cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

gpi.c (65704B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 * Copyright (c) 2017-2020, The Linux Foundation. All rights reserved.
      4 * Copyright (c) 2020, Linaro Limited
      5 */
      6
      7#include <dt-bindings/dma/qcom-gpi.h>
      8#include <linux/bitfield.h>
      9#include <linux/dma-mapping.h>
     10#include <linux/dmaengine.h>
     11#include <linux/module.h>
     12#include <linux/of_dma.h>
     13#include <linux/platform_device.h>
     14#include <linux/dma/qcom-gpi-dma.h>
     15#include <linux/scatterlist.h>
     16#include <linux/slab.h>
     17#include "../dmaengine.h"
     18#include "../virt-dma.h"
     19
     20#define TRE_TYPE_DMA		0x10
     21#define TRE_TYPE_GO		0x20
     22#define TRE_TYPE_CONFIG0	0x22
     23
     24/* TRE flags */
     25#define TRE_FLAGS_CHAIN		BIT(0)
     26#define TRE_FLAGS_IEOB		BIT(8)
     27#define TRE_FLAGS_IEOT		BIT(9)
     28#define TRE_FLAGS_BEI		BIT(10)
     29#define TRE_FLAGS_LINK		BIT(11)
     30#define TRE_FLAGS_TYPE		GENMASK(23, 16)
     31
     32/* SPI CONFIG0 WD0 */
     33#define TRE_SPI_C0_WORD_SZ	GENMASK(4, 0)
     34#define TRE_SPI_C0_LOOPBACK	BIT(8)
     35#define TRE_SPI_C0_CS		BIT(11)
     36#define TRE_SPI_C0_CPHA		BIT(12)
     37#define TRE_SPI_C0_CPOL		BIT(13)
     38#define TRE_SPI_C0_TX_PACK	BIT(24)
     39#define TRE_SPI_C0_RX_PACK	BIT(25)
     40
     41/* CONFIG0 WD2 */
     42#define TRE_C0_CLK_DIV		GENMASK(11, 0)
     43#define TRE_C0_CLK_SRC		GENMASK(19, 16)
     44
     45/* SPI GO WD0 */
     46#define TRE_SPI_GO_CMD		GENMASK(4, 0)
     47#define TRE_SPI_GO_CS		GENMASK(10, 8)
     48#define TRE_SPI_GO_FRAG		BIT(26)
     49
     50/* GO WD2 */
     51#define TRE_RX_LEN		GENMASK(23, 0)
     52
     53/* I2C Config0 WD0 */
     54#define TRE_I2C_C0_TLOW		GENMASK(7, 0)
     55#define TRE_I2C_C0_THIGH	GENMASK(15, 8)
     56#define TRE_I2C_C0_TCYL		GENMASK(23, 16)
     57#define TRE_I2C_C0_TX_PACK	BIT(24)
     58#define TRE_I2C_C0_RX_PACK      BIT(25)
     59
     60/* I2C GO WD0 */
     61#define TRE_I2C_GO_CMD          GENMASK(4, 0)
     62#define TRE_I2C_GO_ADDR		GENMASK(14, 8)
     63#define TRE_I2C_GO_STRETCH	BIT(26)
     64
     65/* DMA TRE */
     66#define TRE_DMA_LEN		GENMASK(23, 0)
     67
     68/* Register offsets from gpi-top */
     69#define GPII_n_CH_k_CNTXT_0_OFFS(n, k)	(0x20000 + (0x4000 * (n)) + (0x80 * (k)))
     70#define GPII_n_CH_k_CNTXT_0_EL_SIZE	GENMASK(31, 24)
     71#define GPII_n_CH_k_CNTXT_0_CHSTATE	GENMASK(23, 20)
     72#define GPII_n_CH_k_CNTXT_0_ERIDX	GENMASK(18, 14)
     73#define GPII_n_CH_k_CNTXT_0_DIR		BIT(3)
     74#define GPII_n_CH_k_CNTXT_0_PROTO	GENMASK(2, 0)
     75
     76#define GPII_n_CH_k_CNTXT_0(el_size, erindex, dir, chtype_proto)  \
     77	(FIELD_PREP(GPII_n_CH_k_CNTXT_0_EL_SIZE, el_size)	| \
     78	 FIELD_PREP(GPII_n_CH_k_CNTXT_0_ERIDX, erindex)		| \
     79	 FIELD_PREP(GPII_n_CH_k_CNTXT_0_DIR, dir)		| \
     80	 FIELD_PREP(GPII_n_CH_k_CNTXT_0_PROTO, chtype_proto))
     81
     82#define GPI_CHTYPE_DIR_IN	(0)
     83#define GPI_CHTYPE_DIR_OUT	(1)
     84
     85#define GPI_CHTYPE_PROTO_GPI	(0x2)
     86
     87#define GPII_n_CH_k_DOORBELL_0_OFFS(n, k)	(0x22000 + (0x4000 * (n)) + (0x8 * (k)))
     88#define GPII_n_CH_CMD_OFFS(n)			(0x23008 + (0x4000 * (n)))
     89#define GPII_n_CH_CMD_OPCODE			GENMASK(31, 24)
     90#define GPII_n_CH_CMD_CHID			GENMASK(7, 0)
     91#define GPII_n_CH_CMD(opcode, chid)				 \
     92		     (FIELD_PREP(GPII_n_CH_CMD_OPCODE, opcode) | \
     93		      FIELD_PREP(GPII_n_CH_CMD_CHID, chid))
     94
     95#define GPII_n_CH_CMD_ALLOCATE		(0)
     96#define GPII_n_CH_CMD_START		(1)
     97#define GPII_n_CH_CMD_STOP		(2)
     98#define GPII_n_CH_CMD_RESET		(9)
     99#define GPII_n_CH_CMD_DE_ALLOC		(10)
    100#define GPII_n_CH_CMD_UART_SW_STALE	(32)
    101#define GPII_n_CH_CMD_UART_RFR_READY	(33)
    102#define GPII_n_CH_CMD_UART_RFR_NOT_READY (34)
    103
    104/* EV Context Array */
    105#define GPII_n_EV_CH_k_CNTXT_0_OFFS(n, k) (0x21000 + (0x4000 * (n)) + (0x80 * (k)))
    106#define GPII_n_EV_k_CNTXT_0_EL_SIZE	GENMASK(31, 24)
    107#define GPII_n_EV_k_CNTXT_0_CHSTATE	GENMASK(23, 20)
    108#define GPII_n_EV_k_CNTXT_0_INTYPE	BIT(16)
    109#define GPII_n_EV_k_CNTXT_0_CHTYPE	GENMASK(3, 0)
    110
    111#define GPII_n_EV_k_CNTXT_0(el_size, inttype, chtype)		\
    112	(FIELD_PREP(GPII_n_EV_k_CNTXT_0_EL_SIZE, el_size) |	\
    113	 FIELD_PREP(GPII_n_EV_k_CNTXT_0_INTYPE, inttype)  |	\
    114	 FIELD_PREP(GPII_n_EV_k_CNTXT_0_CHTYPE, chtype))
    115
    116#define GPI_INTTYPE_IRQ		(1)
    117#define GPI_CHTYPE_GPI_EV	(0x2)
    118
    119enum CNTXT_OFFS {
    120	CNTXT_0_CONFIG = 0x0,
    121	CNTXT_1_R_LENGTH = 0x4,
    122	CNTXT_2_RING_BASE_LSB = 0x8,
    123	CNTXT_3_RING_BASE_MSB = 0xC,
    124	CNTXT_4_RING_RP_LSB = 0x10,
    125	CNTXT_5_RING_RP_MSB = 0x14,
    126	CNTXT_6_RING_WP_LSB = 0x18,
    127	CNTXT_7_RING_WP_MSB = 0x1C,
    128	CNTXT_8_RING_INT_MOD = 0x20,
    129	CNTXT_9_RING_INTVEC = 0x24,
    130	CNTXT_10_RING_MSI_LSB = 0x28,
    131	CNTXT_11_RING_MSI_MSB = 0x2C,
    132	CNTXT_12_RING_RP_UPDATE_LSB = 0x30,
    133	CNTXT_13_RING_RP_UPDATE_MSB = 0x34,
    134};
    135
    136#define GPII_n_EV_CH_k_DOORBELL_0_OFFS(n, k)	(0x22100 + (0x4000 * (n)) + (0x8 * (k)))
    137#define GPII_n_EV_CH_CMD_OFFS(n)		(0x23010 + (0x4000 * (n)))
    138#define GPII_n_EV_CMD_OPCODE			GENMASK(31, 24)
    139#define GPII_n_EV_CMD_CHID			GENMASK(7, 0)
    140#define GPII_n_EV_CMD(opcode, chid)				 \
    141		     (FIELD_PREP(GPII_n_EV_CMD_OPCODE, opcode) | \
    142		      FIELD_PREP(GPII_n_EV_CMD_CHID, chid))
    143
    144#define GPII_n_EV_CH_CMD_ALLOCATE		(0x00)
    145#define GPII_n_EV_CH_CMD_RESET			(0x09)
    146#define GPII_n_EV_CH_CMD_DE_ALLOC		(0x0A)
    147
    148#define GPII_n_CNTXT_TYPE_IRQ_OFFS(n)		(0x23080 + (0x4000 * (n)))
    149
    150/* mask type register */
    151#define GPII_n_CNTXT_TYPE_IRQ_MSK_OFFS(n)	(0x23088 + (0x4000 * (n)))
    152#define GPII_n_CNTXT_TYPE_IRQ_MSK_BMSK		GENMASK(6, 0)
    153#define GPII_n_CNTXT_TYPE_IRQ_MSK_GENERAL	BIT(6)
    154#define GPII_n_CNTXT_TYPE_IRQ_MSK_IEOB		BIT(3)
    155#define GPII_n_CNTXT_TYPE_IRQ_MSK_GLOB		BIT(2)
    156#define GPII_n_CNTXT_TYPE_IRQ_MSK_EV_CTRL	BIT(1)
    157#define GPII_n_CNTXT_TYPE_IRQ_MSK_CH_CTRL	BIT(0)
    158
    159#define GPII_n_CNTXT_SRC_GPII_CH_IRQ_OFFS(n)	(0x23090 + (0x4000 * (n)))
    160#define GPII_n_CNTXT_SRC_EV_CH_IRQ_OFFS(n)	(0x23094 + (0x4000 * (n)))
    161
    162/* Mask channel control interrupt register */
    163#define GPII_n_CNTXT_SRC_CH_IRQ_MSK_OFFS(n)	(0x23098 + (0x4000 * (n)))
    164#define GPII_n_CNTXT_SRC_CH_IRQ_MSK_BMSK	GENMASK(1, 0)
    165
    166/* Mask event control interrupt register */
    167#define GPII_n_CNTXT_SRC_EV_CH_IRQ_MSK_OFFS(n)	(0x2309C + (0x4000 * (n)))
    168#define GPII_n_CNTXT_SRC_EV_CH_IRQ_MSK_BMSK	BIT(0)
    169
    170#define GPII_n_CNTXT_SRC_CH_IRQ_CLR_OFFS(n)	(0x230A0 + (0x4000 * (n)))
    171#define GPII_n_CNTXT_SRC_EV_CH_IRQ_CLR_OFFS(n)	(0x230A4 + (0x4000 * (n)))
    172
    173/* Mask event interrupt register */
