->vc), GFP_KERNEL);
    966	if (!hsdma->vc)
    967		return -ENOMEM;
    968
    969	for (i = 0; i < hsdma->dma_requests; i++) {
    970		vc = &hsdma->vc[i];
    971		vc->vc.desc_free = mtk_hsdma_vdesc_free;
    972		vchan_init(&vc->vc, dd);
    973		init_completion(&vc->issue_completion);
    974		INIT_LIST_HEAD(&vc->desc_hw_processing);
    975	}
    976
    977	err = dma_async_device_register(dd);
    978	if (err)
    979		return err;
    980
    981	err = of_dma_controller_register(pdev->dev.of_node,
    982					 of_dma_xlate_by_chan_id, hsdma);
    983	if (err) {
    984		dev_err(&pdev->dev,
    985			"MediaTek HSDMA OF registration failed %d\n", err);
    986		goto err_unregister;
    987	}
    988
    989	mtk_hsdma_hw_init(hsdma);
    990
    991	err = devm_request_irq(&pdev->dev, hsdma->irq,
    992			       mtk_hsdma_irq, 0,
    993			       dev_name(&pdev->dev), hsdma);
    994	if (err) {
    995		dev_err(&pdev->dev,
    996			"request_irq failed with err %d\n", err);
    997		goto err_free;
    998	}
    999
   1000	platform_set_drvdata(pdev, hsdma);
   1001
   1002	dev_info(&pdev->dev, "MediaTek HSDMA driver registered\n");
   1003
   1004	return 0;
   1005
   1006err_free:
   1007	mtk_hsdma_hw_deinit(hsdma);
   1008	of_dma_controller_free(pdev->dev.of_node);
   1009err_unregister:
   1010	dma_async_device_unregister(dd);
   1011
   1012	return err;
   1013}
   1014
   1015static int mtk_hsdma_remove(struct platform_device *pdev)
   1016{
   1017	struct mtk_hsdma_device *hsdma = platform_get_drvdata(pdev);
   1018	struct mtk_hsdma_vchan *vc;
   1019	int i;
   1020
   1021	/* Kill VC task */
   1022	for (i = 0; i < hsdma->dma_requests; i++) {
   1023		vc = &hsdma->vc[i];
   1024
   1025		list_del(&vc->vc.chan.device_node);
   1026		tasklet_kill(&vc->vc.task);
   1027	}
   1028
   1029	/* Disable DMA interrupt */
   1030	mtk_dma_write(hsdma, MTK_HSDMA_INT_ENABLE, 0);
   1031
   1032	/* Waits for any pending IRQ handlers to complete */
   1033	synchronize_irq(hsdma->irq);
   1034
   1035	/* Disable hardware */
   1036	mtk_hsdma_hw_deinit(hsdma);
   1037
   1038	dma_async_device_unregister(&hsdma->ddev);
   1039	of_dma_controller_free(pdev->dev.of_node);
   1040
   1041	return 0;
   1042}
   1043
   1044static struct platform_driver mtk_hsdma_driver = {
   1045	.probe		= mtk_hsdma_probe,
   1046	.remove		= mtk_hsdma_remove,
   1047	.driver = {
   1048		.name		= KBUILD_MODNAME,
   1049		.of_match_table	= mtk_hsdma_match,
   1050	},
   1051};
   1052module_platform_driver(mtk_hsdma_driver);
   1053
   1054MODULE_DESCRIPTION("MediaTek High-Speed DMA Controller Driver");
   1055MODULE_AUTHOR("Sean Wang <sean.wang@mediatek.com>");
   1056MODULE_LICENSE("GPL v2");