cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

nbpfaxi.c (41404B)


      1// SPDX-License-Identifier: GPL-2.0
      2/*
      3 * Copyright (C) 2013-2014 Renesas Electronics Europe Ltd.
      4 * Author: Guennadi Liakhovetski <g.liakhovetski@gmx.de>
      5 */
      6
      7#include <linux/bitmap.h>
      8#include <linux/bitops.h>
      9#include <linux/clk.h>
     10#include <linux/dma-mapping.h>
     11#include <linux/dmaengine.h>
     12#include <linux/err.h>
     13#include <linux/interrupt.h>
     14#include <linux/io.h>
     15#include <linux/log2.h>
     16#include <linux/module.h>
     17#include <linux/of.h>
     18#include <linux/of_device.h>
     19#include <linux/of_dma.h>
     20#include <linux/platform_device.h>
     21#include <linux/slab.h>
     22
     23#include <dt-bindings/dma/nbpfaxi.h>
     24
     25#include "dmaengine.h"
     26
     27#define NBPF_REG_CHAN_OFFSET	0
     28#define NBPF_REG_CHAN_SIZE	0x40
     29
     30/* Channel Current Transaction Byte register */
     31#define NBPF_CHAN_CUR_TR_BYTE	0x20
     32
     33/* Channel Status register */
     34#define NBPF_CHAN_STAT	0x24
     35#define NBPF_CHAN_STAT_EN	1
     36#define NBPF_CHAN_STAT_TACT	4
     37#define NBPF_CHAN_STAT_ERR	0x10
     38#define NBPF_CHAN_STAT_END	0x20
     39#define NBPF_CHAN_STAT_TC	0x40
     40#define NBPF_CHAN_STAT_DER	0x400
     41
     42/* Channel Control register */
     43#define NBPF_CHAN_CTRL	0x28
     44#define NBPF_CHAN_CTRL_SETEN	1
     45#define NBPF_CHAN_CTRL_CLREN	2
     46#define NBPF_CHAN_CTRL_STG	4
     47#define NBPF_CHAN_CTRL_SWRST	8
     48#define NBPF_CHAN_CTRL_CLRRQ	0x10
     49#define NBPF_CHAN_CTRL_CLREND	0x20
     50#define NBPF_CHAN_CTRL_CLRTC	0x40
     51#define NBPF_CHAN_CTRL_SETSUS	0x100
     52#define NBPF_CHAN_CTRL_CLRSUS	0x200
     53
     54/* Channel Configuration register */
     55#define NBPF_CHAN_CFG	0x2c
     56#define NBPF_CHAN_CFG_SEL	7		/* terminal SELect: 0..7 */
     57#define NBPF_CHAN_CFG_REQD	8		/* REQuest Direction: DMAREQ is 0: input, 1: output */
     58#define NBPF_CHAN_CFG_LOEN	0x10		/* LOw ENable: low DMA request line is: 0: inactive, 1: active */
     59#define NBPF_CHAN_CFG_HIEN	0x20		/* HIgh ENable: high DMA request line is: 0: inactive, 1: active */
     60#define NBPF_CHAN_CFG_LVL	0x40		/* LeVeL: DMA request line is sensed as 0: edge, 1: level */
     61#define NBPF_CHAN_CFG_AM	0x700		/* ACK Mode: 0: Pulse mode, 1: Level mode, b'1x: Bus Cycle */
     62#define NBPF_CHAN_CFG_SDS	0xf000		/* Source Data Size: 0: 8 bits,... , 7: 1024 bits */
     63#define NBPF_CHAN_CFG_DDS	0xf0000		/* Destination Data Size: as above */
     64#define NBPF_CHAN_CFG_SAD	0x100000	/* Source ADdress counting: 0: increment, 1: fixed */
     65#define NBPF_CHAN_CFG_DAD	0x200000	/* Destination ADdress counting: 0: increment, 1: fixed */
     66#define NBPF_CHAN_CFG_TM	0x400000	/* Transfer Mode: 0: single, 1: block TM */
     67#define NBPF_CHAN_CFG_DEM	0x1000000	/* DMAEND interrupt Mask */
     68#define NBPF_CHAN_CFG_TCM	0x2000000	/* DMATCO interrupt Mask */
     69#define NBPF_CHAN_CFG_SBE	0x8000000	/* Sweep Buffer Enable */
     70#define NBPF_CHAN_CFG_RSEL	0x10000000	/* RM: Register Set sELect */
     71#define NBPF_CHAN_CFG_RSW	0x20000000	/* RM: Register Select sWitch */
     72#define NBPF_CHAN_CFG_REN	0x40000000	/* RM: Register Set Enable */
     73#define NBPF_CHAN_CFG_DMS	0x80000000	/* 0: register mode (RM), 1: link mode (LM) */
     74
     75#define NBPF_CHAN_NXLA	0x38
     76#define NBPF_CHAN_CRLA	0x3c
     77
     78/* Link Header field */
     79#define NBPF_HEADER_LV	1
     80#define NBPF_HEADER_LE	2
     81#define NBPF_HEADER_WBD	4
     82#define NBPF_HEADER_DIM	8
     83
     84#define NBPF_CTRL	0x300
     85#define NBPF_CTRL_PR	1		/* 0: fixed priority, 1: round robin */
     86#define NBPF_CTRL_LVINT	2		/* DMAEND and DMAERR signalling: 0: pulse, 1: level */
     87
     88#define NBPF_DSTAT_ER	0x314
     89#define NBPF_DSTAT_END	0x318
     90
     91#define NBPF_DMA_BUSWIDTHS \
     92	(BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) | \
     93	 BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
     94	 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
     95	 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) | \
     96	 BIT(DMA_SLAVE_BUSWIDTH_8_BYTES))
     97
     98struct nbpf_config {
     99	int num_channels;
    100	int buffer_size;
    101};
    102
    103/*
    104 * We've got 3 types of objects, used to describe DMA transfers:
    105 * 1. high-level descriptor, containing a struct dma_async_tx_descriptor object
    106 *	in it, used to communicate with the user
    107 * 2. hardware DMA link descriptors, that we pass to DMAC for DMA transfer
    108 *	queuing, these must be DMAable, using either the streaming DMA API or
    109 *	allocated from coherent memory - one per SG segment
    110 * 3. one per SG segment descriptors, used to manage HW link descriptors from
    111 *	(2). They do not have to be DMAable. They can either be (a) allocated
    112 *	together with link descriptors as mixed (DMA / CPU) objects, or (b)
    113 *	separately. Even if allocated separately it would be best to link them
    114 *	to link descriptors once during channel resource allocation and always
    115 *	use them as a single object.
    116 * Therefore for both cases (a) and (b) at run-time objects (2) and (3) shall be
    117 * treated as a single SG segment descriptor.