    174#define GPII_n_CNTXT_SRC_IEOB_IRQ_MSK_OFFS(n)	(0x230B8 + (0x4000 * (n)))
    175#define GPII_n_CNTXT_SRC_IEOB_IRQ_MSK_BMSK	BIT(0)
    176
    177#define GPII_n_CNTXT_SRC_IEOB_IRQ_CLR_OFFS(n)	(0x230C0 + (0x4000 * (n)))
    178#define GPII_n_CNTXT_GLOB_IRQ_STTS_OFFS(n)	(0x23100 + (0x4000 * (n)))
    179#define GPI_GLOB_IRQ_ERROR_INT_MSK		BIT(0)
    180
    181/* GPII specific Global - Enable bit register */
    182#define GPII_n_CNTXT_GLOB_IRQ_EN_OFFS(n)	(0x23108 + (0x4000 * (n)))
    183#define GPII_n_CNTXT_GLOB_IRQ_CLR_OFFS(n)	(0x23110 + (0x4000 * (n)))
    184#define GPII_n_CNTXT_GPII_IRQ_STTS_OFFS(n)	(0x23118 + (0x4000 * (n)))
    185
    186/* GPII general interrupt - Enable bit register */
    187#define GPII_n_CNTXT_GPII_IRQ_EN_OFFS(n)	(0x23120 + (0x4000 * (n)))
    188#define GPII_n_CNTXT_GPII_IRQ_EN_BMSK		GENMASK(3, 0)
    189
    190#define GPII_n_CNTXT_GPII_IRQ_CLR_OFFS(n)	(0x23128 + (0x4000 * (n)))
    191
    192/* GPII Interrupt Type register */
    193#define GPII_n_CNTXT_INTSET_OFFS(n)		(0x23180 + (0x4000 * (n)))
    194#define GPII_n_CNTXT_INTSET_BMSK		BIT(0)
    195
    196#define GPII_n_CNTXT_MSI_BASE_LSB_OFFS(n)	(0x23188 + (0x4000 * (n)))
    197#define GPII_n_CNTXT_MSI_BASE_MSB_OFFS(n)	(0x2318C + (0x4000 * (n)))
    198#define GPII_n_CNTXT_SCRATCH_0_OFFS(n)		(0x23400 + (0x4000 * (n)))
    199#define GPII_n_CNTXT_SCRATCH_1_OFFS(n)		(0x23404 + (0x4000 * (n)))
    200
    201#define GPII_n_ERROR_LOG_OFFS(n)		(0x23200 + (0x4000 * (n)))
    202
    203/* QOS Registers */
    204#define GPII_n_CH_k_QOS_OFFS(n, k)		(0x2005C + (0x4000 * (n)) + (0x80 * (k)))
    205
    206/* Scratch registers */
    207#define GPII_n_CH_k_SCRATCH_0_OFFS(n, k)	(0x20060 + (0x4000 * (n)) + (0x80 * (k)))
    208#define GPII_n_CH_k_SCRATCH_0_SEID		GENMASK(2, 0)
    209#define GPII_n_CH_k_SCRATCH_0_PROTO		GENMASK(7, 4)
    210#define GPII_n_CH_k_SCRATCH_0_PAIR		GENMASK(20, 16)
    211#define GPII_n_CH_k_SCRATCH_0(pair, proto, seid)		\
    212			     (FIELD_PREP(GPII_n_CH_k_SCRATCH_0_PAIR, pair)	| \
    213			      FIELD_PREP(GPII_n_CH_k_SCRATCH_0_PROTO, proto)	| \
    214			      FIELD_PREP(GPII_n_CH_k_SCRATCH_0_SEID, seid))
    215#define GPII_n_CH_k_SCRATCH_1_OFFS(n, k)	(0x20064 + (0x4000 * (n)) + (0x80 * (k)))
    216#define GPII_n_CH_k_SCRATCH_2_OFFS(n, k)	(0x20068 + (0x4000 * (n)) + (0x80 * (k)))
    217#define GPII_n_CH_k_SCRATCH_3_OFFS(n, k)	(0x2006C + (0x4000 * (n)) + (0x80 * (k)))
    218
    219struct __packed gpi_tre {
    220	u32 dword[4];
    221};
    222
    223enum msm_gpi_tce_code {
    224	MSM_GPI_TCE_SUCCESS = 1,
    225	MSM_GPI_TCE_EOT = 2,
    226	MSM_GPI_TCE_EOB = 4,
    227	MSM_GPI_TCE_UNEXP_ERR = 16,
    228};
    229
    230#define CMD_TIMEOUT_MS		(250)
    231
    232#define MAX_CHANNELS_PER_GPII	(2)
    233#define GPI_TX_CHAN		(0)
    234#define GPI_RX_CHAN		(1)
    235#define STATE_IGNORE		(U32_MAX)
    236#define EV_FACTOR		(2)
    237#define REQ_OF_DMA_ARGS		(5) /* # of arguments required from client */
    238#define CHAN_TRES		64
    239
    240struct __packed xfer_compl_event {
    241	u64 ptr;
    242	u32 length:24;
    243	u8 code;
    244	u16 status;
    245	u8 type;
    246	u8 chid;
    247};
    248
    249struct __packed immediate_data_event {
    250	u8 data_bytes[8];
    251	u8 length:4;
    252	u8 resvd:4;
    253	u16 tre_index;
    254	u8 code;
    255	u16 status;
    256	u8 type;
    257	u8 chid;
    258};
    259
    260struct __packed qup_notif_event {
    261	u32 status;
    262	u32 time;
    263	u32 count:24;
    264	u8 resvd;
    265	u16 resvd1;
    266	u8 type;
    267	u8 chid;
    268};
    269
    270struct __packed gpi_ere {
    271	u32 dword[4];
    272};
    273
    274enum GPI_EV_TYPE {
    275	XFER_COMPLETE_EV_TYPE = 0x22,
    276	IMMEDIATE_DATA_EV_TYPE = 0x30,
    277	QUP_NOTIF_EV_TYPE = 0x31,
    278	STALE_EV_TYPE = 0xFF,
    279};
    280
    281union __packed gpi_event {
    282	struct __packed xfer_compl_event xfer_compl_event;
    283	struct __packed immediate_data_event immediate_data_event;
    284	struct __packed qup_notif_event qup_notif_event;
    285	struct __packed gpi_ere gpi_ere;
    286};
    287
    288enum gpii_irq_settings {
    289	DEFAULT_IRQ_SETTINGS,
    290	MASK_IEOB_SETTINGS,
    291};
    292
    293enum gpi_ev_state {
    294	DEFAULT_EV_CH_STATE = 0,
    295	EV_STATE_NOT_ALLOCATED = DEFAULT_EV_CH_STATE,
    296	EV_STATE_ALLOCATED,
    297	MAX_EV_STATES
    298};
    299
    300static const char *const gpi_ev_state_str[MAX_EV_STATES] = {
    301	[EV_STATE_NOT_ALLOCATED] = "NOT ALLOCATED",
    302	[EV_STATE_ALLOCATED] = "ALLOCATED",
    303};
    304
    305#define TO_GPI_EV_STATE_STR(_state) (((_state) >= MAX_EV_STATES) ? \
    306				    "INVALID" : gpi_ev_state_str[(_state)])
    307
    308enum gpi_ch_state {
    309	DEFAULT_CH_STATE = 0x0,
    310	CH_STATE_NOT_ALLOCATED = DEFAULT_CH_STATE,
    311	CH_STATE_ALLOCATED = 0x1,
    312	CH_STATE_STARTED = 0x2,
    313	CH_STATE_STOPPED = 0x3,
    314	CH_STATE_STOP_IN_PROC = 0x4,
    315	CH_STATE_ERROR = 0xf,
    316	MAX_CH_STATES
    317};
    318
    319enum gpi_cmd {
    320	GPI_CH_CMD_BEGIN,
    321	GPI_CH_CMD_ALLOCATE = GPI_CH_CMD_BEGIN,
    322	GPI_CH_CMD_START,
    323	GPI_CH_CMD_STOP,
    324	GPI_CH_CMD_RESET,
    325	GPI_CH_CMD_DE_ALLOC,
    326	GPI_CH_CMD_UART_SW_STALE,
    327	GPI_CH_CMD_UART_RFR_READY,
    328	GPI_CH_CMD_UART_RFR_NOT_READY,
    329	GPI_CH_CMD_END = GPI_CH_CMD_UART_RFR_NOT_READY,
    330	GPI_EV_CMD_BEGIN,
    331	GPI_EV_CMD_ALLOCATE = GPI_EV_CMD_BEGIN,
    332	GPI_EV_CMD_RESET,
    333	GPI_EV_CMD_DEALLOC,
    334	GPI_EV_CMD_END = GPI_EV_CMD_DEALLOC,
    335	GPI_MAX_CMD,
    336};
    337
    338#define IS_CHAN_CMD(_cmd) ((_cmd) <= GPI_CH_CMD_END)
    339
    340static const char *const gpi_cmd_str[GPI_MAX_CMD] = {
    341	[GPI_CH_CMD_ALLOCATE] = "CH ALLOCATE",
    342	[GPI_CH_CMD_START] = "CH START",
    343	[GPI_CH_CMD_STOP] = "CH STOP",
    344	[GPI_CH_CMD_RESET] = "CH_RESET",
    345	[GPI_CH_CMD_DE_ALLOC] = "DE ALLOC",
    346	[GPI_CH_CMD_UART_SW_STALE] = "UART SW STALE",
    347	[GPI_CH_CMD_UART_RFR_READY] = "UART RFR READY",
    348	[GPI_CH_CMD_UART_RFR_NOT_READY] = "UART RFR NOT READY",
    349	[GPI_EV_CMD_ALLOCATE] = "EV ALLOCATE",
    350	[GPI_EV_CMD_RESET] = "EV RESET",
    351	[GPI_EV_CMD_DEALLOC] = "EV DEALLOC",
    352};
    353
    354#define TO_GPI_CMD_STR(_cmd) (((_cmd) >= GPI_MAX_CMD) ? "INVALID" : \
    355				  gpi_cmd_str[(_cmd)])
    356
    357/*
    358 * @DISABLE_STATE: no register access allowed
    359 * @CONFIG_STATE:  client has configured the channel
    360 * @PREP_HARDWARE: register access is allowed
    361 *		   however, no processing EVENTS
    362 * @ACTIVE_STATE: channels are fully operational
    363 * @PREPARE_TERMINATE: graceful termination of channels
    364 *		       register access is allowed
    365 * @PAUSE_STATE: channels are active, but not processing any events
    366 */
    367enum gpi_pm_state {
    368	DISABLE_STATE,
    369	CONFIG_STATE,
    370	PREPARE_HARDWARE,
    371	ACTIVE_STATE,
    372	PREPARE_TERMINATE,
    373	PAUSE_STATE,
    374	MAX_PM_STATE
    375};
    376
