cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

adma.c (126973B)


      1// SPDX-License-Identifier: GPL-2.0-or-later
      2/*
      3 * Copyright (C) 2006-2009 DENX Software Engineering.
      4 *
      5 * Author: Yuri Tikhonov <yur@emcraft.com>
      6 *
      7 * Further porting to arch/powerpc by
      8 * 	Anatolij Gustschin <agust@denx.de>
      9 */
     10
     11/*
     12 * This driver supports the asynchrounous DMA copy and RAID engines available
     13 * on the AMCC PPC440SPe Processors.
     14 * Based on the Intel Xscale(R) family of I/O Processors (IOP 32x, 33x, 134x)
     15 * ADMA driver written by D.Williams.
     16 */
     17
     18#include <linux/init.h>
     19#include <linux/module.h>
     20#include <linux/async_tx.h>
     21#include <linux/delay.h>
     22#include <linux/dma-mapping.h>
     23#include <linux/spinlock.h>
     24#include <linux/interrupt.h>
     25#include <linux/slab.h>
     26#include <linux/uaccess.h>
     27#include <linux/proc_fs.h>
     28#include <linux/of.h>
     29#include <linux/of_address.h>
     30#include <linux/of_irq.h>
     31#include <linux/of_platform.h>
     32#include <asm/dcr.h>
     33#include <asm/dcr-regs.h>
     34#include "adma.h"
     35#include "../dmaengine.h"
     36
     37enum ppc_adma_init_code {
     38	PPC_ADMA_INIT_OK = 0,
     39	PPC_ADMA_INIT_MEMRES,
     40	PPC_ADMA_INIT_MEMREG,
     41	PPC_ADMA_INIT_ALLOC,
     42	PPC_ADMA_INIT_COHERENT,
     43	PPC_ADMA_INIT_CHANNEL,
     44	PPC_ADMA_INIT_IRQ1,
     45	PPC_ADMA_INIT_IRQ2,
     46	PPC_ADMA_INIT_REGISTER
     47};
     48
     49static char *ppc_adma_errors[] = {
     50	[PPC_ADMA_INIT_OK] = "ok",
     51	[PPC_ADMA_INIT_MEMRES] = "failed to get memory resource",
     52	[PPC_ADMA_INIT_MEMREG] = "failed to request memory region",
     53	[PPC_ADMA_INIT_ALLOC] = "failed to allocate memory for adev "
     54				"structure",
     55	[PPC_ADMA_INIT_COHERENT] = "failed to allocate coherent memory for "
     56				   "hardware descriptors",
     57	[PPC_ADMA_INIT_CHANNEL] = "failed to allocate memory for channel",
     58	[PPC_ADMA_INIT_IRQ1] = "failed to request first irq",
     59	[PPC_ADMA_INIT_IRQ2] = "failed to request second irq",
     60	[PPC_ADMA_INIT_REGISTER] = "failed to register dma async device",
     61};
     62
     63static enum ppc_adma_init_code
     64ppc440spe_adma_devices[PPC440SPE_ADMA_ENGINES_NUM];
     65
     66struct ppc_dma_chan_ref {
     67	struct dma_chan *chan;
     68	struct list_head node;
     69};
     70
     71/* The list of channels exported by ppc440spe ADMA */
     72static struct list_head
     73ppc440spe_adma_chan_list = LIST_HEAD_INIT(ppc440spe_adma_chan_list);
     74
     75/* This flag is set when want to refetch the xor chain in the interrupt
     76 * handler
     77 */
     78static u32 do_xor_refetch;
     79
     80/* Pointer to DMA0, DMA1 CP/CS FIFO */
     81static void *ppc440spe_dma_fifo_buf;
     82
     83/* Pointers to last submitted to DMA0, DMA1 CDBs */
     84static struct ppc440spe_adma_desc_slot *chan_last_sub[3];
     85static struct ppc440spe_adma_desc_slot *chan_first_cdb[3];
     86
     87/* Pointer to last linked and submitted xor CB */
     88static struct ppc440spe_adma_desc_slot *xor_last_linked;
     89static struct ppc440spe_adma_desc_slot *xor_last_submit;
     90
     91/* This array is used in data-check operations for storing a pattern */
     92static char ppc440spe_qword[16];
     93
     94static atomic_t ppc440spe_adma_err_irq_ref;
     95static dcr_host_t ppc440spe_mq_dcr_host;
     96static unsigned int ppc440spe_mq_dcr_len;
     97
     98/* Since RXOR operations use the common register (MQ0_CF2H) for setting-up
     99 * the block size in transactions, then we do not allow to activate more than
    100 * only one RXOR transactions simultaneously. So use this var to store
    101 * the information about is RXOR currently active (PPC440SPE_RXOR_RUN bit is
    102 * set) or not (PPC440SPE_RXOR_RUN is clear).
    103 */
    104static unsigned long ppc440spe_rxor_state;
    105
    106/* These are used in enable & check routines
    107 */
    108static u32 ppc440spe_r6_enabled;
    109static struct ppc440spe_adma_chan *ppc440spe_r6_tchan;
    110static struct completion ppc440spe_r6_test_comp;
    111
    112static int ppc440spe_adma_dma2rxor_prep_src(
    113		struct ppc440spe_adma_desc_slot *desc,
    114		struct ppc440spe_rxor *cursor, int index,
    115		int src_cnt, u32 addr);
    116static void ppc440spe_adma_dma2rxor_set_src(
    117		struct ppc440spe_adma_desc_slot *desc,
    118		int index, dma_addr_t addr);
    119static void ppc440spe_adma_dma2rxor_set_mult(
    120		struct ppc440spe_adma_desc_slot *desc,
    121		int index, u8 mult);
    122
    123#ifdef ADMA_LL_DEBUG
    124#define ADMA_LL_DBG(x) ({ if (1) x; 0; })
    125#else
    126#define ADMA_LL_DBG(x) ({ if (0) x; 0; })
    127#endif
    128
    129static void print_cb(struct ppc440spe_adma_chan *chan, void *block)
    130{
    131	struct dma_cdb *cdb;
    132	struct xor_cb *cb;
    133	int i;
    134
    135	switch (chan->device->id) {
    136	case 0:
    137	case 1:
    138		cdb = block;
    139
    140		pr_debug("CDB at %p [%d]:\n"
    141			"\t attr 0x%02x opc 0x%02x cnt 0x%08x\n"
    142			"\t sg1u 0x%08x sg1l 0x%08x\n"
    143			"\t sg2u 0x%08x sg2l 0x%08x\n"
    144			"\t sg3u 0x%08x sg3l 0x%08x\n",
    145			cdb, chan->device->id,
    146			cdb->attr, cdb->opc, le32_to_cpu(cdb->cnt),
    147			le32_to_cpu(cdb->sg1u), le32_to_cpu(cdb->sg1l),
    148			le32_to_cpu(cdb->sg2u), le32_to_cpu(cdb->sg2l),
    149			le32_to_cpu(cdb->sg3u), le32_to_cpu(cdb->sg3l)
    150		);
    151		break;
    152	case 2:
    153		cb = block;
    154
    155		pr_debug("CB at %p [%d]:\n"
    156			"\t cbc 0x%08x cbbc 0x%08x cbs 0x%08x\n"
    157			"\t cbtah 0x%08x cbtal 0x%08x\n"
    158			"\t cblah 0x%08x cblal 0x%08x\n",
    159			cb, chan->device->id,
    160			cb->cbc, cb->cbbc, cb->cbs,
    161			cb->cbtah, cb->cbtal,
    162			cb->cblah, cb->cblal);
    163		for (i = 0; i < 16; i++) {
    164			if (i && !cb->ops[i].h && !cb->ops[i].l)
    165				continue;
    166			pr_debug("\t ops[%2d]: h 0x%08x l 0x%08x\n",
    167				i, cb->ops[i].h, cb->ops[i].l);
    168		}
    169		break;
    170	}
    171}
    172
    173static void print_cb_list(struct ppc440spe_adma_chan *chan,
    174			  struct ppc440spe_adma_desc_slot *iter)
    175{
    176	for (; iter; iter = iter->hw_next)
    177		print_cb(chan, iter->hw_desc);
    178}
    179
    180static void prep_dma_xor_dbg(int id, dma_addr_t dst, dma_addr_t *src,
    181			     unsigned int src_cnt)
    182{
    183	int i;
    184
    185	pr_debug("\n%s(%d):\nsrc: ", __func__, id);
    186	for (i = 0; i < src_cnt; i++)
    187		pr_debug("\t0x%016llx ", src[i]);
    188	pr_debug("dst:\n\t0x%016llx\n", dst);
    189}
    190
    191static void prep_dma_pq_dbg(int id, dma_addr_t *dst, dma_addr_t *src,
    192			    unsigned int src_cnt)
    193{
    194	int i;
    195
    196	pr_debug("\n%s(%d):\nsrc: ", __func__, id);
    197	for (i = 0; i < src_cnt; i++)
    198		pr_debug("\t0x%016llx ", src[i]);
    199	pr_debug("dst: ");
    200	for (i = 0; i < 2; i++)
    201		pr_debug("\t0x%016llx ", dst[i]);
    202}
    203
    204static void prep_dma_pqzero_sum_dbg(int id, dma_addr_t *src,
    205				    unsigned int src_cnt,
    206				    const unsigned char *scf)
    207{
    208	int i;
    209
    210	pr_debug("\n%s(%d):\nsrc(coef): ", __func__, id);
    211	if (scf) {
    212		for (i = 0; i < src_cnt; i++)
    213			pr_debug("\t0x%016llx(0x%02x) ", src[i], scf[i]);
    214	} else {
    215		for (i = 0; i < src_cnt; i++)
    216			pr_debug("\t0x%016llx(no) ", src[i]);
    217	}
    218
    219	pr_debug("dst: ");
    220	for (i = 0; i < 2; i++)
    221		pr_debug("\t0x%016llx ", src[src_cnt + i]);
    222}
    223
    224/******************************************************************************
    225 * Command (Descriptor) Blocks low-level routines
    226 ******************************************************************************/
    227/**
    228 * ppc440spe_desc_init_interrupt - initialize the descriptor for INTERRUPT
    229 * pseudo operation
    230 */
    231static void ppc440spe_desc_init_interrupt(struct ppc440spe_adma_desc_slot *desc,
    232					  struct ppc440spe_adma_chan *chan)
    233{
    234	struct xor_cb *p;
    235
    236	switch (chan->device->id) {
    237	case PPC440SPE_XOR_ID:
    238		p = desc->hw_desc;
    239		memset(desc->hw_desc, 0, sizeof(struct xor_cb));
    240		/* NOP with Command Block Complete Enable */
    241		p->cbc = XOR_CBCR_CBCE_BIT;
    242		break;
    243	case PPC440SPE_DMA0_ID:
    244	case PPC440SPE_DMA1_ID:
    245		memset(desc->hw_desc, 0, sizeof(struct dma_cdb));
    246		/* NOP with interrupt */
    247		set_bit(PPC440SPE_DESC_INT, &desc->flags);
    248		break;
    249	default:
    250		printk(KERN_ERR "Unsupported id %d in %s\n", chan->device->id,
    251				__func__);
    252		break;
    253	}
    254}
    255
    256/**
    257 * ppc440spe_desc_init_null_xor - initialize the descriptor for NULL XOR
    258 * pseudo operation
    259 */
    260static void ppc440spe_desc_init_null_xor(struct ppc440spe_adma_desc_slot *desc)
    261{
    262	memset(desc->hw_desc, 0, sizeof(struct xor_cb));
    263	desc->hw_next = NULL;
    264	desc->src_cnt = 0;
    265	desc->dst_cnt = 1;
    266}
    267
    268/**
    269 * ppc440spe_desc_init_xor - initialize the descriptor for XOR operation
    270 */
    271static void ppc440spe_desc_init_xor(struct ppc440spe_adma_desc_slot *desc,
    272					 int src_cnt, unsigned long flags)
    273{
    274	struct xor_cb *hw_desc = desc->hw_desc;
    275
    276	memset(desc->hw_desc, 0, sizeof(struct xor_cb));
    277	desc->hw_next = NULL;
    278	desc->src_cnt = src_cnt;
    279	desc->dst_cnt = 1;
    280
    281	hw_desc->cbc = XOR_CBCR_TGT_BIT | src_cnt;
    282	if (flags & DMA_PREP_INTERRUPT)
    283		/* Enable interrupt on completion */
    284		hw_desc->cbc |= XOR_CBCR_CBCE_BIT;
    285}
    286
    287/**
    288 * ppc440spe_desc_init_dma2pq - initialize the descriptor for PQ
    289 * operation in DMA2 controller
    290 */
    291static void ppc440spe_desc_init_dma2pq(struct ppc440spe_adma_desc_slot *desc,
    292		int dst_cnt, int src_cnt, unsigned long flags)
    293{
    294	struct xor_cb *hw_desc = desc->hw_desc;
    295
    296	memset(desc->hw_desc, 0, sizeof(struct xor_cb));
    297	desc->hw_next = NULL;
    298	desc->src_cnt = src_cnt;
    299	desc->dst_cnt = dst_cnt;
    300	memset(desc->reverse_flags, 0, sizeof(desc->reverse_flags));
    301	desc->descs_per_op = 0;
    302
    303	hw_desc->cbc = XOR_CBCR_TGT_BIT;
    304	if (flags & DMA_PREP_INTERRUPT)
    305		/* Enable interrupt on completion */
    306		hw_desc->cbc |= XOR_CBCR_CBCE_BIT;
    307}
    308
    309#define DMA_CTRL_FLAGS_LAST	DMA_PREP_FENCE
    310#define DMA_PREP_ZERO_P		(DMA_CTRL_FLAGS_LAST << 1)
    311#define DMA_PREP_ZERO_Q		(DMA_PREP_ZERO_P << 1)
    312
    313/**
    314 * ppc440spe_desc_init_dma01pq - initialize the descriptors for PQ operation
    315 * with DMA0/1
    316 */
    317static void ppc440spe_desc_init_dma01pq(struct ppc440spe_adma_desc_slot *desc,
    318				int dst_cnt, int src_cnt, unsigned long flags,
    319				unsigned long op)
    320{
    321	struct dma_cdb *hw_desc;
    322	struct ppc440spe_adma_desc_slot *iter;
    323	u8 dopc;
    324
    325	/* Common initialization of a PQ descriptors chain */
    326	set_bits(op, &desc->flags);
    327	desc->src_cnt = src_cnt;
    328	desc->dst_cnt = dst_cnt;
    329
    330	/* WXOR MULTICAST if both P and Q are being computed
    331	 * MV_SG1_SG2 if Q only
    332	 */
    333	dopc = (desc->dst_cnt == DMA_DEST_MAX_NUM) ?
    334		DMA_CDB_OPC_MULTICAST : DMA_CDB_OPC_MV_SG1_SG2;
    335
    336	list_for_each_entry(iter, &desc->group_list, chain_node) {
    337		hw_desc = iter->hw_desc;
    338		memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
    339
    340		if (likely(!list_is_last(&iter->chain_node,
    341				&desc->group_list))) {
    342			/* set 'next' pointer */
    343			iter->hw_next = list_entry(iter->chain_node.next,
    344				struct ppc440spe_adma_desc_slot, chain_node);
    345			clear_bit(PPC440SPE_DESC_INT, &iter->flags);
    346		} else {
    347			/* this is the last descriptor.
    348			 * this slot will be pasted from ADMA level
    349			 * each time it wants to configure parameters
    350			 * of the transaction (src, dst, ...)
    351			 */
    352			iter->hw_next = NULL;
    353			if (flags & DMA_PREP_INTERRUPT)
    354				set_bit(PPC440SPE_DESC_INT, &iter->flags);
    355			else
    356				clear_bit(PPC440SPE_DESC_INT, &iter->flags);
    357		}
    358	}
    359
    360	/* Set OPS depending on WXOR/RXOR type of operation */
    361	if (!test_bit(PPC440SPE_DESC_RXOR, &desc->flags)) {
    362		/* This is a WXOR only chain:
    363		 * - first descriptors are for zeroing destinations
    364		 *   if PPC440SPE_ZERO_P/Q set;
    365		 * - descriptors remained are for GF-XOR operations.
    366		 */
    367		iter = list_first_entry(&desc->group_list,
    368					struct ppc440spe_adma_desc_slot,
    369					chain_node);
    370
    371		if (test_bit(PPC440SPE_ZERO_P, &desc->flags)) {
    372			hw_desc = iter->hw_desc;
    373			hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
    374			iter = list_first_entry(&iter->chain_node,
    375					struct ppc440spe_adma_desc_slot,
    376					chain_node);
    377		}
    378
    379		if (test_bit(PPC440SPE_ZERO_Q, &desc->flags)) {
    380			hw_desc = iter->hw_desc;
    381			hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
    382			iter = list_first_entry(&iter->chain_node,
    383					struct ppc440spe_adma_desc_slot,
    384					chain_node);
    385		}
    386
    387		list_for_each_entry_from(iter, &desc->group_list, chain_node) {
    388			hw_desc = iter->hw_desc;
    389			hw_desc->opc = dopc;
    390		}
    391	} else {
    392		/* This is either RXOR-only or mixed RXOR/WXOR */
    393
    394		/* The first 1 or 2 slots in chain are always RXOR,
    395		 * if need to calculate P & Q, then there are two
    396		 * RXOR slots; if only P or only Q, then there is one
    397		 */
    398		iter = list_first_entry(&desc->group_list,
    399					struct ppc440spe_adma_desc_slot,
    400					chain_node);
    401		hw_desc = iter->hw_desc;
    402		hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
    403
    404		if (desc->dst_cnt == DMA_DEST_MAX_NUM) {
    405			iter = list_first_entry(&iter->chain_node,
    406						struct ppc440spe_adma_desc_slot,
    407						chain_node);
    408			hw_desc = iter->hw_desc;
    409			hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
    410		}
    411
    412		/* The remaining descs (if any) are WXORs */
    413		if (test_bit(PPC440SPE_DESC_WXOR, &desc->flags)) {
    414			iter = list_first_entry(&iter->chain_node,
    415						struct ppc440spe_adma_desc_slot,
    416						chain_node);
    417			list_for_each_entry_from(iter, &desc->group_list,
    418						chain_node) {
    419				hw_desc = iter->hw_desc;
    420				hw_desc->opc = dopc;
    421			}
    422		}
    423	}
    424}
    425
    426/**
    427 * ppc440spe_desc_init_dma01pqzero_sum - initialize the descriptor
    428 * for PQ_ZERO_SUM operation
    429 */
    430static void ppc440spe_desc_init_dma01pqzero_sum(
    431				struct ppc440spe_adma_desc_slot *desc,
    432				int dst_cnt, int src_cnt)
    433{
    434	struct dma_cdb *hw_desc;
    435	struct ppc440spe_adma_desc_slot *iter;
    436	int i = 0;
    437	u8 dopc = (dst_cnt == 2) ? DMA_CDB_OPC_MULTICAST :
    438				   DMA_CDB_OPC_MV_SG1_SG2;
    439	/*
    440	 * Initialize starting from 2nd or 3rd descriptor dependent
    441	 * on dst_cnt. First one or two slots are for cloning P
    442	 * and/or Q to chan->pdest and/or chan->qdest as we have
    443	 * to preserve original P/Q.
    444	 */
    445	iter = list_first_entry(&desc->group_list,
    446				struct ppc440spe_adma_desc_slot, chain_node);
    447	iter = list_entry(iter->chain_node.next,
    448			  struct ppc440spe_adma_desc_slot, chain_node);
    449
    450	if (dst_cnt > 1) {
    451		iter = list_entry(iter->chain_node.next,
    452				  struct ppc440spe_adma_desc_slot, chain_node);
    453	}
    454	/* initialize each source descriptor in chain */
    455	list_for_each_entry_from(iter, &desc->group_list, chain_node) {
    456		hw_desc = iter->hw_desc;
    457		memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
    458		iter->src_cnt = 0;
    459		iter->dst_cnt = 0;
    460
    461		/* This is a ZERO_SUM operation:
    462		 * - <src_cnt> descriptors starting from 2nd or 3rd
    463		 *   descriptor are for GF-XOR operations;
    464		 * - remaining <dst_cnt> descriptors are for checking the result
    465		 */
    466		if (i++ < src_cnt)
    467			/* MV_SG1_SG2 if only Q is being verified
    468			 * MULTICAST if both P and Q are being verified
    469			 */
    470			hw_desc->opc = dopc;
    471		else
    472			/* DMA_CDB_OPC_DCHECK128 operation */
    473			hw_desc->opc = DMA_CDB_OPC_DCHECK128;
    474
    475		if (likely(!list_is_last(&iter->chain_node,
    476					 &desc->group_list))) {
    477			/* set 'next' pointer */
    478			iter->hw_next = list_entry(iter->chain_node.next,
    479						struct ppc440spe_adma_desc_slot,
    480						chain_node);
    481		} else {
    482			/* this is the last descriptor.
    483			 * this slot will be pasted from ADMA level
    484			 * each time it wants to configure parameters
    485			 * of the transaction (src, dst, ...)
    486			 */
    487			iter->hw_next = NULL;
    488			/* always enable interrupt generation since we get
    489			 * the status of pqzero from the handler
    490			 */
    491			set_bit(PPC440SPE_DESC_INT, &iter->flags);
    492		}
    493	}
    494	desc->src_cnt = src_cnt;
    495	desc->dst_cnt = dst_cnt;
    496}
    497
    498/**
    499 * ppc440spe_desc_init_memcpy - initialize the descriptor for MEMCPY operation
    500 */
    501static void ppc440spe_desc_init_memcpy(struct ppc440spe_adma_desc_slot *desc,
    502					unsigned long flags)
    503{
    504	struct dma_cdb *hw_desc = desc->hw_desc;
    505
    506	memset(desc->hw_desc, 0, sizeof(struct dma_cdb));
    507	desc->hw_next = NULL;
    508	desc->src_cnt = 1;
    509	desc->dst_cnt = 1;
    510
    511	if (flags & DMA_PREP_INTERRUPT)
    512		set_bit(PPC440SPE_DESC_INT, &desc->flags);
    513	else
    514		clear_bit(PPC440SPE_DESC_INT, &desc->flags);
    515
    516	hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
    517}
    518
    519/**
    520 * ppc440spe_desc_set_src_addr - set source address into the descriptor
    521 */
    522static void ppc440spe_desc_set_src_addr(struct ppc440spe_adma_desc_slot *desc,
    523					struct ppc440spe_adma_chan *chan,
    524					int src_idx, dma_addr_t addrh,
    525					dma_addr_t addrl)
    526{
    527	struct dma_cdb *dma_hw_desc;
    528	struct xor_cb *xor_hw_desc;
    529	phys_addr_t addr64, tmplow, tmphi;
    530
    531	switch (chan->device->id) {
    532	case PPC440SPE_DMA0_ID:
    533	case PPC440SPE_DMA1_ID:
    534		if (!addrh) {
    535			addr64 = addrl;
    536			tmphi = (addr64 >> 32);
    537			tmplow = (addr64 & 0xFFFFFFFF);
    538		} else {
    539			tmphi = addrh;
    540			tmplow = addrl;
    541		}
    542		dma_hw_desc = desc->hw_desc;
    543		dma_hw_desc->sg1l = cpu_to_le32((u32)tmplow);
    544		dma_hw_desc->sg1u |= cpu_to_le32((u32)tmphi);
    545		break;
    546	case PPC440SPE_XOR_ID:
    547		xor_hw_desc = desc->hw_desc;
    548		xor_hw_desc->ops[src_idx].l = addrl;
    549		xor_hw_desc->ops[src_idx].h |= addrh;
    550		break;
    551	}
    552}
    553
    554/**
    555 * ppc440spe_desc_set_src_mult - set source address mult into the descriptor
    556 */
    557static void ppc440spe_desc_set_src_mult(struct ppc440spe_adma_desc_slot *desc,
    558			struct ppc440spe_adma_chan *chan, u32 mult_index,
    559			int sg_index, unsigned char mult_value)
    560{
    561	struct dma_cdb *dma_hw_desc;
    562	u32 *psgu;
    563
    564	switch (chan->device->id) {
    565	case PPC440SPE_DMA0_ID:
    566	case PPC440SPE_DMA1_ID:
    567		dma_hw_desc = desc->hw_desc;
    568
    569		switch (sg_index) {
    570		/* for RXOR operations set multiplier
    571		 * into source cued address
    572		 */
    573		case DMA_CDB_SG_SRC:
    574			psgu = &dma_hw_desc->sg1u;
    575			break;
    576		/* for WXOR operations set multiplier
    577		 * into destination cued address(es)
    578		 */
    579		case DMA_CDB_SG_DST1:
    580			psgu = &dma_hw_desc->sg2u;
    581			break;
    582		case DMA_CDB_SG_DST2:
    583			psgu = &dma_hw_desc->sg3u;
    584			break;
    585		default:
    586			BUG();
    587		}
    588
    589		*psgu |= cpu_to_le32(mult_value << mult_index);
    590		break;
    591	case PPC440SPE_XOR_ID:
    592		break;
    593	default:
    594		BUG();
    595	}
    596}
    597
    598/**
    599 * ppc440spe_desc_set_dest_addr - set destination address into the descriptor
    600 */
    601static void ppc440spe_desc_set_dest_addr(struct ppc440spe_adma_desc_slot *desc,
    602				struct ppc440spe_adma_chan *chan,
    603				dma_addr_t addrh, dma_addr_t addrl,
    604				u32 dst_idx)
    605{
    606	struct dma_cdb *dma_hw_desc;
    607	struct xor_cb *xor_hw_desc;
    608	phys_addr_t addr64, tmphi, tmplow;
    609	u32 *psgu, *psgl;
    610
    611	switch (chan->device->id) {
    612	case PPC440SPE_DMA0_ID:
    613	case PPC440SPE_DMA1_ID:
    614		if (!addrh) {
    615			addr64 = addrl;
    616			tmphi = (addr64 >> 32);
    617			tmplow = (addr64 & 0xFFFFFFFF);
    618		} else {
    619			tmphi = addrh;
    620			tmplow = addrl;
    621		}
    622		dma_hw_desc = desc->hw_desc;
    623
    624		psgu = dst_idx ? &dma_hw_desc->sg3u : &dma_hw_desc->sg2u;
    625		psgl = dst_idx ? &dma_hw_desc->sg3l : &dma_hw_desc->sg2l;
    626
    627		*psgl = cpu_to_le32((u32)tmplow);
    628		*psgu |= cpu_to_le32((u32)tmphi);
    629		break;
    630	case PPC440SPE_XOR_ID:
    631		xor_hw_desc = desc->hw_desc;
    632		xor_hw_desc->cbtal = addrl;
    633		xor_hw_desc->cbtah |= addrh;
    634		break;
    635	}
    636}
    637
    638/**
    639 * ppc440spe_desc_set_byte_count - set number of data bytes involved
    640 * into the operation
    641 */
    642static void ppc440spe_desc_set_byte_count(struct ppc440spe_adma_desc_slot *desc,
    643				struct ppc440spe_adma_chan *chan,
    644				u32 byte_count)
    645{
    646	struct dma_cdb *dma_hw_desc;
    647	struct xor_cb *xor_hw_desc;
    648
    649	switch (chan->device->id) {
    650	case PPC440SPE_DMA0_ID:
    651	case PPC440SPE_DMA1_ID:
    652		dma_hw_desc = desc->hw_desc;
    653		dma_hw_desc->cnt = cpu_to_le32(byte_count);
    654		break;
    655	case PPC440SPE_XOR_ID:
    656		xor_hw_desc = desc->hw_desc;
    657		xor_hw_desc->cbbc = byte_count;
    658		break;
    659	}
    660}
    661
    662/**
    663 * ppc440spe_desc_set_rxor_block_size - set RXOR block size
    664 */
    665static inline void ppc440spe_desc_set_rxor_block_size(u32 byte_count)
    666{
    667	/* assume that byte_count is aligned on the 512-boundary;
    668	 * thus write it directly to the register (bits 23:31 are
    669	 * reserved there).