    118 */
    119
    120struct nbpf_link_reg {
    121	u32	header;
    122	u32	src_addr;
    123	u32	dst_addr;
    124	u32	transaction_size;
    125	u32	config;
    126	u32	interval;
    127	u32	extension;
    128	u32	next;
    129} __packed;
    130
    131struct nbpf_device;
    132struct nbpf_channel;
    133struct nbpf_desc;
    134
    135struct nbpf_link_desc {
    136	struct nbpf_link_reg *hwdesc;
    137	dma_addr_t hwdesc_dma_addr;
    138	struct nbpf_desc *desc;
    139	struct list_head node;
    140};
    141
    142/**
    143 * struct nbpf_desc - DMA transfer descriptor
    144 * @async_tx:	dmaengine object
    145 * @user_wait:	waiting for a user ack
    146 * @length:	total transfer length
    147 * @chan:	associated DMAC channel
    148 * @sg:		list of hardware descriptors, represented by struct nbpf_link_desc
    149 * @node:	member in channel descriptor lists
    150 */
    151struct nbpf_desc {
    152	struct dma_async_tx_descriptor async_tx;
    153	bool user_wait;
    154	size_t length;
    155	struct nbpf_channel *chan;
    156	struct list_head sg;
    157	struct list_head node;
    158};
    159
    160/* Take a wild guess: allocate 4 segments per descriptor */
    161#define NBPF_SEGMENTS_PER_DESC 4
    162#define NBPF_DESCS_PER_PAGE ((PAGE_SIZE - sizeof(struct list_head)) /	\
    163	(sizeof(struct nbpf_desc) +					\
    164	 NBPF_SEGMENTS_PER_DESC *					\
    165	 (sizeof(struct nbpf_link_desc) + sizeof(struct nbpf_link_reg))))
    166#define NBPF_SEGMENTS_PER_PAGE (NBPF_SEGMENTS_PER_DESC * NBPF_DESCS_PER_PAGE)
    167
    168struct nbpf_desc_page {
    169	struct list_head node;
    170	struct nbpf_desc desc[NBPF_DESCS_PER_PAGE];
    171	struct nbpf_link_desc ldesc[NBPF_SEGMENTS_PER_PAGE];
    172	struct nbpf_link_reg hwdesc[NBPF_SEGMENTS_PER_PAGE];
    173};
    174
    175/**
    176 * struct nbpf_channel - one DMAC channel
    177 * @dma_chan:	standard dmaengine channel object
    178 * @tasklet:	channel specific tasklet used for callbacks
    179 * @base:	register address base
    180 * @nbpf:	DMAC
    181 * @name:	IRQ name
    182 * @irq:	IRQ number
    183 * @slave_src_addr:	source address for slave DMA
    184 * @slave_src_width:	source slave data size in bytes
    185 * @slave_src_burst:	maximum source slave burst size in bytes
    186 * @slave_dst_addr:	destination address for slave DMA
    187 * @slave_dst_width:	destination slave data size in bytes
    188 * @slave_dst_burst:	maximum destination slave burst size in bytes
    189 * @terminal:	DMA terminal, assigned to this channel
    190 * @dmarq_cfg:	DMA request line configuration - high / low, edge / level for NBPF_CHAN_CFG
    191 * @flags:	configuration flags from DT
    192 * @lock:	protect descriptor lists
    193 * @free_links:	list of free link descriptors
    194 * @free:	list of free descriptors
    195 * @queued:	list of queued descriptors
    196 * @active:	list of descriptors, scheduled for processing
    197 * @done:	list of completed descriptors, waiting post-processing
    198 * @desc_page:	list of additionally allocated descriptor pages - if any
    199 * @running:	linked descriptor of running transaction
    200 * @paused:	are translations on this channel paused?
    201 */
    202struct nbpf_channel {
    203	struct dma_chan dma_chan;
    204	struct tasklet_struct tasklet;
    205	void __iomem *base;
    206	struct nbpf_device *nbpf;
    207	char name[16];
    208	int irq;
    209	dma_addr_t slave_src_addr;
    210	size_t slave_src_width;
    211	size_t slave_src_burst;
    212	dma_addr_t slave_dst_addr;
    213	size_t slave_dst_width;
    214	size_t slave_dst_burst;
    215	unsigned int terminal;
    216	u32 dmarq_cfg;
    217	unsigned long flags;
    218	spinlock_t lock;
    219	struct list_head free_links;
    220	struct list_head free;
    221	struct list_head queued;
    222	struct list_head active;
    223	struct list_head done;
    224	struct list_head desc_page;
    225	struct nbpf_desc *running;
    226	bool paused;
    227};
    228
    229struct nbpf_device {
    230	struct dma_device dma_dev;
    231	void __iomem *base;
    232	u32 max_burst_mem_read;
    233	u32 max_burst_mem_write;
    234	struct clk *clk;
    235	const struct nbpf_config *config;
    236	unsigned int eirq;
    237	struct nbpf_channel chan[];
    238};
    239
    240enum nbpf_model {
    241	NBPF1B4,
    242	NBPF1B8,
    243	NBPF1B16,
    244	NBPF4B4,
    245	NBPF4B8,
    246	NBPF4B16,
    247	NBPF8B4,
    248	NBPF8B8,
    249	NBPF8B16,
    250};
    251
    252static struct nbpf_config nbpf_cfg[] = {
    253	[NBPF1B4] = {
    254		.num_channels = 1,
    255		.buffer_size = 4,
    256	},
    257	[NBPF1B8] = {
    258		.num_channels = 1,
    259		.buffer_size = 8,
    260	},
    261	[NBPF1B16] = {
    262		.num_channels = 1,
    263		.buffer_size = 16,
    264	},
    265	[NBPF4B4] = {
    266		.num_channels = 4,
    267		.buffer_size = 4,
    268	},
    269	[NBPF4B8] = {
    270		.num_channels = 4,
    271		.buffer_size = 8,
    272	},
    273	[NBPF4B16] = {
    274		.num_channels = 4,
    275		.buffer_size = 16,
    276	},
    277	[NBPF8B4] = {
    278		.num_channels = 8,
    279		.buffer_size = 4,
    280	},
    281	[NBPF8B8] = {
    282		.num_channels = 8,
    283		.buffer_size = 8,
    284	},
    285	[NBPF8B16] = {
    286		.num_channels = 8,
    287		.buffer_size = 16,
    288	},
    289};
    290
    291#define nbpf_to_chan(d) container_of(d, struct nbpf_channel, dma_chan)
    292
    293/*
    294 * dmaengine drivers seem to have a lot in common and instead of sharing more
    295 * code, they reimplement those common algorithms independently. In this driver
    296 * we try to separate the hardware-specific part from the (largely) generic
    297 * part. This improves code readability and makes it possible in the future to
    298 * reuse the generic code in form of a helper library. That generic code should
    299 * be suitable for various DMA controllers, using transfer descriptors in RAM
    300 * and pushing one SG list at a time to the DMA controller.
    301 */
    302
    303/*		Hardware-specific part		*/
    304
    305static inline u32 nbpf_chan_read(struct nbpf_channel *chan,
    306				 unsigned int offset)
    307{
    308	u32 data = ioread32(chan->base + offset);
    309	dev_dbg(chan->dma_chan.device->dev, "%s(0x%p + 0x%x) = 0x%x\n",
    310		__func__, chan->base, offset, data);
    311	return data;
    312}
    313
    314static inline void nbpf_chan_write(struct nbpf_channel *chan,
    315				   unsigned int offset, u32 data)
    316{
    317	iowrite32(data, chan->base + offset);
    318	dev_dbg(chan->dma_chan.device->dev, "%s(0x%p + 0x%x) = 0x%x\n",
    319		__func__, chan->base, offset, data);
    320}
    321
    322static inline u32 nbpf_read(struct nbpf_device *nbpf,
    323			    unsigned int offset)
    324{
    325	u32 data = ioread32(nbpf->base + offset);
    326	dev_dbg(nbpf->dma_dev.dev, "%s(0x%p + 0x%x) = 0x%x\n",
    327		__func__, nbpf->base, offset, data);
    328	return data;
    329}
    330
    331static inline void nbpf_write(struct nbpf_device *nbpf,
    332			      unsigned int offset, u32 data)
    333{
    334	iowrite32(data, nbpf->base + offset);
    335	dev_dbg(nbpf->dma_dev.dev, "%s(0x%p + 0x%x) = 0x%x\n",
    336		__func__, nbpf->base, offset, data);
    337}
    338
    339static void nbpf_chan_halt(struct nbpf_channel *chan)
    340{
    341	nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_CLREN);
    342}
    343
    344static bool nbpf_status_get(struct nbpf_channel *chan)
    345{
    346	u32 status = nbpf_read(chan->nbpf, NBPF_DSTAT_END);
    347
    348	return status & BIT(chan - chan->nbpf->chan);
    349}
    350
    351static void nbpf_status_ack(struct nbpf_channel *chan)
    352{
    353	nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_CLREND);
    354}
    355
    356static u32 nbpf_error_get(struct nbpf_device *nbpf)
    357{
    358	return nbpf_read(nbpf, NBPF_DSTAT_ER);
    359}
    360
    361static struct nbpf_channel *nbpf_error_get_channel(struct nbpf_device *nbpf, u32 error)
    362{
    363	return nbpf->chan + __ffs(error);
    364}
    365
    366static void nbpf_error_clear(struct nbpf_channel *chan)
    367{
    368	u32 status;
    369	int i;
    370
    371	/* Stop the channel, make sure DMA has been aborted */
    372	nbpf_chan_halt(chan);
    373
    374	for (i = 1000; i; i--) {
    375		status = nbpf_chan_read(chan, NBPF_CHAN_STAT);
    376		if (!(status & NBPF_CHAN_STAT_TACT))
    377			break;
    378		cpu_relax();
    379	}
    380
    381	if (!i)
    382		dev_err(chan->dma_chan.device->dev,
    383			"%s(): abort timeout, channel status 0x%x\n", __func__, status);
    384
    385	nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_SWRST);
    386}
    387
    388static int nbpf_start(struct nbpf_desc *desc)
    389{
    390	struct nbpf_channel *chan = desc->chan;
    391	struct nbpf_link_desc *ldesc = list_first_entry(&desc->sg, struct nbpf_link_desc, node);
    392
    393	nbpf_chan_write(chan, NBPF_CHAN_NXLA, (u32)ldesc->hwdesc_dma_addr);
    394	nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_SETEN | NBPF_CHAN_CTRL_CLRSUS);
    395	chan->paused = false;
    396
    397	/* Software trigger MEMCPY - only MEMCPY uses the block mode */
    398	if (ldesc->hwdesc->config & NBPF_CHAN_CFG_TM)
    399		nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_STG);
    400
    401	dev_dbg(chan->nbpf->dma_dev.dev, "%s(): next 0x%x, cur 0x%x\n", __func__,
    402		nbpf_chan_read(chan, NBPF_CHAN_NXLA), nbpf_chan_read(chan, NBPF_CHAN_CRLA));
    403
    404	return 0;
    405}
    406
    407static void nbpf_chan_prepare(struct nbpf_channel *chan)
    408{
    409	chan->dmarq_cfg = (chan->flags & NBPF_SLAVE_RQ_HIGH ? NBPF_CHAN_CFG_HIEN : 0) |
    410		(chan->flags & NBPF_SLAVE_RQ_LOW ? NBPF_CHAN_CFG_LOEN : 0) |
    411		(chan->flags & NBPF_SLAVE_RQ_LEVEL ?