    377#define REG_ACCESS_VALID(_pm_state) ((_pm_state) >= PREPARE_HARDWARE)
    378
    379static const char *const gpi_pm_state_str[MAX_PM_STATE] = {
    380	[DISABLE_STATE] = "DISABLE",
    381	[CONFIG_STATE] = "CONFIG",
    382	[PREPARE_HARDWARE] = "PREPARE HARDWARE",
    383	[ACTIVE_STATE] = "ACTIVE",
    384	[PREPARE_TERMINATE] = "PREPARE TERMINATE",
    385	[PAUSE_STATE] = "PAUSE",
    386};
    387
    388#define TO_GPI_PM_STR(_state) (((_state) >= MAX_PM_STATE) ? \
    389			      "INVALID" : gpi_pm_state_str[(_state)])
    390
    391static const struct {
    392	enum gpi_cmd gpi_cmd;
    393	u32 opcode;
    394	u32 state;
    395} gpi_cmd_info[GPI_MAX_CMD] = {
    396	{
    397		GPI_CH_CMD_ALLOCATE,
    398		GPII_n_CH_CMD_ALLOCATE,
    399		CH_STATE_ALLOCATED,
    400	},
    401	{
    402		GPI_CH_CMD_START,
    403		GPII_n_CH_CMD_START,
    404		CH_STATE_STARTED,
    405	},
    406	{
    407		GPI_CH_CMD_STOP,
    408		GPII_n_CH_CMD_STOP,
    409		CH_STATE_STOPPED,
    410	},
    411	{
    412		GPI_CH_CMD_RESET,
    413		GPII_n_CH_CMD_RESET,
    414		CH_STATE_ALLOCATED,
    415	},
    416	{
    417		GPI_CH_CMD_DE_ALLOC,
    418		GPII_n_CH_CMD_DE_ALLOC,
    419		CH_STATE_NOT_ALLOCATED,
    420	},
    421	{
    422		GPI_CH_CMD_UART_SW_STALE,
    423		GPII_n_CH_CMD_UART_SW_STALE,
    424		STATE_IGNORE,
    425	},
    426	{
    427		GPI_CH_CMD_UART_RFR_READY,
    428		GPII_n_CH_CMD_UART_RFR_READY,
    429		STATE_IGNORE,
    430	},
    431	{
    432		GPI_CH_CMD_UART_RFR_NOT_READY,
    433		GPII_n_CH_CMD_UART_RFR_NOT_READY,
    434		STATE_IGNORE,
    435	},
    436	{
    437		GPI_EV_CMD_ALLOCATE,
    438		GPII_n_EV_CH_CMD_ALLOCATE,
    439		EV_STATE_ALLOCATED,
    440	},
    441	{
    442		GPI_EV_CMD_RESET,
    443		GPII_n_EV_CH_CMD_RESET,
    444		EV_STATE_ALLOCATED,
    445	},
    446	{
    447		GPI_EV_CMD_DEALLOC,
    448		GPII_n_EV_CH_CMD_DE_ALLOC,
    449		EV_STATE_NOT_ALLOCATED,
    450	},
    451};
    452
    453struct gpi_ring {
    454	void *pre_aligned;
    455	size_t alloc_size;
    456	phys_addr_t phys_addr;
    457	dma_addr_t dma_handle;
    458	void *base;
    459	void *wp;
    460	void *rp;
    461	u32 len;
    462	u32 el_size;
    463	u32 elements;
    464	bool configured;
    465};
    466
    467struct gpi_dev {
    468	struct dma_device dma_device;
    469	struct device *dev;
    470	struct resource *res;
    471	void __iomem *regs;
    472	void __iomem *ee_base; /*ee register base address*/
    473	u32 max_gpii; /* maximum # of gpii instances available per gpi block */
    474	u32 gpii_mask; /* gpii instances available for apps */
    475	u32 ev_factor; /* ev ring length factor */
    476	struct gpii *gpiis;
    477};
    478
    479struct reg_info {
    480	char *name;
    481	u32 offset;
    482	u32 val;
    483};
    484
    485struct gchan {
    486	struct virt_dma_chan vc;
    487	u32 chid;
    488	u32 seid;
    489	u32 protocol;
    490	struct gpii *gpii;
    491	enum gpi_ch_state ch_state;
    492	enum gpi_pm_state pm_state;
    493	void __iomem *ch_cntxt_base_reg;
    494	void __iomem *ch_cntxt_db_reg;
    495	void __iomem *ch_cmd_reg;
    496	u32 dir;
    497	struct gpi_ring ch_ring;
    498	void *config;
    499};
    500
    501struct gpii {
    502	u32 gpii_id;
    503	struct gchan gchan[MAX_CHANNELS_PER_GPII];
    504	struct gpi_dev *gpi_dev;
    505	int irq;
    506	void __iomem *regs; /* points to gpi top */
    507	void __iomem *ev_cntxt_base_reg;
    508	void __iomem *ev_cntxt_db_reg;
    509	void __iomem *ev_ring_rp_lsb_reg;
    510	void __iomem *ev_cmd_reg;
    511	void __iomem *ieob_clr_reg;
    512	struct mutex ctrl_lock;
    513	enum gpi_ev_state ev_state;
    514	bool configured_irq;
    515	enum gpi_pm_state pm_state;
    516	rwlock_t pm_lock;
    517	struct gpi_ring ev_ring;
    518	struct tasklet_struct ev_task; /* event processing tasklet */
    519	struct completion cmd_completion;
    520	enum gpi_cmd gpi_cmd;
    521	u32 cntxt_type_irq_msk;
    522	bool ieob_set;
    523};
    524
    525#define MAX_TRE 3
    526
    527struct gpi_desc {
    528	struct virt_dma_desc vd;
    529	size_t len;
    530	void *db; /* DB register to program */
    531	struct gchan *gchan;
    532	struct gpi_tre tre[MAX_TRE];
    533	u32 num_tre;
    534};
    535
    536static const u32 GPII_CHAN_DIR[MAX_CHANNELS_PER_GPII] = {
    537	GPI_CHTYPE_DIR_OUT, GPI_CHTYPE_DIR_IN
    538};
    539
    540static irqreturn_t gpi_handle_irq(int irq, void *data);
    541static void gpi_ring_recycle_ev_element(struct gpi_ring *ring);
    542static int gpi_ring_add_element(struct gpi_ring *ring, void **wp);
    543static void gpi_process_events(struct gpii *gpii);
    544
    545static inline struct gchan *to_gchan(struct dma_chan *dma_chan)
    546{
    547	return container_of(dma_chan, struct gchan, vc.chan);
    548}
    549
    550static inline struct gpi_desc *to_gpi_desc(struct virt_dma_desc *vd)
    551{
    552	return container_of(vd, struct gpi_desc, vd);
    553}
    554
    555static inline phys_addr_t to_physical(const struct gpi_ring *const ring,
    556				      void *addr)
    557{
    558	return ring->phys_addr + (addr - ring->base);
    559}
    560
    561static inline void *to_virtual(const struct gpi_ring *const ring, phys_addr_t addr)
    562{
    563	return ring->base + (addr - ring->phys_addr);
    564}
    565
    566static inline u32 gpi_read_reg(struct gpii *gpii, void __iomem *addr)
    567{
    568	return readl_relaxed(addr);
    569}
    570
    571static inline void gpi_write_reg(struct gpii *gpii, void __iomem *addr, u32 val)
    572{
    573	writel_relaxed(val, addr);
    574}
    575
    576/* gpi_write_reg_field - write to specific bit field */
    577static inline void gpi_write_reg_field(struct gpii *gpii, void __iomem *addr,
    578				       u32 mask, u32 shift, u32 val)
    579{
    580	u32 tmp = gpi_read_reg(gpii, addr);
    581
    582	tmp &= ~mask;
    583	val = tmp | ((val << shift) & mask);
    584	gpi_write_reg(gpii, addr, val);
    585}
    586
    587static __always_inline void
    588gpi_update_reg(struct gpii *gpii, u32 offset, u32 mask, u32 val)
    589{
    590	void __iomem *addr = gpii->regs + offset;
    591	u32 tmp = gpi_read_reg(gpii, addr);
    592
    593	tmp &= ~mask;
    594	tmp |= u32_encode_bits(val, mask);
    595
    596	gpi_write_reg(gpii, addr, tmp);
    597}
    598
    599static void gpi_disable_interrupts(struct gpii *gpii)
    600{
    601	gpi_update_reg(gpii, GPII_n_CNTXT_TYPE_IRQ_MSK_OFFS(gpii->gpii_id),
    602		       GPII_n_CNTXT_TYPE_IRQ_MSK_BMSK, 0);
    603	gpi_update_reg(gpii, GPII_n_CNTXT_SRC_IEOB_IRQ_MSK_OFFS(gpii->gpii_id),
    604		       GPII_n_CNTXT_SRC_IEOB_IRQ_MSK_BMSK, 0);
    605	gpi_update_reg(gpii, GPII_n_CNTXT_SRC_CH_IRQ_MSK_OFFS(gpii->gpii_id),
    606		       GPII_n_CNTXT_SRC_CH_IRQ_MSK_BMSK, 0);
    607	gpi_update_reg(gpii, GPII_n_CNTXT_SRC_EV_CH_IRQ_MSK_OFFS(gpii->gpii_id),
    608		       GPII_n_CNTXT_SRC_EV_CH_IRQ_MSK_BMSK, 0);
    609	gpi_update_reg(gpii, GPII_n_CNTXT_GLOB_IRQ_EN_OFFS(gpii->gpii_id),
    610		       GPII_n_CNTXT_GPII_IRQ_EN_BMSK, 0);