    670	 */
    671	dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_CF2H, byte_count);
    672}
    673
    674/**
    675 * ppc440spe_desc_set_dcheck - set CHECK pattern
    676 */
    677static void ppc440spe_desc_set_dcheck(struct ppc440spe_adma_desc_slot *desc,
    678				struct ppc440spe_adma_chan *chan, u8 *qword)
    679{
    680	struct dma_cdb *dma_hw_desc;
    681
    682	switch (chan->device->id) {
    683	case PPC440SPE_DMA0_ID:
    684	case PPC440SPE_DMA1_ID:
    685		dma_hw_desc = desc->hw_desc;
    686		iowrite32(qword[0], &dma_hw_desc->sg3l);
    687		iowrite32(qword[4], &dma_hw_desc->sg3u);
    688		iowrite32(qword[8], &dma_hw_desc->sg2l);
    689		iowrite32(qword[12], &dma_hw_desc->sg2u);
    690		break;
    691	default:
    692		BUG();
    693	}
    694}
    695
    696/**
    697 * ppc440spe_xor_set_link - set link address in xor CB
    698 */
    699static void ppc440spe_xor_set_link(struct ppc440spe_adma_desc_slot *prev_desc,
    700				struct ppc440spe_adma_desc_slot *next_desc)
    701{
    702	struct xor_cb *xor_hw_desc = prev_desc->hw_desc;
    703
    704	if (unlikely(!next_desc || !(next_desc->phys))) {
    705		printk(KERN_ERR "%s: next_desc=0x%p; next_desc->phys=0x%llx\n",
    706			__func__, next_desc,
    707			next_desc ? next_desc->phys : 0);
    708		BUG();
    709	}
    710
    711	xor_hw_desc->cbs = 0;
    712	xor_hw_desc->cblal = next_desc->phys;
    713	xor_hw_desc->cblah = 0;
    714	xor_hw_desc->cbc |= XOR_CBCR_LNK_BIT;
    715}
    716
    717/**
    718 * ppc440spe_desc_set_link - set the address of descriptor following this
    719 * descriptor in chain
    720 */
    721static void ppc440spe_desc_set_link(struct ppc440spe_adma_chan *chan,
    722				struct ppc440spe_adma_desc_slot *prev_desc,
    723				struct ppc440spe_adma_desc_slot *next_desc)
    724{
    725	unsigned long flags;
    726	struct ppc440spe_adma_desc_slot *tail = next_desc;
    727
    728	if (unlikely(!prev_desc || !next_desc ||
    729		(prev_desc->hw_next && prev_desc->hw_next != next_desc))) {
    730		/* If previous next is overwritten something is wrong.
    731		 * though we may refetch from append to initiate list
    732		 * processing; in this case - it's ok.
    733		 */
    734		printk(KERN_ERR "%s: prev_desc=0x%p; next_desc=0x%p; "
    735			"prev->hw_next=0x%p\n", __func__, prev_desc,
    736			next_desc, prev_desc ? prev_desc->hw_next : 0);
    737		BUG();
    738	}
    739
    740	local_irq_save(flags);
    741
    742	/* do s/w chaining both for DMA and XOR descriptors */
    743	prev_desc->hw_next = next_desc;
    744
    745	switch (chan->device->id) {
    746	case PPC440SPE_DMA0_ID:
    747	case PPC440SPE_DMA1_ID:
    748		break;
    749	case PPC440SPE_XOR_ID:
    750		/* bind descriptor to the chain */
    751		while (tail->hw_next)
    752			tail = tail->hw_next;
    753		xor_last_linked = tail;
    754
    755		if (prev_desc == xor_last_submit)
    756			/* do not link to the last submitted CB */
    757			break;
    758		ppc440spe_xor_set_link(prev_desc, next_desc);
    759		break;
    760	}
    761
    762	local_irq_restore(flags);
    763}
    764
    765/**
    766 * ppc440spe_desc_get_link - get the address of the descriptor that
    767 * follows this one
    768 */
    769static inline u32 ppc440spe_desc_get_link(struct ppc440spe_adma_desc_slot *desc,
    770					struct ppc440spe_adma_chan *chan)
    771{
    772	if (!desc->hw_next)
    773		return 0;
    774
    775	return desc->hw_next->phys;
    776}
    777
    778/**
    779 * ppc440spe_desc_is_aligned - check alignment
    780 */
    781static inline int ppc440spe_desc_is_aligned(
    782	struct ppc440spe_adma_desc_slot *desc, int num_slots)
    783{
    784	return (desc->idx & (num_slots - 1)) ? 0 : 1;
    785}
    786
    787/**
    788 * ppc440spe_chan_xor_slot_count - get the number of slots necessary for
    789 * XOR operation
    790 */
    791static int ppc440spe_chan_xor_slot_count(size_t len, int src_cnt,
    792			int *slots_per_op)
    793{
    794	int slot_cnt;
    795
    796	/* each XOR descriptor provides up to 16 source operands */
    797	slot_cnt = *slots_per_op = (src_cnt + XOR_MAX_OPS - 1)/XOR_MAX_OPS;
    798
    799	if (likely(len <= PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT))
    800		return slot_cnt;
    801
    802	printk(KERN_ERR "%s: len %d > max %d !!\n",
    803		__func__, len, PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT);
    804	BUG();
    805	return slot_cnt;
    806}
    807
    808/**
    809 * ppc440spe_dma2_pq_slot_count - get the number of slots necessary for
    810 * DMA2 PQ operation
    811 */
    812static int ppc440spe_dma2_pq_slot_count(dma_addr_t *srcs,
    813		int src_cnt, size_t len)
    814{
    815	signed long long order = 0;
    816	int state = 0;
    817	int addr_count = 0;
    818	int i;
    819	for (i = 1; i < src_cnt; i++) {
    820		dma_addr_t cur_addr = srcs[i];
    821		dma_addr_t old_addr = srcs[i-1];
    822		switch (state) {
    823		case 0:
    824			if (cur_addr == old_addr + len) {
    825				/* direct RXOR */
    826				order = 1;
    827				state = 1;
    828				if (i == src_cnt-1)
    829					addr_count++;
    830			} else if (old_addr == cur_addr + len) {
    831				/* reverse RXOR */
    832				order = -1;
    833				state = 1;
    834				if (i == src_cnt-1)
    835					addr_count++;
    836			} else {
    837				state = 3;
    838			}
    839			break;
    840		case 1:
    841			if (i == src_cnt-2 || (order == -1
    842				&& cur_addr != old_addr - len)) {
    843				order = 0;
    844				state = 0;
    845				addr_count++;
    846			} else if (cur_addr == old_addr + len*order) {
    847				state = 2;
    848				if (i == src_cnt-1)
    849					addr_count++;
    850			} else if (cur_addr == old_addr + 2*len) {
    851				state = 2;
    852				if (i == src_cnt-1)
    853					addr_count++;
    854			} else if (cur_addr == old_addr + 3*len) {
    855				state = 2;
    856				if (i == src_cnt-1)
    857					addr_count++;
    858			} else {
    859				order = 0;
    860				state = 0;
    861				addr_count++;
    862			}
    863			break;
    864		case 2:
    865			order = 0;
    866			state = 0;
    867			addr_count++;
    868				break;
    869		}
    870		if (state == 3)
    871			break;
    872	}
    873	if (src_cnt <= 1 || (state != 1 && state != 2)) {
    874		pr_err("%s: src_cnt=%d, state=%d, addr_count=%d, order=%lld\n",
    875			__func__, src_cnt, state, addr_count, order);
    876		for (i = 0; i < src_cnt; i++)
    877			pr_err("\t[%d] 0x%llx \n", i, srcs[i]);
    878		BUG();
    879	}
    880
    881	return (addr_count + XOR_MAX_OPS - 1) / XOR_MAX_OPS;
    882}
    883
    884
    885/******************************************************************************
    886 * ADMA channel low-level routines
    887 ******************************************************************************/
    888
    889static u32
    890ppc440spe_chan_get_current_descriptor(struct ppc440spe_adma_chan *chan);
    891static void ppc440spe_chan_append(struct ppc440spe_adma_chan *chan);
    892
    893/**
    894 * ppc440spe_adma_device_clear_eot_status - interrupt ack to XOR or DMA engine
    895 */
    896static void ppc440spe_adma_device_clear_eot_status(
    897					struct ppc440spe_adma_chan *chan)
    898{
    899	struct dma_regs *dma_reg;
    900	struct xor_regs *xor_reg;
    901	u8 *p = chan->device->dma_desc_pool_virt;
    902	struct dma_cdb *cdb;
    903	u32 rv, i;
    904
    905	switch (chan->device->id) {
    906	case PPC440SPE_DMA0_ID:
    907	case PPC440SPE_DMA1_ID:
    908		/* read FIFO to ack */
    909		dma_reg = chan->device->dma_reg;
    910		while ((rv = ioread32(&dma_reg->csfpl))) {
    911			i = rv & DMA_CDB_ADDR_MSK;
    912			cdb = (struct dma_cdb *)&p[i -
    913			    (u32)chan->device->dma_desc_pool];
    914
    915			/* Clear opcode to ack. This is necessary for
    916			 * ZeroSum operations only
    917			 */
    918			cdb->opc = 0;
    919
    920			if (test_bit(PPC440SPE_RXOR_RUN,
    921			    &ppc440spe_rxor_state)) {
    922				/* probably this is a completed RXOR op,
    923				 * get pointer to CDB using the fact that
    924				 * physical and virtual addresses of CDB
    925				 * in pools have the same offsets
    926				 */
    927				if (le32_to_cpu(cdb->sg1u) &
    928				    DMA_CUED_XOR_BASE) {
    929					/* this is a RXOR */
    930					clear_bit(PPC440SPE_RXOR_RUN,
    931						  &ppc440spe_rxor_state);
    932				}
    933			}
    934
    935			if (rv & DMA_CDB_STATUS_MSK) {
    936				/* ZeroSum check failed
    937				 */
    938				struct ppc440spe_adma_desc_slot *iter;
    939				dma_addr_t phys = rv & ~DMA_CDB_MSK;
    940
    941				/*
    942				 * Update the status of corresponding
    943				 * descriptor.
    944				 */
    945				list_for_each_entry(iter, &chan->chain,
    946				    chain_node) {
    947					if (iter->phys == phys)
    948						break;
    949				}
    950				/*
    951				 * if cannot find the corresponding
    952				 * slot it's a bug
    953				 */
    954				BUG_ON(&iter->chain_node == &chan->chain);
    955
    956				if (iter->xor_check_result) {
    957					if (test_bit(PPC440SPE_DESC_PCHECK,
    958						     &iter->flags)) {
    959						*iter->xor_check_result |=
    960							SUM_CHECK_P_RESULT;
    961					} else
    962					if (test_bit(PPC440SPE_DESC_QCHECK,
    963						     &iter->flags)) {
    964						*iter->xor_check_result |=
    965							SUM_CHECK_Q_RESULT;
    966					} else
    967						BUG();
    968				}
    969			}
    970		}
    971
    972		rv = ioread32(&dma_reg->dsts);
    973		if (rv) {
    974			pr_err("DMA%d err status: 0x%x\n",
    975			       chan->device->id, rv);
    976			/* write back to clear */
    977			iowrite32(rv, &dma_reg->dsts);
    978		}
    979		break;
    980	case PPC440SPE_XOR_ID:
    981		/* reset status bits to ack */
    982		xor_reg = chan->device->xor_reg;
    983		rv = ioread32be(&xor_reg->sr);
    984		iowrite32be(rv, &xor_reg->sr);
    985
    986		if (rv & (XOR_IE_ICBIE_BIT|XOR_IE_ICIE_BIT|XOR_IE_RPTIE_BIT)) {
    987			if (rv & XOR_IE_RPTIE_BIT) {
    988				/* Read PLB Timeout Error.
    989				 * Try to resubmit the CB
    990				 */
    991				u32 val = ioread32be(&xor_reg->ccbalr);
    992
    993				iowrite32be(val, &xor_reg->cblalr);
    994
    995				val = ioread32be(&xor_reg->crsr);
    996				iowrite32be(val | XOR_CRSR_XAE_BIT,
    997					    &xor_reg->crsr);
    998			} else
    999				pr_err("XOR ERR 0x%x status\n", rv);
   1000			break;
   1001		}
   1002
   1003		/*  if the XORcore is idle, but there are unprocessed CBs
   1004		 * then refetch the s/w chain here
   1005		 */
   1006		if (!(ioread32be(&xor_reg->sr) & XOR_SR_XCP_BIT) &&
   1007		    do_xor_refetch)
   1008			ppc440spe_chan_append(chan);
   1009		break;
   1010	}
   1011}
   1012
   1013/**
   1014 * ppc440spe_chan_is_busy - get the channel status
   1015 */
   1016static int ppc440spe_chan_is_busy(struct ppc440spe_adma_chan *chan)
   1017{
   1018	struct dma_regs *dma_reg;
   1019	struct xor_regs *xor_reg;
   1020	int busy = 0;
   1021
   1022	switch (chan->device->id) {
   1023	case PPC440SPE_DMA0_ID:
   1024	case PPC440SPE_DMA1_ID:
   1025		dma_reg = chan->device->dma_reg;
   1026		/*  if command FIFO's head and tail pointers are equal and
   1027		 * status tail is the same as command, then channel is free
   1028		 */
   1029		if (ioread16(&dma_reg->cpfhp) != ioread16(&dma_reg->cpftp) ||
   1030		    ioread16(&dma_reg->cpftp) != ioread16(&dma_reg->csftp))
   1031			busy = 1;
   1032		break;
   1033	case PPC440SPE_XOR_ID:
   1034		/* use the special status bit for the XORcore
   1035		 */
   1036		xor_reg = chan->device->xor_reg;
   1037		busy = (ioread32be(&xor_reg->sr) & XOR_SR_XCP_BIT) ? 1 : 0;
   1038		break;
   1039	}
   1040
   1041	return busy;
   1042}
   1043
   1044/**
   1045 * ppc440spe_chan_set_first_xor_descriptor -  init XORcore chain
   1046 */
   1047static void ppc440spe_chan_set_first_xor_descriptor(
   1048				struct ppc440spe_adma_chan *chan,
   1049				struct ppc440spe_adma_desc_slot *next_desc)
   1050{
   1051	struct xor_regs *xor_reg = chan->device->xor_reg;
   1052
   1053	if (ioread32be(&xor_reg->sr) & XOR_SR_XCP_BIT)
   1054		printk(KERN_INFO "%s: Warn: XORcore is running "
   1055			"when try to set the first CDB!\n",
   1056			__func__);
   1057
   1058	xor_last_submit = xor_last_linked = next_desc;
   1059
   1060	iowrite32be(XOR_CRSR_64BA_BIT, &xor_reg->crsr);
   1061
   1062	iowrite32be(next_desc->phys, &xor_reg->cblalr);
   1063	iowrite32be(0, &xor_reg->cblahr);
   1064	iowrite32be(ioread32be(&xor_reg->cbcr) | XOR_CBCR_LNK_BIT,
   1065		    &xor_reg->cbcr);
   1066
   1067	chan->hw_chain_inited = 1;
   1068}
   1069
   1070/**
   1071 * ppc440spe_dma_put_desc - put DMA0,1 descriptor to FIFO.
   1072 * called with irqs disabled
   1073 */
   1074static void ppc440spe_dma_put_desc(struct ppc440spe_adma_chan *chan,
   1075		struct ppc440spe_adma_desc_slot *desc)
   1076{
   1077	u32 pcdb;
   1078	struct dma_regs *dma_reg = chan->device->dma_reg;
   1079
   1080	pcdb = desc->phys;
   1081	if (!test_bit(PPC440SPE_DESC_INT, &desc->flags))
   1082		pcdb |= DMA_CDB_NO_INT;
   1083
   1084	chan_last_sub[chan->device->id] = desc;
   1085
   1086	ADMA_LL_DBG(print_cb(chan, desc->hw_desc));
   1087
   1088	iowrite32(pcdb, &dma_reg->cpfpl);
   1089}
   1090
   1091/**
   1092 * ppc440spe_chan_append - update the h/w chain in the channel
   1093 */
   1094static void ppc440spe_chan_append(struct ppc440spe_adma_chan *chan)
   1095{
   1096	struct xor_regs *xor_reg;
   1097	struct ppc440spe_adma_desc_slot *iter;
   1098	struct xor_cb *xcb;
   1099	u32 cur_desc;
   1100	unsigned long flags;
   1101
   1102	local_irq_save(flags);
   1103
   1104	switch (chan->device->id) {
   1105	case PPC440SPE_DMA0_ID:
   1106	case PPC440SPE_DMA1_ID:
   1107		cur_desc = ppc440spe_chan_get_current_descriptor(chan);
   1108
   1109		if (likely(cur_desc)) {
   1110			iter = chan_last_sub[chan->device->id];
   1111			BUG_ON(!iter);
   1112		} else {
   1113			/* first peer */
   1114			iter = chan_first_cdb[chan->device->id];
   1115			BUG_ON(!iter);
   1116			ppc440spe_dma_put_desc(chan, iter);
   1117			chan->hw_chain_inited = 1;
   1118		}
   1119
   1120		/* is there something new to append */
   1121		if (!iter->hw_next)
   1122			break;
   1123
   1124		/* flush descriptors from the s/w queue to fifo */
   1125		list_for_each_entry_continue(iter, &chan->chain, chain_node) {
   1126			ppc440spe_dma_put_desc(chan, iter);
   1127			if (!iter->hw_next)
   1128				break;
   1129		}
   1130		break;
   1131	case PPC440SPE_XOR_ID:
   1132		/* update h/w links and refetch */
   1133		if (!xor_last_submit->hw_next)
   1134			break;
   1135
   1136		xor_reg = chan->device->xor_reg;
   1137		/* the last linked CDB has to generate an interrupt
   1138		 * that we'd be able to append the next lists to h/w
   1139		 * regardless of the XOR engine state at the moment of
   1140		 * appending of these next lists
   1141		 */
   1142		xcb = xor_last_linked->hw_desc;
   1143		xcb->cbc |= XOR_CBCR_CBCE_BIT;
   1144
   1145		if (!(ioread32be(&xor_reg->sr) & XOR_SR_XCP_BIT)) {
   1146			/* XORcore is idle. Refetch now */
   1147			do_xor_refetch = 0;
   1148			ppc440spe_xor_set_link(xor_last_submit,
   1149				xor_last_submit->hw_next);
   1150
   1151			ADMA_LL_DBG(print_cb_list(chan,
   1152				xor_last_submit->hw_next));
   1153
   1154			xor_last_submit = xor_last_linked;
   1155			iowrite32be(ioread32be(&xor_reg->crsr) |
   1156				    XOR_CRSR_RCBE_BIT | XOR_CRSR_64BA_BIT,
   1157				    &xor_reg->crsr);
   1158		} else {
   1159			/* XORcore is running. Refetch later in the handler */
   1160			do_xor_refetch = 1;
   1161		}
   1162
   1163		break;
   1164	}
   1165
   1166	local_irq_restore(flags);
   1167}
   1168
   1169/**
   1170 * ppc440spe_chan_get_current_descriptor - get the currently executed descriptor
   1171 */
   1172static u32
   1173ppc440spe_chan_get_current_descriptor(struct ppc440spe_adma_chan *chan)
   1174{
   1175	struct dma_regs *dma_reg;
   1176	struct xor_regs *xor_reg;
   1177
   1178	if (unlikely(!chan->hw_chain_inited))
   1179		/* h/w descriptor chain is not initialized yet */
   1180		return 0;
   1181
   1182	switch (chan->device->id) {
   1183	case PPC440SPE_DMA0_ID:
   1184	case PPC440SPE_DMA1_ID:
   1185		dma_reg = chan->device->dma_reg;
   1186		return ioread32(&dma_reg->acpl) & (~DMA_CDB_MSK);
   1187	case PPC440SPE_XOR_ID:
   1188		xor_reg = chan->device->xor_reg;
   1189		return ioread32be(&xor_reg->ccbalr);
   1190	}
   1191	return 0;
   1192}
   1193
   1194/**
   1195 * ppc440spe_chan_run - enable the channel
   1196 */
   1197static void ppc440spe_chan_run(struct ppc440spe_adma_chan *chan)
   1198{
   1199	struct xor_regs *xor_reg;
   1200
   1201	switch (chan->device->id) {
   1202	case PPC440SPE_DMA0_ID:
   1203	case PPC440SPE_DMA1_ID:
   1204		/* DMAs are always enabled, do nothing */
   1205		break;
   1206	case PPC440SPE_XOR_ID:
   1207		/* drain write buffer */
   1208		xor_reg = chan->device->xor_reg;
   1209
   1210		/* fetch descriptor pointed to in <link> */
   1211		iowrite32be(XOR_CRSR_64BA_BIT | XOR_CRSR_XAE_BIT,
   1212			    &xor_reg->crsr);
   1213		break;
   1214	}
   1215}
   1216
   1217/******************************************************************************
   1218 * ADMA device level
   1219 ******************************************************************************/
   1220
   1221static void ppc440spe_chan_start_null_xor(struct ppc440spe_adma_chan *chan);
   1222static int ppc440spe_adma_alloc_chan_resources(struct dma_chan *chan);
   1223
   1224static dma_cookie_t
   1225ppc440spe_adma_tx_submit(struct dma_async_tx_descriptor *tx);
   1226
   1227static void ppc440spe_adma_set_dest(struct ppc440spe_adma_desc_slot *tx,
   1228				    dma_addr_t addr, int index);
   1229static void
   1230ppc440spe_adma_memcpy_xor_set_src(struct ppc440spe_adma_desc_slot *tx,
   1231				  dma_addr_t addr, int index);
   1232
   1233static void
   1234ppc440spe_adma_pq_set_dest(struct ppc440spe_adma_desc_slot *tx,
   1235			   dma_addr_t *paddr, unsigned long flags);
   1236static void
   1237ppc440spe_adma_pq_set_src(struct ppc440spe_adma_desc_slot *tx,
   1238			  dma_addr_t addr, int index);
   1239static void
   1240ppc440spe_adma_pq_set_src_mult(struct ppc440spe_adma_desc_slot *tx,
   1241			       unsigned char mult, int index, int dst_pos);
   1242static void
   1243ppc440spe_adma_pqzero_sum_set_dest(struct ppc440spe_adma_desc_slot *tx,
   1244				   dma_addr_t paddr, dma_addr_t qaddr);
   1245
   1246static struct page *ppc440spe_rxor_srcs[32];
   1247
   1248/**
   1249 * ppc440spe_can_rxor - check if the operands may be processed with RXOR
   1250 */
   1251static int ppc440spe_can_rxor(struct page **srcs, int src_cnt, size_t len)
   1252{
   1253	int i, order = 0, state = 0;
   1254	int idx = 0;
   1255
   1256	if (unlikely(!(src_cnt > 1)))
   1257		return 0;
   1258
   1259	BUG_ON(src_cnt > ARRAY_SIZE(ppc440spe_rxor_srcs));
   1260
   1261	/* Skip holes in the source list before checking */
   1262	for (i = 0; i < src_cnt; i++) {
   1263		if (!srcs[i])
   1264			continue;
   1265		ppc440spe_rxor_srcs[idx++] = srcs[i];
   1266	}
   1267	src_cnt = idx;
   1268
   1269	for (i = 1; i < src_cnt; i++) {
   1270		char *cur_addr = page_address(ppc440spe_rxor_srcs[i]);
   1271		char *old_addr = page_address(ppc440spe_rxor_srcs[i - 1]);
   1272
   1273		switch (state) {
   1274		case 0:
   1275			if (cur_addr == old_addr + len) {
   1276				/* direct RXOR */
   1277				order = 1;
   1278				state = 1;
   1279			} else if (old_addr == cur_addr + len) {
   1280				/* reverse RXOR */
   1281				order = -1;
   1282				state = 1;
   1283			} else
   1284				goto out;
   1285			break;
   1286		case 1:
   1287			if ((i == src_cnt - 2) ||
   1288			    (order == -1 && cur_addr != old_addr - len)) {
   1289				order = 0;
   1290				state = 0;
   1291			} else if ((cur_addr == old_addr + len * order) ||
   1292				   (cur_addr == old_addr + 2 * len) ||
   1293				   (cur_addr == old_addr + 3 * len)) {
   1294				state = 2;
   1295			} else {
   1296				order = 0;
   1297				state = 0;
   1298			}
   1299			break;
   1300		case 2:
   1301			order = 0;
   1302			state = 0;
   1303			break;
   1304		}
   1305	}
   1306
   1307out:
   1308	if (state == 1 || state == 2)
   1309		return 1;
   1310
   1311	return 0;
   1312}
   1313
   1314/**
   1315 * ppc440spe_adma_device_estimate - estimate the efficiency of processing
   1316 *	the operation given on this channel. It's assumed that 'chan' is
   1317 *	capable to process 'cap' type of operation.