    412		 NBPF_CHAN_CFG_LVL | (NBPF_CHAN_CFG_AM & 0x200) : 0) |
    413		chan->terminal;
    414}
    415
    416static void nbpf_chan_prepare_default(struct nbpf_channel *chan)
    417{
    418	/* Don't output DMAACK */
    419	chan->dmarq_cfg = NBPF_CHAN_CFG_AM & 0x400;
    420	chan->terminal = 0;
    421	chan->flags = 0;
    422}
    423
    424static void nbpf_chan_configure(struct nbpf_channel *chan)
    425{
    426	/*
    427	 * We assume, that only the link mode and DMA request line configuration
    428	 * have to be set in the configuration register manually. Dynamic
    429	 * per-transfer configuration will be loaded from transfer descriptors.
    430	 */
    431	nbpf_chan_write(chan, NBPF_CHAN_CFG, NBPF_CHAN_CFG_DMS | chan->dmarq_cfg);
    432}
    433
    434static u32 nbpf_xfer_ds(struct nbpf_device *nbpf, size_t size,
    435			enum dma_transfer_direction direction)
    436{
    437	int max_burst = nbpf->config->buffer_size * 8;
    438
    439	if (nbpf->max_burst_mem_read || nbpf->max_burst_mem_write) {
    440		switch (direction) {
    441		case DMA_MEM_TO_MEM:
    442			max_burst = min_not_zero(nbpf->max_burst_mem_read,
    443						 nbpf->max_burst_mem_write);
    444			break;
    445		case DMA_MEM_TO_DEV:
    446			if (nbpf->max_burst_mem_read)
    447				max_burst = nbpf->max_burst_mem_read;
    448			break;
    449		case DMA_DEV_TO_MEM:
    450			if (nbpf->max_burst_mem_write)
    451				max_burst = nbpf->max_burst_mem_write;
    452			break;
    453		case DMA_DEV_TO_DEV:
    454		default:
    455			break;
    456		}
    457	}
    458
    459	/* Maximum supported bursts depend on the buffer size */
    460	return min_t(int, __ffs(size), ilog2(max_burst));
    461}
    462
    463static size_t nbpf_xfer_size(struct nbpf_device *nbpf,
    464			     enum dma_slave_buswidth width, u32 burst)
    465{
    466	size_t size;
    467
    468	if (!burst)
    469		burst = 1;
    470
    471	switch (width) {
    472	case DMA_SLAVE_BUSWIDTH_8_BYTES:
    473		size = 8 * burst;
    474		break;
    475
    476	case DMA_SLAVE_BUSWIDTH_4_BYTES:
    477		size = 4 * burst;
    478		break;
    479
    480	case DMA_SLAVE_BUSWIDTH_2_BYTES:
    481		size = 2 * burst;
    482		break;
    483
    484	default:
    485		pr_warn("%s(): invalid bus width %u\n", __func__, width);
    486		fallthrough;
    487	case DMA_SLAVE_BUSWIDTH_1_BYTE:
    488		size = burst;
    489	}
    490
    491	return nbpf_xfer_ds(nbpf, size, DMA_TRANS_NONE);
    492}
    493
    494/*
    495 * We need a way to recognise slaves, whose data is sent "raw" over the bus,
    496 * i.e. it isn't known in advance how many bytes will be received. Therefore
    497 * the slave driver has to provide a "large enough" buffer and either read the
    498 * buffer, when it is full, or detect, that some data has arrived, then wait for
    499 * a timeout, if no more data arrives - receive what's already there. We want to
    500 * handle such slaves in a special way to allow an optimised mode for other
    501 * users, for whom the amount of data is known in advance. So far there's no way
    502 * to recognise such slaves. We use a data-width check to distinguish between
    503 * the SD host and the PL011 UART.
    504 */
    505
    506static int nbpf_prep_one(struct nbpf_link_desc *ldesc,
    507			 enum dma_transfer_direction direction,
    508			 dma_addr_t src, dma_addr_t dst, size_t size, bool last)
    509{
    510	struct nbpf_link_reg *hwdesc = ldesc->hwdesc;
    511	struct nbpf_desc *desc = ldesc->desc;
    512	struct nbpf_channel *chan = desc->chan;
    513	struct device *dev = chan->dma_chan.device->dev;
    514	size_t mem_xfer, slave_xfer;
    515	bool can_burst;
    516
    517	hwdesc->header = NBPF_HEADER_WBD | NBPF_HEADER_LV |
    518		(last ? NBPF_HEADER_LE : 0);
    519
    520	hwdesc->src_addr = src;
    521	hwdesc->dst_addr = dst;
    522	hwdesc->transaction_size = size;
    523
    524	/*
    525	 * set config: SAD, DAD, DDS, SDS, etc.
    526	 * Note on transfer sizes: the DMAC can perform unaligned DMA transfers,
    527	 * but it is important to have transaction size a multiple of both
    528	 * receiver and transmitter transfer sizes. It is also possible to use
    529	 * different RAM and device transfer sizes, and it does work well with
    530	 * some devices, e.g. with V08R07S01E SD host controllers, which can use
    531	 * 128 byte transfers. But this doesn't work with other devices,
    532	 * especially when the transaction size is unknown. This is the case,
    533	 * e.g. with serial drivers like amba-pl011.c. For reception it sets up
    534	 * the transaction size of 4K and if fewer bytes are received, it
    535	 * pauses DMA and reads out data received via DMA as well as those left
    536	 * in the Rx FIFO. For this to work with the RAM side using burst
    537	 * transfers we enable the SBE bit and terminate the transfer in our
    538	 * .device_pause handler.
    539	 */
    540	mem_xfer = nbpf_xfer_ds(chan->nbpf, size, direction);
    541
    542	switch (direction) {
    543	case DMA_DEV_TO_MEM:
    544		can_burst = chan->slave_src_width >= 3;
    545		slave_xfer = min(mem_xfer, can_burst ?
    546				 chan->slave_src_burst : chan->slave_src_width);
    547		/*
    548		 * Is the slave narrower than 64 bits, i.e. isn't using the full
    549		 * bus width and cannot use bursts?