    611	gpi_update_reg(gpii, GPII_n_CNTXT_GPII_IRQ_EN_OFFS(gpii->gpii_id),
    612		       GPII_n_CNTXT_GPII_IRQ_EN_BMSK, 0);
    613	gpi_update_reg(gpii, GPII_n_CNTXT_INTSET_OFFS(gpii->gpii_id),
    614		       GPII_n_CNTXT_INTSET_BMSK, 0);
    615
    616	gpii->cntxt_type_irq_msk = 0;
    617	devm_free_irq(gpii->gpi_dev->dev, gpii->irq, gpii);
    618	gpii->configured_irq = false;
    619}
    620
    621/* configure and enable interrupts */
    622static int gpi_config_interrupts(struct gpii *gpii, enum gpii_irq_settings settings, bool mask)
    623{
    624	const u32 enable = (GPII_n_CNTXT_TYPE_IRQ_MSK_GENERAL |
    625			      GPII_n_CNTXT_TYPE_IRQ_MSK_IEOB |
    626			      GPII_n_CNTXT_TYPE_IRQ_MSK_GLOB |
    627			      GPII_n_CNTXT_TYPE_IRQ_MSK_EV_CTRL |
    628			      GPII_n_CNTXT_TYPE_IRQ_MSK_CH_CTRL);
    629	int ret;
    630
    631	if (!gpii->configured_irq) {
    632		ret = devm_request_irq(gpii->gpi_dev->dev, gpii->irq,
    633				       gpi_handle_irq, IRQF_TRIGGER_HIGH,
    634				       "gpi-dma", gpii);
    635		if (ret < 0) {
    636			dev_err(gpii->gpi_dev->dev, "error request irq:%d ret:%d\n",
    637				gpii->irq, ret);
    638			return ret;
    639		}
    640	}
    641
    642	if (settings == MASK_IEOB_SETTINGS) {
    643		/*
    644		 * GPII only uses one EV ring per gpii so we can globally
    645		 * enable/disable IEOB interrupt
    646		 */
    647		if (mask)
    648			gpii->cntxt_type_irq_msk |= GPII_n_CNTXT_TYPE_IRQ_MSK_IEOB;
    649		else
    650			gpii->cntxt_type_irq_msk &= ~(GPII_n_CNTXT_TYPE_IRQ_MSK_IEOB);
    651		gpi_update_reg(gpii, GPII_n_CNTXT_TYPE_IRQ_MSK_OFFS(gpii->gpii_id),
    652			       GPII_n_CNTXT_TYPE_IRQ_MSK_BMSK, gpii->cntxt_type_irq_msk);
    653	} else {
    654		gpi_update_reg(gpii, GPII_n_CNTXT_TYPE_IRQ_MSK_OFFS(gpii->gpii_id),
    655			       GPII_n_CNTXT_TYPE_IRQ_MSK_BMSK, enable);
    656		gpi_update_reg(gpii, GPII_n_CNTXT_SRC_IEOB_IRQ_MSK_OFFS(gpii->gpii_id),
    657			       GPII_n_CNTXT_SRC_IEOB_IRQ_MSK_BMSK,
    658			       GPII_n_CNTXT_SRC_IEOB_IRQ_MSK_BMSK);
    659		gpi_update_reg(gpii, GPII_n_CNTXT_SRC_CH_IRQ_MSK_OFFS(gpii->gpii_id),
    660			       GPII_n_CNTXT_SRC_CH_IRQ_MSK_BMSK,
    661			       GPII_n_CNTXT_SRC_CH_IRQ_MSK_BMSK);
    662		gpi_update_reg(gpii, GPII_n_CNTXT_SRC_EV_CH_IRQ_MSK_OFFS(gpii->gpii_id),
    663			       GPII_n_CNTXT_SRC_EV_CH_IRQ_MSK_BMSK,
    664			       GPII_n_CNTXT_SRC_EV_CH_IRQ_MSK_BMSK);
    665		gpi_update_reg(gpii, GPII_n_CNTXT_GLOB_IRQ_EN_OFFS(gpii->gpii_id),
    666			       GPII_n_CNTXT_GPII_IRQ_EN_BMSK,
    667			       GPII_n_CNTXT_GPII_IRQ_EN_BMSK);
    668		gpi_update_reg(gpii, GPII_n_CNTXT_GPII_IRQ_EN_OFFS(gpii->gpii_id),
    669			       GPII_n_CNTXT_GPII_IRQ_EN_BMSK, GPII_n_CNTXT_GPII_IRQ_EN_BMSK);
    670		gpi_update_reg(gpii, GPII_n_CNTXT_MSI_BASE_LSB_OFFS(gpii->gpii_id), U32_MAX, 0);
    671		gpi_update_reg(gpii, GPII_n_CNTXT_MSI_BASE_MSB_OFFS(gpii->gpii_id), U32_MAX, 0);
    672		gpi_update_reg(gpii, GPII_n_CNTXT_SCRATCH_0_OFFS(gpii->gpii_id), U32_MAX, 0);
    673		gpi_update_reg(gpii, GPII_n_CNTXT_SCRATCH_1_OFFS(gpii->gpii_id), U32_MAX, 0);
    674		gpi_update_reg(gpii, GPII_n_CNTXT_INTSET_OFFS(gpii->gpii_id),
    675			       GPII_n_CNTXT_INTSET_BMSK, 1);
    676		gpi_update_reg(gpii, GPII_n_ERROR_LOG_OFFS(gpii->gpii_id), U32_MAX, 0);
    677
    678		gpii->cntxt_type_irq_msk = enable;
    679	}
    680
    681	gpii->configured_irq = true;
    682	return 0;
    683}
    684
    685/* Sends gpii event or channel command */
    686static int gpi_send_cmd(struct gpii *gpii, struct gchan *gchan,
    687			enum gpi_cmd gpi_cmd)
    688{
    689	u32 chid = MAX_CHANNELS_PER_GPII;
    690	unsigned long timeout;
    691	void __iomem *cmd_reg;
    692	u32 cmd;
    693
    694	if (gpi_cmd >= GPI_MAX_CMD)
    695		return -EINVAL;
    696	if (IS_CHAN_CMD(gpi_cmd))
    697		chid = gchan->chid;
    698
    699	dev_dbg(gpii->gpi_dev->dev,
    700		"sending cmd: %s:%u\n", TO_GPI_CMD_STR(gpi_cmd), chid);
    701
    702	/* send opcode and wait for completion */
    703	reinit_completion(&gpii->cmd_completion);
    704	gpii->gpi_cmd = gpi_cmd;
    705
    706	cmd_reg = IS_CHAN_CMD(gpi_cmd) ? gchan->ch_cmd_reg : gpii->ev_cmd_reg;
    707	cmd = IS_CHAN_CMD(gpi_cmd) ? GPII_n_CH_CMD(gpi_cmd_info[gpi_cmd].opcode, chid) :
    708				     GPII_n_EV_CMD(gpi_cmd_info[gpi_cmd].opcode, 0);
    709	gpi_write_reg(gpii, cmd_reg, cmd);
    710	timeout = wait_for_completion_timeout(&gpii->cmd_completion,
    711					      msecs_to_jiffies(CMD_TIMEOUT_MS));
    712	if (!timeout) {
    713		dev_err(gpii->gpi_dev->dev, "cmd: %s completion timeout:%u\n",
    714			TO_GPI_CMD_STR(gpi_cmd), chid);
    715		return -EIO;
    716	}
    717
    718	/* confirm new ch state is correct , if the cmd is a state change cmd */
    719	if (gpi_cmd_info[gpi_cmd].state == STATE_IGNORE)
    720		return 0;
    721
    722	if (IS_CHAN_CMD(gpi_cmd) && gchan->ch_state == gpi_cmd_info[gpi_cmd].state)
    723		return 0;
    724
    725	if (!IS_CHAN_CMD(gpi_cmd) && gpii->ev_state == gpi_cmd_info[gpi_cmd].state)
    726		return 0;
    727
    728	return -EIO;
    729}
    730
    731/* program transfer ring DB register */
    732static inline void gpi_write_ch_db(struct gchan *gchan,
    733				   struct gpi_ring *ring, void *wp)
    734{
    735	struct gpii *gpii = gchan->gpii;
    736	phys_addr_t p_wp;
    737
    738	p_wp = to_physical(ring, wp);
    739	gpi_write_reg(gpii, gchan->ch_cntxt_db_reg, p_wp);
    740}
    741
    742/* program event ring DB register */
    743static inline void gpi_write_ev_db(struct gpii *gpii,
    744				   struct gpi_ring *ring, void *wp)
    745{
    746	phys_addr_t p_wp;
    747
    748	p_wp = ring->phys_addr + (wp - ring->base);
    749	gpi_write_reg(gpii, gpii->ev_cntxt_db_reg, p_wp);
    750}
    751
    752/* process transfer completion interrupt */
    753static void gpi_process_ieob(struct gpii *gpii)
    754{
    755	gpi_write_reg(gpii, gpii->ieob_clr_reg, BIT(0));
    756
    757	gpi_config_interrupts(gpii, MASK_IEOB_SETTINGS, 0);
    758	tasklet_hi_schedule(&gpii->ev_task);
    759}
    760
    761/* process channel control interrupt */
    762static void gpi_process_ch_ctrl_irq(struct gpii *gpii)
    763{
    764	u32 gpii_id = gpii->gpii_id;
    765	u32 offset = GPII_n_CNTXT_SRC_GPII_CH_IRQ_OFFS(gpii_id);
    766	u32 ch_irq = gpi_read_reg(gpii, gpii->regs + offset);
    767	struct gchan *gchan;
    768	u32 chid, state;
    769
    770	/* clear the status */
    771	offset = GPII_n_CNTXT_SRC_CH_IRQ_CLR_OFFS(gpii_id);
    772	gpi_write_reg(gpii, gpii->regs + offset, (u32)ch_irq);
    773
    774	for (chid = 0; chid < MAX_CHANNELS_PER_GPII; chid++) {
    775		if (!(BIT(chid) & ch_irq))
    776			continue;
    777
    778		gchan = &gpii->gchan[chid];
    779		state = gpi_read_reg(gpii, gchan->ch_cntxt_base_reg +
    780				     CNTXT_0_CONFIG);
    781		state = FIELD_GET(GPII_n_CH_k_CNTXT_0_CHSTATE, state);
    782
    783		/*
    784		 * CH_CMD_DEALLOC cmd always successful. However cmd does
    785		 * not change hardware status. So overwriting software state
    786		 * to default state.