   1318 * @chan: channel to use
   1319 * @cap: type of transaction
   1320 * @dst_lst: array of destination pointers
   1321 * @dst_cnt: number of destination operands
   1322 * @src_lst: array of source pointers
   1323 * @src_cnt: number of source operands
   1324 * @src_sz: size of each source operand
   1325 */
   1326static int ppc440spe_adma_estimate(struct dma_chan *chan,
   1327	enum dma_transaction_type cap, struct page **dst_lst, int dst_cnt,
   1328	struct page **src_lst, int src_cnt, size_t src_sz)
   1329{
   1330	int ef = 1;
   1331
   1332	if (cap == DMA_PQ || cap == DMA_PQ_VAL) {
   1333		/* If RAID-6 capabilities were not activated don't try
   1334		 * to use them
   1335		 */
   1336		if (unlikely(!ppc440spe_r6_enabled))
   1337			return -1;
   1338	}
   1339	/*  In the current implementation of ppc440spe ADMA driver it
   1340	 * makes sense to pick out only pq case, because it may be
   1341	 * processed:
   1342	 * (1) either using Biskup method on DMA2;
   1343	 * (2) or on DMA0/1.
   1344	 *  Thus we give a favour to (1) if the sources are suitable;
   1345	 * else let it be processed on one of the DMA0/1 engines.
   1346	 *  In the sum_product case where destination is also the
   1347	 * source process it on DMA0/1 only.
   1348	 */
   1349	if (cap == DMA_PQ && chan->chan_id == PPC440SPE_XOR_ID) {
   1350
   1351		if (dst_cnt == 1 && src_cnt == 2 && dst_lst[0] == src_lst[1])
   1352			ef = 0; /* sum_product case, process on DMA0/1 */
   1353		else if (ppc440spe_can_rxor(src_lst, src_cnt, src_sz))
   1354			ef = 3; /* override (DMA0/1 + idle) */
   1355		else
   1356			ef = 0; /* can't process on DMA2 if !rxor */
   1357	}
   1358
   1359	/* channel idleness increases the priority */
   1360	if (likely(ef) &&
   1361	    !ppc440spe_chan_is_busy(to_ppc440spe_adma_chan(chan)))
   1362		ef++;
   1363
   1364	return ef;
   1365}
   1366
   1367struct dma_chan *
   1368ppc440spe_async_tx_find_best_channel(enum dma_transaction_type cap,
   1369	struct page **dst_lst, int dst_cnt, struct page **src_lst,
   1370	int src_cnt, size_t src_sz)
   1371{
   1372	struct dma_chan *best_chan = NULL;
   1373	struct ppc_dma_chan_ref *ref;
   1374	int best_rank = -1;
   1375
   1376	if (unlikely(!src_sz))
   1377		return NULL;
   1378	if (src_sz > PAGE_SIZE) {
   1379		/*
   1380		 * should a user of the api ever pass > PAGE_SIZE requests
   1381		 * we sort out cases where temporary page-sized buffers
   1382		 * are used.
   1383		 */
   1384		switch (cap) {
   1385		case DMA_PQ:
   1386			if (src_cnt == 1 && dst_lst[1] == src_lst[0])
   1387				return NULL;
   1388			if (src_cnt == 2 && dst_lst[1] == src_lst[1])
   1389				return NULL;
   1390			break;
   1391		case DMA_PQ_VAL:
   1392		case DMA_XOR_VAL:
   1393			return NULL;
   1394		default:
   1395			break;
   1396		}
   1397	}
   1398
   1399	list_for_each_entry(ref, &ppc440spe_adma_chan_list, node) {
   1400		if (dma_has_cap(cap, ref->chan->device->cap_mask)) {
   1401			int rank;
   1402
   1403			rank = ppc440spe_adma_estimate(ref->chan, cap, dst_lst,
   1404					dst_cnt, src_lst, src_cnt, src_sz);
   1405			if (rank > best_rank) {
   1406				best_rank = rank;
   1407				best_chan = ref->chan;
   1408			}
   1409		}
   1410	}
   1411
   1412	return best_chan;
   1413}
   1414EXPORT_SYMBOL_GPL(ppc440spe_async_tx_find_best_channel);
   1415
   1416/**
   1417 * ppc440spe_get_group_entry - get group entry with index idx
   1418 * @tdesc: is the last allocated slot in the group.
   1419 */
   1420static struct ppc440spe_adma_desc_slot *
   1421ppc440spe_get_group_entry(struct ppc440spe_adma_desc_slot *tdesc, u32 entry_idx)
   1422{
   1423	struct ppc440spe_adma_desc_slot *iter = tdesc->group_head;
   1424	int i = 0;
   1425
   1426	if (entry_idx < 0 || entry_idx >= (tdesc->src_cnt + tdesc->dst_cnt)) {
   1427		printk("%s: entry_idx %d, src_cnt %d, dst_cnt %d\n",
   1428			__func__, entry_idx, tdesc->src_cnt, tdesc->dst_cnt);
   1429		BUG();
   1430	}
   1431
   1432	list_for_each_entry(iter, &tdesc->group_list, chain_node) {
   1433		if (i++ == entry_idx)
   1434			break;
   1435	}
   1436	return iter;
   1437}
   1438
   1439/**
   1440 * ppc440spe_adma_free_slots - flags descriptor slots for reuse
   1441 * @slot: Slot to free
   1442 * Caller must hold &ppc440spe_chan->lock while calling this function
   1443 */
   1444static void ppc440spe_adma_free_slots(struct ppc440spe_adma_desc_slot *slot,
   1445				      struct ppc440spe_adma_chan *chan)
   1446{
   1447	int stride = slot->slots_per_op;
   1448
   1449	while (stride--) {
   1450		slot->slots_per_op = 0;
   1451		slot = list_entry(slot->slot_node.next,
   1452				struct ppc440spe_adma_desc_slot,
   1453				slot_node);
   1454	}
   1455}
   1456
   1457/**
   1458 * ppc440spe_adma_run_tx_complete_actions - call functions to be called
   1459 * upon completion
   1460 */
   1461static dma_cookie_t ppc440spe_adma_run_tx_complete_actions(
   1462		struct ppc440spe_adma_desc_slot *desc,
   1463		struct ppc440spe_adma_chan *chan,
   1464		dma_cookie_t cookie)
   1465{
   1466	BUG_ON(desc->async_tx.cookie < 0);
   1467	if (desc->async_tx.cookie > 0) {
   1468		cookie = desc->async_tx.cookie;
   1469		desc->async_tx.cookie = 0;
   1470
   1471		dma_descriptor_unmap(&desc->async_tx);
   1472		/* call the callback (must not sleep or submit new
   1473		 * operations to this channel)
   1474		 */
   1475		dmaengine_desc_get_callback_invoke(&desc->async_tx, NULL);
   1476	}
   1477
   1478	/* run dependent operations */
   1479	dma_run_dependencies(&desc->async_tx);
   1480
   1481	return cookie;
   1482}
   1483
   1484/**
   1485 * ppc440spe_adma_clean_slot - clean up CDB slot (if ack is set)
   1486 */
   1487static int ppc440spe_adma_clean_slot(struct ppc440spe_adma_desc_slot *desc,
   1488		struct ppc440spe_adma_chan *chan)
   1489{
   1490	/* the client is allowed to attach dependent operations
   1491	 * until 'ack' is set
   1492	 */
   1493	if (!async_tx_test_ack(&desc->async_tx))
   1494		return 0;
   1495
   1496	/* leave the last descriptor in the chain
   1497	 * so we can append to it
   1498	 */
   1499	if (list_is_last(&desc->chain_node, &chan->chain) ||
   1500	    desc->phys == ppc440spe_chan_get_current_descriptor(chan))
   1501		return 1;
   1502
   1503	if (chan->device->id != PPC440SPE_XOR_ID) {
   1504		/* our DMA interrupt handler clears opc field of
   1505		 * each processed descriptor. For all types of
   1506		 * operations except for ZeroSum we do not actually
   1507		 * need ack from the interrupt handler. ZeroSum is a
   1508		 * special case since the result of this operation
   1509		 * is available from the handler only, so if we see
   1510		 * such type of descriptor (which is unprocessed yet)
   1511		 * then leave it in chain.
   1512		 */
   1513		struct dma_cdb *cdb = desc->hw_desc;
   1514		if (cdb->opc == DMA_CDB_OPC_DCHECK128)
   1515			return 1;
   1516	}
   1517
   1518	dev_dbg(chan->device->common.dev, "\tfree slot %llx: %d stride: %d\n",
   1519		desc->phys, desc->idx, desc->slots_per_op);
   1520
   1521	list_del(&desc->chain_node);
   1522	ppc440spe_adma_free_slots(desc, chan);
   1523	return 0;
   1524}
   1525
   1526/**
   1527 * __ppc440spe_adma_slot_cleanup - this is the common clean-up routine
   1528 *	which runs through the channel CDBs list until reach the descriptor
   1529 *	currently processed. When routine determines that all CDBs of group
   1530 *	are completed then corresponding callbacks (if any) are called and slots
   1531 *	are freed.
   1532 */
   1533static void __ppc440spe_adma_slot_cleanup(struct ppc440spe_adma_chan *chan)
   1534{
   1535	struct ppc440spe_adma_desc_slot *iter, *_iter, *group_start = NULL;
   1536	dma_cookie_t cookie = 0;
   1537	u32 current_desc = ppc440spe_chan_get_current_descriptor(chan);
   1538	int busy = ppc440spe_chan_is_busy(chan);
   1539	int seen_current = 0, slot_cnt = 0, slots_per_op = 0;
   1540
   1541	dev_dbg(chan->device->common.dev, "ppc440spe adma%d: %s\n",
   1542		chan->device->id, __func__);
   1543
   1544	if (!current_desc) {
   1545		/*  There were no transactions yet, so
   1546		 * nothing to clean
   1547		 */
   1548		return;
   1549	}
   1550
   1551	/* free completed slots from the chain starting with
   1552	 * the oldest descriptor
   1553	 */
   1554	list_for_each_entry_safe(iter, _iter, &chan->chain,
   1555					chain_node) {
   1556		dev_dbg(chan->device->common.dev, "\tcookie: %d slot: %d "
   1557		    "busy: %d this_desc: %#llx next_desc: %#x "
   1558		    "cur: %#x ack: %d\n",
   1559		    iter->async_tx.cookie, iter->idx, busy, iter->phys,
   1560		    ppc440spe_desc_get_link(iter, chan), current_desc,
   1561		    async_tx_test_ack(&iter->async_tx));
   1562		prefetch(_iter);
   1563		prefetch(&_iter->async_tx);
   1564
   1565		/* do not advance past the current descriptor loaded into the
   1566		 * hardware channel,subsequent descriptors are either in process
   1567		 * or have not been submitted
   1568		 */
   1569		if (seen_current)
   1570			break;
   1571
   1572		/* stop the search if we reach the current descriptor and the
   1573		 * channel is busy, or if it appears that the current descriptor
   1574		 * needs to be re-read (i.e. has been appended to)
   1575		 */
   1576		if (iter->phys == current_desc) {
   1577			BUG_ON(seen_current++);
   1578			if (busy || ppc440spe_desc_get_link(iter, chan)) {
   1579				/* not all descriptors of the group have
   1580				 * been completed; exit.
   1581				 */
   1582				break;
   1583			}
   1584		}
   1585
   1586		/* detect the start of a group transaction */
   1587		if (!slot_cnt && !slots_per_op) {
   1588			slot_cnt = iter->slot_cnt;
   1589			slots_per_op = iter->slots_per_op;
   1590			if (slot_cnt <= slots_per_op) {
   1591				slot_cnt = 0;
   1592				slots_per_op = 0;
   1593			}
   1594		}
   1595
   1596		if (slot_cnt) {
   1597			if (!group_start)
   1598				group_start = iter;
   1599			slot_cnt -= slots_per_op;
   1600		}
   1601
   1602		/* all the members of a group are complete */
   1603		if (slots_per_op != 0 && slot_cnt == 0) {
   1604			struct ppc440spe_adma_desc_slot *grp_iter, *_grp_iter;
   1605			int end_of_chain = 0;
   1606
   1607			/* clean up the group */
   1608			slot_cnt = group_start->slot_cnt;
   1609			grp_iter = group_start;
   1610			list_for_each_entry_safe_from(grp_iter, _grp_iter,
   1611				&chan->chain, chain_node) {
   1612
   1613				cookie = ppc440spe_adma_run_tx_complete_actions(
   1614					grp_iter, chan, cookie);
   1615
   1616				slot_cnt -= slots_per_op;
   1617				end_of_chain = ppc440spe_adma_clean_slot(
   1618				    grp_iter, chan);
   1619				if (end_of_chain && slot_cnt) {
   1620					/* Should wait for ZeroSum completion */
   1621					if (cookie > 0)
   1622						chan->common.completed_cookie = cookie;
   1623					return;
   1624				}
   1625
   1626				if (slot_cnt == 0 || end_of_chain)
   1627					break;
   1628			}
   1629
   1630			/* the group should be complete at this point */
   1631			BUG_ON(slot_cnt);
   1632
   1633			slots_per_op = 0;
   1634			group_start = NULL;
   1635			if (end_of_chain)
   1636				break;
   1637			else
   1638				continue;
   1639		} else if (slots_per_op) /* wait for group completion */
   1640			continue;
   1641
   1642		cookie = ppc440spe_adma_run_tx_complete_actions(iter, chan,
   1643		    cookie);
   1644
   1645		if (ppc440spe_adma_clean_slot(iter, chan))
   1646			break;
   1647	}
   1648
   1649	BUG_ON(!seen_current);
   1650
   1651	if (cookie > 0) {
   1652		chan->common.completed_cookie = cookie;
   1653		pr_debug("\tcompleted cookie %d\n", cookie);
   1654	}
   1655
   1656}
   1657
   1658/**
   1659 * ppc440spe_adma_tasklet - clean up watch-dog initiator
   1660 */
   1661static void ppc440spe_adma_tasklet(struct tasklet_struct *t)
   1662{
   1663	struct ppc440spe_adma_chan *chan = from_tasklet(chan, t, irq_tasklet);
   1664
   1665	spin_lock_nested(&chan->lock, SINGLE_DEPTH_NESTING);
   1666	__ppc440spe_adma_slot_cleanup(chan);
   1667	spin_unlock(&chan->lock);
   1668}
   1669
   1670/**
   1671 * ppc440spe_adma_slot_cleanup - clean up scheduled initiator
   1672 */
   1673static void ppc440spe_adma_slot_cleanup(struct ppc440spe_adma_chan *chan)
   1674{
   1675	spin_lock_bh(&chan->lock);
   1676	__ppc440spe_adma_slot_cleanup(chan);
   1677	spin_unlock_bh(&chan->lock);
   1678}
   1679
   1680/**
   1681 * ppc440spe_adma_alloc_slots - allocate free slots (if any)
   1682 */
   1683static struct ppc440spe_adma_desc_slot *ppc440spe_adma_alloc_slots(
   1684		struct ppc440spe_adma_chan *chan, int num_slots,
   1685		int slots_per_op)
   1686{
   1687	struct ppc440spe_adma_desc_slot *iter = NULL, *_iter;
   1688	struct ppc440spe_adma_desc_slot *alloc_start = NULL;
   1689	int slots_found, retry = 0;
   1690	LIST_HEAD(chain);
   1691
   1692
   1693	BUG_ON(!num_slots || !slots_per_op);
   1694	/* start search from the last allocated descrtiptor
   1695	 * if a contiguous allocation can not be found start searching
   1696	 * from the beginning of the list
   1697	 */
   1698retry:
   1699	slots_found = 0;
   1700	if (retry == 0)
   1701		iter = chan->last_used;
   1702	else
   1703		iter = list_entry(&chan->all_slots,
   1704				  struct ppc440spe_adma_desc_slot,
   1705				  slot_node);
   1706	list_for_each_entry_safe_continue(iter, _iter, &chan->all_slots,
   1707	    slot_node) {
   1708		prefetch(_iter);
   1709		prefetch(&_iter->async_tx);
   1710		if (iter->slots_per_op) {
   1711			slots_found = 0;
   1712			continue;
   1713		}
   1714
   1715		/* start the allocation if the slot is correctly aligned */
   1716		if (!slots_found++)
   1717			alloc_start = iter;
   1718
   1719		if (slots_found == num_slots) {
   1720			struct ppc440spe_adma_desc_slot *alloc_tail = NULL;
   1721			struct ppc440spe_adma_desc_slot *last_used = NULL;
   1722
   1723			iter = alloc_start;
   1724			while (num_slots) {
   1725				int i;
   1726				/* pre-ack all but the last descriptor */
   1727				if (num_slots != slots_per_op)
   1728					async_tx_ack(&iter->async_tx);
   1729
   1730				list_add_tail(&iter->chain_node, &chain);
   1731				alloc_tail = iter;
   1732				iter->async_tx.cookie = 0;
   1733				iter->hw_next = NULL;
   1734				iter->flags = 0;
   1735				iter->slot_cnt = num_slots;
   1736				iter->xor_check_result = NULL;
   1737				for (i = 0; i < slots_per_op; i++) {
   1738					iter->slots_per_op = slots_per_op - i;
   1739					last_used = iter;
   1740					iter = list_entry(iter->slot_node.next,
   1741						struct ppc440spe_adma_desc_slot,
   1742						slot_node);
   1743				}
   1744				num_slots -= slots_per_op;
   1745			}
   1746			alloc_tail->group_head = alloc_start;
   1747			alloc_tail->async_tx.cookie = -EBUSY;
   1748			list_splice(&chain, &alloc_tail->group_list);
   1749			chan->last_used = last_used;
   1750			return alloc_tail;
   1751		}
   1752	}
   1753	if (!retry++)
   1754		goto retry;
   1755
   1756	/* try to free some slots if the allocation fails */
   1757	tasklet_schedule(&chan->irq_tasklet);
   1758	return NULL;
   1759}
   1760
   1761/**
   1762 * ppc440spe_adma_alloc_chan_resources -  allocate pools for CDB slots
   1763 */
   1764static int ppc440spe_adma_alloc_chan_resources(struct dma_chan *chan)
   1765{
   1766	struct ppc440spe_adma_chan *ppc440spe_chan;
   1767	struct ppc440spe_adma_desc_slot *slot = NULL;
   1768	char *hw_desc;
   1769	int i, db_sz;
   1770	int init;
   1771
   1772	ppc440spe_chan = to_ppc440spe_adma_chan(chan);
   1773	init = ppc440spe_chan->slots_allocated ? 0 : 1;
   1774	chan->chan_id = ppc440spe_chan->device->id;
   1775
   1776	/* Allocate descriptor slots */
   1777	i = ppc440spe_chan->slots_allocated;
   1778	if (ppc440spe_chan->device->id != PPC440SPE_XOR_ID)
   1779		db_sz = sizeof(struct dma_cdb);
   1780	else
   1781		db_sz = sizeof(struct xor_cb);
   1782
   1783	for (; i < (ppc440spe_chan->device->pool_size / db_sz); i++) {
   1784		slot = kzalloc(sizeof(struct ppc440spe_adma_desc_slot),
   1785			       GFP_KERNEL);
   1786		if (!slot) {
   1787			printk(KERN_INFO "SPE ADMA Channel only initialized"
   1788				" %d descriptor slots", i--);
   1789			break;
   1790		}
   1791
   1792		hw_desc = (char *) ppc440spe_chan->device->dma_desc_pool_virt;
   1793		slot->hw_desc = (void *) &hw_desc[i * db_sz];
   1794		dma_async_tx_descriptor_init(&slot->async_tx, chan);
   1795		slot->async_tx.tx_submit = ppc440spe_adma_tx_submit;
   1796		INIT_LIST_HEAD(&slot->chain_node);
   1797		INIT_LIST_HEAD(&slot->slot_node);
   1798		INIT_LIST_HEAD(&slot->group_list);
   1799		slot->phys = ppc440spe_chan->device->dma_desc_pool + i * db_sz;
   1800		slot->idx = i;
   1801
   1802		spin_lock_bh(&ppc440spe_chan->lock);
   1803		ppc440spe_chan->slots_allocated++;
   1804		list_add_tail(&slot->slot_node, &ppc440spe_chan->all_slots);
   1805		spin_unlock_bh(&ppc440spe_chan->lock);
   1806	}
   1807
   1808	if (i && !ppc440spe_chan->last_used) {
   1809		ppc440spe_chan->last_used =
   1810			list_entry(ppc440spe_chan->all_slots.next,
   1811				struct ppc440spe_adma_desc_slot,
   1812				slot_node);
   1813	}
   1814
   1815	dev_dbg(ppc440spe_chan->device->common.dev,
   1816		"ppc440spe adma%d: allocated %d descriptor slots\n",
   1817		ppc440spe_chan->device->id, i);
   1818
   1819	/* initialize the channel and the chain with a null operation */
   1820	if (init) {
   1821		switch (ppc440spe_chan->device->id) {
   1822		case PPC440SPE_DMA0_ID:
   1823		case PPC440SPE_DMA1_ID:
   1824			ppc440spe_chan->hw_chain_inited = 0;
   1825			/* Use WXOR for self-testing */
   1826			if (!ppc440spe_r6_tchan)
   1827				ppc440spe_r6_tchan = ppc440spe_chan;
   1828			break;
   1829		case PPC440SPE_XOR_ID:
   1830			ppc440spe_chan_start_null_xor(ppc440spe_chan);
   1831			break;
   1832		default:
   1833			BUG();
   1834		}
   1835		ppc440spe_chan->needs_unmap = 1;
   1836	}
   1837
   1838	return (i > 0) ? i : -ENOMEM;
   1839}
   1840
   1841/**
   1842 * ppc440spe_rxor_set_region_data -
   1843 */
   1844static void ppc440spe_rxor_set_region(struct ppc440spe_adma_desc_slot *desc,
   1845	u8 xor_arg_no, u32 mask)
   1846{
   1847	struct xor_cb *xcb = desc->hw_desc;
   1848
   1849	xcb->ops[xor_arg_no].h |= mask;
   1850}
   1851
   1852/**
   1853 * ppc440spe_rxor_set_src -
   1854 */
   1855static void ppc440spe_rxor_set_src(struct ppc440spe_adma_desc_slot *desc,
   1856	u8 xor_arg_no, dma_addr_t addr)
   1857{
   1858	struct xor_cb *xcb = desc->hw_desc;
   1859
   1860	xcb->ops[xor_arg_no].h |= DMA_CUED_XOR_BASE;
   1861	xcb->ops[xor_arg_no].l = addr;
   1862}
   1863
   1864/**
   1865 * ppc440spe_rxor_set_mult -
   1866 */
   1867static void ppc440spe_rxor_set_mult(struct ppc440spe_adma_desc_slot *desc,
   1868	u8 xor_arg_no, u8 idx, u8 mult)
   1869{
   1870	struct xor_cb *xcb = desc->hw_desc;
   1871
   1872	xcb->ops[xor_arg_no].h |= mult << (DMA_CUED_MULT1_OFF + idx * 8);
   1873}
   1874
   1875/**
   1876 * ppc440spe_adma_check_threshold - append CDBs to h/w chain if threshold
   1877 *	has been achieved
   1878 */
   1879static void ppc440spe_adma_check_threshold(struct ppc440spe_adma_chan *chan)
   1880{
   1881	dev_dbg(chan->device->common.dev, "ppc440spe adma%d: pending: %d\n",
   1882		chan->device->id, chan->pending);
   1883
   1884	if (chan->pending >= PPC440SPE_ADMA_THRESHOLD) {