    550		 */
    551		if (mem_xfer > chan->slave_src_burst && !can_burst)
    552			mem_xfer = chan->slave_src_burst;
    553		/* Device-to-RAM DMA is unreliable without REQD set */
    554		hwdesc->config = NBPF_CHAN_CFG_SAD | (NBPF_CHAN_CFG_DDS & (mem_xfer << 16)) |
    555			(NBPF_CHAN_CFG_SDS & (slave_xfer << 12)) | NBPF_CHAN_CFG_REQD |
    556			NBPF_CHAN_CFG_SBE;
    557		break;
    558
    559	case DMA_MEM_TO_DEV:
    560		slave_xfer = min(mem_xfer, chan->slave_dst_width >= 3 ?
    561				 chan->slave_dst_burst : chan->slave_dst_width);
    562		hwdesc->config = NBPF_CHAN_CFG_DAD | (NBPF_CHAN_CFG_SDS & (mem_xfer << 12)) |
    563			(NBPF_CHAN_CFG_DDS & (slave_xfer << 16)) | NBPF_CHAN_CFG_REQD;
    564		break;
    565
    566	case DMA_MEM_TO_MEM:
    567		hwdesc->config = NBPF_CHAN_CFG_TCM | NBPF_CHAN_CFG_TM |
    568			(NBPF_CHAN_CFG_SDS & (mem_xfer << 12)) |
    569			(NBPF_CHAN_CFG_DDS & (mem_xfer << 16));
    570		break;
    571
    572	default:
    573		return -EINVAL;
    574	}
    575
    576	hwdesc->config |= chan->dmarq_cfg | (last ? 0 : NBPF_CHAN_CFG_DEM) |
    577		NBPF_CHAN_CFG_DMS;
    578
    579	dev_dbg(dev, "%s(): desc @ %pad: hdr 0x%x, cfg 0x%x, %zu @ %pad -> %pad\n",
    580		__func__, &ldesc->hwdesc_dma_addr, hwdesc->header,
    581		hwdesc->config, size, &src, &dst);
    582
    583	dma_sync_single_for_device(dev, ldesc->hwdesc_dma_addr, sizeof(*hwdesc),
    584				   DMA_TO_DEVICE);
    585
    586	return 0;
    587}
    588
    589static size_t nbpf_bytes_left(struct nbpf_channel *chan)
    590{
    591	return nbpf_chan_read(chan, NBPF_CHAN_CUR_TR_BYTE);
    592}
    593
    594static void nbpf_configure(struct nbpf_device *nbpf)
    595{
    596	nbpf_write(nbpf, NBPF_CTRL, NBPF_CTRL_LVINT);
    597}
    598
    599/*		Generic part			*/
    600
    601/* DMA ENGINE functions */
    602static void nbpf_issue_pending(struct dma_chan *dchan)
    603{
    604	struct nbpf_channel *chan = nbpf_to_chan(dchan);
    605	unsigned long flags;
    606
    607	dev_dbg(dchan->device->dev, "Entry %s()\n", __func__);
    608
    609	spin_lock_irqsave(&chan->lock, flags);
    610	if (list_empty(&chan->queued))
    611		goto unlock;
    612
    613	list_splice_tail_init(&chan->queued, &chan->active);
    614
    615	if (!chan->running) {
    616		struct nbpf_desc *desc = list_first_entry(&chan->active,
    617						struct nbpf_desc, node);
    618		if (!nbpf_start(desc))
    619			chan->running = desc;
    620	}
    621
    622unlock:
    623	spin_unlock_irqrestore(&chan->lock, flags);
    624}
    625
    626static enum dma_status nbpf_tx_status(struct dma_chan *dchan,
    627		dma_cookie_t cookie, struct dma_tx_state *state)
    628{
    629	struct nbpf_channel *chan = nbpf_to_chan(dchan);
    630	enum dma_status status = dma_cookie_status(dchan, cookie, state);
    631
    632	if (state) {
    633		dma_cookie_t running;
    634		unsigned long flags;
    635
    636		spin_lock_irqsave(&chan->lock, flags);
    637		running = chan->running ? chan->running->async_tx.cookie : -EINVAL;
    638
    639		if (cookie == running) {
    640			state->residue = nbpf_bytes_left(chan);
    641			dev_dbg(dchan->device->dev, "%s(): residue %u\n", __func__,
    642				state->residue);
    643		} else if (status == DMA_IN_PROGRESS) {
    644			struct nbpf_desc *desc;
    645			bool found = false;
    646
    647			list_for_each_entry(desc, &chan->active, node)
    648				if (desc->async_tx.cookie == cookie) {
    649					found = true;
    650					break;
    651				}
    652
    653			if (!found)
    654				list_for_each_entry(desc, &chan->queued, node)
    655					if (desc->async_tx.cookie == cookie) {
    656						found = true;
    657						break;
    658
    659					}
    660
    661			state->residue = found ? desc->length : 0;
    662		}
    663
    664		spin_unlock_irqrestore(&chan->lock, flags);
    665	}
    666
    667	if (chan->paused)
    668		status = DMA_PAUSED;
    669
    670	return status;
    671}
    672
    673static dma_cookie_t nbpf_tx_submit(struct dma_async_tx_descriptor *tx)
    674{
    675	struct nbpf_desc *desc = container_of(tx, struct nbpf_desc, async_tx);
    676	struct nbpf_channel *chan = desc->chan;
    677	unsigned long flags;
    678	dma_cookie_t cookie;
    679
    680	spin_lock_irqsave(&chan->lock, flags);
    681	cookie = dma_cookie_assign(tx);
    682	list_add_tail(&desc->node, &chan->queued);
    683	spin_unlock_irqrestore(&chan->lock, flags);
    684
    685	dev_dbg(chan->dma_chan.device->dev, "Entry %s(%d)\n", __func__, cookie);
    686
    687	return cookie;
    688}
    689
    690static int nbpf_desc_page_alloc(struct nbpf_channel *chan)
    691{
    692	struct dma_chan *dchan = &chan->dma_chan;
    693	struct nbpf_desc_page *dpage = (void *)get_zeroed_page(GFP_KERNEL | GFP_DMA);
    694	struct nbpf_link_desc *ldesc;
    695	struct nbpf_link_reg *hwdesc;
    696	struct nbpf_desc *desc;
    697	LIST_HEAD(head);
    698	LIST_HEAD(lhead);
    699	int i;
    700	struct device *dev = dchan->device->dev;
    701
    702	if (!dpage)
    703		return -ENOMEM;
    704
    705	dev_dbg(dev, "%s(): alloc %lu descriptors, %lu segments, total alloc %zu\n",
    706		__func__, NBPF_DESCS_PER_PAGE, NBPF_SEGMENTS_PER_PAGE, sizeof(*dpage));
    707
    708	for (i = 0, ldesc = dpage->ldesc, hwdesc = dpage->hwdesc;
    709	     i < ARRAY_SIZE(dpage->ldesc);
    710	     i++, ldesc++, hwdesc++) {
    711		ldesc->hwdesc = hwdesc;
    712		list_add_tail(&ldesc->node, &lhead);
    713		ldesc->hwdesc_dma_addr = dma_map_single(dchan->device->dev,
    714					hwdesc, sizeof(*hwdesc), DMA_TO_DEVICE);
    715
    716		dev_dbg(dev, "%s(): mapped 0x%p to %pad\n", __func__,
    717			hwdesc, &ldesc->hwdesc_dma_addr);
    718	}
    719
    720	for (i = 0, desc = dpage->desc;
    721	     i < ARRAY_SIZE(dpage->desc);
    722	     i++, desc++) {
    723		dma_async_tx_descriptor_init(&desc->async_tx, dchan);
    724		desc->async_tx.tx_submit = nbpf_tx_submit;
    725		desc->chan = chan;
    726		INIT_LIST_HEAD(&desc->sg);
    727		list_add_tail(&desc->node, &head);
    728	}
    729
    730	/*
    731	 * This function cannot be called from interrupt context, so, no need to
    732	 * save flags
    733	 */
    734	spin_lock_irq(&chan->lock);
    735	list_splice_tail(&lhead, &chan->free_links);
    736	list_splice_tail(&head, &chan->free);
    737	list_add(&dpage->node, &chan->desc_page);
    738	spin_unlock_irq(&chan->lock);
    739
    740	return ARRAY_SIZE(dpage->desc);
    741}
    742
    743static void nbpf_desc_put(struct nbpf_desc *desc)
    744{
    745	struct nbpf_channel *chan = desc->chan;
    746	struct nbpf_link_desc *ldesc, *tmp;
    747	unsigned long flags;
    748
    749	spin_lock_irqsave(&chan->lock, flags);
    750	list_for_each_entry_safe(ldesc, tmp, &desc->sg, node)
    751		list_move(&ldesc->node, &chan->free_links);
    752
    753	list_add(&desc->node, &chan->free);
    754	spin_unlock_irqrestore(&chan->lock, flags);
    755}
    756
    757static void nbpf_scan_acked(struct nbpf_channel *chan)
    758{
    759	struct nbpf_desc *desc, *tmp;
    760	unsigned long flags;
    761	LIST_HEAD(head);
    762
    763	spin_lock_irqsave(&chan->lock, flags);
    764	list_for_each_entry_safe(desc, tmp, &chan->done, node)
    765		if (async_tx_test_ack(&desc->async_tx) && desc->user_wait) {
    766			list_move(&desc->node, &head);
    767			desc->user_wait = false;
    768		}
    769	spin_unlock_irqrestore(&chan->lock, flags);
    770
    771	list_for_each_entry_safe(desc, tmp, &head, node) {
    772		list_del(&desc->node);
    773		nbpf_desc_put(desc);
    774	}
    775}
    776
    777/*
    778 * We have to allocate descriptors with the channel lock dropped. This means,
    779 * before we re-acquire the lock buffers can be taken already, so we have to
    780 * re-check after re-acquiring the lock and possibly retry, if buffers are gone
    781 * again.