    787		 */
    788		if (gpii->gpi_cmd == GPI_CH_CMD_DE_ALLOC)
    789			state = DEFAULT_CH_STATE;
    790		gchan->ch_state = state;
    791
    792		/*
    793		 * Triggering complete all if ch_state is not a stop in process.
    794		 * Stop in process is a transition state and we will wait for
    795		 * stop interrupt before notifying.
    796		 */
    797		if (gchan->ch_state != CH_STATE_STOP_IN_PROC)
    798			complete_all(&gpii->cmd_completion);
    799	}
    800}
    801
    802/* processing gpi general error interrupts */
    803static void gpi_process_gen_err_irq(struct gpii *gpii)
    804{
    805	u32 gpii_id = gpii->gpii_id;
    806	u32 offset = GPII_n_CNTXT_GPII_IRQ_STTS_OFFS(gpii_id);
    807	u32 irq_stts = gpi_read_reg(gpii, gpii->regs + offset);
    808
    809	/* clear the status */
    810	dev_dbg(gpii->gpi_dev->dev, "irq_stts:0x%x\n", irq_stts);
    811
    812	/* Clear the register */
    813	offset = GPII_n_CNTXT_GPII_IRQ_CLR_OFFS(gpii_id);
    814	gpi_write_reg(gpii, gpii->regs + offset, irq_stts);
    815}
    816
    817/* processing gpi level error interrupts */
    818static void gpi_process_glob_err_irq(struct gpii *gpii)
    819{
    820	u32 gpii_id = gpii->gpii_id;
    821	u32 offset = GPII_n_CNTXT_GLOB_IRQ_STTS_OFFS(gpii_id);
    822	u32 irq_stts = gpi_read_reg(gpii, gpii->regs + offset);
    823
    824	offset = GPII_n_CNTXT_GLOB_IRQ_CLR_OFFS(gpii_id);
    825	gpi_write_reg(gpii, gpii->regs + offset, irq_stts);
    826
    827	/* only error interrupt should be set */
    828	if (irq_stts & ~GPI_GLOB_IRQ_ERROR_INT_MSK) {
    829		dev_err(gpii->gpi_dev->dev, "invalid error status:0x%x\n", irq_stts);
    830		return;
    831	}
    832
    833	offset = GPII_n_ERROR_LOG_OFFS(gpii_id);
    834	gpi_write_reg(gpii, gpii->regs + offset, 0);
    835}
    836
    837/* gpii interrupt handler */
    838static irqreturn_t gpi_handle_irq(int irq, void *data)
    839{
    840	struct gpii *gpii = data;
    841	u32 gpii_id = gpii->gpii_id;
    842	u32 type, offset;
    843	unsigned long flags;
    844
    845	read_lock_irqsave(&gpii->pm_lock, flags);
    846
    847	/*
    848	 * States are out of sync to receive interrupt
    849	 * while software state is in DISABLE state, bailing out.
    850	 */
    851	if (!REG_ACCESS_VALID(gpii->pm_state)) {
    852		dev_err(gpii->gpi_dev->dev, "receive interrupt while in %s state\n",
    853			TO_GPI_PM_STR(gpii->pm_state));
    854		goto exit_irq;
    855	}
    856
    857	offset = GPII_n_CNTXT_TYPE_IRQ_OFFS(gpii->gpii_id);
    858	type = gpi_read_reg(gpii, gpii->regs + offset);
    859
    860	do {
    861		/* global gpii error */
    862		if (type & GPII_n_CNTXT_TYPE_IRQ_MSK_GLOB) {
    863			gpi_process_glob_err_irq(gpii);
    864			type &= ~(GPII_n_CNTXT_TYPE_IRQ_MSK_GLOB);
    865		}
    866
    867		/* transfer complete interrupt */
    868		if (type & GPII_n_CNTXT_TYPE_IRQ_MSK_IEOB) {
    869			gpi_process_ieob(gpii);
    870			type &= ~GPII_n_CNTXT_TYPE_IRQ_MSK_IEOB;
    871		}
    872
    873		/* event control irq */
    874		if (type & GPII_n_CNTXT_TYPE_IRQ_MSK_EV_CTRL) {
    875			u32 ev_state;
    876			u32 ev_ch_irq;
    877
    878			dev_dbg(gpii->gpi_dev->dev,
    879				"processing EV CTRL interrupt\n");
    880			offset = GPII_n_CNTXT_SRC_EV_CH_IRQ_OFFS(gpii_id);
    881			ev_ch_irq = gpi_read_reg(gpii, gpii->regs + offset);
    882
    883			offset = GPII_n_CNTXT_SRC_EV_CH_IRQ_CLR_OFFS
    884				(gpii_id);
    885			gpi_write_reg(gpii, gpii->regs + offset, ev_ch_irq);
    886			ev_state = gpi_read_reg(gpii, gpii->ev_cntxt_base_reg +
    887						CNTXT_0_CONFIG);
    888			ev_state = FIELD_GET(GPII_n_EV_k_CNTXT_0_CHSTATE, ev_state);
    889
    890			/*
    891			 * CMD EV_CMD_DEALLOC is always successful. However
    892			 * cmd does not change hardware status. So overwriting
    893			 * software state to default state.
    894			 */
    895			if (gpii->gpi_cmd == GPI_EV_CMD_DEALLOC)
    896				ev_state = DEFAULT_EV_CH_STATE;
    897
    898			gpii->ev_state = ev_state;
    899			dev_dbg(gpii->gpi_dev->dev, "setting EV state to %s\n",
    900				TO_GPI_EV_STATE_STR(gpii->ev_state));
    901			complete_all(&gpii->cmd_completion);
    902			type &= ~(GPII_n_CNTXT_TYPE_IRQ_MSK_EV_CTRL);
    903		}
    904
    905		/* channel control irq */
    906		if (type & GPII_n_CNTXT_TYPE_IRQ_MSK_CH_CTRL) {
    907			dev_dbg(gpii->gpi_dev->dev, "process CH CTRL interrupts\n");
    908			gpi_process_ch_ctrl_irq(gpii);
    909			type &= ~(GPII_n_CNTXT_TYPE_IRQ_MSK_CH_CTRL);
    910		}
    911
    912		if (type) {
    913			dev_err(gpii->gpi_dev->dev, "Unhandled interrupt status:0x%x\n", type);
    914			gpi_process_gen_err_irq(gpii);
    915			goto exit_irq;
    916		}
    917
    918		offset = GPII_n_CNTXT_TYPE_IRQ_OFFS(gpii->gpii_id);
    919		type = gpi_read_reg(gpii, gpii->regs + offset);
    920	} while (type);
    921
    922exit_irq:
    923	read_unlock_irqrestore(&gpii->pm_lock, flags);
    924
    925	return IRQ_HANDLED;
    926}
    927
    928/* process DMA Immediate completion data events */
    929static void gpi_process_imed_data_event(struct gchan *gchan,
    930					struct immediate_data_event *imed_event)
    931{
    932	struct gpii *gpii = gchan->gpii;
    933	struct gpi_ring *ch_ring = &gchan->ch_ring;
    934	void *tre = ch_ring->base + (ch_ring->el_size * imed_event->tre_index);
    935	struct dmaengine_result result;
    936	struct gpi_desc *gpi_desc;
    937	struct virt_dma_desc *vd;
    938	unsigned long flags;
    939	u32 chid;
    940
    941	/*
    942	 * If channel not active don't process event
    943	 */
    944	if (gchan->pm_state != ACTIVE_STATE) {
    945		dev_err(gpii->gpi_dev->dev, "skipping processing event because ch @ %s state\n",
    946			TO_GPI_PM_STR(gchan->pm_state));
    947		return;
    948	}
    949
    950	spin_lock_irqsave(&gchan->vc.lock, flags);
    951	vd = vchan_next_desc(&gchan->vc);
    952	if (!vd) {
    953		struct gpi_ere *gpi_ere;
    954		struct gpi_tre *gpi_tre;
    955
    956		spin_unlock_irqrestore(&gchan->vc.lock, flags);
    957		dev_dbg(gpii->gpi_dev->dev, "event without a pending descriptor!\n");
    958		gpi_ere = (struct gpi_ere *)imed_event;
    959		dev_dbg(gpii->gpi_dev->dev,
    960			"Event: %08x %08x %08x %08x\n",
    961			gpi_ere->dword[0], gpi_ere->dword[1],
    962			gpi_ere->dword[2], gpi_ere->dword[3]);
    963		gpi_tre = tre;
    964		dev_dbg(gpii->gpi_dev->dev,
    965			"Pending TRE: %08x %08x %08x %08x\n",
    966			gpi_tre->dword[0], gpi_tre->dword[1],
    967			gpi_tre->dword[2], gpi_tre->dword[3]);
    968		return;
    969	}
    970	gpi_desc = to_gpi_desc(vd);
    971	spin_unlock_irqrestore(&gchan->vc.lock, flags);
    972
    973	/*
    974	 * RP pointed by Event is to last TRE processed,
    975	 * we need to update ring rp to tre + 1
    976	 */
    977	tre += ch_ring->el_size;
    978	if (tre >= (ch_ring->base + ch_ring->len))
    979		tre = ch_ring->base;
    980	ch_ring->rp = tre;
    981
    982	/* make sure rp updates are immediately visible to all cores */
    983	smp_wmb();
    984
    985	chid = imed_event->chid;
    986	if (imed_event->code == MSM_GPI_TCE_EOT && gpii->ieob_set) {
    987		if (chid == GPI_RX_CHAN)
    988			goto gpi_free_desc;
    989		else
    990			return;
    991	}
    992
    993	if (imed_event->code == MSM_GPI_TCE_UNEXP_ERR)
    994		result.result = DMA_TRANS_ABORTED;
    995	else
    996		result.result = DMA_TRANS_NOERROR;
    997	result.residue = gpi_desc->len - imed_event->length;
    998
    999	dma_cookie_complete(&vd->tx);
   1000	dmaengine_desc_get_callback_invoke(&vd->tx, &result);
   1001
   1002gpi_free_desc:
   1003	spin_lock_irqsave(&gchan->vc.lock, flags);
   1004	list_del(&vd->node);
   1005	spin_unlock_irqrestore(&gchan->vc.lock, flags);
   1006	kfree(gpi_desc);
   1007	gpi_desc = NULL;
   1008}
   1009