   1885		chan->pending = 0;
   1886		ppc440spe_chan_append(chan);
   1887	}
   1888}
   1889
   1890/**
   1891 * ppc440spe_adma_tx_submit - submit new descriptor group to the channel
   1892 *	(it's not necessary that descriptors will be submitted to the h/w
   1893 *	chains too right now)
   1894 */
   1895static dma_cookie_t ppc440spe_adma_tx_submit(struct dma_async_tx_descriptor *tx)
   1896{
   1897	struct ppc440spe_adma_desc_slot *sw_desc;
   1898	struct ppc440spe_adma_chan *chan = to_ppc440spe_adma_chan(tx->chan);
   1899	struct ppc440spe_adma_desc_slot *group_start, *old_chain_tail;
   1900	int slot_cnt;
   1901	int slots_per_op;
   1902	dma_cookie_t cookie;
   1903
   1904	sw_desc = tx_to_ppc440spe_adma_slot(tx);
   1905
   1906	group_start = sw_desc->group_head;
   1907	slot_cnt = group_start->slot_cnt;
   1908	slots_per_op = group_start->slots_per_op;
   1909
   1910	spin_lock_bh(&chan->lock);
   1911	cookie = dma_cookie_assign(tx);
   1912
   1913	if (unlikely(list_empty(&chan->chain))) {
   1914		/* first peer */
   1915		list_splice_init(&sw_desc->group_list, &chan->chain);
   1916		chan_first_cdb[chan->device->id] = group_start;
   1917	} else {
   1918		/* isn't first peer, bind CDBs to chain */
   1919		old_chain_tail = list_entry(chan->chain.prev,
   1920					struct ppc440spe_adma_desc_slot,
   1921					chain_node);
   1922		list_splice_init(&sw_desc->group_list,
   1923		    &old_chain_tail->chain_node);
   1924		/* fix up the hardware chain */
   1925		ppc440spe_desc_set_link(chan, old_chain_tail, group_start);
   1926	}
   1927
   1928	/* increment the pending count by the number of operations */
   1929	chan->pending += slot_cnt / slots_per_op;
   1930	ppc440spe_adma_check_threshold(chan);
   1931	spin_unlock_bh(&chan->lock);
   1932
   1933	dev_dbg(chan->device->common.dev,
   1934		"ppc440spe adma%d: %s cookie: %d slot: %d tx %p\n",
   1935		chan->device->id, __func__,
   1936		sw_desc->async_tx.cookie, sw_desc->idx, sw_desc);
   1937
   1938	return cookie;
   1939}
   1940
   1941/**
   1942 * ppc440spe_adma_prep_dma_interrupt - prepare CDB for a pseudo DMA operation
   1943 */
   1944static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_interrupt(
   1945		struct dma_chan *chan, unsigned long flags)
   1946{
   1947	struct ppc440spe_adma_chan *ppc440spe_chan;
   1948	struct ppc440spe_adma_desc_slot *sw_desc, *group_start;
   1949	int slot_cnt, slots_per_op;
   1950
   1951	ppc440spe_chan = to_ppc440spe_adma_chan(chan);
   1952
   1953	dev_dbg(ppc440spe_chan->device->common.dev,
   1954		"ppc440spe adma%d: %s\n", ppc440spe_chan->device->id,
   1955		__func__);
   1956
   1957	spin_lock_bh(&ppc440spe_chan->lock);
   1958	slot_cnt = slots_per_op = 1;
   1959	sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt,
   1960			slots_per_op);
   1961	if (sw_desc) {
   1962		group_start = sw_desc->group_head;
   1963		ppc440spe_desc_init_interrupt(group_start, ppc440spe_chan);
   1964		group_start->unmap_len = 0;
   1965		sw_desc->async_tx.flags = flags;
   1966	}
   1967	spin_unlock_bh(&ppc440spe_chan->lock);
   1968
   1969	return sw_desc ? &sw_desc->async_tx : NULL;
   1970}
   1971
   1972/**
   1973 * ppc440spe_adma_prep_dma_memcpy - prepare CDB for a MEMCPY operation
   1974 */
   1975static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_memcpy(
   1976		struct dma_chan *chan, dma_addr_t dma_dest,
   1977		dma_addr_t dma_src, size_t len, unsigned long flags)
   1978{
   1979	struct ppc440spe_adma_chan *ppc440spe_chan;
   1980	struct ppc440spe_adma_desc_slot *sw_desc, *group_start;
   1981	int slot_cnt, slots_per_op;
   1982
   1983	ppc440spe_chan = to_ppc440spe_adma_chan(chan);
   1984
   1985	if (unlikely(!len))
   1986		return NULL;
   1987
   1988	BUG_ON(len > PPC440SPE_ADMA_DMA_MAX_BYTE_COUNT);
   1989
   1990	spin_lock_bh(&ppc440spe_chan->lock);
   1991
   1992	dev_dbg(ppc440spe_chan->device->common.dev,
   1993		"ppc440spe adma%d: %s len: %u int_en %d\n",
   1994		ppc440spe_chan->device->id, __func__, len,
   1995		flags & DMA_PREP_INTERRUPT ? 1 : 0);
   1996	slot_cnt = slots_per_op = 1;
   1997	sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt,
   1998		slots_per_op);
   1999	if (sw_desc) {
   2000		group_start = sw_desc->group_head;
   2001		ppc440spe_desc_init_memcpy(group_start, flags);
   2002		ppc440spe_adma_set_dest(group_start, dma_dest, 0);
   2003		ppc440spe_adma_memcpy_xor_set_src(group_start, dma_src, 0);
   2004		ppc440spe_desc_set_byte_count(group_start, ppc440spe_chan, len);
   2005		sw_desc->unmap_len = len;
   2006		sw_desc->async_tx.flags = flags;
   2007	}
   2008	spin_unlock_bh(&ppc440spe_chan->lock);
   2009
   2010	return sw_desc ? &sw_desc->async_tx : NULL;
   2011}
   2012
   2013/**
   2014 * ppc440spe_adma_prep_dma_xor - prepare CDB for a XOR operation
   2015 */
   2016static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_xor(
   2017		struct dma_chan *chan, dma_addr_t dma_dest,
   2018		dma_addr_t *dma_src, u32 src_cnt, size_t len,
   2019		unsigned long flags)
   2020{
   2021	struct ppc440spe_adma_chan *ppc440spe_chan;
   2022	struct ppc440spe_adma_desc_slot *sw_desc, *group_start;
   2023	int slot_cnt, slots_per_op;
   2024
   2025	ppc440spe_chan = to_ppc440spe_adma_chan(chan);
   2026
   2027	ADMA_LL_DBG(prep_dma_xor_dbg(ppc440spe_chan->device->id,
   2028				     dma_dest, dma_src, src_cnt));
   2029	if (unlikely(!len))
   2030		return NULL;
   2031	BUG_ON(len > PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT);
   2032
   2033	dev_dbg(ppc440spe_chan->device->common.dev,
   2034		"ppc440spe adma%d: %s src_cnt: %d len: %u int_en: %d\n",
   2035		ppc440spe_chan->device->id, __func__, src_cnt, len,
   2036		flags & DMA_PREP_INTERRUPT ? 1 : 0);
   2037
   2038	spin_lock_bh(&ppc440spe_chan->lock);
   2039	slot_cnt = ppc440spe_chan_xor_slot_count(len, src_cnt, &slots_per_op);
   2040	sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt,
   2041			slots_per_op);
   2042	if (sw_desc) {
   2043		group_start = sw_desc->group_head;
   2044		ppc440spe_desc_init_xor(group_start, src_cnt, flags);
   2045		ppc440spe_adma_set_dest(group_start, dma_dest, 0);
   2046		while (src_cnt--)
   2047			ppc440spe_adma_memcpy_xor_set_src(group_start,
   2048				dma_src[src_cnt], src_cnt);
   2049		ppc440spe_desc_set_byte_count(group_start, ppc440spe_chan, len);
   2050		sw_desc->unmap_len = len;
   2051		sw_desc->async_tx.flags = flags;
   2052	}
   2053	spin_unlock_bh(&ppc440spe_chan->lock);
   2054
   2055	return sw_desc ? &sw_desc->async_tx : NULL;
   2056}
   2057
   2058static inline void
   2059ppc440spe_desc_set_xor_src_cnt(struct ppc440spe_adma_desc_slot *desc,
   2060				int src_cnt);
   2061static void ppc440spe_init_rxor_cursor(struct ppc440spe_rxor *cursor);
   2062
   2063/**
   2064 * ppc440spe_adma_init_dma2rxor_slot -
   2065 */
   2066static void ppc440spe_adma_init_dma2rxor_slot(
   2067		struct ppc440spe_adma_desc_slot *desc,
   2068		dma_addr_t *src, int src_cnt)
   2069{
   2070	int i;
   2071
   2072	/* initialize CDB */
   2073	for (i = 0; i < src_cnt; i++) {
   2074		ppc440spe_adma_dma2rxor_prep_src(desc, &desc->rxor_cursor, i,
   2075						 desc->src_cnt, (u32)src[i]);
   2076	}
   2077}
   2078
   2079/**
   2080 * ppc440spe_dma01_prep_mult -
   2081 * for Q operation where destination is also the source
   2082 */
   2083static struct ppc440spe_adma_desc_slot *ppc440spe_dma01_prep_mult(
   2084		struct ppc440spe_adma_chan *ppc440spe_chan,
   2085		dma_addr_t *dst, int dst_cnt, dma_addr_t *src, int src_cnt,
   2086		const unsigned char *scf, size_t len, unsigned long flags)
   2087{
   2088	struct ppc440spe_adma_desc_slot *sw_desc = NULL;
   2089	unsigned long op = 0;
   2090	int slot_cnt;
   2091
   2092	set_bit(PPC440SPE_DESC_WXOR, &op);
   2093	slot_cnt = 2;
   2094
   2095	spin_lock_bh(&ppc440spe_chan->lock);
   2096
   2097	/* use WXOR, each descriptor occupies one slot */
   2098	sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, 1);
   2099	if (sw_desc) {
   2100		struct ppc440spe_adma_chan *chan;
   2101		struct ppc440spe_adma_desc_slot *iter;
   2102		struct dma_cdb *hw_desc;
   2103
   2104		chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
   2105		set_bits(op, &sw_desc->flags);
   2106		sw_desc->src_cnt = src_cnt;
   2107		sw_desc->dst_cnt = dst_cnt;
   2108		/* First descriptor, zero data in the destination and copy it
   2109		 * to q page using MULTICAST transfer.
   2110		 */
   2111		iter = list_first_entry(&sw_desc->group_list,
   2112					struct ppc440spe_adma_desc_slot,
   2113					chain_node);
   2114		memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
   2115		/* set 'next' pointer */
   2116		iter->hw_next = list_entry(iter->chain_node.next,
   2117					   struct ppc440spe_adma_desc_slot,
   2118					   chain_node);
   2119		clear_bit(PPC440SPE_DESC_INT, &iter->flags);
   2120		hw_desc = iter->hw_desc;
   2121		hw_desc->opc = DMA_CDB_OPC_MULTICAST;
   2122
   2123		ppc440spe_desc_set_dest_addr(iter, chan,
   2124					     DMA_CUED_XOR_BASE, dst[0], 0);
   2125		ppc440spe_desc_set_dest_addr(iter, chan, 0, dst[1], 1);
   2126		ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB,
   2127					    src[0]);
   2128		ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len);
   2129		iter->unmap_len = len;
   2130
   2131		/*
   2132		 * Second descriptor, multiply data from the q page
   2133		 * and store the result in real destination.
   2134		 */
   2135		iter = list_first_entry(&iter->chain_node,
   2136					struct ppc440spe_adma_desc_slot,
   2137					chain_node);
   2138		memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
   2139		iter->hw_next = NULL;
   2140		if (flags & DMA_PREP_INTERRUPT)
   2141			set_bit(PPC440SPE_DESC_INT, &iter->flags);
   2142		else
   2143			clear_bit(PPC440SPE_DESC_INT, &iter->flags);
   2144
   2145		hw_desc = iter->hw_desc;
   2146		hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
   2147		ppc440spe_desc_set_src_addr(iter, chan, 0,
   2148					    DMA_CUED_XOR_HB, dst[1]);
   2149		ppc440spe_desc_set_dest_addr(iter, chan,
   2150					     DMA_CUED_XOR_BASE, dst[0], 0);
   2151
   2152		ppc440spe_desc_set_src_mult(iter, chan, DMA_CUED_MULT1_OFF,
   2153					    DMA_CDB_SG_DST1, scf[0]);
   2154		ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len);
   2155		iter->unmap_len = len;
   2156		sw_desc->async_tx.flags = flags;
   2157	}
   2158
   2159	spin_unlock_bh(&ppc440spe_chan->lock);
   2160
   2161	return sw_desc;
   2162}
   2163
   2164/**
   2165 * ppc440spe_dma01_prep_sum_product -
   2166 * Dx = A*(P+Pxy) + B*(Q+Qxy) operation where destination is also
   2167 * the source.
   2168 */
   2169static struct ppc440spe_adma_desc_slot *ppc440spe_dma01_prep_sum_product(
   2170		struct ppc440spe_adma_chan *ppc440spe_chan,
   2171		dma_addr_t *dst, dma_addr_t *src, int src_cnt,
   2172		const unsigned char *scf, size_t len, unsigned long flags)
   2173{
   2174	struct ppc440spe_adma_desc_slot *sw_desc = NULL;
   2175	unsigned long op = 0;
   2176	int slot_cnt;
   2177
   2178	set_bit(PPC440SPE_DESC_WXOR, &op);
   2179	slot_cnt = 3;
   2180
   2181	spin_lock_bh(&ppc440spe_chan->lock);
   2182
   2183	/* WXOR, each descriptor occupies one slot */
   2184	sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, 1);
   2185	if (sw_desc) {
   2186		struct ppc440spe_adma_chan *chan;
   2187		struct ppc440spe_adma_desc_slot *iter;
   2188		struct dma_cdb *hw_desc;
   2189
   2190		chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
   2191		set_bits(op, &sw_desc->flags);
   2192		sw_desc->src_cnt = src_cnt;
   2193		sw_desc->dst_cnt = 1;
   2194		/* 1st descriptor, src[1] data to q page and zero destination */
   2195		iter = list_first_entry(&sw_desc->group_list,
   2196					struct ppc440spe_adma_desc_slot,
   2197					chain_node);
   2198		memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
   2199		iter->hw_next = list_entry(iter->chain_node.next,
   2200					   struct ppc440spe_adma_desc_slot,
   2201					   chain_node);
   2202		clear_bit(PPC440SPE_DESC_INT, &iter->flags);
   2203		hw_desc = iter->hw_desc;
   2204		hw_desc->opc = DMA_CDB_OPC_MULTICAST;
   2205
   2206		ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE,
   2207					     *dst, 0);
   2208		ppc440spe_desc_set_dest_addr(iter, chan, 0,
   2209					     ppc440spe_chan->qdest, 1);
   2210		ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB,
   2211					    src[1]);
   2212		ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len);
   2213		iter->unmap_len = len;
   2214
   2215		/* 2nd descriptor, multiply src[1] data and store the
   2216		 * result in destination */
   2217		iter = list_first_entry(&iter->chain_node,
   2218					struct ppc440spe_adma_desc_slot,
   2219					chain_node);
   2220		memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
   2221		/* set 'next' pointer */
   2222		iter->hw_next = list_entry(iter->chain_node.next,
   2223					   struct ppc440spe_adma_desc_slot,
   2224					   chain_node);
   2225		if (flags & DMA_PREP_INTERRUPT)
   2226			set_bit(PPC440SPE_DESC_INT, &iter->flags);
   2227		else
   2228			clear_bit(PPC440SPE_DESC_INT, &iter->flags);
   2229
   2230		hw_desc = iter->hw_desc;
   2231		hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
   2232		ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB,
   2233					    ppc440spe_chan->qdest);
   2234		ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE,
   2235					     *dst, 0);
   2236		ppc440spe_desc_set_src_mult(iter, chan,	DMA_CUED_MULT1_OFF,
   2237					    DMA_CDB_SG_DST1, scf[1]);
   2238		ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len);
   2239		iter->unmap_len = len;
   2240
   2241		/*
   2242		 * 3rd descriptor, multiply src[0] data and xor it
   2243		 * with destination
   2244		 */
   2245		iter = list_first_entry(&iter->chain_node,
   2246					struct ppc440spe_adma_desc_slot,
   2247					chain_node);
   2248		memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
   2249		iter->hw_next = NULL;
   2250		if (flags & DMA_PREP_INTERRUPT)
   2251			set_bit(PPC440SPE_DESC_INT, &iter->flags);
   2252		else
   2253			clear_bit(PPC440SPE_DESC_INT, &iter->flags);
   2254
   2255		hw_desc = iter->hw_desc;
   2256		hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
   2257		ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB,
   2258					    src[0]);
   2259		ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE,
   2260					     *dst, 0);
   2261		ppc440spe_desc_set_src_mult(iter, chan, DMA_CUED_MULT1_OFF,
   2262					    DMA_CDB_SG_DST1, scf[0]);
   2263		ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len);
   2264		iter->unmap_len = len;
   2265		sw_desc->async_tx.flags = flags;
   2266	}
   2267
   2268	spin_unlock_bh(&ppc440spe_chan->lock);
   2269
   2270	return sw_desc;
   2271}
   2272
   2273static struct ppc440spe_adma_desc_slot *ppc440spe_dma01_prep_pq(
   2274		struct ppc440spe_adma_chan *ppc440spe_chan,
   2275		dma_addr_t *dst, int dst_cnt, dma_addr_t *src, int src_cnt,
   2276		const unsigned char *scf, size_t len, unsigned long flags)
   2277{
   2278	int slot_cnt;
   2279	struct ppc440spe_adma_desc_slot *sw_desc = NULL, *iter;
   2280	unsigned long op = 0;
   2281	unsigned char mult = 1;
   2282
   2283	pr_debug("%s: dst_cnt %d, src_cnt %d, len %d\n",
   2284		 __func__, dst_cnt, src_cnt, len);
   2285	/*  select operations WXOR/RXOR depending on the
   2286	 * source addresses of operators and the number
   2287	 * of destinations (RXOR support only Q-parity calculations)
   2288	 */
   2289	set_bit(PPC440SPE_DESC_WXOR, &op);
   2290	if (!test_and_set_bit(PPC440SPE_RXOR_RUN, &ppc440spe_rxor_state)) {
   2291		/* no active RXOR;
   2292		 * do RXOR if:
   2293		 * - there are more than 1 source,
   2294		 * - len is aligned on 512-byte boundary,
   2295		 * - source addresses fit to one of 4 possible regions.
   2296		 */
   2297		if (src_cnt > 1 &&
   2298		    !(len & MQ0_CF2H_RXOR_BS_MASK) &&
   2299		    (src[0] + len) == src[1]) {
   2300			/* may do RXOR R1 R2 */
   2301			set_bit(PPC440SPE_DESC_RXOR, &op);
   2302			if (src_cnt != 2) {
   2303				/* may try to enhance region of RXOR */
   2304				if ((src[1] + len) == src[2]) {
   2305					/* do RXOR R1 R2 R3 */
   2306					set_bit(PPC440SPE_DESC_RXOR123,
   2307						&op);
   2308				} else if ((src[1] + len * 2) == src[2]) {
   2309					/* do RXOR R1 R2 R4 */
   2310					set_bit(PPC440SPE_DESC_RXOR124, &op);
   2311				} else if ((src[1] + len * 3) == src[2]) {
   2312					/* do RXOR R1 R2 R5 */
   2313					set_bit(PPC440SPE_DESC_RXOR125,
   2314						&op);
   2315				} else {
   2316					/* do RXOR R1 R2 */
   2317					set_bit(PPC440SPE_DESC_RXOR12,
   2318						&op);
   2319				}
   2320			} else {
   2321				/* do RXOR R1 R2 */
   2322				set_bit(PPC440SPE_DESC_RXOR12, &op);
   2323			}
   2324		}
   2325
   2326		if (!test_bit(PPC440SPE_DESC_RXOR, &op)) {
   2327			/* can not do this operation with RXOR */
   2328			clear_bit(PPC440SPE_RXOR_RUN,
   2329				&ppc440spe_rxor_state);
   2330		} else {
   2331			/* can do; set block size right now */
   2332			ppc440spe_desc_set_rxor_block_size(len);
   2333		}
   2334	}
   2335
   2336	/* Number of necessary slots depends on operation type selected */
   2337	if (!test_bit(PPC440SPE_DESC_RXOR, &op)) {
   2338		/*  This is a WXOR only chain. Need descriptors for each
   2339		 * source to GF-XOR them with WXOR, and need descriptors
   2340		 * for each destination to zero them with WXOR
   2341		 */
   2342		slot_cnt = src_cnt;
   2343
   2344		if (flags & DMA_PREP_ZERO_P) {
   2345			slot_cnt++;
   2346			set_bit(PPC440SPE_ZERO_P, &op);
   2347		}
   2348		if (flags & DMA_PREP_ZERO_Q) {
   2349			slot_cnt++;
   2350			set_bit(PPC440SPE_ZERO_Q, &op);
   2351		}
   2352	} else {
   2353		/*  Need 1/2 descriptor for RXOR operation, and
   2354		 * need (src_cnt - (2 or 3)) for WXOR of sources
   2355		 * remained (if any)
   2356		 */
   2357		slot_cnt = dst_cnt;
   2358
   2359		if (flags & DMA_PREP_ZERO_P)
   2360			set_bit(PPC440SPE_ZERO_P, &op);
   2361		if (flags & DMA_PREP_ZERO_Q)
   2362			set_bit(PPC440SPE_ZERO_Q, &op);
   2363
   2364		if (test_bit(PPC440SPE_DESC_RXOR12, &op))
   2365			slot_cnt += src_cnt - 2;
   2366		else
   2367			slot_cnt += src_cnt - 3;
   2368
   2369		/*  Thus we have either RXOR only chain or
   2370		 * mixed RXOR/WXOR
   2371		 */
   2372		if (slot_cnt == dst_cnt)
   2373			/* RXOR only chain */
   2374			clear_bit(PPC440SPE_DESC_WXOR, &op);
   2375	}
   2376
   2377	spin_lock_bh(&ppc440spe_chan->lock);
   2378	/* for both RXOR/WXOR each descriptor occupies one slot */
   2379	sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, 1);
   2380	if (sw_desc) {
   2381		ppc440spe_desc_init_dma01pq(sw_desc, dst_cnt, src_cnt,
   2382				flags, op);
   2383
   2384		/* setup dst/src/mult */
   2385		pr_debug("%s: set dst descriptor 0, 1: 0x%016llx, 0x%016llx\n",
   2386			 __func__, dst[0], dst[1]);
   2387		ppc440spe_adma_pq_set_dest(sw_desc, dst, flags);
   2388		while (src_cnt--) {
   2389			ppc440spe_adma_pq_set_src(sw_desc, src[src_cnt],
   2390						  src_cnt);
   2391
   2392			/* NOTE: "Multi = 0 is equivalent to = 1" as it
   2393			 * stated in 440SPSPe_RAID6_Addendum_UM_1_17.pdf
   2394			 * doesn't work for RXOR with DMA0/1! Instead, multi=0
   2395			 * leads to zeroing source data after RXOR.