    782 */
    783static struct nbpf_desc *nbpf_desc_get(struct nbpf_channel *chan, size_t len)
    784{
    785	struct nbpf_desc *desc = NULL;
    786	struct nbpf_link_desc *ldesc, *prev = NULL;
    787
    788	nbpf_scan_acked(chan);
    789
    790	spin_lock_irq(&chan->lock);
    791
    792	do {
    793		int i = 0, ret;
    794
    795		if (list_empty(&chan->free)) {
    796			/* No more free descriptors */
    797			spin_unlock_irq(&chan->lock);
    798			ret = nbpf_desc_page_alloc(chan);
    799			if (ret < 0)
    800				return NULL;
    801			spin_lock_irq(&chan->lock);
    802			continue;
    803		}
    804		desc = list_first_entry(&chan->free, struct nbpf_desc, node);
    805		list_del(&desc->node);
    806
    807		do {
    808			if (list_empty(&chan->free_links)) {
    809				/* No more free link descriptors */
    810				spin_unlock_irq(&chan->lock);
    811				ret = nbpf_desc_page_alloc(chan);
    812				if (ret < 0) {
    813					nbpf_desc_put(desc);
    814					return NULL;
    815				}
    816				spin_lock_irq(&chan->lock);
    817				continue;
    818			}
    819
    820			ldesc = list_first_entry(&chan->free_links,
    821						 struct nbpf_link_desc, node);
    822			ldesc->desc = desc;
    823			if (prev)
    824				prev->hwdesc->next = (u32)ldesc->hwdesc_dma_addr;
    825
    826			prev = ldesc;
    827			list_move_tail(&ldesc->node, &desc->sg);
    828
    829			i++;
    830		} while (i < len);
    831	} while (!desc);
    832
    833	prev->hwdesc->next = 0;
    834
    835	spin_unlock_irq(&chan->lock);
    836
    837	return desc;
    838}
    839
    840static void nbpf_chan_idle(struct nbpf_channel *chan)
    841{
    842	struct nbpf_desc *desc, *tmp;
    843	unsigned long flags;
    844	LIST_HEAD(head);
    845
    846	spin_lock_irqsave(&chan->lock, flags);
    847
    848	list_splice_init(&chan->done, &head);
    849	list_splice_init(&chan->active, &head);
    850	list_splice_init(&chan->queued, &head);
    851
    852	chan->running = NULL;
    853
    854	spin_unlock_irqrestore(&chan->lock, flags);
    855
    856	list_for_each_entry_safe(desc, tmp, &head, node) {
    857		dev_dbg(chan->nbpf->dma_dev.dev, "%s(): force-free desc %p cookie %d\n",
    858			__func__, desc, desc->async_tx.cookie);
    859		list_del(&desc->node);
    860		nbpf_desc_put(desc);
    861	}
    862}
    863
    864static int nbpf_pause(struct dma_chan *dchan)
    865{
    866	struct nbpf_channel *chan = nbpf_to_chan(dchan);
    867
    868	dev_dbg(dchan->device->dev, "Entry %s\n", __func__);
    869
    870	chan->paused = true;
    871	nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_SETSUS);
    872	/* See comment in nbpf_prep_one() */
    873	nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_CLREN);
    874
    875	return 0;
    876}
    877
    878static int nbpf_terminate_all(struct dma_chan *dchan)
    879{
    880	struct nbpf_channel *chan = nbpf_to_chan(dchan);
    881
    882	dev_dbg(dchan->device->dev, "Entry %s\n", __func__);
    883	dev_dbg(dchan->device->dev, "Terminating\n");
    884
    885	nbpf_chan_halt(chan);
    886	nbpf_chan_idle(chan);
    887
    888	return 0;
    889}
    890
    891static int nbpf_config(struct dma_chan *dchan,
    892		       struct dma_slave_config *config)
    893{
    894	struct nbpf_channel *chan = nbpf_to_chan(dchan);
    895
    896	dev_dbg(dchan->device->dev, "Entry %s\n", __func__);
    897
    898	/*
    899	 * We could check config->slave_id to match chan->terminal here,
    900	 * but with DT they would be coming from the same source, so
    901	 * such a check would be superflous
    902	 */
    903
    904	chan->slave_dst_addr = config->dst_addr;
    905	chan->slave_dst_width = nbpf_xfer_size(chan->nbpf,
    906					       config->dst_addr_width, 1);
    907	chan->slave_dst_burst = nbpf_xfer_size(chan->nbpf,
    908					       config->dst_addr_width,
    909					       config->dst_maxburst);
    910	chan->slave_src_addr = config->src_addr;
    911	chan->slave_src_width = nbpf_xfer_size(chan->nbpf,
    912					       config->src_addr_width, 1);
    913	chan->slave_src_burst = nbpf_xfer_size(chan->nbpf,
    914					       config->src_addr_width,
    915					       config->src_maxburst);
    916
    917	return 0;
    918}
    919
    920static struct dma_async_tx_descriptor *nbpf_prep_sg(struct nbpf_channel *chan,
    921		struct scatterlist *src_sg, struct scatterlist *dst_sg,
    922		size_t len, enum dma_transfer_direction direction,
    923		unsigned long flags)
    924{
    925	struct nbpf_link_desc *ldesc;
    926	struct scatterlist *mem_sg;
    927	struct nbpf_desc *desc;
    928	bool inc_src, inc_dst;
    929	size_t data_len = 0;
    930	int i = 0;
    931
    932	switch (direction) {
    933	case DMA_DEV_TO_MEM:
    934		mem_sg = dst_sg;
    935		inc_src = false;
    936		inc_dst = true;
    937		break;
    938
    939	case DMA_MEM_TO_DEV:
    940		mem_sg = src_sg;
    941		inc_src = true;
    942		inc_dst = false;
    943		break;
    944
    945	default:
    946	case DMA_MEM_TO_MEM:
    947		mem_sg = src_sg;
    948		inc_src = true;
    949		inc_dst = true;
    950	}
    951
    952	desc = nbpf_desc_get(chan, len);
    953	if (!desc)
    954		return NULL;
    955
    956	desc->async_tx.flags = flags;
    957	desc->async_tx.cookie = -EBUSY;
    958	desc->user_wait = false;
    959
    960	/*
    961	 * This is a private descriptor list, and we own the descriptor. No need
    962	 * to lock.