   1010/* processing transfer completion events */
   1011static void gpi_process_xfer_compl_event(struct gchan *gchan,
   1012					 struct xfer_compl_event *compl_event)
   1013{
   1014	struct gpii *gpii = gchan->gpii;
   1015	struct gpi_ring *ch_ring = &gchan->ch_ring;
   1016	void *ev_rp = to_virtual(ch_ring, compl_event->ptr);
   1017	struct virt_dma_desc *vd;
   1018	struct gpi_desc *gpi_desc;
   1019	struct dmaengine_result result;
   1020	unsigned long flags;
   1021	u32 chid;
   1022
   1023	/* only process events on active channel */
   1024	if (unlikely(gchan->pm_state != ACTIVE_STATE)) {
   1025		dev_err(gpii->gpi_dev->dev, "skipping processing event because ch @ %s state\n",
   1026			TO_GPI_PM_STR(gchan->pm_state));
   1027		return;
   1028	}
   1029
   1030	spin_lock_irqsave(&gchan->vc.lock, flags);
   1031	vd = vchan_next_desc(&gchan->vc);
   1032	if (!vd) {
   1033		struct gpi_ere *gpi_ere;
   1034
   1035		spin_unlock_irqrestore(&gchan->vc.lock, flags);
   1036		dev_err(gpii->gpi_dev->dev, "Event without a pending descriptor!\n");
   1037		gpi_ere = (struct gpi_ere *)compl_event;
   1038		dev_err(gpii->gpi_dev->dev,
   1039			"Event: %08x %08x %08x %08x\n",
   1040			gpi_ere->dword[0], gpi_ere->dword[1],
   1041			gpi_ere->dword[2], gpi_ere->dword[3]);
   1042		return;
   1043	}
   1044
   1045	gpi_desc = to_gpi_desc(vd);
   1046	spin_unlock_irqrestore(&gchan->vc.lock, flags);
   1047
   1048	/*
   1049	 * RP pointed by Event is to last TRE processed,
   1050	 * we need to update ring rp to ev_rp + 1
   1051	 */
   1052	ev_rp += ch_ring->el_size;
   1053	if (ev_rp >= (ch_ring->base + ch_ring->len))
   1054		ev_rp = ch_ring->base;
   1055	ch_ring->rp = ev_rp;
   1056
   1057	/* update must be visible to other cores */
   1058	smp_wmb();
   1059
   1060	chid = compl_event->chid;
   1061	if (compl_event->code == MSM_GPI_TCE_EOT && gpii->ieob_set) {
   1062		if (chid == GPI_RX_CHAN)
   1063			goto gpi_free_desc;
   1064		else
   1065			return;
   1066	}
   1067
   1068	if (compl_event->code == MSM_GPI_TCE_UNEXP_ERR) {
   1069		dev_err(gpii->gpi_dev->dev, "Error in Transaction\n");
   1070		result.result = DMA_TRANS_ABORTED;
   1071	} else {
   1072		dev_dbg(gpii->gpi_dev->dev, "Transaction Success\n");
   1073		result.result = DMA_TRANS_NOERROR;
   1074	}
   1075	result.residue = gpi_desc->len - compl_event->length;
   1076	dev_dbg(gpii->gpi_dev->dev, "Residue %d\n", result.residue);
   1077
   1078	dma_cookie_complete(&vd->tx);
   1079	dmaengine_desc_get_callback_invoke(&vd->tx, &result);
   1080
   1081gpi_free_desc:
   1082	spin_lock_irqsave(&gchan->vc.lock, flags);
   1083	list_del(&vd->node);
   1084	spin_unlock_irqrestore(&gchan->vc.lock, flags);
   1085	kfree(gpi_desc);
   1086	gpi_desc = NULL;
   1087}
   1088
   1089/* process all events */
   1090static void gpi_process_events(struct gpii *gpii)
   1091{
   1092	struct gpi_ring *ev_ring = &gpii->ev_ring;
   1093	phys_addr_t cntxt_rp;
   1094	void *rp;
   1095	union gpi_event *gpi_event;
   1096	struct gchan *gchan;
   1097	u32 chid, type;
   1098
   1099	cntxt_rp = gpi_read_reg(gpii, gpii->ev_ring_rp_lsb_reg);
   1100	rp = to_virtual(ev_ring, cntxt_rp);
   1101
   1102	do {
   1103		while (rp != ev_ring->rp) {
   1104			gpi_event = ev_ring->rp;
   1105			chid = gpi_event->xfer_compl_event.chid;
   1106			type = gpi_event->xfer_compl_event.type;
   1107
   1108			dev_dbg(gpii->gpi_dev->dev,
   1109				"Event: CHID:%u, type:%x %08x %08x %08x %08x\n",
   1110				chid, type, gpi_event->gpi_ere.dword[0],
   1111				gpi_event->gpi_ere.dword[1], gpi_event->gpi_ere.dword[2],
   1112				gpi_event->gpi_ere.dword[3]);
   1113
   1114			switch (type) {
   1115			case XFER_COMPLETE_EV_TYPE:
   1116				gchan = &gpii->gchan[chid];
   1117				gpi_process_xfer_compl_event(gchan,
   1118							     &gpi_event->xfer_compl_event);
   1119				break;
   1120			case STALE_EV_TYPE:
   1121				dev_dbg(gpii->gpi_dev->dev, "stale event, not processing\n");
   1122				break;
   1123			case IMMEDIATE_DATA_EV_TYPE:
   1124				gchan = &gpii->gchan[chid];
   1125				gpi_process_imed_data_event(gchan,
   1126							    &gpi_event->immediate_data_event);
   1127				break;
   1128			case QUP_NOTIF_EV_TYPE:
   1129				dev_dbg(gpii->gpi_dev->dev, "QUP_NOTIF_EV_TYPE\n");
   1130				break;
   1131			default:
   1132				dev_dbg(gpii->gpi_dev->dev,
   1133					"not supported event type:0x%x\n", type);
   1134			}
   1135			gpi_ring_recycle_ev_element(ev_ring);
   1136		}
   1137		gpi_write_ev_db(gpii, ev_ring, ev_ring->wp);
   1138
   1139		/* clear pending IEOB events */
   1140		gpi_write_reg(gpii, gpii->ieob_clr_reg, BIT(0));
   1141
   1142		cntxt_rp = gpi_read_reg(gpii, gpii->ev_ring_rp_lsb_reg);
   1143		rp = to_virtual(ev_ring, cntxt_rp);
   1144
   1145	} while (rp != ev_ring->rp);
   1146}
   1147
   1148/* processing events using tasklet */
   1149static void gpi_ev_tasklet(unsigned long data)
   1150{
   1151	struct gpii *gpii = (struct gpii *)data;
   1152
   1153	read_lock_bh(&gpii->pm_lock);
   1154	if (!REG_ACCESS_VALID(gpii->pm_state)) {
   1155		read_unlock_bh(&gpii->pm_lock);
   1156		dev_err(gpii->gpi_dev->dev, "not processing any events, pm_state:%s\n",
   1157			TO_GPI_PM_STR(gpii->pm_state));
   1158		return;
   1159	}
   1160
   1161	/* process the events */
   1162	gpi_process_events(gpii);
   1163
   1164	/* enable IEOB, switching back to interrupts */
   1165	gpi_config_interrupts(gpii, MASK_IEOB_SETTINGS, 1);
   1166	read_unlock_bh(&gpii->pm_lock);
   1167}
   1168
   1169/* marks all pending events for the channel as stale */
   1170static void gpi_mark_stale_events(struct gchan *gchan)
   1171{
   1172	struct gpii *gpii = gchan->gpii;
   1173	struct gpi_ring *ev_ring = &gpii->ev_ring;
   1174	u32 cntxt_rp, local_rp;
   1175	void *ev_rp;
   1176
   1177	cntxt_rp = gpi_read_reg(gpii, gpii->ev_ring_rp_lsb_reg);
   1178
   1179	ev_rp = ev_ring->rp;
   1180	local_rp = (u32)to_physical(ev_ring, ev_rp);
   1181	while (local_rp != cntxt_rp) {
   1182		union gpi_event *gpi_event = ev_rp;
   1183		u32 chid = gpi_event->xfer_compl_event.chid;
   1184
   1185		if (chid == gchan->chid)
   1186			gpi_event->xfer_compl_event.type = STALE_EV_TYPE;
   1187		ev_rp += ev_ring->el_size;
   1188		if (ev_rp >= (ev_ring->base + ev_ring->len))
   1189			ev_rp = ev_ring->base;
   1190		cntxt_rp = gpi_read_reg(gpii, gpii->ev_ring_rp_lsb_reg);
   1191		local_rp = (u32)to_physical(ev_ring, ev_rp);
   1192	}
   1193}
   1194
   1195/* reset sw state and issue channel reset or de-alloc */
   1196static int gpi_reset_chan(struct gchan *gchan, enum gpi_cmd gpi_cmd)
   1197{
   1198	struct gpii *gpii = gchan->gpii;
   1199	struct gpi_ring *ch_ring = &gchan->ch_ring;
   1200	unsigned long flags;
   1201	LIST_HEAD(list);
   1202	int ret;
   1203
   1204	ret = gpi_send_cmd(gpii, gchan, gpi_cmd);
   1205	if (ret) {
   1206		dev_err(gpii->gpi_dev->dev, "Error with cmd:%s ret:%d\n",
   1207			TO_GPI_CMD_STR(gpi_cmd), ret);
   1208		return ret;
   1209	}
   1210
   1211	/* initialize the local ring ptrs */
   1212	ch_ring->rp = ch_ring->base;
   1213	ch_ring->wp = ch_ring->base;
   1214
   1215	/* visible to other cores */
   1216	smp_wmb();
   1217
   1218	/* check event ring for any stale events */
   1219	write_lock_irq(&gpii->pm_lock);
   1220	gpi_mark_stale_events(gchan);
   1221
   1222	/* remove all async descriptors */
   1223	spin_lock_irqsave(&gchan->vc.lock, flags);
   1224	vchan_get_all_descriptors(&gchan->vc, &list);
   1225	spin_unlock_irqrestore(&gchan->vc.lock, flags);
   1226	write_unlock_irq(&gpii->pm_lock);
   1227	vchan_dma_desc_free_list(&gchan->vc, &list);
   1228
   1229	return 0;
   1230}
   1231
   1232static int gpi_start_chan(struct gchan *gchan)
   1233{
   1234	struct gpii *gpii = gchan->gpii;
   1235	int ret;
   1236
   1237	ret = gpi_send_cmd(gpii, gchan, GPI_CH_CMD_START);