   2396			 * So, for P case set-up mult=1 explicitly.
   2397			 */
   2398			if (!(flags & DMA_PREP_PQ_DISABLE_Q))
   2399				mult = scf[src_cnt];
   2400			ppc440spe_adma_pq_set_src_mult(sw_desc,
   2401				mult, src_cnt,  dst_cnt - 1);
   2402		}
   2403
   2404		/* Setup byte count foreach slot just allocated */
   2405		sw_desc->async_tx.flags = flags;
   2406		list_for_each_entry(iter, &sw_desc->group_list,
   2407				chain_node) {
   2408			ppc440spe_desc_set_byte_count(iter,
   2409				ppc440spe_chan, len);
   2410			iter->unmap_len = len;
   2411		}
   2412	}
   2413	spin_unlock_bh(&ppc440spe_chan->lock);
   2414
   2415	return sw_desc;
   2416}
   2417
   2418static struct ppc440spe_adma_desc_slot *ppc440spe_dma2_prep_pq(
   2419		struct ppc440spe_adma_chan *ppc440spe_chan,
   2420		dma_addr_t *dst, int dst_cnt, dma_addr_t *src, int src_cnt,
   2421		const unsigned char *scf, size_t len, unsigned long flags)
   2422{
   2423	int slot_cnt, descs_per_op;
   2424	struct ppc440spe_adma_desc_slot *sw_desc = NULL, *iter;
   2425	unsigned long op = 0;
   2426	unsigned char mult = 1;
   2427
   2428	BUG_ON(!dst_cnt);
   2429	/*pr_debug("%s: dst_cnt %d, src_cnt %d, len %d\n",
   2430		 __func__, dst_cnt, src_cnt, len);*/
   2431
   2432	spin_lock_bh(&ppc440spe_chan->lock);
   2433	descs_per_op = ppc440spe_dma2_pq_slot_count(src, src_cnt, len);
   2434	if (descs_per_op < 0) {
   2435		spin_unlock_bh(&ppc440spe_chan->lock);
   2436		return NULL;
   2437	}
   2438
   2439	/* depending on number of sources we have 1 or 2 RXOR chains */
   2440	slot_cnt = descs_per_op * dst_cnt;
   2441
   2442	sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, 1);
   2443	if (sw_desc) {
   2444		op = slot_cnt;
   2445		sw_desc->async_tx.flags = flags;
   2446		list_for_each_entry(iter, &sw_desc->group_list, chain_node) {
   2447			ppc440spe_desc_init_dma2pq(iter, dst_cnt, src_cnt,
   2448				--op ? 0 : flags);
   2449			ppc440spe_desc_set_byte_count(iter, ppc440spe_chan,
   2450				len);
   2451			iter->unmap_len = len;
   2452
   2453			ppc440spe_init_rxor_cursor(&(iter->rxor_cursor));
   2454			iter->rxor_cursor.len = len;
   2455			iter->descs_per_op = descs_per_op;
   2456		}
   2457		op = 0;
   2458		list_for_each_entry(iter, &sw_desc->group_list, chain_node) {
   2459			op++;
   2460			if (op % descs_per_op == 0)
   2461				ppc440spe_adma_init_dma2rxor_slot(iter, src,
   2462								  src_cnt);
   2463			if (likely(!list_is_last(&iter->chain_node,
   2464						 &sw_desc->group_list))) {
   2465				/* set 'next' pointer */
   2466				iter->hw_next =
   2467					list_entry(iter->chain_node.next,
   2468						struct ppc440spe_adma_desc_slot,
   2469						chain_node);
   2470				ppc440spe_xor_set_link(iter, iter->hw_next);
   2471			} else {
   2472				/* this is the last descriptor. */
   2473				iter->hw_next = NULL;
   2474			}
   2475		}
   2476
   2477		/* fixup head descriptor */
   2478		sw_desc->dst_cnt = dst_cnt;
   2479		if (flags & DMA_PREP_ZERO_P)
   2480			set_bit(PPC440SPE_ZERO_P, &sw_desc->flags);
   2481		if (flags & DMA_PREP_ZERO_Q)
   2482			set_bit(PPC440SPE_ZERO_Q, &sw_desc->flags);
   2483
   2484		/* setup dst/src/mult */
   2485		ppc440spe_adma_pq_set_dest(sw_desc, dst, flags);
   2486
   2487		while (src_cnt--) {
   2488			/* handle descriptors (if dst_cnt == 2) inside
   2489			 * the ppc440spe_adma_pq_set_srcxxx() functions
   2490			 */
   2491			ppc440spe_adma_pq_set_src(sw_desc, src[src_cnt],
   2492						  src_cnt);
   2493			if (!(flags & DMA_PREP_PQ_DISABLE_Q))
   2494				mult = scf[src_cnt];
   2495			ppc440spe_adma_pq_set_src_mult(sw_desc,
   2496					mult, src_cnt, dst_cnt - 1);
   2497		}
   2498	}
   2499	spin_unlock_bh(&ppc440spe_chan->lock);
   2500	ppc440spe_desc_set_rxor_block_size(len);
   2501	return sw_desc;
   2502}
   2503
   2504/**
   2505 * ppc440spe_adma_prep_dma_pq - prepare CDB (group) for a GF-XOR operation
   2506 */
   2507static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_pq(
   2508		struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src,
   2509		unsigned int src_cnt, const unsigned char *scf,
   2510		size_t len, unsigned long flags)
   2511{
   2512	struct ppc440spe_adma_chan *ppc440spe_chan;
   2513	struct ppc440spe_adma_desc_slot *sw_desc = NULL;
   2514	int dst_cnt = 0;
   2515
   2516	ppc440spe_chan = to_ppc440spe_adma_chan(chan);
   2517
   2518	ADMA_LL_DBG(prep_dma_pq_dbg(ppc440spe_chan->device->id,
   2519				    dst, src, src_cnt));
   2520	BUG_ON(!len);
   2521	BUG_ON(len > PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT);
   2522	BUG_ON(!src_cnt);
   2523
   2524	if (src_cnt == 1 && dst[1] == src[0]) {
   2525		dma_addr_t dest[2];
   2526
   2527		/* dst[1] is real destination (Q) */
   2528		dest[0] = dst[1];
   2529		/* this is the page to multicast source data to */
   2530		dest[1] = ppc440spe_chan->qdest;
   2531		sw_desc = ppc440spe_dma01_prep_mult(ppc440spe_chan,
   2532				dest, 2, src, src_cnt, scf, len, flags);
   2533		return sw_desc ? &sw_desc->async_tx : NULL;
   2534	}
   2535
   2536	if (src_cnt == 2 && dst[1] == src[1]) {
   2537		sw_desc = ppc440spe_dma01_prep_sum_product(ppc440spe_chan,
   2538					&dst[1], src, 2, scf, len, flags);
   2539		return sw_desc ? &sw_desc->async_tx : NULL;
   2540	}
   2541
   2542	if (!(flags & DMA_PREP_PQ_DISABLE_P)) {
   2543		BUG_ON(!dst[0]);
   2544		dst_cnt++;
   2545		flags |= DMA_PREP_ZERO_P;
   2546	}
   2547
   2548	if (!(flags & DMA_PREP_PQ_DISABLE_Q)) {
   2549		BUG_ON(!dst[1]);
   2550		dst_cnt++;
   2551		flags |= DMA_PREP_ZERO_Q;
   2552	}
   2553
   2554	BUG_ON(!dst_cnt);
   2555
   2556	dev_dbg(ppc440spe_chan->device->common.dev,
   2557		"ppc440spe adma%d: %s src_cnt: %d len: %u int_en: %d\n",
   2558		ppc440spe_chan->device->id, __func__, src_cnt, len,
   2559		flags & DMA_PREP_INTERRUPT ? 1 : 0);
   2560
   2561	switch (ppc440spe_chan->device->id) {
   2562	case PPC440SPE_DMA0_ID:
   2563	case PPC440SPE_DMA1_ID:
   2564		sw_desc = ppc440spe_dma01_prep_pq(ppc440spe_chan,
   2565				dst, dst_cnt, src, src_cnt, scf,
   2566				len, flags);
   2567		break;
   2568
   2569	case PPC440SPE_XOR_ID:
   2570		sw_desc = ppc440spe_dma2_prep_pq(ppc440spe_chan,
   2571				dst, dst_cnt, src, src_cnt, scf,
   2572				len, flags);
   2573		break;
   2574	}
   2575
   2576	return sw_desc ? &sw_desc->async_tx : NULL;
   2577}
   2578
   2579/**
   2580 * ppc440spe_adma_prep_dma_pqzero_sum - prepare CDB group for
   2581 * a PQ_ZERO_SUM operation
   2582 */
   2583static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_pqzero_sum(
   2584		struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src,
   2585		unsigned int src_cnt, const unsigned char *scf, size_t len,
   2586		enum sum_check_flags *pqres, unsigned long flags)
   2587{
   2588	struct ppc440spe_adma_chan *ppc440spe_chan;
   2589	struct ppc440spe_adma_desc_slot *sw_desc, *iter;
   2590	dma_addr_t pdest, qdest;
   2591	int slot_cnt, slots_per_op, idst, dst_cnt;
   2592
   2593	ppc440spe_chan = to_ppc440spe_adma_chan(chan);
   2594
   2595	if (flags & DMA_PREP_PQ_DISABLE_P)
   2596		pdest = 0;
   2597	else
   2598		pdest = pq[0];
   2599
   2600	if (flags & DMA_PREP_PQ_DISABLE_Q)
   2601		qdest = 0;
   2602	else
   2603		qdest = pq[1];
   2604
   2605	ADMA_LL_DBG(prep_dma_pqzero_sum_dbg(ppc440spe_chan->device->id,
   2606					    src, src_cnt, scf));
   2607
   2608	/* Always use WXOR for P/Q calculations (two destinations).
   2609	 * Need 1 or 2 extra slots to verify results are zero.
   2610	 */
   2611	idst = dst_cnt = (pdest && qdest) ? 2 : 1;
   2612
   2613	/* One additional slot per destination to clone P/Q
   2614	 * before calculation (we have to preserve destinations).
   2615	 */
   2616	slot_cnt = src_cnt + dst_cnt * 2;
   2617	slots_per_op = 1;
   2618
   2619	spin_lock_bh(&ppc440spe_chan->lock);
   2620	sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt,
   2621					     slots_per_op);
   2622	if (sw_desc) {
   2623		ppc440spe_desc_init_dma01pqzero_sum(sw_desc, dst_cnt, src_cnt);
   2624
   2625		/* Setup byte count for each slot just allocated */
   2626		sw_desc->async_tx.flags = flags;
   2627		list_for_each_entry(iter, &sw_desc->group_list, chain_node) {
   2628			ppc440spe_desc_set_byte_count(iter, ppc440spe_chan,
   2629						      len);
   2630			iter->unmap_len = len;
   2631		}
   2632
   2633		if (pdest) {
   2634			struct dma_cdb *hw_desc;
   2635			struct ppc440spe_adma_chan *chan;
   2636
   2637			iter = sw_desc->group_head;
   2638			chan = to_ppc440spe_adma_chan(iter->async_tx.chan);
   2639			memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
   2640			iter->hw_next = list_entry(iter->chain_node.next,
   2641						struct ppc440spe_adma_desc_slot,
   2642						chain_node);
   2643			hw_desc = iter->hw_desc;
   2644			hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
   2645			iter->src_cnt = 0;
   2646			iter->dst_cnt = 0;
   2647			ppc440spe_desc_set_dest_addr(iter, chan, 0,
   2648						     ppc440spe_chan->pdest, 0);
   2649			ppc440spe_desc_set_src_addr(iter, chan, 0, 0, pdest);
   2650			ppc440spe_desc_set_byte_count(iter, ppc440spe_chan,
   2651						      len);
   2652			iter->unmap_len = 0;
   2653			/* override pdest to preserve original P */
   2654			pdest = ppc440spe_chan->pdest;
   2655		}
   2656		if (qdest) {
   2657			struct dma_cdb *hw_desc;
   2658			struct ppc440spe_adma_chan *chan;
   2659
   2660			iter = list_first_entry(&sw_desc->group_list,
   2661						struct ppc440spe_adma_desc_slot,
   2662						chain_node);
   2663			chan = to_ppc440spe_adma_chan(iter->async_tx.chan);
   2664
   2665			if (pdest) {
   2666				iter = list_entry(iter->chain_node.next,
   2667						struct ppc440spe_adma_desc_slot,
   2668						chain_node);
   2669			}
   2670
   2671			memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
   2672			iter->hw_next = list_entry(iter->chain_node.next,
   2673						struct ppc440spe_adma_desc_slot,
   2674						chain_node);
   2675			hw_desc = iter->hw_desc;
   2676			hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
   2677			iter->src_cnt = 0;
   2678			iter->dst_cnt = 0;
   2679			ppc440spe_desc_set_dest_addr(iter, chan, 0,
   2680						     ppc440spe_chan->qdest, 0);
   2681			ppc440spe_desc_set_src_addr(iter, chan, 0, 0, qdest);
   2682			ppc440spe_desc_set_byte_count(iter, ppc440spe_chan,
   2683						      len);
   2684			iter->unmap_len = 0;
   2685			/* override qdest to preserve original Q */
   2686			qdest = ppc440spe_chan->qdest;
   2687		}
   2688
   2689		/* Setup destinations for P/Q ops */
   2690		ppc440spe_adma_pqzero_sum_set_dest(sw_desc, pdest, qdest);
   2691
   2692		/* Setup zero QWORDs into DCHECK CDBs */
   2693		idst = dst_cnt;
   2694		list_for_each_entry_reverse(iter, &sw_desc->group_list,
   2695					    chain_node) {
   2696			/*
   2697			 * The last CDB corresponds to Q-parity check,
   2698			 * the one before last CDB corresponds
   2699			 * P-parity check
   2700			 */
   2701			if (idst == DMA_DEST_MAX_NUM) {
   2702				if (idst == dst_cnt) {
   2703					set_bit(PPC440SPE_DESC_QCHECK,
   2704						&iter->flags);
   2705				} else {
   2706					set_bit(PPC440SPE_DESC_PCHECK,
   2707						&iter->flags);
   2708				}
   2709			} else {
   2710				if (qdest) {
   2711					set_bit(PPC440SPE_DESC_QCHECK,
   2712						&iter->flags);
   2713				} else {
   2714					set_bit(PPC440SPE_DESC_PCHECK,
   2715						&iter->flags);
   2716				}
   2717			}
   2718			iter->xor_check_result = pqres;
   2719
   2720			/*
   2721			 * set it to zero, if check fail then result will
   2722			 * be updated
   2723			 */
   2724			*iter->xor_check_result = 0;
   2725			ppc440spe_desc_set_dcheck(iter, ppc440spe_chan,
   2726				ppc440spe_qword);
   2727
   2728			if (!(--dst_cnt))
   2729				break;
   2730		}
   2731
   2732		/* Setup sources and mults for P/Q ops */
   2733		list_for_each_entry_continue_reverse(iter, &sw_desc->group_list,
   2734						     chain_node) {
   2735			struct ppc440spe_adma_chan *chan;
   2736			u32 mult_dst;
   2737
   2738			chan = to_ppc440spe_adma_chan(iter->async_tx.chan);
   2739			ppc440spe_desc_set_src_addr(iter, chan, 0,
   2740						    DMA_CUED_XOR_HB,
   2741						    src[src_cnt - 1]);
   2742			if (qdest) {
   2743				mult_dst = (dst_cnt - 1) ? DMA_CDB_SG_DST2 :
   2744							   DMA_CDB_SG_DST1;
   2745				ppc440spe_desc_set_src_mult(iter, chan,
   2746							    DMA_CUED_MULT1_OFF,
   2747							    mult_dst,
   2748							    scf[src_cnt - 1]);
   2749			}
   2750			if (!(--src_cnt))
   2751				break;
   2752		}
   2753	}
   2754	spin_unlock_bh(&ppc440spe_chan->lock);
   2755	return sw_desc ? &sw_desc->async_tx : NULL;
   2756}
   2757
   2758/**
   2759 * ppc440spe_adma_prep_dma_xor_zero_sum - prepare CDB group for
   2760 * XOR ZERO_SUM operation
   2761 */
   2762static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_xor_zero_sum(
   2763		struct dma_chan *chan, dma_addr_t *src, unsigned int src_cnt,
   2764		size_t len, enum sum_check_flags *result, unsigned long flags)
   2765{
   2766	struct dma_async_tx_descriptor *tx;
   2767	dma_addr_t pq[2];
   2768
   2769	/* validate P, disable Q */
   2770	pq[0] = src[0];
   2771	pq[1] = 0;
   2772	flags |= DMA_PREP_PQ_DISABLE_Q;
   2773
   2774	tx = ppc440spe_adma_prep_dma_pqzero_sum(chan, pq, &src[1],
   2775						src_cnt - 1, 0, len,
   2776						result, flags);
   2777	return tx;
   2778}
   2779
   2780/**
   2781 * ppc440spe_adma_set_dest - set destination address into descriptor
   2782 */
   2783static void ppc440spe_adma_set_dest(struct ppc440spe_adma_desc_slot *sw_desc,
   2784		dma_addr_t addr, int index)
   2785{
   2786	struct ppc440spe_adma_chan *chan;
   2787
   2788	BUG_ON(index >= sw_desc->dst_cnt);
   2789
   2790	chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
   2791
   2792	switch (chan->device->id) {
   2793	case PPC440SPE_DMA0_ID:
   2794	case PPC440SPE_DMA1_ID:
   2795		/* to do: support transfers lengths >
   2796		 * PPC440SPE_ADMA_DMA/XOR_MAX_BYTE_COUNT
   2797		 */
   2798		ppc440spe_desc_set_dest_addr(sw_desc->group_head,
   2799			chan, 0, addr, index);
   2800		break;
   2801	case PPC440SPE_XOR_ID:
   2802		sw_desc = ppc440spe_get_group_entry(sw_desc, index);
   2803		ppc440spe_desc_set_dest_addr(sw_desc,
   2804			chan, 0, addr, index);
   2805		break;
   2806	}
   2807}
   2808
   2809static void ppc440spe_adma_pq_zero_op(struct ppc440spe_adma_desc_slot *iter,
   2810		struct ppc440spe_adma_chan *chan, dma_addr_t addr)
   2811{
   2812	/*  To clear destinations update the descriptor
   2813	 * (P or Q depending on index) as follows:
   2814	 * addr is destination (0 corresponds to SG2):
   2815	 */
   2816	ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE, addr, 0);
   2817
   2818	/* ... and the addr is source: */
   2819	ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB, addr);
   2820
   2821	/* addr is always SG2 then the mult is always DST1 */
   2822	ppc440spe_desc_set_src_mult(iter, chan, DMA_CUED_MULT1_OFF,
   2823				    DMA_CDB_SG_DST1, 1);
   2824}
   2825
   2826/**
   2827 * ppc440spe_adma_pq_set_dest - set destination address into descriptor
   2828 * for the PQXOR operation
   2829 */
   2830static void ppc440spe_adma_pq_set_dest(struct ppc440spe_adma_desc_slot *sw_desc,
   2831		dma_addr_t *addrs, unsigned long flags)
   2832{
   2833	struct ppc440spe_adma_desc_slot *iter;
   2834	struct ppc440spe_adma_chan *chan;
   2835	dma_addr_t paddr, qaddr;
   2836	dma_addr_t addr = 0, ppath, qpath;
   2837	int index = 0, i;
   2838
   2839	chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
   2840
   2841	if (flags & DMA_PREP_PQ_DISABLE_P)
   2842		paddr = 0;
   2843	else
   2844		paddr = addrs[0];
   2845
   2846	if (flags & DMA_PREP_PQ_DISABLE_Q)
   2847		qaddr = 0;
   2848	else
   2849		qaddr = addrs[1];
   2850
   2851	if (!paddr || !qaddr)
   2852		addr = paddr ? paddr : qaddr;
   2853
   2854	switch (chan->device->id) {
   2855	case PPC440SPE_DMA0_ID:
   2856	case PPC440SPE_DMA1_ID:
   2857		/* walk through the WXOR source list and set P/Q-destinations
   2858		 * for each slot:
   2859		 */
   2860		if (!test_bit(PPC440SPE_DESC_RXOR, &sw_desc->flags)) {
   2861			/* This is WXOR-only chain; may have 1/2 zero descs */
   2862			if (test_bit(PPC440SPE_ZERO_P, &sw_desc->flags))
   2863				index++;
   2864			if (test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags))
   2865				index++;
   2866
   2867			iter = ppc440spe_get_group_entry(sw_desc, index);
   2868			if (addr) {
   2869				/* one destination */
   2870				list_for_each_entry_from(iter,
   2871					&sw_desc->group_list, chain_node)
   2872					ppc440spe_desc_set_dest_addr(iter, chan,
   2873						DMA_CUED_XOR_BASE, addr, 0);
   2874			} else {
   2875				/* two destinations */
   2876				list_for_each_entry_from(iter,
   2877					&sw_desc->group_list, chain_node) {
   2878					ppc440spe_desc_set_dest_addr(iter, chan,
   2879						DMA_CUED_XOR_BASE, paddr, 0);
   2880					ppc440spe_desc_set_dest_addr(iter, chan,
   2881						DMA_CUED_XOR_BASE, qaddr, 1);
   2882				}
   2883			}
   2884
   2885			if (index) {
   2886				/*  To clear destinations update the descriptor
   2887				 * (1st,2nd, or both depending on flags)
   2888				 */
   2889				index = 0;
   2890				if (test_bit(PPC440SPE_ZERO_P,
   2891						&sw_desc->flags)) {
   2892					iter = ppc440spe_get_group_entry(
   2893							sw_desc, index++);
   2894					ppc440spe_adma_pq_zero_op(iter, chan,
   2895							paddr);
   2896				}
   2897
   2898				if (test_bit(PPC440SPE_ZERO_Q,
   2899						&sw_desc->flags)) {
   2900					iter = ppc440spe_get_group_entry(
   2901							sw_desc, index++);
   2902					ppc440spe_adma_pq_zero_op(iter, chan,
   2903							qaddr);
   2904				}
   2905
   2906				return;
   2907			}
   2908		} else {
   2909			/* This is RXOR-only or RXOR/WXOR mixed chain */
   2910
   2911			/* If we want to include destination into calculations,
   2912			 * then make dest addresses cued with mult=1 (XOR).
   2913			 */
   2914			ppath = test_bit(PPC440SPE_ZERO_P, &sw_desc->flags) ?
   2915					DMA_CUED_XOR_HB :
   2916					DMA_CUED_XOR_BASE |
   2917						(1 << DMA_CUED_MULT1_OFF);
   2918			qpath = test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags) ?
   2919					DMA_CUED_XOR_HB :
   2920					DMA_CUED_XOR_BASE |
   2921						(1 << DMA_CUED_MULT1_OFF);
   2922
   2923			/* Setup destination(s) in RXOR slot(s) */
   2924			iter = ppc440spe_get_group_entry(sw_desc, index++);
   2925			ppc440spe_desc_set_dest_addr(iter, chan,
   2926						paddr ? ppath : qpath,
   2927						paddr ? paddr : qaddr, 0);
   2928			if (!addr) {
   2929				/* two destinations */
   2930				iter = ppc440spe_get_group_entry(sw_desc,
   2931								 index++);
   2932				ppc440spe_desc_set_dest_addr(iter, chan,
   2933						qpath, qaddr, 0);
   2934			}
   2935
   2936			if (test_bit(PPC440SPE_DESC_WXOR, &sw_desc->flags)) {
   2937				/* Setup destination(s) in remaining WXOR
   2938				 * slots
   2939				 */
   2940				iter = ppc440spe_get_group_entry(sw_desc,
   2941								 index);
   2942				if (addr) {
   2943					/* one destination */
   2944					list_for_each_entry_from(iter,
   2945					    &sw_desc->group_list,
   2946					    chain_node)
   2947						ppc440spe_desc_set_dest_addr(
   2948							iter, chan,
   2949							DMA_CUED_XOR_BASE,
   2950							addr, 0);
   2951
   2952				} else {
   2953					/* two destinations */
   2954					list_for_each_entry_from(iter,
   2955					    &sw_desc->group_list,
   2956					    chain_node) {
   2957						ppc440spe_desc_set_dest_addr(
   2958							iter, chan,
   2959							DMA_CUED_XOR_BASE,
   2960							paddr, 0);
   2961						ppc440spe_desc_set_dest_addr(
   2962							iter, chan,
   2963							DMA_CUED_XOR_BASE,
   2964							qaddr, 1);
   2965					}
   2966				}
   2967			}
   2968
   2969		}
   2970		break;
   2971
   2972	case PPC440SPE_XOR_ID:
   2973		/* DMA2 descriptors have only 1 destination, so there are
   2974		 * two chains - one for each dest.