    963	 */
    964	list_for_each_entry(ldesc, &desc->sg, node) {
    965		int ret = nbpf_prep_one(ldesc, direction,
    966					sg_dma_address(src_sg),
    967					sg_dma_address(dst_sg),
    968					sg_dma_len(mem_sg),
    969					i == len - 1);
    970		if (ret < 0) {
    971			nbpf_desc_put(desc);
    972			return NULL;
    973		}
    974		data_len += sg_dma_len(mem_sg);
    975		if (inc_src)
    976			src_sg = sg_next(src_sg);
    977		if (inc_dst)
    978			dst_sg = sg_next(dst_sg);
    979		mem_sg = direction == DMA_DEV_TO_MEM ? dst_sg : src_sg;
    980		i++;
    981	}
    982
    983	desc->length = data_len;
    984
    985	/* The user has to return the descriptor to us ASAP via .tx_submit() */
    986	return &desc->async_tx;
    987}
    988
    989static struct dma_async_tx_descriptor *nbpf_prep_memcpy(
    990	struct dma_chan *dchan, dma_addr_t dst, dma_addr_t src,
    991	size_t len, unsigned long flags)
    992{
    993	struct nbpf_channel *chan = nbpf_to_chan(dchan);
    994	struct scatterlist dst_sg;
    995	struct scatterlist src_sg;
    996
    997	sg_init_table(&dst_sg, 1);
    998	sg_init_table(&src_sg, 1);
    999
   1000	sg_dma_address(&dst_sg) = dst;
   1001	sg_dma_address(&src_sg) = src;
   1002
   1003	sg_dma_len(&dst_sg) = len;
   1004	sg_dma_len(&src_sg) = len;
   1005
   1006	dev_dbg(dchan->device->dev, "%s(): %zu @ %pad -> %pad\n",
   1007		__func__, len, &src, &dst);
   1008
   1009	return nbpf_prep_sg(chan, &src_sg, &dst_sg, 1,
   1010			    DMA_MEM_TO_MEM, flags);
   1011}
   1012
   1013static struct dma_async_tx_descriptor *nbpf_prep_slave_sg(
   1014	struct dma_chan *dchan, struct scatterlist *sgl, unsigned int sg_len,
   1015	enum dma_transfer_direction direction, unsigned long flags, void *context)
   1016{
   1017	struct nbpf_channel *chan = nbpf_to_chan(dchan);
   1018	struct scatterlist slave_sg;
   1019
   1020	dev_dbg(dchan->device->dev, "Entry %s()\n", __func__);
   1021
   1022	sg_init_table(&slave_sg, 1);
   1023
   1024	switch (direction) {
   1025	case DMA_MEM_TO_DEV:
   1026		sg_dma_address(&slave_sg) = chan->slave_dst_addr;
   1027		return nbpf_prep_sg(chan, sgl, &slave_sg, sg_len,
   1028				    direction, flags);
   1029
   1030	case DMA_DEV_TO_MEM:
   1031		sg_dma_address(&slave_sg) = chan->slave_src_addr;
   1032		return nbpf_prep_sg(chan, &slave_sg, sgl, sg_len,
   1033				    direction, flags);
   1034
   1035	default:
   1036		return NULL;
   1037	}
   1038}
   1039
   1040static int nbpf_alloc_chan_resources(struct dma_chan *dchan)
   1041{
   1042	struct nbpf_channel *chan = nbpf_to_chan(dchan);
   1043	int ret;
   1044
   1045	INIT_LIST_HEAD(&chan->free);
   1046	INIT_LIST_HEAD(&chan->free_links);
   1047	INIT_LIST_HEAD(&chan->queued);
   1048	INIT_LIST_HEAD(&chan->active);
   1049	INIT_LIST_HEAD(&chan->done);
   1050
   1051	ret = nbpf_desc_page_alloc(chan);
   1052	if (ret < 0)
   1053		return ret;
   1054
   1055	dev_dbg(dchan->device->dev, "Entry %s(): terminal %u\n", __func__,
   1056		chan->terminal);
   1057
   1058	nbpf_chan_configure(chan);
   1059
   1060	return ret;
   1061}
   1062
   1063static void nbpf_free_chan_resources(struct dma_chan *dchan)
   1064{
   1065	struct nbpf_channel *chan = nbpf_to_chan(dchan);
   1066	struct nbpf_desc_page *dpage, *tmp;
   1067
   1068	dev_dbg(dchan->device->dev, "Entry %s()\n", __func__);
   1069
   1070	nbpf_chan_halt(chan);
   1071	nbpf_chan_idle(chan);
   1072	/* Clean up for if a channel is re-used for MEMCPY after slave DMA */
   1073	nbpf_chan_prepare_default(chan);
   1074
   1075	list_for_each_entry_safe(dpage, tmp, &chan->desc_page, node) {
   1076		struct nbpf_link_desc *ldesc;
   1077		int i;
   1078		list_del(&dpage->node);
   1079		for (i = 0, ldesc = dpage->ldesc;
   1080		     i < ARRAY_SIZE(dpage->ldesc);
   1081		     i++, ldesc++)
   1082			dma_unmap_single(dchan->device->dev, ldesc->hwdesc_dma_addr,
   1083					 sizeof(*ldesc->hwdesc), DMA_TO_DEVICE);
   1084		free_page((unsigned long)dpage);
   1085	}
   1086}
   1087
   1088static struct dma_chan *nbpf_of_xlate(struct of_phandle_args *dma_spec,
   1089				      struct of_dma *ofdma)
   1090{
   1091	struct nbpf_device *nbpf = ofdma->of_dma_data;
   1092	struct dma_chan *dchan;
   1093	struct nbpf_channel *chan;
   1094
   1095	if (dma_spec->args_count != 2)
   1096		return NULL;
   1097
   1098	dchan = dma_get_any_slave_channel(&nbpf->dma_dev);
   1099	if (!dchan)
   1100		return NULL;
   1101
   1102	dev_dbg(dchan->device->dev, "Entry %s(%pOFn)\n", __func__,
   1103		dma_spec->np);
   1104
   1105	chan = nbpf_to_chan(dchan);
   1106
   1107	chan->terminal = dma_spec->args[0];
   1108	chan->flags = dma_spec->args[1];
   1109
   1110	nbpf_chan_prepare(chan);
   1111	nbpf_chan_configure(chan);
   1112
   1113	return dchan;
   1114}
   1115
   1116static void nbpf_chan_tasklet(struct tasklet_struct *t)
   1117{
   1118	struct nbpf_channel *chan = from_tasklet(chan, t, tasklet);
   1119	struct nbpf_desc *desc, *tmp;
   1120	struct dmaengine_desc_callback cb;
   1121
   1122	while (!list_empty(&chan->done)) {
   1123		bool found = false, must_put, recycling = false;
   1124
   1125		spin_lock_irq(&chan->lock);
   1126
   1127		list_for_each_entry_safe(desc, tmp, &chan->done, node) {
   1128			if (!desc->user_wait) {
   1129				/* Newly completed descriptor, have to process */
   1130				found = true;
   1131				break;
   1132			} else if (async_tx_test_ack(&desc->async_tx)) {
   1133				/*
   1134				 * This descriptor was waiting for a user ACK,
   1135				 * it can be recycled now.