   1238	if (ret) {
   1239		dev_err(gpii->gpi_dev->dev, "Error with cmd:%s ret:%d\n",
   1240			TO_GPI_CMD_STR(GPI_CH_CMD_START), ret);
   1241		return ret;
   1242	}
   1243
   1244	/* gpii CH is active now */
   1245	write_lock_irq(&gpii->pm_lock);
   1246	gchan->pm_state = ACTIVE_STATE;
   1247	write_unlock_irq(&gpii->pm_lock);
   1248
   1249	return 0;
   1250}
   1251
   1252static int gpi_stop_chan(struct gchan *gchan)
   1253{
   1254	struct gpii *gpii = gchan->gpii;
   1255	int ret;
   1256
   1257	ret = gpi_send_cmd(gpii, gchan, GPI_CH_CMD_STOP);
   1258	if (ret) {
   1259		dev_err(gpii->gpi_dev->dev, "Error with cmd:%s ret:%d\n",
   1260			TO_GPI_CMD_STR(GPI_CH_CMD_STOP), ret);
   1261		return ret;
   1262	}
   1263
   1264	return 0;
   1265}
   1266
   1267/* allocate and configure the transfer channel */
   1268static int gpi_alloc_chan(struct gchan *chan, bool send_alloc_cmd)
   1269{
   1270	struct gpii *gpii = chan->gpii;
   1271	struct gpi_ring *ring = &chan->ch_ring;
   1272	int ret;
   1273	u32 id = gpii->gpii_id;
   1274	u32 chid = chan->chid;
   1275	u32 pair_chid = !chid;
   1276
   1277	if (send_alloc_cmd) {
   1278		ret = gpi_send_cmd(gpii, chan, GPI_CH_CMD_ALLOCATE);
   1279		if (ret) {
   1280			dev_err(gpii->gpi_dev->dev, "Error with cmd:%s ret:%d\n",
   1281				TO_GPI_CMD_STR(GPI_CH_CMD_ALLOCATE), ret);
   1282			return ret;
   1283		}
   1284	}
   1285
   1286	gpi_write_reg(gpii, chan->ch_cntxt_base_reg + CNTXT_0_CONFIG,
   1287		      GPII_n_CH_k_CNTXT_0(ring->el_size, 0, chan->dir, GPI_CHTYPE_PROTO_GPI));
   1288	gpi_write_reg(gpii, chan->ch_cntxt_base_reg + CNTXT_1_R_LENGTH, ring->len);
   1289	gpi_write_reg(gpii, chan->ch_cntxt_base_reg + CNTXT_2_RING_BASE_LSB, ring->phys_addr);
   1290	gpi_write_reg(gpii, chan->ch_cntxt_base_reg + CNTXT_3_RING_BASE_MSB,
   1291		      upper_32_bits(ring->phys_addr));
   1292	gpi_write_reg(gpii, chan->ch_cntxt_db_reg + CNTXT_5_RING_RP_MSB - CNTXT_4_RING_RP_LSB,
   1293		      upper_32_bits(ring->phys_addr));
   1294	gpi_write_reg(gpii, gpii->regs + GPII_n_CH_k_SCRATCH_0_OFFS(id, chid),
   1295		      GPII_n_CH_k_SCRATCH_0(pair_chid, chan->protocol, chan->seid));
   1296	gpi_write_reg(gpii, gpii->regs + GPII_n_CH_k_SCRATCH_1_OFFS(id, chid), 0);
   1297	gpi_write_reg(gpii, gpii->regs + GPII_n_CH_k_SCRATCH_2_OFFS(id, chid), 0);
   1298	gpi_write_reg(gpii, gpii->regs + GPII_n_CH_k_SCRATCH_3_OFFS(id, chid), 0);
   1299	gpi_write_reg(gpii, gpii->regs + GPII_n_CH_k_QOS_OFFS(id, chid), 1);
   1300
   1301	/* flush all the writes */
   1302	wmb();
   1303	return 0;
   1304}
   1305
   1306/* allocate and configure event ring */
   1307static int gpi_alloc_ev_chan(struct gpii *gpii)
   1308{
   1309	struct gpi_ring *ring = &gpii->ev_ring;
   1310	void __iomem *base = gpii->ev_cntxt_base_reg;
   1311	int ret;
   1312
   1313	ret = gpi_send_cmd(gpii, NULL, GPI_EV_CMD_ALLOCATE);
   1314	if (ret) {
   1315		dev_err(gpii->gpi_dev->dev, "error with cmd:%s ret:%d\n",
   1316			TO_GPI_CMD_STR(GPI_EV_CMD_ALLOCATE), ret);
   1317		return ret;
   1318	}
   1319
   1320	/* program event context */
   1321	gpi_write_reg(gpii, base + CNTXT_0_CONFIG,
   1322		      GPII_n_EV_k_CNTXT_0(ring->el_size, GPI_INTTYPE_IRQ, GPI_CHTYPE_GPI_EV));
   1323	gpi_write_reg(gpii, base + CNTXT_1_R_LENGTH, ring->len);
   1324	gpi_write_reg(gpii, base + CNTXT_2_RING_BASE_LSB, lower_32_bits(ring->phys_addr));
   1325	gpi_write_reg(gpii, base + CNTXT_3_RING_BASE_MSB, upper_32_bits(ring->phys_addr));
   1326	gpi_write_reg(gpii, gpii->ev_cntxt_db_reg + CNTXT_5_RING_RP_MSB - CNTXT_4_RING_RP_LSB,
   1327		      upper_32_bits(ring->phys_addr));
   1328	gpi_write_reg(gpii, base + CNTXT_8_RING_INT_MOD, 0);
   1329	gpi_write_reg(gpii, base + CNTXT_10_RING_MSI_LSB, 0);
   1330	gpi_write_reg(gpii, base + CNTXT_11_RING_MSI_MSB, 0);
   1331	gpi_write_reg(gpii, base + CNTXT_8_RING_INT_MOD, 0);
   1332	gpi_write_reg(gpii, base + CNTXT_12_RING_RP_UPDATE_LSB, 0);
   1333	gpi_write_reg(gpii, base + CNTXT_13_RING_RP_UPDATE_MSB, 0);
   1334
   1335	/* add events to ring */
   1336	ring->wp = (ring->base + ring->len - ring->el_size);
   1337
   1338	/* flush all the writes */
   1339	wmb();
   1340
   1341	/* gpii is active now */
   1342	write_lock_irq(&gpii->pm_lock);
   1343	gpii->pm_state = ACTIVE_STATE;
   1344	write_unlock_irq(&gpii->pm_lock);
   1345	gpi_write_ev_db(gpii, ring, ring->wp);
   1346
   1347	return 0;
   1348}
   1349
   1350/* calculate # of ERE/TRE available to queue */
   1351static int gpi_ring_num_elements_avail(const struct gpi_ring * const ring)
   1352{
   1353	int elements = 0;
   1354
   1355	if (ring->wp < ring->rp) {
   1356		elements = ((ring->rp - ring->wp) / ring->el_size) - 1;
   1357	} else {
   1358		elements = (ring->rp - ring->base) / ring->el_size;
   1359		elements += ((ring->base + ring->len - ring->wp) / ring->el_size) - 1;
   1360	}
   1361
   1362	return elements;
   1363}
   1364
   1365static int gpi_ring_add_element(struct gpi_ring *ring, void **wp)
   1366{
   1367	if (gpi_ring_num_elements_avail(ring) <= 0)
   1368		return -ENOMEM;
   1369
   1370	*wp = ring->wp;
   1371	ring->wp += ring->el_size;
   1372	if (ring->wp  >= (ring->base + ring->len))
   1373		ring->wp = ring->base;
   1374
   1375	/* visible to other cores */
   1376	smp_wmb();
   1377
   1378	return 0;
   1379}
   1380
   1381static void gpi_ring_recycle_ev_element(struct gpi_ring *ring)
   1382{
   1383	/* Update the WP */
   1384	ring->wp += ring->el_size;
   1385	if (ring->wp  >= (ring->base + ring->len))
   1386		ring->wp = ring->base;
   1387
   1388	/* Update the RP */
   1389	ring->rp += ring->el_size;
   1390	if (ring->rp  >= (ring->base + ring->len))
   1391		ring->rp = ring->base;
   1392
   1393	/* visible to other cores */
   1394	smp_wmb();
   1395}
   1396
   1397static void gpi_free_ring(struct gpi_ring *ring,
   1398			  struct gpii *gpii)
   1399{
   1400	dma_free_coherent(gpii->gpi_dev->dev, ring->alloc_size,
   1401			  ring->pre_aligned, ring->dma_handle);
   1402	memset(ring, 0, sizeof(*ring));
   1403}
   1404
   1405/* allocate memory for transfer and event rings */
   1406static int gpi_alloc_ring(struct gpi_ring *ring, u32 elements,
   1407			  u32 el_size, struct gpii *gpii)
   1408{
   1409	u64 len = elements * el_size;
   1410	int bit;
   1411
   1412	/* ring len must be power of 2 */
   1413	bit = find_last_bit((unsigned long *)&len, 32);
   1414	if (((1 << bit) - 1) & len)
   1415		bit++;
   1416	len = 1 << bit;
   1417	ring->alloc_size = (len + (len - 1));
   1418	dev_dbg(gpii->gpi_dev->dev,
   1419		"#el:%u el_size:%u len:%u actual_len:%llu alloc_size:%zu\n",
   1420		  elements, el_size, (elements * el_size), len,
   1421		  ring->alloc_size);
   1422
   1423	ring->pre_aligned = dma_alloc_coherent(gpii->gpi_dev->dev,
   1424					       ring->alloc_size,
   1425					       &ring->dma_handle, GFP_KERNEL);
   1426	if (!ring->pre_aligned) {
   1427		dev_err(gpii->gpi_dev->dev, "could not alloc size:%zu mem for ring\n",
   1428			ring->alloc_size);
   1429		return -ENOMEM;
   1430	}
   1431
   1432	/* align the physical mem */
   1433	ring->phys_addr = (ring->dma_handle + (len - 1)) & ~(len - 1);
   1434	ring->base = ring->pre_aligned + (ring->phys_addr - ring->dma_handle);
   1435	ring->rp = ring->base;
   1436	ring->wp = ring->base;
   1437	ring->len = len;
   1438	ring->el_size = el_size;
   1439	ring->elements = ring->len / ring->el_size;
   1440	memset(ring->base, 0, ring->len);
   1441	ring->configured = true;
   1442
   1443	/* update to other cores */
   1444	smp_wmb();
   1445
   1446	dev_dbg(gpii->gpi_dev->dev,
   1447		"phy_pre:%pad phy_alig:%pa len:%u el_size:%u elements:%u\n",
   1448		&ring->dma_handle, &ring->phys_addr, ring->len,
   1449		ring->el_size, ring->elements);
   1450
   1451	return 0;
   1452}
   1453
   1454/* copy tre into transfer ring */