   2975		 * If we want to include destination into calculations,
   2976		 * then make dest addresses cued with mult=1 (XOR).
   2977		 */
   2978		ppath = test_bit(PPC440SPE_ZERO_P, &sw_desc->flags) ?
   2979				DMA_CUED_XOR_HB :
   2980				DMA_CUED_XOR_BASE |
   2981					(1 << DMA_CUED_MULT1_OFF);
   2982
   2983		qpath = test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags) ?
   2984				DMA_CUED_XOR_HB :
   2985				DMA_CUED_XOR_BASE |
   2986					(1 << DMA_CUED_MULT1_OFF);
   2987
   2988		iter = ppc440spe_get_group_entry(sw_desc, 0);
   2989		for (i = 0; i < sw_desc->descs_per_op; i++) {
   2990			ppc440spe_desc_set_dest_addr(iter, chan,
   2991				paddr ? ppath : qpath,
   2992				paddr ? paddr : qaddr, 0);
   2993			iter = list_entry(iter->chain_node.next,
   2994					  struct ppc440spe_adma_desc_slot,
   2995					  chain_node);
   2996		}
   2997
   2998		if (!addr) {
   2999			/* Two destinations; setup Q here */
   3000			iter = ppc440spe_get_group_entry(sw_desc,
   3001				sw_desc->descs_per_op);
   3002			for (i = 0; i < sw_desc->descs_per_op; i++) {
   3003				ppc440spe_desc_set_dest_addr(iter,
   3004					chan, qpath, qaddr, 0);
   3005				iter = list_entry(iter->chain_node.next,
   3006						struct ppc440spe_adma_desc_slot,
   3007						chain_node);
   3008			}
   3009		}
   3010
   3011		break;
   3012	}
   3013}
   3014
   3015/**
   3016 * ppc440spe_adma_pq_zero_sum_set_dest - set destination address into descriptor
   3017 * for the PQ_ZERO_SUM operation
   3018 */
   3019static void ppc440spe_adma_pqzero_sum_set_dest(
   3020		struct ppc440spe_adma_desc_slot *sw_desc,
   3021		dma_addr_t paddr, dma_addr_t qaddr)
   3022{
   3023	struct ppc440spe_adma_desc_slot *iter, *end;
   3024	struct ppc440spe_adma_chan *chan;
   3025	dma_addr_t addr = 0;
   3026	int idx;
   3027
   3028	chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
   3029
   3030	/* walk through the WXOR source list and set P/Q-destinations
   3031	 * for each slot
   3032	 */
   3033	idx = (paddr && qaddr) ? 2 : 1;
   3034	/* set end */
   3035	list_for_each_entry_reverse(end, &sw_desc->group_list,
   3036				    chain_node) {
   3037		if (!(--idx))
   3038			break;
   3039	}
   3040	/* set start */
   3041	idx = (paddr && qaddr) ? 2 : 1;
   3042	iter = ppc440spe_get_group_entry(sw_desc, idx);
   3043
   3044	if (paddr && qaddr) {
   3045		/* two destinations */
   3046		list_for_each_entry_from(iter, &sw_desc->group_list,
   3047					 chain_node) {
   3048			if (unlikely(iter == end))
   3049				break;
   3050			ppc440spe_desc_set_dest_addr(iter, chan,
   3051						DMA_CUED_XOR_BASE, paddr, 0);
   3052			ppc440spe_desc_set_dest_addr(iter, chan,
   3053						DMA_CUED_XOR_BASE, qaddr, 1);
   3054		}
   3055	} else {
   3056		/* one destination */
   3057		addr = paddr ? paddr : qaddr;
   3058		list_for_each_entry_from(iter, &sw_desc->group_list,
   3059					 chain_node) {
   3060			if (unlikely(iter == end))
   3061				break;
   3062			ppc440spe_desc_set_dest_addr(iter, chan,
   3063						DMA_CUED_XOR_BASE, addr, 0);
   3064		}
   3065	}
   3066
   3067	/*  The remaining descriptors are DATACHECK. These have no need in
   3068	 * destination. Actually, these destinations are used there
   3069	 * as sources for check operation. So, set addr as source.
   3070	 */
   3071	ppc440spe_desc_set_src_addr(end, chan, 0, 0, addr ? addr : paddr);
   3072
   3073	if (!addr) {
   3074		end = list_entry(end->chain_node.next,
   3075				 struct ppc440spe_adma_desc_slot, chain_node);
   3076		ppc440spe_desc_set_src_addr(end, chan, 0, 0, qaddr);
   3077	}
   3078}
   3079
   3080/**
   3081 * ppc440spe_desc_set_xor_src_cnt - set source count into descriptor
   3082 */
   3083static inline void ppc440spe_desc_set_xor_src_cnt(
   3084			struct ppc440spe_adma_desc_slot *desc,
   3085			int src_cnt)
   3086{
   3087	struct xor_cb *hw_desc = desc->hw_desc;
   3088
   3089	hw_desc->cbc &= ~XOR_CDCR_OAC_MSK;
   3090	hw_desc->cbc |= src_cnt;
   3091}
   3092
   3093/**
   3094 * ppc440spe_adma_pq_set_src - set source address into descriptor
   3095 */
   3096static void ppc440spe_adma_pq_set_src(struct ppc440spe_adma_desc_slot *sw_desc,
   3097		dma_addr_t addr, int index)
   3098{
   3099	struct ppc440spe_adma_chan *chan;
   3100	dma_addr_t haddr = 0;
   3101	struct ppc440spe_adma_desc_slot *iter = NULL;
   3102
   3103	chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
   3104
   3105	switch (chan->device->id) {
   3106	case PPC440SPE_DMA0_ID:
   3107	case PPC440SPE_DMA1_ID:
   3108		/* DMA0,1 may do: WXOR, RXOR, RXOR+WXORs chain
   3109		 */
   3110		if (test_bit(PPC440SPE_DESC_RXOR, &sw_desc->flags)) {
   3111			/* RXOR-only or RXOR/WXOR operation */
   3112			int iskip = test_bit(PPC440SPE_DESC_RXOR12,
   3113				&sw_desc->flags) ?  2 : 3;
   3114
   3115			if (index == 0) {
   3116				/* 1st slot (RXOR) */
   3117				/* setup sources region (R1-2-3, R1-2-4,
   3118				 * or R1-2-5)
   3119				 */
   3120				if (test_bit(PPC440SPE_DESC_RXOR12,
   3121						&sw_desc->flags))
   3122					haddr = DMA_RXOR12 <<
   3123						DMA_CUED_REGION_OFF;
   3124				else if (test_bit(PPC440SPE_DESC_RXOR123,
   3125				    &sw_desc->flags))
   3126					haddr = DMA_RXOR123 <<
   3127						DMA_CUED_REGION_OFF;
   3128				else if (test_bit(PPC440SPE_DESC_RXOR124,
   3129				    &sw_desc->flags))
   3130					haddr = DMA_RXOR124 <<
   3131						DMA_CUED_REGION_OFF;
   3132				else if (test_bit(PPC440SPE_DESC_RXOR125,
   3133				    &sw_desc->flags))
   3134					haddr = DMA_RXOR125 <<
   3135						DMA_CUED_REGION_OFF;
   3136				else
   3137					BUG();
   3138				haddr |= DMA_CUED_XOR_BASE;
   3139				iter = ppc440spe_get_group_entry(sw_desc, 0);
   3140			} else if (index < iskip) {
   3141				/* 1st slot (RXOR)
   3142				 * shall actually set source address only once
   3143				 * instead of first <iskip>
   3144				 */
   3145				iter = NULL;
   3146			} else {
   3147				/* 2nd/3d and next slots (WXOR);
   3148				 * skip first slot with RXOR
   3149				 */
   3150				haddr = DMA_CUED_XOR_HB;
   3151				iter = ppc440spe_get_group_entry(sw_desc,
   3152				    index - iskip + sw_desc->dst_cnt);
   3153			}
   3154		} else {
   3155			int znum = 0;
   3156
   3157			/* WXOR-only operation; skip first slots with
   3158			 * zeroing destinations
   3159			 */
   3160			if (test_bit(PPC440SPE_ZERO_P, &sw_desc->flags))
   3161				znum++;
   3162			if (test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags))
   3163				znum++;
   3164
   3165			haddr = DMA_CUED_XOR_HB;
   3166			iter = ppc440spe_get_group_entry(sw_desc,
   3167					index + znum);
   3168		}
   3169
   3170		if (likely(iter)) {
   3171			ppc440spe_desc_set_src_addr(iter, chan, 0, haddr, addr);
   3172
   3173			if (!index &&
   3174			    test_bit(PPC440SPE_DESC_RXOR, &sw_desc->flags) &&
   3175			    sw_desc->dst_cnt == 2) {
   3176				/* if we have two destinations for RXOR, then
   3177				 * setup source in the second descr too
   3178				 */
   3179				iter = ppc440spe_get_group_entry(sw_desc, 1);
   3180				ppc440spe_desc_set_src_addr(iter, chan, 0,
   3181					haddr, addr);
   3182			}
   3183		}
   3184		break;
   3185
   3186	case PPC440SPE_XOR_ID:
   3187		/* DMA2 may do Biskup */
   3188		iter = sw_desc->group_head;
   3189		if (iter->dst_cnt == 2) {
   3190			/* both P & Q calculations required; set P src here */
   3191			ppc440spe_adma_dma2rxor_set_src(iter, index, addr);
   3192
   3193			/* this is for Q */
   3194			iter = ppc440spe_get_group_entry(sw_desc,
   3195				sw_desc->descs_per_op);
   3196		}
   3197		ppc440spe_adma_dma2rxor_set_src(iter, index, addr);
   3198		break;
   3199	}
   3200}
   3201
   3202/**
   3203 * ppc440spe_adma_memcpy_xor_set_src - set source address into descriptor
   3204 */
   3205static void ppc440spe_adma_memcpy_xor_set_src(
   3206		struct ppc440spe_adma_desc_slot *sw_desc,
   3207		dma_addr_t addr, int index)
   3208{
   3209	struct ppc440spe_adma_chan *chan;
   3210
   3211	chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
   3212	sw_desc = sw_desc->group_head;
   3213
   3214	if (likely(sw_desc))
   3215		ppc440spe_desc_set_src_addr(sw_desc, chan, index, 0, addr);
   3216}
   3217
   3218/**
   3219 * ppc440spe_adma_dma2rxor_inc_addr  -
   3220 */
   3221static void ppc440spe_adma_dma2rxor_inc_addr(
   3222		struct ppc440spe_adma_desc_slot *desc,
   3223		struct ppc440spe_rxor *cursor, int index, int src_cnt)
   3224{
   3225	cursor->addr_count++;
   3226	if (index == src_cnt - 1) {
   3227		ppc440spe_desc_set_xor_src_cnt(desc, cursor->addr_count);
   3228	} else if (cursor->addr_count == XOR_MAX_OPS) {
   3229		ppc440spe_desc_set_xor_src_cnt(desc, cursor->addr_count);
   3230		cursor->addr_count = 0;
   3231		cursor->desc_count++;
   3232	}
   3233}
   3234
   3235/**
   3236 * ppc440spe_adma_dma2rxor_prep_src - setup RXOR types in DMA2 CDB
   3237 */
   3238static int ppc440spe_adma_dma2rxor_prep_src(
   3239		struct ppc440spe_adma_desc_slot *hdesc,
   3240		struct ppc440spe_rxor *cursor, int index,
   3241		int src_cnt, u32 addr)
   3242{
   3243	u32 sign;
   3244	struct ppc440spe_adma_desc_slot *desc = hdesc;
   3245	int i;
   3246
   3247	for (i = 0; i < cursor->desc_count; i++) {
   3248		desc = list_entry(hdesc->chain_node.next,
   3249				  struct ppc440spe_adma_desc_slot,
   3250				  chain_node);
   3251	}
   3252
   3253	switch (cursor->state) {
   3254	case 0:
   3255		if (addr == cursor->addrl + cursor->len) {
   3256			/* direct RXOR */
   3257			cursor->state = 1;
   3258			cursor->xor_count++;
   3259			if (index == src_cnt-1) {
   3260				ppc440spe_rxor_set_region(desc,
   3261					cursor->addr_count,
   3262					DMA_RXOR12 << DMA_CUED_REGION_OFF);
   3263				ppc440spe_adma_dma2rxor_inc_addr(
   3264					desc, cursor, index, src_cnt);
   3265			}
   3266		} else if (cursor->addrl == addr + cursor->len) {
   3267			/* reverse RXOR */
   3268			cursor->state = 1;
   3269			cursor->xor_count++;
   3270			set_bit(cursor->addr_count, &desc->reverse_flags[0]);
   3271			if (index == src_cnt-1) {
   3272				ppc440spe_rxor_set_region(desc,
   3273					cursor->addr_count,
   3274					DMA_RXOR12 << DMA_CUED_REGION_OFF);
   3275				ppc440spe_adma_dma2rxor_inc_addr(
   3276					desc, cursor, index, src_cnt);
   3277			}
   3278		} else {
   3279			printk(KERN_ERR "Cannot build "
   3280				"DMA2 RXOR command block.\n");
   3281			BUG();
   3282		}
   3283		break;
   3284	case 1:
   3285		sign = test_bit(cursor->addr_count,
   3286				desc->reverse_flags)
   3287			? -1 : 1;
   3288		if (index == src_cnt-2 || (sign == -1
   3289			&& addr != cursor->addrl - 2*cursor->len)) {
   3290			cursor->state = 0;
   3291			cursor->xor_count = 1;
   3292			cursor->addrl = addr;
   3293			ppc440spe_rxor_set_region(desc,
   3294				cursor->addr_count,
   3295				DMA_RXOR12 << DMA_CUED_REGION_OFF);
   3296			ppc440spe_adma_dma2rxor_inc_addr(
   3297				desc, cursor, index, src_cnt);
   3298		} else if (addr == cursor->addrl + 2*sign*cursor->len) {
   3299			cursor->state = 2;
   3300			cursor->xor_count = 0;
   3301			ppc440spe_rxor_set_region(desc,
   3302				cursor->addr_count,
   3303				DMA_RXOR123 << DMA_CUED_REGION_OFF);
   3304			if (index == src_cnt-1) {
   3305				ppc440spe_adma_dma2rxor_inc_addr(
   3306					desc, cursor, index, src_cnt);
   3307			}
   3308		} else if (addr == cursor->addrl + 3*cursor->len) {
   3309			cursor->state = 2;
   3310			cursor->xor_count = 0;
   3311			ppc440spe_rxor_set_region(desc,
   3312				cursor->addr_count,
   3313				DMA_RXOR124 << DMA_CUED_REGION_OFF);
   3314			if (index == src_cnt-1) {
   3315				ppc440spe_adma_dma2rxor_inc_addr(
   3316					desc, cursor, index, src_cnt);
   3317			}
   3318		} else if (addr == cursor->addrl + 4*cursor->len) {
   3319			cursor->state = 2;
   3320			cursor->xor_count = 0;
   3321			ppc440spe_rxor_set_region(desc,
   3322				cursor->addr_count,
   3323				DMA_RXOR125 << DMA_CUED_REGION_OFF);
   3324			if (index == src_cnt-1) {
   3325				ppc440spe_adma_dma2rxor_inc_addr(
   3326					desc, cursor, index, src_cnt);
   3327			}
   3328		} else {
   3329			cursor->state = 0;
   3330			cursor->xor_count = 1;
   3331			cursor->addrl = addr;
   3332			ppc440spe_rxor_set_region(desc,
   3333				cursor->addr_count,
   3334				DMA_RXOR12 << DMA_CUED_REGION_OFF);
   3335			ppc440spe_adma_dma2rxor_inc_addr(
   3336				desc, cursor, index, src_cnt);
   3337		}
   3338		break;
   3339	case 2:
   3340		cursor->state = 0;
   3341		cursor->addrl = addr;
   3342		cursor->xor_count++;
   3343		if (index) {
   3344			ppc440spe_adma_dma2rxor_inc_addr(
   3345				desc, cursor, index, src_cnt);
   3346		}
   3347		break;
   3348	}
   3349
   3350	return 0;
   3351}
   3352
   3353/**
   3354 * ppc440spe_adma_dma2rxor_set_src - set RXOR source address; it's assumed that
   3355 *	ppc440spe_adma_dma2rxor_prep_src() has already done prior this call
   3356 */
   3357static void ppc440spe_adma_dma2rxor_set_src(
   3358		struct ppc440spe_adma_desc_slot *desc,
   3359		int index, dma_addr_t addr)
   3360{
   3361	struct xor_cb *xcb = desc->hw_desc;
   3362	int k = 0, op = 0, lop = 0;
   3363
   3364	/* get the RXOR operand which corresponds to index addr */
   3365	while (op <= index) {
   3366		lop = op;
   3367		if (k == XOR_MAX_OPS) {
   3368			k = 0;
   3369			desc = list_entry(desc->chain_node.next,
   3370				struct ppc440spe_adma_desc_slot, chain_node);
   3371			xcb = desc->hw_desc;
   3372
   3373		}
   3374		if ((xcb->ops[k++].h & (DMA_RXOR12 << DMA_CUED_REGION_OFF)) ==
   3375		    (DMA_RXOR12 << DMA_CUED_REGION_OFF))
   3376			op += 2;
   3377		else
   3378			op += 3;
   3379	}
   3380
   3381	BUG_ON(k < 1);
   3382
   3383	if (test_bit(k-1, desc->reverse_flags)) {
   3384		/* reverse operand order; put last op in RXOR group */
   3385		if (index == op - 1)
   3386			ppc440spe_rxor_set_src(desc, k - 1, addr);
   3387	} else {
   3388		/* direct operand order; put first op in RXOR group */
   3389		if (index == lop)
   3390			ppc440spe_rxor_set_src(desc, k - 1, addr);
   3391	}
   3392}
   3393
   3394/**
   3395 * ppc440spe_adma_dma2rxor_set_mult - set RXOR multipliers; it's assumed that
   3396 *	ppc440spe_adma_dma2rxor_prep_src() has already done prior this call
   3397 */
   3398static void ppc440spe_adma_dma2rxor_set_mult(
   3399		struct ppc440spe_adma_desc_slot *desc,
   3400		int index, u8 mult)
   3401{
   3402	struct xor_cb *xcb = desc->hw_desc;
   3403	int k = 0, op = 0, lop = 0;
   3404
   3405	/* get the RXOR operand which corresponds to index mult */
   3406	while (op <= index) {
   3407		lop = op;
   3408		if (k == XOR_MAX_OPS) {
   3409			k = 0;
   3410			desc = list_entry(desc->chain_node.next,
   3411					  struct ppc440spe_adma_desc_slot,
   3412					  chain_node);
   3413			xcb = desc->hw_desc;
   3414
   3415		}
   3416		if ((xcb->ops[k++].h & (DMA_RXOR12 << DMA_CUED_REGION_OFF)) ==
   3417		    (DMA_RXOR12 << DMA_CUED_REGION_OFF))
   3418			op += 2;
   3419		else
   3420			op += 3;
   3421	}
   3422
   3423	BUG_ON(k < 1);
   3424	if (test_bit(k-1, desc->reverse_flags)) {
   3425		/* reverse order */
   3426		ppc440spe_rxor_set_mult(desc, k - 1, op - index - 1, mult);
   3427	} else {
   3428		/* direct order */
   3429		ppc440spe_rxor_set_mult(desc, k - 1, index - lop, mult);
   3430	}
   3431}
   3432
   3433/**
   3434 * ppc440spe_init_rxor_cursor -
   3435 */
   3436static void ppc440spe_init_rxor_cursor(struct ppc440spe_rxor *cursor)
   3437{
   3438	memset(cursor, 0, sizeof(struct ppc440spe_rxor));
   3439	cursor->state = 2;
   3440}
   3441
   3442/**
   3443 * ppc440spe_adma_pq_set_src_mult - set multiplication coefficient into
   3444 * descriptor for the PQXOR operation
   3445 */
   3446static void ppc440spe_adma_pq_set_src_mult(
   3447		struct ppc440spe_adma_desc_slot *sw_desc,
   3448		unsigned char mult, int index, int dst_pos)
   3449{
   3450	struct ppc440spe_adma_chan *chan;
   3451	u32 mult_idx, mult_dst;
   3452	struct ppc440spe_adma_desc_slot *iter = NULL, *iter1 = NULL;
   3453
   3454	chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
   3455
   3456	switch (chan->device->id) {
   3457	case PPC440SPE_DMA0_ID:
   3458	case PPC440SPE_DMA1_ID:
   3459		if (test_bit(PPC440SPE_DESC_RXOR, &sw_desc->flags)) {
   3460			int region = test_bit(PPC440SPE_DESC_RXOR12,
   3461					&sw_desc->flags) ? 2 : 3;
   3462
   3463			if (index < region) {
   3464				/* RXOR multipliers */
   3465				iter = ppc440spe_get_group_entry(sw_desc,
   3466					sw_desc->dst_cnt - 1);
   3467				if (sw_desc->dst_cnt == 2)
   3468					iter1 = ppc440spe_get_group_entry(
   3469							sw_desc, 0);
   3470
   3471				mult_idx = DMA_CUED_MULT1_OFF + (index << 3);
   3472				mult_dst = DMA_CDB_SG_SRC;
   3473			} else {
   3474				/* WXOR multiplier */
   3475				iter = ppc440spe_get_group_entry(sw_desc,
   3476							index - region +
   3477							sw_desc->dst_cnt);
   3478				mult_idx = DMA_CUED_MULT1_OFF;
   3479				mult_dst = dst_pos ? DMA_CDB_SG_DST2 :
   3480						     DMA_CDB_SG_DST1;
   3481			}
   3482		} else {
   3483			int znum = 0;
   3484
   3485			/* WXOR-only;
   3486			 * skip first slots with destinations (if ZERO_DST has
   3487			 * place)
   3488			 */
   3489			if (test_bit(PPC440SPE_ZERO_P, &sw_desc->flags))
   3490				znum++;
   3491			if (test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags))
   3492				znum++;
   3493
   3494			iter = ppc440spe_get_group_entry(sw_desc, index + znum);
   3495			mult_idx = DMA_CUED_MULT1_OFF;
   3496			mult_dst = dst_pos ? DMA_CDB_SG_DST2 : DMA_CDB_SG_DST1;
   3497		}
   3498
   3499		if (likely(iter)) {
   3500			ppc440spe_desc_set_src_mult(iter, chan,
   3501				mult_idx, mult_dst, mult);
   3502
   3503			if (unlikely(iter1)) {
   3504				/* if we have two destinations for RXOR, then
   3505				 * we've just set Q mult. Set-up P now.