   1136				 */
   1137				list_del(&desc->node);
   1138				spin_unlock_irq(&chan->lock);
   1139				nbpf_desc_put(desc);
   1140				recycling = true;
   1141				break;
   1142			}
   1143		}
   1144
   1145		if (recycling)
   1146			continue;
   1147
   1148		if (!found) {
   1149			/* This can happen if TERMINATE_ALL has been called */
   1150			spin_unlock_irq(&chan->lock);
   1151			break;
   1152		}
   1153
   1154		dma_cookie_complete(&desc->async_tx);
   1155
   1156		/*
   1157		 * With released lock we cannot dereference desc, maybe it's
   1158		 * still on the "done" list
   1159		 */
   1160		if (async_tx_test_ack(&desc->async_tx)) {
   1161			list_del(&desc->node);
   1162			must_put = true;
   1163		} else {
   1164			desc->user_wait = true;
   1165			must_put = false;
   1166		}
   1167
   1168		dmaengine_desc_get_callback(&desc->async_tx, &cb);
   1169
   1170		/* ack and callback completed descriptor */
   1171		spin_unlock_irq(&chan->lock);
   1172
   1173		dmaengine_desc_callback_invoke(&cb, NULL);
   1174
   1175		if (must_put)
   1176			nbpf_desc_put(desc);
   1177	}
   1178}
   1179
   1180static irqreturn_t nbpf_chan_irq(int irq, void *dev)
   1181{
   1182	struct nbpf_channel *chan = dev;
   1183	bool done = nbpf_status_get(chan);
   1184	struct nbpf_desc *desc;
   1185	irqreturn_t ret;
   1186	bool bh = false;
   1187
   1188	if (!done)
   1189		return IRQ_NONE;
   1190
   1191	nbpf_status_ack(chan);
   1192
   1193	dev_dbg(&chan->dma_chan.dev->device, "%s()\n", __func__);
   1194
   1195	spin_lock(&chan->lock);
   1196	desc = chan->running;
   1197	if (WARN_ON(!desc)) {
   1198		ret = IRQ_NONE;
   1199		goto unlock;
   1200	} else {
   1201		ret = IRQ_HANDLED;
   1202		bh = true;
   1203	}
   1204
   1205	list_move_tail(&desc->node, &chan->done);
   1206	chan->running = NULL;
   1207
   1208	if (!list_empty(&chan->active)) {
   1209		desc = list_first_entry(&chan->active,
   1210					struct nbpf_desc, node);
   1211		if (!nbpf_start(desc))
   1212			chan->running = desc;
   1213	}
   1214
   1215unlock:
   1216	spin_unlock(&chan->lock);
   1217
   1218	if (bh)
   1219		tasklet_schedule(&chan->tasklet);
   1220
   1221	return ret;
   1222}
   1223
   1224static irqreturn_t nbpf_err_irq(int irq, void *dev)
   1225{
   1226	struct nbpf_device *nbpf = dev;
   1227	u32 error = nbpf_error_get(nbpf);
   1228
   1229	dev_warn(nbpf->dma_dev.dev, "DMA error IRQ %u\n", irq);
   1230
   1231	if (!error)
   1232		return IRQ_NONE;
   1233
   1234	do {
   1235		struct nbpf_channel *chan = nbpf_error_get_channel(nbpf, error);
   1236		/* On error: abort all queued transfers, no callback */
   1237		nbpf_error_clear(chan);
   1238		nbpf_chan_idle(chan);
   1239		error = nbpf_error_get(nbpf);
   1240	} while (error);
   1241
   1242	return IRQ_HANDLED;
   1243}
   1244
   1245static int nbpf_chan_probe(struct nbpf_device *nbpf, int n)
   1246{
   1247	struct dma_device *dma_dev = &nbpf->dma_dev;
   1248	struct nbpf_channel *chan = nbpf->chan + n;
   1249	int ret;
   1250
   1251	chan->nbpf = nbpf;
   1252	chan->base = nbpf->base + NBPF_REG_CHAN_OFFSET + NBPF_REG_CHAN_SIZE * n;
   1253	INIT_LIST_HEAD(&chan->desc_page);
   1254	spin_lock_init(&chan->lock);
   1255	chan->dma_chan.device = dma_dev;
   1256	dma_cookie_init(&chan->dma_chan);
   1257	nbpf_chan_prepare_default(chan);
   1258
   1259	dev_dbg(dma_dev->dev, "%s(): channel %d: -> %p\n", __func__, n, chan->base);
   1260
   1261	snprintf(chan->name, sizeof(chan->name), "nbpf %d", n);
   1262
   1263	tasklet_setup(&chan->tasklet, nbpf_chan_tasklet);
   1264	ret = devm_request_irq(dma_dev->dev, chan->irq,
   1265			nbpf_chan_irq, IRQF_SHARED,
   1266			chan->name, chan);
   1267	if (ret < 0)
   1268		return ret;
   1269
   1270	/* Add the channel to DMA device channel list */
   1271	list_add_tail(&chan->dma_chan.device_node,
   1272		      &dma_dev->channels);
   1273
   1274	return 0;
   1275}
   1276
   1277static const struct of_device_id nbpf_match[] = {
   1278	{.compatible = "renesas,nbpfaxi64dmac1b4",	.data = &nbpf_cfg[NBPF1B4]},
   1279	{.compatible = "renesas,nbpfaxi64dmac1b8",	.data = &nbpf_cfg[NBPF1B8]},
   1280	{.compatible = "renesas,nbpfaxi64dmac1b16",	.data = &nbpf_cfg[NBPF1B16]},
   1281	{.compatible = "renesas,nbpfaxi64dmac4b4",	.data = &nbpf_cfg[NBPF4B4]},
   1282	{.compatible = "renesas,nbpfaxi64dmac4b8",	.data = &nbpf_cfg[NBPF4B8]},
   1283	{.compatible = "renesas,nbpfaxi64dmac4b16",	.data = &nbpf_cfg[NBPF4B16]},
   1284	{.compatible = "renesas,nbpfaxi64dmac8b4",	.data = &nbpf_cfg[NBPF8B4]},
   1285	{.compatible = "renesas,nbpfaxi64dmac8b8",	.data = &nbpf_cfg[NBPF8B8]},
   1286	{.compatible = "renesas,nbpfaxi64dmac8b16",	.data = &nbpf_cfg[NBPF8B16]},
   1287	{}
   1288};
   1289MODULE_DEVICE_TABLE(of, nbpf_match);
   1290
   1291static int nbpf_probe(struct platform_device *pdev)
   1292{
   1293	struct device *dev = &pdev->dev;
   1294	struct device_node *np = dev->of_node;
   1295	struct nbpf_device *nbpf;
   1296	struct dma_device *dma_dev;
   1297	struct resource *iomem;
   1298	const struct nbpf_config *cfg;
   1299	int num_channels;
   1300	int ret, irq, eirq, i;
   1301	int irqbuf[9] /* maximum 8 channels + error IRQ */;
   1302	unsigned int irqs = 0;
   1303
   1304	BUILD_BUG_ON(sizeof(struct nbpf_desc_page) > PAGE_SIZE);
   1305
   1306	/* DT only */
   1307	if (!np)
   1308		return -ENODEV;
   1309
   1310	cfg = of_device_get_match_data(dev);
   1311	num_channels = cfg->num_channels;
   1312
   1313	nbpf = devm_kzalloc(dev, struct_size(nbpf, chan, num_channels),
   1314			    GFP_KERNEL);
   1315	if (!nbpf)
   1316		return -ENOMEM;
   1317
   1318	dma_dev = &nbpf->dma_dev;
   1319	dma_dev->dev = dev;
   1320
   1321	iomem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
   1322	nbpf->base = devm_ioremap_resource(dev, iomem);
   1323	if (IS_ERR(nbpf->base))
   1324		return PTR_ERR(nbpf->base);
   1325
   1326	nbpf->clk = devm_clk_get(dev, NULL);
   1327	if (IS_ERR(nbpf->clk))
   1328		return PTR_ERR(nbpf->clk);
   1329
   1330	of_property_read_u32(np, "max-burst-mem-read",
   1331			     &nbpf->max_burst_mem_read);
   1332	of_property_read_u32(np, "max-burst-mem-write",
   1333			     &nbpf->max_burst_mem_write);
   1334
   1335	nbpf->config = cfg;
   1336