   3506				 */
   3507				ppc440spe_desc_set_src_mult(iter1, chan,
   3508					mult_idx, mult_dst, 1);
   3509			}
   3510
   3511		}
   3512		break;
   3513
   3514	case PPC440SPE_XOR_ID:
   3515		iter = sw_desc->group_head;
   3516		if (sw_desc->dst_cnt == 2) {
   3517			/* both P & Q calculations required; set P mult here */
   3518			ppc440spe_adma_dma2rxor_set_mult(iter, index, 1);
   3519
   3520			/* and then set Q mult */
   3521			iter = ppc440spe_get_group_entry(sw_desc,
   3522			       sw_desc->descs_per_op);
   3523		}
   3524		ppc440spe_adma_dma2rxor_set_mult(iter, index, mult);
   3525		break;
   3526	}
   3527}
   3528
   3529/**
   3530 * ppc440spe_adma_free_chan_resources - free the resources allocated
   3531 */
   3532static void ppc440spe_adma_free_chan_resources(struct dma_chan *chan)
   3533{
   3534	struct ppc440spe_adma_chan *ppc440spe_chan;
   3535	struct ppc440spe_adma_desc_slot *iter, *_iter;
   3536	int in_use_descs = 0;
   3537
   3538	ppc440spe_chan = to_ppc440spe_adma_chan(chan);
   3539	ppc440spe_adma_slot_cleanup(ppc440spe_chan);
   3540
   3541	spin_lock_bh(&ppc440spe_chan->lock);
   3542	list_for_each_entry_safe(iter, _iter, &ppc440spe_chan->chain,
   3543					chain_node) {
   3544		in_use_descs++;
   3545		list_del(&iter->chain_node);
   3546	}
   3547	list_for_each_entry_safe_reverse(iter, _iter,
   3548			&ppc440spe_chan->all_slots, slot_node) {
   3549		list_del(&iter->slot_node);
   3550		kfree(iter);
   3551		ppc440spe_chan->slots_allocated--;
   3552	}
   3553	ppc440spe_chan->last_used = NULL;
   3554
   3555	dev_dbg(ppc440spe_chan->device->common.dev,
   3556		"ppc440spe adma%d %s slots_allocated %d\n",
   3557		ppc440spe_chan->device->id,
   3558		__func__, ppc440spe_chan->slots_allocated);
   3559	spin_unlock_bh(&ppc440spe_chan->lock);
   3560
   3561	/* one is ok since we left it on there on purpose */
   3562	if (in_use_descs > 1)
   3563		printk(KERN_ERR "SPE: Freeing %d in use descriptors!\n",
   3564			in_use_descs - 1);
   3565}
   3566
   3567/**
   3568 * ppc440spe_adma_tx_status - poll the status of an ADMA transaction
   3569 * @chan: ADMA channel handle
   3570 * @cookie: ADMA transaction identifier
   3571 * @txstate: a holder for the current state of the channel
   3572 */
   3573static enum dma_status ppc440spe_adma_tx_status(struct dma_chan *chan,
   3574			dma_cookie_t cookie, struct dma_tx_state *txstate)
   3575{
   3576	struct ppc440spe_adma_chan *ppc440spe_chan;
   3577	enum dma_status ret;
   3578
   3579	ppc440spe_chan = to_ppc440spe_adma_chan(chan);
   3580	ret = dma_cookie_status(chan, cookie, txstate);
   3581	if (ret == DMA_COMPLETE)
   3582		return ret;
   3583
   3584	ppc440spe_adma_slot_cleanup(ppc440spe_chan);
   3585
   3586	return dma_cookie_status(chan, cookie, txstate);
   3587}
   3588
   3589/**
   3590 * ppc440spe_adma_eot_handler - end of transfer interrupt handler
   3591 */
   3592static irqreturn_t ppc440spe_adma_eot_handler(int irq, void *data)
   3593{
   3594	struct ppc440spe_adma_chan *chan = data;
   3595
   3596	dev_dbg(chan->device->common.dev,
   3597		"ppc440spe adma%d: %s\n", chan->device->id, __func__);
   3598
   3599	tasklet_schedule(&chan->irq_tasklet);
   3600	ppc440spe_adma_device_clear_eot_status(chan);
   3601
   3602	return IRQ_HANDLED;
   3603}
   3604
   3605/**
   3606 * ppc440spe_adma_err_handler - DMA error interrupt handler;
   3607 *	do the same things as a eot handler
   3608 */
   3609static irqreturn_t ppc440spe_adma_err_handler(int irq, void *data)
   3610{
   3611	struct ppc440spe_adma_chan *chan = data;
   3612
   3613	dev_dbg(chan->device->common.dev,
   3614		"ppc440spe adma%d: %s\n", chan->device->id, __func__);
   3615
   3616	tasklet_schedule(&chan->irq_tasklet);
   3617	ppc440spe_adma_device_clear_eot_status(chan);
   3618
   3619	return IRQ_HANDLED;
   3620}
   3621
   3622/**
   3623 * ppc440spe_test_callback - called when test operation has been done
   3624 */
   3625static void ppc440spe_test_callback(void *unused)
   3626{
   3627	complete(&ppc440spe_r6_test_comp);
   3628}
   3629
   3630/**
   3631 * ppc440spe_adma_issue_pending - flush all pending descriptors to h/w
   3632 */
   3633static void ppc440spe_adma_issue_pending(struct dma_chan *chan)
   3634{
   3635	struct ppc440spe_adma_chan *ppc440spe_chan;
   3636
   3637	ppc440spe_chan = to_ppc440spe_adma_chan(chan);
   3638	dev_dbg(ppc440spe_chan->device->common.dev,
   3639		"ppc440spe adma%d: %s %d \n", ppc440spe_chan->device->id,
   3640		__func__, ppc440spe_chan->pending);
   3641
   3642	if (ppc440spe_chan->pending) {
   3643		ppc440spe_chan->pending = 0;
   3644		ppc440spe_chan_append(ppc440spe_chan);
   3645	}
   3646}
   3647
   3648/**
   3649 * ppc440spe_chan_start_null_xor - initiate the first XOR operation (DMA engines
   3650 *	use FIFOs (as opposite to chains used in XOR) so this is a XOR
   3651 *	specific operation)
   3652 */
   3653static void ppc440spe_chan_start_null_xor(struct ppc440spe_adma_chan *chan)
   3654{
   3655	struct ppc440spe_adma_desc_slot *sw_desc, *group_start;
   3656	dma_cookie_t cookie;
   3657	int slot_cnt, slots_per_op;
   3658
   3659	dev_dbg(chan->device->common.dev,
   3660		"ppc440spe adma%d: %s\n", chan->device->id, __func__);
   3661
   3662	spin_lock_bh(&chan->lock);
   3663	slot_cnt = ppc440spe_chan_xor_slot_count(0, 2, &slots_per_op);
   3664	sw_desc = ppc440spe_adma_alloc_slots(chan, slot_cnt, slots_per_op);
   3665	if (sw_desc) {
   3666		group_start = sw_desc->group_head;
   3667		list_splice_init(&sw_desc->group_list, &chan->chain);
   3668		async_tx_ack(&sw_desc->async_tx);
   3669		ppc440spe_desc_init_null_xor(group_start);
   3670
   3671		cookie = dma_cookie_assign(&sw_desc->async_tx);
   3672
   3673		/* initialize the completed cookie to be less than
   3674		 * the most recently used cookie
   3675		 */
   3676		chan->common.completed_cookie = cookie - 1;
   3677
   3678		/* channel should not be busy */
   3679		BUG_ON(ppc440spe_chan_is_busy(chan));
   3680
   3681		/* set the descriptor address */
   3682		ppc440spe_chan_set_first_xor_descriptor(chan, sw_desc);
   3683
   3684		/* run the descriptor */
   3685		ppc440spe_chan_run(chan);
   3686	} else
   3687		printk(KERN_ERR "ppc440spe adma%d"
   3688			" failed to allocate null descriptor\n",
   3689			chan->device->id);
   3690	spin_unlock_bh(&chan->lock);
   3691}
   3692
   3693/**
   3694 * ppc440spe_test_raid6 - test are RAID-6 capabilities enabled successfully.
   3695 *	For this we just perform one WXOR operation with the same source
   3696 *	and destination addresses, the GF-multiplier is 1; so if RAID-6
   3697 *	capabilities are enabled then we'll get src/dst filled with zero.
   3698 */
   3699static int ppc440spe_test_raid6(struct ppc440spe_adma_chan *chan)
   3700{
   3701	struct ppc440spe_adma_desc_slot *sw_desc, *iter;
   3702	struct page *pg;
   3703	char *a;
   3704	dma_addr_t dma_addr, addrs[2];
   3705	unsigned long op = 0;
   3706	int rval = 0;
   3707
   3708	set_bit(PPC440SPE_DESC_WXOR, &op);
   3709
   3710	pg = alloc_page(GFP_KERNEL);
   3711	if (!pg)
   3712		return -ENOMEM;
   3713
   3714	spin_lock_bh(&chan->lock);
   3715	sw_desc = ppc440spe_adma_alloc_slots(chan, 1, 1);
   3716	if (sw_desc) {
   3717		/* 1 src, 1 dsr, int_ena, WXOR */
   3718		ppc440spe_desc_init_dma01pq(sw_desc, 1, 1, 1, op);
   3719		list_for_each_entry(iter, &sw_desc->group_list, chain_node) {
   3720			ppc440spe_desc_set_byte_count(iter, chan, PAGE_SIZE);
   3721			iter->unmap_len = PAGE_SIZE;
   3722		}
   3723	} else {
   3724		rval = -EFAULT;
   3725		spin_unlock_bh(&chan->lock);
   3726		goto exit;
   3727	}
   3728	spin_unlock_bh(&chan->lock);
   3729
   3730	/* Fill the test page with ones */
   3731	memset(page_address(pg), 0xFF, PAGE_SIZE);
   3732	dma_addr = dma_map_page(chan->device->dev, pg, 0,
   3733				PAGE_SIZE, DMA_BIDIRECTIONAL);
   3734
   3735	/* Setup addresses */
   3736	ppc440spe_adma_pq_set_src(sw_desc, dma_addr, 0);
   3737	ppc440spe_adma_pq_set_src_mult(sw_desc, 1, 0, 0);
   3738	addrs[0] = dma_addr;
   3739	addrs[1] = 0;
   3740	ppc440spe_adma_pq_set_dest(sw_desc, addrs, DMA_PREP_PQ_DISABLE_Q);
   3741
   3742	async_tx_ack(&sw_desc->async_tx);
   3743	sw_desc->async_tx.callback = ppc440spe_test_callback;
   3744	sw_desc->async_tx.callback_param = NULL;
   3745
   3746	init_completion(&ppc440spe_r6_test_comp);
   3747
   3748	ppc440spe_adma_tx_submit(&sw_desc->async_tx);
   3749	ppc440spe_adma_issue_pending(&chan->common);
   3750
   3751	wait_for_completion(&ppc440spe_r6_test_comp);
   3752
   3753	/* Now check if the test page is zeroed */
   3754	a = page_address(pg);
   3755	if ((*(u32 *)a) == 0 && memcmp(a, a+4, PAGE_SIZE-4) == 0) {
   3756		/* page is zero - RAID-6 enabled */
   3757		rval = 0;
   3758	} else {
   3759		/* RAID-6 was not enabled */
   3760		rval = -EINVAL;
   3761	}
   3762exit:
   3763	__free_page(pg);
   3764	return rval;
   3765}
   3766
   3767static void ppc440spe_adma_init_capabilities(struct ppc440spe_adma_device *adev)
   3768{
   3769	switch (adev->id) {
   3770	case PPC440SPE_DMA0_ID:
   3771	case PPC440SPE_DMA1_ID:
   3772		dma_cap_set(DMA_MEMCPY, adev->common.cap_mask);
   3773		dma_cap_set(DMA_INTERRUPT, adev->common.cap_mask);
   3774		dma_cap_set(DMA_PQ, adev->common.cap_mask);
   3775		dma_cap_set(DMA_PQ_VAL, adev->common.cap_mask);
   3776		dma_cap_set(DMA_XOR_VAL, adev->common.cap_mask);
   3777		break;
   3778	case PPC440SPE_XOR_ID:
   3779		dma_cap_set(DMA_XOR, adev->common.cap_mask);
   3780		dma_cap_set(DMA_PQ, adev->common.cap_mask);
   3781		dma_cap_set(DMA_INTERRUPT, adev->common.cap_mask);
   3782		adev->common.cap_mask = adev->common.cap_mask;
   3783		break;
   3784	}
   3785
   3786	/* Set base routines */
   3787	adev->common.device_alloc_chan_resources =
   3788				ppc440spe_adma_alloc_chan_resources;
   3789	adev->common.device_free_chan_resources =
   3790				ppc440spe_adma_free_chan_resources;
   3791	adev->common.device_tx_status = ppc440spe_adma_tx_status;
   3792	adev->common.device_issue_pending = ppc440spe_adma_issue_pending;
   3793
   3794	/* Set prep routines based on capability */
   3795	if (dma_has_cap(DMA_MEMCPY, adev->common.cap_mask)) {
   3796		adev->common.device_prep_dma_memcpy =
   3797			ppc440spe_adma_prep_dma_memcpy;
   3798	}
   3799	if (dma_has_cap(DMA_XOR, adev->common.cap_mask)) {
   3800		adev->common.max_xor = XOR_MAX_OPS;
   3801		adev->common.device_prep_dma_xor =
   3802			ppc440spe_adma_prep_dma_xor;
   3803	}
   3804	if (dma_has_cap(DMA_PQ, adev->common.cap_mask)) {
   3805		switch (adev->id) {
   3806		case PPC440SPE_DMA0_ID:
   3807			dma_set_maxpq(&adev->common,
   3808				DMA0_FIFO_SIZE / sizeof(struct dma_cdb), 0);
   3809			break;
   3810		case PPC440SPE_DMA1_ID:
   3811			dma_set_maxpq(&adev->common,
   3812				DMA1_FIFO_SIZE / sizeof(struct dma_cdb), 0);
   3813			break;
   3814		case PPC440SPE_XOR_ID:
   3815			adev->common.max_pq = XOR_MAX_OPS * 3;
   3816			break;
   3817		}
   3818		adev->common.device_prep_dma_pq =
   3819			ppc440spe_adma_prep_dma_pq;
   3820	}
   3821	if (dma_has_cap(DMA_PQ_VAL, adev->common.cap_mask)) {
   3822		switch (adev->id) {
   3823		case PPC440SPE_DMA0_ID:
   3824			adev->common.max_pq = DMA0_FIFO_SIZE /
   3825						sizeof(struct dma_cdb);
   3826			break;
   3827		case PPC440SPE_DMA1_ID:
   3828			adev->common.max_pq = DMA1_FIFO_SIZE /
   3829						sizeof(struct dma_cdb);
   3830			break;
   3831		}
   3832		adev->common.device_prep_dma_pq_val =
   3833			ppc440spe_adma_prep_dma_pqzero_sum;
   3834	}
   3835	if (dma_has_cap(DMA_XOR_VAL, adev->common.cap_mask)) {
   3836		switch (adev->id) {
   3837		case PPC440SPE_DMA0_ID:
   3838			adev->common.max_xor = DMA0_FIFO_SIZE /
   3839						sizeof(struct dma_cdb);
   3840			break;
   3841		case PPC440SPE_DMA1_ID:
   3842			adev->common.max_xor = DMA1_FIFO_SIZE /
   3843						sizeof(struct dma_cdb);
   3844			break;
   3845		}
   3846		adev->common.device_prep_dma_xor_val =
   3847			ppc440spe_adma_prep_dma_xor_zero_sum;
   3848	}
   3849	if (dma_has_cap(DMA_INTERRUPT, adev->common.cap_mask)) {
   3850		adev->common.device_prep_dma_interrupt =
   3851			ppc440spe_adma_prep_dma_interrupt;
   3852	}
   3853	pr_info("%s: AMCC(R) PPC440SP(E) ADMA Engine: "
   3854	  "( %s%s%s%s%s%s)\n",
   3855	  dev_name(adev->dev),
   3856	  dma_has_cap(DMA_PQ, adev->common.cap_mask) ? "pq " : "",
   3857	  dma_has_cap(DMA_PQ_VAL, adev->common.cap_mask) ? "pq_val " : "",
   3858	  dma_has_cap(DMA_XOR, adev->common.cap_mask) ? "xor " : "",
   3859	  dma_has_cap(DMA_XOR_VAL, adev->common.cap_mask) ? "xor_val " : "",
   3860	  dma_has_cap(DMA_MEMCPY, adev->common.cap_mask) ? "memcpy " : "",
   3861	  dma_has_cap(DMA_INTERRUPT, adev->common.cap_mask) ? "intr " : "");
   3862}
   3863
   3864static int ppc440spe_adma_setup_irqs(struct ppc440spe_adma_device *adev,
   3865				     struct ppc440spe_adma_chan *chan,
   3866				     int *initcode)
   3867{
   3868	struct platform_device *ofdev;
   3869	struct device_node *np;
   3870	int ret;
   3871
   3872	ofdev = container_of(adev->dev, struct platform_device, dev);
   3873	np = ofdev->dev.of_node;
   3874	if (adev->id != PPC440SPE_XOR_ID) {
   3875		adev->err_irq = irq_of_parse_and_map(np, 1);
   3876		if (!adev->err_irq) {
   3877			dev_warn(adev->dev, "no err irq resource?\n");
   3878			*initcode = PPC_ADMA_INIT_IRQ2;
   3879			adev->err_irq = -ENXIO;
   3880		} else
   3881			atomic_inc(&ppc440spe_adma_err_irq_ref);
   3882	} else {
   3883		adev->err_irq = -ENXIO;
   3884	}
   3885
   3886	adev->irq = irq_of_parse_and_map(np, 0);
   3887	if (!adev->irq) {
   3888		dev_err(adev->dev, "no irq resource\n");
   3889		*initcode = PPC_ADMA_INIT_IRQ1;
   3890		ret = -ENXIO;
   3891		goto err_irq_map;
   3892	}
   3893	dev_dbg(adev->dev, "irq %d, err irq %d\n",
   3894		adev->irq, adev->err_irq);
   3895
   3896	ret = request_irq(adev->irq, ppc440spe_adma_eot_handler,
   3897			  0, dev_driver_string(adev->dev), chan);
   3898	if (ret) {
   3899		dev_err(adev->dev, "can't request irq %d\n",
   3900			adev->irq);
   3901		*initcode = PPC_ADMA_INIT_IRQ1;
   3902		ret = -EIO;
   3903		goto err_req1;
   3904	}
   3905
   3906	/* only DMA engines have a separate error IRQ
   3907	 * so it's Ok if err_irq < 0 in XOR engine case.
   3908	 */
   3909	if (adev->err_irq > 0) {
   3910		/* both DMA engines share common error IRQ */
   3911		ret = request_irq(adev->err_irq,
   3912				  ppc440spe_adma_err_handler,
   3913				  IRQF_SHARED,
   3914				  dev_driver_string(adev->dev),
   3915				  chan);
   3916		if (ret) {
   3917			dev_err(adev->dev, "can't request irq %d\n",
   3918				adev->err_irq);
   3919			*initcode = PPC_ADMA_INIT_IRQ2;
   3920			ret = -EIO;
   3921			goto err_req2;
   3922		}
   3923	}
   3924
   3925	if (adev->id == PPC440SPE_XOR_ID) {
   3926		/* enable XOR engine interrupts */
   3927		iowrite32be(XOR_IE_CBCIE_BIT | XOR_IE_ICBIE_BIT |
   3928			    XOR_IE_ICIE_BIT | XOR_IE_RPTIE_BIT,
   3929			    &adev->xor_reg->ier);
   3930	} else {
   3931		u32 mask, enable;
   3932
   3933		np = of_find_compatible_node(NULL, NULL, "ibm,i2o-440spe");
   3934		if (!np) {
   3935			pr_err("%s: can't find I2O device tree node\n",
   3936				__func__);
   3937			ret = -ENODEV;
   3938			goto err_req2;
   3939		}
   3940		adev->i2o_reg = of_iomap(np, 0);
   3941		if (!adev->i2o_reg) {
   3942			pr_err("%s: failed to map I2O registers\n", __func__);
   3943			of_node_put(np);
   3944			ret = -EINVAL;
   3945			goto err_req2;
   3946		}
   3947		of_node_put(np);
   3948		/* Unmask 'CS FIFO Attention' interrupts and
   3949		 * enable generating interrupts on errors
   3950		 */
   3951		enable = (adev->id == PPC440SPE_DMA0_ID) ?
   3952			 ~(I2O_IOPIM_P0SNE | I2O_IOPIM_P0EM) :
   3953			 ~(I2O_IOPIM_P1SNE | I2O_IOPIM_P1EM);
   3954		mask = ioread32(&adev->i2o_reg->iopim) & enable;
   3955		iowrite32(mask, &adev->i2o_reg->iopim);
   3956	}
   3957	return 0;
   3958
   3959err_req2:
   3960	free_irq(adev->irq, chan);
   3961err_req1:
   3962	irq_dispose_mapping(adev->irq);
   3963err_irq_map:
   3964	if (adev->err_irq > 0) {
   3965		if (atomic_dec_and_test(&ppc440spe_adma_err_irq_ref))
   3966			irq_dispose_mapping(adev->err_irq);
   3967	}
   3968	return ret;
   3969}
   3970
   3971static void ppc440spe_adma_release_irqs(struct ppc440spe_adma_device *adev,
   3972					struct ppc440spe_adma_chan *chan)
   3973{
   3974	u32 mask, disable;
   3975
   3976	if (adev->id == PPC440SPE_XOR_ID) {
   3977		/* disable XOR engine interrupts */
   3978		mask = ioread32be(&adev->xor_reg->ier);
   3979		mask &= ~(XOR_IE_CBCIE_BIT | XOR_IE_ICBIE_BIT |
   3980			  XOR_IE_ICIE_BIT | XOR_IE_RPTIE_BIT);
   3981		iowrite32be(mask, &adev->xor_reg->ier);
   3982	} else {
   3983		/* disable DMAx engine interrupts */
   3984		disable = (adev->id == PPC440SPE_DMA0_ID) ?
   3985			  (I2O_IOPIM_P0SNE | I2O_IOPIM_P0EM) :
   3986			  (I2O_IOPIM_P1SNE | I2O_IOPIM_P1EM);
   3987		mask = ioread32(&adev->i2o_reg->iopim) | disable;
   3988		iowrite32(mask, &adev->i2o_reg->iopim);
   3989	}
   3990	free_irq(adev->irq, chan);
   3991	irq_dispose_mapping(adev->irq);
   3992	if (adev->err_irq > 0) {
   3993		free_irq(adev->err_irq, chan);
   3994		if (atomic_dec_and_test(&ppc440spe_adma_err_irq_ref)) {
   3995			irq_dispose_mapping(adev->err_irq);
   3996			iounmap(adev->i2o_reg);
   3997		}
   3998	}
   3999}
   4000
   4001/**
   4002 * ppc440spe_adma_probe - probe the asynch device
   4003 */
   4004static int ppc440spe_adma_probe(struct platform_device *ofdev)
   4005{
   4006	struct device_node *np = ofdev->dev.of_node;
   4007	struct resource res;
   4008	struct ppc440spe_adma_device *adev;
   4009	struct ppc440spe_adma_chan *chan;
   4010	struct ppc_dma_chan_ref *ref, *_ref;
   4011	int ret = 0, initcode = PPC_ADMA_INIT_OK;
   4012	const u32 *idx;
   4013	int len;
   4014	void *regs;
   4015	u32 id, pool_size;
   4016
   4017	if (of_device_is_compatible(np, "amcc,xor-accelerator")) {
   4018		id = PPC440SPE_XOR_ID;
   4019		/* As far as the XOR engine is concerned, it does not
   4020		 * use FIFOs but uses linked list. So there is no dependency
   4021		 * between pool size to allocate and the engine configuration.
   4022		 */
   4023		pool_size = PAGE_SIZE << 1;
   4024	} else {
   4025		/* it is DMA0 or DMA1 */
   4026		idx = of_get_property(np, "cell-index", &len);
   4027		if (!idx || (len != sizeof(u32))) {
   4028			dev_err(&ofdev->dev, "Device node %pOF has missing "
   4029				"or invalid cell-index property\n",
   4030				np);
   4031			return -EINVAL;
   4032		}
   4033		id = *idx;
   4034		/* DMA0,1 engines use FIFO to maintain CDBs, so we
   4035		 * should allocate the pool accordingly to size of this
   4036		 * FIFO. Thus, the pool size depends on the FIFO depth:
   4037		 * how much CDBs pointers the FIFO may contain then so
   4038		 * much CDBs we should provide in the pool.
   4039		 * That is
   4040		 *   CDB size = 32B;
   4041		 *   CDBs number = (DMA0_FIFO_SIZE >> 3);
   4042		 *   Pool size = CDBs number * CDB size =
   4043		 *      = (DMA0_FIFO_SIZE >> 3) << 5 = DMA0_FIFO_SIZE << 2.
   4044		 */
   4045		pool_size = (id == PPC440SPE_DMA0_ID) ?
   4046			    DMA0_FIFO_SIZE : DMA1_FIFO_SIZE;
   4047		pool_size <<= 2;
   4048	}
   4049
   4050	if (of_address_to_resource(np, 0, &res)) {
   4051		dev_err(&ofdev->dev, "failed to get memory resource\n");
   4052		initcode = PPC_ADMA_INIT_MEMRES;
   4053		ret = -ENODEV;
   4054		goto out;
   4055	}
   4056
   4057	if (!request_mem_region(res.start, resource_size(&res),
   4058				dev_driver_string(&ofdev->dev))) {
   4059		dev_err(&ofdev->dev, "failed to request memory region %pR\n",
   4060			&res);
   4061		initcode = PPC_ADMA_INIT_MEMREG;
   4062		ret = -EBUSY;
   4063		goto out;
   4064	}
   4065
   4066	/* create a device */
   4067	adev = kzalloc(sizeof(*adev), GFP_KERNEL);
   4068	if (!adev) {
   4069		initcode = PPC_ADMA_INIT_ALLOC;
   4070		ret = -ENOMEM;
   4071		goto err_adev_alloc;
   4072	}
   4073
   4074	adev->id = id;
   4075	adev->pool_size = pool_size;
   4076	/* allocate coherent memory for hardware descriptors */
   4077	adev->dma_desc_pool_virt = dma_alloc_coherent(&ofdev->dev,
   4078					adev->pool_size, &adev->dma_desc_pool,
   4079					GFP_KERNEL);
   4080	if (adev->dma_desc_pool_virt == NULL) {
   4081		dev_err(&ofdev->dev, "failed to allocate %d bytes of coherent "
   4082			"memory for hardware descriptors\n",
   4083			adev->pool_size);
   4084		initcode = PPC_ADMA_INIT_COHERENT;
   4085		ret = -ENOMEM;
   4086		goto err_dma_alloc;
   4087	}
   4088	dev_dbg(&ofdev->dev, "allocated descriptor pool virt 0x%p phys 0x%llx\n",
   4089		adev->dma_desc_pool_virt, (u64)adev->dma_desc_pool);
   4090
   4091	regs = ioremap(res.start, resource_size(&res));
   4092	if (!regs) {
   4093		dev_err(&ofdev->dev, "failed to ioremap regs!\n");
   4094		ret = -ENOMEM;
   4095		goto err_regs_alloc;
   4096	}
   4097
   4098	if (adev->id == PPC440SPE_XOR_ID) {
   4099		adev->xor_reg = regs;
   4100		/* Reset XOR */
   4101		iowrite32be(XOR_CRSR_XASR_BIT, &adev->xor_reg->crsr);
   4102		iowrite32be(XOR_CRSR_64BA_BIT, &adev->xor_reg->crrr);
   4103	} else {
   4104		size_t fifo_size = (adev->id == PPC440SPE_DMA0_ID) ?
   4105				   DMA0_FIFO_SIZE : DMA1_FIFO_SIZE;
   4106		adev->dma_reg = regs;
   4107		/* DMAx_FIFO_SIZE is defined in bytes,
   4108		 * <fsiz> - is defined in number of CDB pointers (8byte).
   4109		 * DMA FIFO Length = CSlength + CPlength, where
   4110		 * CSlength = CPlength = (fsiz + 1) * 8.
   4111		 */
   4112		iowrite32(DMA_FIFO_ENABLE | ((fifo_size >> 3) - 2),
   4113			  &adev->dma_reg->fsiz);
   4114		/* Configure DMA engine */
   4115		iowrite32(DMA_CFG_DXEPR_HP | DMA_CFG_DFMPP_HP | DMA_CFG_FALGN,
   4116			  &adev->dma_reg->cfg);
   4117		/* Clear Status */
   4118		iowrite32(~0, &adev->dma_reg->dsts);
   4119	}
   4120
   4121	adev->dev = &ofdev->dev;
   4122	adev->common.dev = &ofdev->dev;
   4123	INIT_LIST_HEAD(&adev->common.channels);
   4124	platform_set_drvdata(ofdev, adev);
   4125
   4126	/* create a channel */
   4127	chan = kzalloc(sizeof(*chan), GFP_KERNEL);
   4128	if (!chan) {
   4129		initcode = PPC_ADMA_INIT_CHANNEL;
   4130		ret = -ENOMEM;
   4131		goto err_chan_alloc;
   4132	}
   4133
   4134	spin_lock_init(&chan->lock);
   4135	INIT_LIST_HEAD(&chan->chain);
   4136	INIT_LIST_HEAD(&chan->all_slots);
   4137	chan->device = adev;
   4138	chan->common.device = &adev->common;
   4139	dma_cookie_init(&chan->common);
   4140	list_add_tail(&chan->common.device_node, &adev->common.channels);
   4141	tasklet_setup(&chan->irq_tasklet, ppc440spe_adma_tasklet);
   4142
   4143	/* allocate and map helper pages for async validation or
   4144	 * async_mult/async_sum_product operations on DMA0/1.
   4145	 */
   4146	if (adev->id != PPC440SPE_XOR_ID) {
   4147		chan->pdest_page = alloc_page(GFP_KERNEL);
   4148		chan->qdest_page = alloc_page(GFP_KERNEL);
   4149		if (!chan->pdest_page ||
   4150		    !chan->qdest_page) {
   4151			if (chan->pdest_page)
   4152				__free_page(chan->pdest_page);
   4153			if (chan->qdest_page)
   4154				__free_page(chan->qdest_page);
   4155			ret = -ENOMEM;
   4156			goto err_page_alloc;
   4157		}
   4158		chan->pdest = dma_map_page(&ofdev->dev, chan->pdest_page, 0,
   4159					   PAGE_SIZE, DMA_BIDIRECTIONAL);
   4160		chan->qdest = dma_map_page(&ofdev->dev, chan->qdest_page, 0,
   4161					   PAGE_SIZE, DMA_BIDIRECTIONAL);
   4162	}
   4163
   4164	ref = kmalloc(sizeof(*ref), GFP_KERNEL);
   4165	if (ref) {
   4166		ref->chan = &chan->common;
   4167		INIT_LIST_HEAD(&ref->node);
   4168		list_add_tail(&ref->node, &ppc440spe_adma_chan_list);
   4169	} else {
   4170		dev_err(&ofdev->dev, "failed to allocate channel reference!\n");
   4171		ret = -ENOMEM;
   4172		goto err_ref_alloc;
   4173	}
   4174
   4175	ret = ppc440spe_adma_setup_irqs(adev, chan, &initcode);
   4176	if (ret)
   4177		goto err_irq;
   4178
   4179	ppc440spe_adma_init_capabilities(adev);
   4180
   4181	ret = dma_async_device_register(&adev->common);
   4182	if (ret) {
   4183		initcode = PPC_ADMA_INIT_REGISTER;
   4184		dev_err(&ofdev->dev, "failed to register dma device\n");
   4185		goto err_dev_reg;
   4186	}
   4187
   4188	goto out;
   4189
   4190err_dev_reg:
   4191	ppc440spe_adma_release_irqs(adev, chan);
   4192err_irq:
   4193	list_for_each_entry_safe(ref, _ref, &ppc440spe_adma_chan_list, node) {
   4194		if (chan == to_ppc440spe_adma_chan(ref->chan)) {
   4195			list_del(&ref->node);
   4196			kfree(ref);
   4197		}
   4198	}
   4199err_ref_alloc:
   4200	if (adev->id != PPC440SPE_XOR_ID) {
   4201		dma_unmap_page(&ofdev->dev, chan->pdest,
   4202			       PAGE_SIZE, DMA_BIDIRECTIONAL);
   4203		dma_unmap_page(&ofdev->dev, chan->qdest,
   4204			       PAGE_SIZE, DMA_BIDIRECTIONAL);
   4205		__free_page(chan->pdest_page);
   4206		__free_page(chan->qdest_page);
   4207	}
   4208err_page_alloc:
   4209	kfree(chan);
   4210err_chan_alloc:
   4211	if (adev->id == PPC440SPE_XOR_ID)
   4212		iounmap(adev->xor_reg);
   4213	else
   4214		iounmap(adev->dma_reg);
   4215err_regs_alloc:
   4216	dma_free_coherent(adev->dev, adev->pool_size,
   4217			  adev->dma_desc_pool_virt,
   4218			  adev->dma_desc_pool);
   4219err_dma_alloc:
   4220	kfree(adev);
   4221err_adev_alloc:
   4222	release_mem_region(res.start, resource_size(&res));
   4223out:
   4224	if (id < PPC440SPE_ADMA_ENGINES_NUM)
   4225		ppc440spe_adma_devices[id] = initcode;
   4226
   4227	return ret;
   4228}
   4229
   4230/**
   4231 * ppc440spe_adma_remove - remove the asynch device
   4232 */
   4233static int ppc440spe_adma_remove(struct platform_device *ofdev)
   4234{
   4235	struct ppc440spe_adma_device *adev = platform_get_drvdata(ofdev);
   4236	struct device_node *np = ofdev->dev.of_node;
   4237	struct resource res;
   4238	struct dma_chan *chan, *_chan;
   4239	struct ppc_dma_chan_ref *ref, *_ref;
   4240	struct ppc440spe_adma_chan *ppc440spe_chan;
   4241
   4242	if (adev->id < PPC440SPE_ADMA_ENGINES_NUM)
   4243		ppc440spe_adma_devices[adev->id] = -1;
   4244
   4245	dma_async_device_unregister(&adev->common);
   4246
   4247	list_for_each_entry_safe(chan, _chan, &adev->common.channels,
   4248				 device_node) {
   4249		ppc440spe_chan = to_ppc440spe_adma_chan(chan);
   4250		ppc440spe_adma_release_irqs(adev, ppc440spe_chan);
   4251		tasklet_kill(&ppc440spe_chan->irq_tasklet);
   4252		if (adev->id != PPC440SPE_XOR_ID) {
   4253			dma_unmap_page(&ofdev->dev, ppc440spe_chan->pdest,
   4254					PAGE_SIZE, DMA_BIDIRECTIONAL);
   4255			dma_unmap_page(&ofdev->dev, ppc440spe_chan->qdest,
   4256					PAGE_SIZE, DMA_BIDIRECTIONAL);
   4257			__free_page(ppc440spe_chan->pdest_page);
   4258			__free_page(ppc440spe_chan->qdest_page);
   4259		}
   4260		list_for_each_entry_safe(ref, _ref, &ppc440spe_adma_chan_list,
   4261					 node) {
   4262			if (ppc440spe_chan ==
   4263			    to_ppc440spe_adma_chan(ref->chan)) {
   4264				list_del(&ref->node);
   4265				kfree(ref);
   4266			}
   4267		}
   4268		list_del(&chan->device_node);
   4269		kfree(ppc440spe_chan);
   4270	}
   4271
   4272	dma_free_coherent(adev->dev, adev->pool_size,
   4273			  adev->dma_desc_pool_virt, adev->dma_desc_pool);
   4274	if (adev->id == PPC440SPE_XOR_ID)
   4275		iounmap(adev->xor_reg);
   4276	else
   4277		iounmap(adev->dma_reg);
   4278	of_address_to_resource(np, 0, &res);
   4279	release_mem_region(res.start, resource_size(&res));
   4280	kfree(adev);
   4281	return 0;
   4282}
   4283
   4284/*
   4285 * /sys driver interface to enable h/w RAID-6 capabilities
   4286 * Files created in e.g. /sys/devices/plb.0/400100100.dma0/driver/
   4287 * directory are "devices", "enable" and "poly".
   4288 * "devices" shows available engines.
   4289 * "enable" is used to enable RAID-6 capabilities or to check
   4290 * whether these has been activated.
   4291 * "poly" allows setting/checking used polynomial (for PPC440SPe only).
   4292 */
   4293
   4294static ssize_t devices_show(struct device_driver *dev, char *buf)
   4295{
   4296	ssize_t size = 0;
   4297	int i;
   4298
   4299	for (i = 0; i < PPC440SPE_ADMA_ENGINES_NUM; i++) {
   4300		if (ppc440spe_adma_devices[i] == -1)
   4301			continue;
   4302		size += scnprintf(buf + size, PAGE_SIZE - size,
   4303				 "PPC440SP(E)-ADMA.%d: %s\n", i,
   4304				 ppc_adma_errors[ppc440spe_adma_devices[i]]);
   4305	}
   4306	return size;
   4307}
   4308static DRIVER_ATTR_RO(devices);
   4309
   4310static ssize_t enable_show(struct device_driver *dev, char *buf)
   4311{
   4312	return snprintf(buf, PAGE_SIZE,
   4313			"PPC440SP(e) RAID-6 capabilities are %sABLED.\n",
   4314			ppc440spe_r6_enabled ? "EN" : "DIS");
   4315}
   4316
   4317static ssize_t enable_store(struct device_driver *dev, const char *buf,
   4318			    size_t count)
   4319{
   4320	unsigned long val;
   4321	int err;
   4322
   4323	if (!count || count > 11)
   4324		return -EINVAL;
   4325
   4326	if (!ppc440spe_r6_tchan)
   4327		return -EFAULT;
   4328
   4329	/* Write a key */
   4330	err = kstrtoul(buf, 16, &val);
   4331	if (err)
   4332		return err;
   4333
   4334	dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_XORBA, val);
   4335	isync();
   4336
   4337	/* Verify whether it really works now */
   4338	if (ppc440spe_test_raid6(ppc440spe_r6_tchan) == 0) {
   4339		pr_info("PPC440SP(e) RAID-6 has been activated "
   4340			"successfully\n");
   4341		ppc440spe_r6_enabled = 1;
   4342	} else {
   4343		pr_info("PPC440SP(e) RAID-6 hasn't been activated!"
   4344			" Error key ?\n");
   4345		ppc440spe_r6_enabled = 0;
   4346	}
   4347	return count;
   4348}
   4349static DRIVER_ATTR_RW(enable);
   4350
   4351static ssize_t poly_show(struct device_driver *dev, char *buf)
   4352{
   4353	ssize_t size = 0;
   4354	u32 reg;
   4355
   4356#ifdef CONFIG_440SP
   4357	/* 440SP has fixed polynomial */
   4358	reg = 0x4d;
   4359#else
   4360	reg = dcr_read(ppc440spe_mq_dcr_host, DCRN_MQ0_CFBHL);
   4361	reg >>= MQ0_CFBHL_POLY;
   4362	reg &= 0xFF;
   4363#endif
   4364
   4365	size = snprintf(buf, PAGE_SIZE, "PPC440SP(e) RAID-6 driver "
   4366			"uses 0x1%02x polynomial.\n", reg);
   4367	return size;
   4368}
   4369
   4370static ssize_t poly_store(struct device_driver *dev, const char *buf,
   4371			  size_t count)
   4372{
   4373	unsigned long reg, val;
   4374	int err;
   4375#ifdef CONFIG_440SP
   4376	/* 440SP uses default 0x14D polynomial only */
   4377	return -EINVAL;
   4378#endif
   4379
   4380	if (!count || count > 6)
   4381		return -EINVAL;
   4382
   4383	/* e.g., 0x14D or 0x11D */
   4384	err = kstrtoul(buf, 16, &val);
   4385	if (err)
   4386		return err;
   4387
   4388	if (val & ~0x1FF)
   4389		return -EINVAL;
   4390
   4391	val &= 0xFF;
   4392	reg = dcr_read(ppc440spe_mq_dcr_host, DCRN_MQ0_CFBHL);
   4393	reg &= ~(0xFF << MQ0_CFBHL_POLY);
   4394	reg |= val << MQ0_CFBHL_POLY;
   4395	dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_CFBHL, reg);
   4396
   4397	return count;
   4398}
   4399static DRIVER_ATTR_RW(poly);
   4400
   4401/*
   4402 * Common initialisation for RAID engines; allocate memory for
   4403 * DMAx FIFOs, perform configuration common for all DMA engines.
   4404 * Further DMA engine specific configuration is done at probe time.
   4405 */
   4406static int ppc440spe_configure_raid_devices(void)
   4407{
   4408	struct device_node *np;
   4409	struct resource i2o_res;
   4410	struct i2o_regs __iomem *i2o_reg;
   4411	dcr_host_t i2o_dcr_host;
   4412	unsigned int dcr_base, dcr_len;
   4413	int i, ret;
   4414
   4415	np = of_find_compatible_node(NULL, NULL, "ibm,i2o-440spe");
   4416	if (!np) {
   4417		pr_err("%s: can't find I2O device tree node\n",
   4418			__func__);
   4419		return -ENODEV;
   4420	}
   4421
   4422	if (of_address_to_resource(np, 0, &i2o_res)) {
   4423		of_node_put(np);
   4424		return -EINVAL;
   4425	}
   4426
   4427	i2o_reg = of_iomap(np, 0);
   4428	if (!i2o_reg) {
   4429		pr_err("%s: failed to map I2O registers\n", __func__);
   4430		of_node_put(np);
   4431		return -EINVAL;
   4432	}
   4433
   4434	/* Get I2O DCRs base */
   4435	dcr_base = dcr_resource_start(np, 0);
   4436	dcr_len = dcr_resource_len(np, 0);
   4437	if (!dcr_base && !dcr_len) {
   4438		pr_err("%pOF: can't get DCR registers base/len!\n", np);
   4439		of_node_put(np);
   4440		iounmap(i2o_reg);
   4441		return -ENODEV;
   4442	}
   4443
   4444	i2o_dcr_host = dcr_map(np, dcr_base, dcr_len);
   4445	if (!DCR_MAP_OK(i2o_dcr_host)) {
   4446		pr_err("%pOF: failed to map DCRs!\n", np);
   4447		of_node_put(np);
   4448		iounmap(i2o_reg);
   4449		return -ENODEV;
   4450	}
   4451	of_node_put(np);
   4452
   4453	/* Provide memory regions for DMA's FIFOs: I2O, DMA0 and DMA1 share
   4454	 * the base address of FIFO memory space.
   4455	 * Actually we need twice more physical memory than programmed in the
   4456	 * <fsiz> register (because there are two FIFOs for each DMA: CP and CS)
   4457	 */
   4458	ppc440spe_dma_fifo_buf = kmalloc((DMA0_FIFO_SIZE + DMA1_FIFO_SIZE) << 1,
   4459					 GFP_KERNEL);
   4460	if (!ppc440spe_dma_fifo_buf) {
   4461		pr_err("%s: DMA FIFO buffer allocation failed.\n", __func__);
   4462		iounmap(i2o_reg);
   4463		dcr_unmap(i2o_dcr_host, dcr_len);
   4464		return -ENOMEM;
   4465	}
   4466
   4467	/*
   4468	 * Configure h/w
   4469	 */
   4470	/* Reset I2O/DMA */
   4471	mtdcri(SDR0, DCRN_SDR0_SRST, DCRN_SDR0_SRST_I2ODMA);
   4472	mtdcri(SDR0, DCRN_SDR0_SRST, 0);
   4473
   4474	/* Setup the base address of mmaped registers */
   4475	dcr_write(i2o_dcr_host, DCRN_I2O0_IBAH, (u32)(i2o_res.start >> 32));
   4476	dcr_write(i2o_dcr_host, DCRN_I2O0_IBAL, (u32)(i2o_res.start) |
   4477						I2O_REG_ENABLE);
   4478	dcr_unmap(i2o_dcr_host, dcr_len);
   4479
   4480	/* Setup FIFO memory space base address */
   4481	iowrite32(0, &i2o_reg->ifbah);
   4482	iowrite32(((u32)__pa(ppc440spe_dma_fifo_buf)), &i2o_reg->ifbal);
   4483
   4484	/* set zero FIFO size for I2O, so the whole
   4485	 * ppc440spe_dma_fifo_buf is used by DMAs.
   4486	 * DMAx_FIFOs will be configured while probe.
   4487	 */
   4488	iowrite32(0, &i2o_reg->ifsiz);
   4489	iounmap(i2o_reg);
   4490
   4491	/* To prepare WXOR/RXOR functionality we need access to
   4492	 * Memory Queue Module DCRs (finally it will be enabled
   4493	 * via /sys interface of the ppc440spe ADMA driver).
   4494	 */
   4495	np = of_find_compatible_node(NULL, NULL, "ibm,mq-440spe");
   4496	if (!np) {
   4497		pr_err("%s: can't find MQ device tree node\n",
   4498			__func__);
   4499		ret = -ENODEV;
   4500		goto out_free;
   4501	}
   4502
   4503	/* Get MQ DCRs base */
   4504	dcr_base = dcr_resource_start(np, 0);
   4505	dcr_len = dcr_resource_len(np, 0);
   4506	if (!dcr_base && !dcr_len) {
   4507		pr_err("%pOF: can't get DCR registers base/len!\n", np);
   4508		ret = -ENODEV;
   4509		goto out_mq;
   4510	}
   4511
   4512	ppc440spe_mq_dcr_host = dcr_map(np, dcr_base, dcr_len);
   4513	if (!DCR_MAP_OK(ppc440spe_mq_dcr_host)) {
   4514		pr_err("%pOF: failed to map DCRs!\n", np);
   4515		ret = -ENODEV;
   4516		goto out_mq;
   4517	}
   4518	of_node_put(np);
   4519	ppc440spe_mq_dcr_len = dcr_len;
   4520
   4521	/* Set HB alias */
   4522	dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_BAUH, DMA_CUED_XOR_HB);
   4523
   4524	/* Set:
   4525	 * - LL transaction passing limit to 1;
   4526	 * - Memory controller cycle limit to 1;
   4527	 * - Galois Polynomial to 0x14d (default)
   4528	 */
   4529	dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_CFBHL,
   4530		  (1 << MQ0_CFBHL_TPLM) | (1 << MQ0_CFBHL_HBCL) |
   4531		  (PPC440SPE_DEFAULT_POLY << MQ0_CFBHL_POLY));
   4532
   4533	atomic_set(&ppc440spe_adma_err_irq_ref, 0);
   4534	for (i = 0; i < PPC440SPE_ADMA_ENGINES_NUM; i++)
   4535		ppc440spe_adma_devices[i] = -1;
   4536
   4537	return 0;
   4538
   4539out_mq:
   4540	of_node_put(np);
   4541out_free:
   4542	kfree(ppc440spe_dma_fifo_buf);
   4543	return ret;
   4544}
   4545
   4546static const struct of_device_id ppc440spe_adma_of_match[] = {
   4547	{ .compatible	= "ibm,dma-440spe", },
   4548	{ .compatible	= "amcc,xor-accelerator", },
   4549	{},
   4550};
   4551MODULE_DEVICE_TABLE(of, ppc440spe_adma_of_match);
   4552
   4553static struct platform_driver ppc440spe_adma_driver = {
   4554	.probe = ppc440spe_adma_probe,
   4555	.remove = ppc440spe_adma_remove,
   4556	.driver = {
   4557		.name = "PPC440SP(E)-ADMA",
   4558		.of_match_table = ppc440spe_adma_of_match,
   4559	},
   4560};
   4561
   4562static __init int ppc440spe_adma_init(void)
   4563{
   4564	int ret;
   4565
   4566	ret = ppc440spe_configure_raid_devices();
   4567	if (ret)
   4568		return ret;
   4569
   4570	ret = platform_driver_register(&ppc440spe_adma_driver);
   4571	if (ret) {
   4572		pr_err("%s: failed to register platform driver\n",
   4573			__func__);
   4574		goto out_reg;
   4575	}
   4576
   4577	/* Initialization status */
   4578	ret = driver_create_file(&ppc440spe_adma_driver.driver,
   4579				 &driver_attr_devices);
   4580	if (ret)
   4581		goto out_dev;
   4582
   4583	/* RAID-6 h/w enable entry */
   4584	ret = driver_create_file(&ppc440spe_adma_driver.driver,
   4585				 &driver_attr_enable);
   4586	if (ret)
   4587		goto out_en;
   4588
   4589	/* GF polynomial to use */
   4590	ret = driver_create_file(&ppc440spe_adma_driver.driver,
   4591				 &driver_attr_poly);
   4592	if (!ret)
   4593		return ret;
   4594
   4595	driver_remove_file(&ppc440spe_adma_driver.driver,
   4596			   &driver_attr_enable);
   4597out_en:
   4598	driver_remove_file(&ppc440spe_adma_driver.driver,
   4599			   &driver_attr_devices);
   4600out_dev:
   4601	/* User will not be able to enable h/w RAID-6 */
   4602	pr_err("%s: failed to create RAID-6 driver interface\n",
   4603		__func__);
   4604	platform_driver_unregister(&ppc440spe_adma_driver);
   4605out_reg:
   4606	dcr_unmap(ppc440spe_mq_dcr_host, ppc440spe_mq_dcr_len);
   4607	kfree(ppc440spe_dma_fifo_buf);
   4608	return ret;
   4609}
   4610
   4611static void __exit ppc440spe_adma_exit(void)
   4612{
   4613	driver_remove_file(&ppc440spe_adma_driver.driver,
   4614			   &driver_attr_poly);
   4615	driver_remove_file(&ppc440spe_adma_driver.driver,
   4616			   &driver_attr_enable);
   4617	driver_remove_file(&ppc440spe_adma_driver.driver,
   4618			   &driver_attr_devices);
   4619	platform_driver_unregister(&ppc440spe_adma_driver);
   4620	dcr_unmap(ppc440spe_mq_dcr_host, ppc440spe_mq_dcr_len);
   4621	kfree(ppc440spe_dma_fifo_buf);
   4622}
   4623
   4624arch_initcall(ppc440spe_adma_init);
   4625module_exit(ppc440spe_adma_exit);
   4626
   4627MODULE_AUTHOR("Yuri Tikhonov <yur@emcraft.com>");
   4628MODULE_DESCRIPTION("PPC440SPE ADMA Engine Driver");
   4629MODULE_LICENSE("GPL");