   1337	for (i = 0; irqs < ARRAY_SIZE(irqbuf); i++) {
   1338		irq = platform_get_irq_optional(pdev, i);
   1339		if (irq < 0 && irq != -ENXIO)
   1340			return irq;
   1341		if (irq > 0)
   1342			irqbuf[irqs++] = irq;
   1343	}
   1344
   1345	/*
   1346	 * 3 IRQ resource schemes are supported:
   1347	 * 1. 1 shared IRQ for error and all channels
   1348	 * 2. 2 IRQs: one for error and one shared for all channels
   1349	 * 3. 1 IRQ for error and an own IRQ for each channel
   1350	 */
   1351	if (irqs != 1 && irqs != 2 && irqs != num_channels + 1)
   1352		return -ENXIO;
   1353
   1354	if (irqs == 1) {
   1355		eirq = irqbuf[0];
   1356
   1357		for (i = 0; i <= num_channels; i++)
   1358			nbpf->chan[i].irq = irqbuf[0];
   1359	} else {
   1360		eirq = platform_get_irq_byname(pdev, "error");
   1361		if (eirq < 0)
   1362			return eirq;
   1363
   1364		if (irqs == num_channels + 1) {
   1365			struct nbpf_channel *chan;
   1366
   1367			for (i = 0, chan = nbpf->chan; i <= num_channels;
   1368			     i++, chan++) {
   1369				/* Skip the error IRQ */
   1370				if (irqbuf[i] == eirq)
   1371					i++;
   1372				chan->irq = irqbuf[i];
   1373			}
   1374
   1375			if (chan != nbpf->chan + num_channels)
   1376				return -EINVAL;
   1377		} else {
   1378			/* 2 IRQs and more than one channel */
   1379			if (irqbuf[0] == eirq)
   1380				irq = irqbuf[1];
   1381			else
   1382				irq = irqbuf[0];
   1383
   1384			for (i = 0; i <= num_channels; i++)
   1385				nbpf->chan[i].irq = irq;
   1386		}
   1387	}
   1388
   1389	ret = devm_request_irq(dev, eirq, nbpf_err_irq,
   1390			       IRQF_SHARED, "dma error", nbpf);
   1391	if (ret < 0)
   1392		return ret;
   1393	nbpf->eirq = eirq;
   1394
   1395	INIT_LIST_HEAD(&dma_dev->channels);
   1396
   1397	/* Create DMA Channel */
   1398	for (i = 0; i < num_channels; i++) {
   1399		ret = nbpf_chan_probe(nbpf, i);
   1400		if (ret < 0)
   1401			return ret;
   1402	}
   1403
   1404	dma_cap_set(DMA_MEMCPY, dma_dev->cap_mask);
   1405	dma_cap_set(DMA_SLAVE, dma_dev->cap_mask);
   1406	dma_cap_set(DMA_PRIVATE, dma_dev->cap_mask);
   1407
   1408	/* Common and MEMCPY operations */
   1409	dma_dev->device_alloc_chan_resources
   1410		= nbpf_alloc_chan_resources;
   1411	dma_dev->device_free_chan_resources = nbpf_free_chan_resources;
   1412	dma_dev->device_prep_dma_memcpy = nbpf_prep_memcpy;
   1413	dma_dev->device_tx_status = nbpf_tx_status;
   1414	dma_dev->device_issue_pending = nbpf_issue_pending;
   1415
   1416	/*
   1417	 * If we drop support for unaligned MEMCPY buffer addresses and / or
   1418	 * lengths by setting
   1419	 * dma_dev->copy_align = 4;
   1420	 * then we can set transfer length to 4 bytes in nbpf_prep_one() for
   1421	 * DMA_MEM_TO_MEM
   1422	 */
   1423
   1424	/* Compulsory for DMA_SLAVE fields */
   1425	dma_dev->device_prep_slave_sg = nbpf_prep_slave_sg;
   1426	dma_dev->device_config = nbpf_config;
   1427	dma_dev->device_pause = nbpf_pause;
   1428	dma_dev->device_terminate_all = nbpf_terminate_all;
   1429
   1430	dma_dev->src_addr_widths = NBPF_DMA_BUSWIDTHS;
   1431	dma_dev->dst_addr_widths = NBPF_DMA_BUSWIDTHS;
   1432	dma_dev->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
   1433
   1434	platform_set_drvdata(pdev, nbpf);
   1435
   1436	ret = clk_prepare_enable(nbpf->clk);
   1437	if (ret < 0)
   1438		return ret;
   1439
   1440	nbpf_configure(nbpf);
   1441
   1442	ret = dma_async_device_register(dma_dev);
   1443	if (ret < 0)
   1444		goto e_clk_off;
   1445
   1446	ret = of_dma_controller_register(np, nbpf_of_xlate, nbpf);
   1447	if (ret < 0)
   1448		goto e_dma_dev_unreg;
   1449
   1450	return 0;
   1451
   1452e_dma_dev_unreg:
   1453	dma_async_device_unregister(dma_dev);
   1454e_clk_off:
   1455	clk_disable_unprepare(nbpf->clk);
   1456
   1457	return ret;
   1458}
   1459
   1460static int nbpf_remove(struct platform_device *pdev)
   1461{
   1462	struct nbpf_device *nbpf = platform_get_drvdata(pdev);
   1463	int i;
   1464
   1465	devm_free_irq(&pdev->dev, nbpf->eirq, nbpf);
   1466
   1467	for (i = 0; i < nbpf->config->num_channels; i++) {
   1468		struct nbpf_channel *chan = nbpf->chan + i;
   1469
   1470		devm_free_irq(&pdev->dev, chan->irq, chan);
   1471
   1472		tasklet_kill(&chan->tasklet);
   1473	}
   1474
   1475	of_dma_controller_free(pdev->dev.of_node);
   1476	dma_async_device_unregister(&nbpf->dma_dev);
   1477	clk_disable_unprepare(nbpf->clk);
   1478
   1479	return 0;
   1480}
   1481
   1482static const struct platform_device_id nbpf_ids[] = {
   1483	{"nbpfaxi64dmac1b4",	(kernel_ulong_t)&nbpf_cfg[NBPF1B4]},
   1484	{"nbpfaxi64dmac1b8",	(kernel_ulong_t)&nbpf_cfg[NBPF1B8]},
   1485	{"nbpfaxi64dmac1b16",	(kernel_ulong_t)&nbpf_cfg[NBPF1B16]},
   1486	{"nbpfaxi64dmac4b4",	(kernel_ulong_t)&nbpf_cfg[NBPF4B4]},
   1487	{"nbpfaxi64dmac4b8",	(kernel_ulong_t)&nbpf_cfg[NBPF4B8]},
   1488	{"nbpfaxi64dmac4b16",	(kernel_ulong_t)&nbpf_cfg[NBPF4B16]},
   1489	{"nbpfaxi64dmac8b4",	(kernel_ulong_t)&nbpf_cfg[NBPF8B4]},
   1490	{"nbpfaxi64dmac8b8",	(kernel_ulong_t)&nbpf_cfg[NBPF8B8]},
   1491	{"nbpfaxi64dmac8b16",	(kernel_ulong_t)&nbpf_cfg[NBPF8B16]},
   1492	{},
   1493};
   1494MODULE_DEVICE_TABLE(platform, nbpf_ids);
   1495
   1496#ifdef CONFIG_PM
   1497static int nbpf_runtime_suspend(struct device *dev)
   1498{
   1499	struct nbpf_device *nbpf = dev_get_drvdata(dev);
   1500	clk_disable_unprepare(nbpf->clk);
   1501	return 0;
   1502}
   1503
   1504static int nbpf_runtime_resume(struct device *dev)
   1505{
   1506	struct nbpf_device *nbpf = dev_get_drvdata(dev);
   1507	return clk_prepare_enable(nbpf->clk);
   1508}
   1509#endif
   1510
   1511static const struct dev_pm_ops nbpf_pm_ops = {
   1512	SET_RUNTIME_PM_OPS(nbpf_runtime_suspend, nbpf_runtime_resume, NULL)
   1513};
   1514
   1515static struct platform_driver nbpf_driver = {
   1516	.driver = {
   1517		.name = "dma-nbpf",
   1518		.of_match_table = nbpf_match,
   1519		.pm = &nbpf_pm_ops,
   1520	},
   1521	.id_table = nbpf_ids,
   1522	.probe = nbpf_probe,
   1523	.remove = nbpf_remove,
   1524};
   1525
   1526module_platform_driver(nbpf_driver);
   1527
   1528MODULE_AUTHOR("Guennadi Liakhovetski <g.liakhovetski@gmx.de>");
   1529MODULE_DESCRIPTION("dmaengine driver for NBPFAXI64* DMACs");
   1530MODULE_LICENSE("GPL v2");