   1455static void gpi_queue_xfer(struct gpii *gpii, struct gchan *gchan,
   1456			   struct gpi_tre *gpi_tre, void **wp)
   1457{
   1458	struct gpi_tre *ch_tre;
   1459	int ret;
   1460
   1461	/* get next tre location we can copy */
   1462	ret = gpi_ring_add_element(&gchan->ch_ring, (void **)&ch_tre);
   1463	if (unlikely(ret)) {
   1464		dev_err(gpii->gpi_dev->dev, "Error adding ring element to xfer ring\n");
   1465		return;
   1466	}
   1467
   1468	/* copy the tre info */
   1469	memcpy(ch_tre, gpi_tre, sizeof(*ch_tre));
   1470	*wp = ch_tre;
   1471}
   1472
   1473/* reset and restart transfer channel */
   1474static int gpi_terminate_all(struct dma_chan *chan)
   1475{
   1476	struct gchan *gchan = to_gchan(chan);
   1477	struct gpii *gpii = gchan->gpii;
   1478	int schid, echid, i;
   1479	int ret = 0;
   1480
   1481	mutex_lock(&gpii->ctrl_lock);
   1482
   1483	/*
   1484	 * treat both channels as a group if its protocol is not UART
   1485	 * STOP, RESET, or START needs to be in lockstep
   1486	 */
   1487	schid = (gchan->protocol == QCOM_GPI_UART) ? gchan->chid : 0;
   1488	echid = (gchan->protocol == QCOM_GPI_UART) ? schid + 1 : MAX_CHANNELS_PER_GPII;
   1489
   1490	/* stop the channel */
   1491	for (i = schid; i < echid; i++) {
   1492		gchan = &gpii->gchan[i];
   1493
   1494		/* disable ch state so no more TRE processing */
   1495		write_lock_irq(&gpii->pm_lock);
   1496		gchan->pm_state = PREPARE_TERMINATE;
   1497		write_unlock_irq(&gpii->pm_lock);
   1498
   1499		/* send command to Stop the channel */
   1500		ret = gpi_stop_chan(gchan);
   1501	}
   1502
   1503	/* reset the channels (clears any pending tre) */
   1504	for (i = schid; i < echid; i++) {
   1505		gchan = &gpii->gchan[i];
   1506
   1507		ret = gpi_reset_chan(gchan, GPI_CH_CMD_RESET);
   1508		if (ret) {
   1509			dev_err(gpii->gpi_dev->dev, "Error resetting channel ret:%d\n", ret);
   1510			goto terminate_exit;
   1511		}
   1512
   1513		/* reprogram channel CNTXT */
   1514		ret = gpi_alloc_chan(gchan, false);
   1515		if (ret) {
   1516			dev_err(gpii->gpi_dev->dev, "Error alloc_channel ret:%d\n", ret);
   1517			goto terminate_exit;
   1518		}
   1519	}
   1520
   1521	/* restart the channels */
   1522	for (i = schid; i < echid; i++) {
   1523		gchan = &gpii->gchan[i];
   1524
   1525		ret = gpi_start_chan(gchan);
   1526		if (ret) {
   1527			dev_err(gpii->gpi_dev->dev, "Error Starting Channel ret:%d\n", ret);
   1528			goto terminate_exit;
   1529		}
   1530	}
   1531
   1532terminate_exit:
   1533	mutex_unlock(&gpii->ctrl_lock);
   1534	return ret;
   1535}
   1536
   1537/* pause dma transfer for all channels */
   1538static int gpi_pause(struct dma_chan *chan)
   1539{
   1540	struct gchan *gchan = to_gchan(chan);
   1541	struct gpii *gpii = gchan->gpii;
   1542	int i, ret;
   1543
   1544	mutex_lock(&gpii->ctrl_lock);
   1545
   1546	/*
   1547	 * pause/resume are per gpii not per channel, so
   1548	 * client needs to call pause only once
   1549	 */
   1550	if (gpii->pm_state == PAUSE_STATE) {
   1551		dev_dbg(gpii->gpi_dev->dev, "channel is already paused\n");
   1552		mutex_unlock(&gpii->ctrl_lock);
   1553		return 0;
   1554	}
   1555
   1556	/* send stop command to stop the channels */
   1557	for (i = 0; i < MAX_CHANNELS_PER_GPII; i++) {
   1558		ret = gpi_stop_chan(&gpii->gchan[i]);
   1559		if (ret) {
   1560			mutex_unlock(&gpii->ctrl_lock);
   1561			return ret;
   1562		}
   1563	}
   1564
   1565	disable_irq(gpii->irq);
   1566
   1567	/* Wait for threads to complete out */
   1568	tasklet_kill(&gpii->ev_task);
   1569
   1570	write_lock_irq(&gpii->pm_lock);
   1571	gpii->pm_state = PAUSE_STATE;
   1572	write_unlock_irq(&gpii->pm_lock);
   1573	mutex_unlock(&gpii->ctrl_lock);
   1574
   1575	return 0;
   1576}
   1577
   1578/* resume dma transfer */
   1579static int gpi_resume(struct dma_chan *chan)
   1580{
   1581	struct gchan *gchan = to_gchan(chan);
   1582	struct gpii *gpii = gchan->gpii;
   1583	int i, ret;
   1584
   1585	mutex_lock(&gpii->ctrl_lock);
   1586	if (gpii->pm_state == ACTIVE_STATE) {
   1587		dev_dbg(gpii->gpi_dev->dev, "channel is already active\n");
   1588		mutex_unlock(&gpii->ctrl_lock);
   1589		return 0;
   1590	}
   1591
   1592	enable_irq(gpii->irq);
   1593
   1594	/* send start command to start the channels */
   1595	for (i = 0; i < MAX_CHANNELS_PER_GPII; i++) {
   1596		ret = gpi_send_cmd(gpii, &gpii->gchan[i], GPI_CH_CMD_START);
   1597		if (ret) {
   1598			dev_err(gpii->gpi_dev->dev, "Error starting chan, ret:%d\n", ret);
   1599			mutex_unlock(&gpii->ctrl_lock);
   1600			return ret;
   1601		}
   1602	}
   1603
   1604	write_lock_irq(&gpii->pm_lock);
   1605	gpii->pm_state = ACTIVE_STATE;
   1606	write_unlock_irq(&gpii->pm_lock);
   1607	mutex_unlock(&gpii->ctrl_lock);
   1608
   1609	return 0;
   1610}
   1611
   1612static void gpi_desc_free(struct virt_dma_desc *vd)
   1613{
   1614	struct gpi_desc *gpi_desc = to_gpi_desc(vd);
   1615
   1616	kfree(gpi_desc);
   1617	gpi_desc = NULL;
   1618}
   1619
   1620static int
   1621gpi_peripheral_config(struct dma_chan *chan, struct dma_slave_config *config)
   1622{
   1623	struct gchan *gchan = to_gchan(chan);
   1624
   1625	if (!config->peripheral_config)
   1626		return -EINVAL;
   1627
   1628	gchan->config = krealloc(gchan->config, config->peripheral_size, GFP_NOWAIT);
   1629	if (!gchan->config)
   1630		return -ENOMEM;
   1631
   1632	memcpy(gchan->config, config->peripheral_config, config->peripheral_size);
   1633
   1634	return 0;
   1635}
   1636
   1637static int gpi_create_i2c_tre(struct gchan *chan, struct gpi_desc *desc,
   1638			      struct scatterlist *sgl, enum dma_transfer_direction direction)
   1639{
   1640	struct gpi_i2c_config *i2c = chan->config;
   1641	struct device *dev = chan->gpii->gpi_dev->dev;
   1642	unsigned int tre_idx = 0;
   1643	dma_addr_t address;
   1644	struct gpi_tre *tre;
   1645	unsigned int i;
   1646
   1647	/* first create config tre if applicable */
   1648	if (i2c->set_config) {
   1649		tre = &desc->tre[tre_idx];
   1650		tre_idx++;
   1651
   1652		tre->dword[0] = u32_encode_bits(i2c->low_count, TRE_I2C_C0_TLOW);
   1653		tre->dword[0] |= u32_encode_bits(i2c->high_count, TRE_I2C_C0_THIGH);
   1654		tre->dword[0] |= u32_encode_bits(i2c->cycle_count, TRE_I2C_C0_TCYL);
   1655		tre->dword[0] |= u32_encode_bits(i2c->pack_enable, TRE_I2C_C0_TX_PACK);
   1656		tre->dword[0] |= u32_encode_bits(i2c->pack_enable, TRE_I2C_C0_RX_PACK);
   1657
   1658		tre->dword[1] = 0;
   1659
   1660		tre->dword[2] = u32_encode_bits(i2c->clk_div, TRE_C0_CLK_DIV);
   1661
   1662		tre->dword[3] = u32_encode_bits(TRE_TYPE_CONFIG0, TRE_FLAGS_TYPE);
   1663		tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_CHAIN);
   1664	}
   1665
   1666	/* create the GO tre for Tx */
   1667	if (i2c->op == I2C_WRITE) {
   1668		tre = &desc->tre[tre_idx];
   1669		tre_idx++;
   1670
   1671		if (i2c->multi_msg)
   1672			tre->dword[0] = u32_encode_bits(I2C_READ, TRE_I2C_GO_CMD);
   1673		else
   1674			tre->dword[0] = u32_encode_bits(i2c->op, TRE_I2C_GO_CMD);
   1675
   1676		tre->dword[0] |= u32_encode_bits(i2c->addr, TRE_I2C_GO_ADDR);
   1677		tre->dword[0] |= u32_encode_bits(i2c->stretch, TRE_I2C_GO_STRETCH);
   1678
   1679		tre->dword[1] = 0;
   1680		tre->dword[2] = u32_encode_bits(i2c->rx_len, TRE_RX_LEN);
   1681
   1682		tre->dword[3] = u32_encode_bits(TRE_TYPE_GO, TRE_FLAGS_TYPE);
   1683
   1684		if (i2c->multi_msg)
   1685			tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_LINK);
   1686		else
   1687			tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_CHAIN);
   1688	}
   1689
   1690	if (i2c->op == I2C_READ || i2c->multi_msg == false) {
   1691		/* create the DMA TRE */
   1692		tre = &desc->tre[tre_idx];
   1693		tre_idx++;
   1694
   1695		address = sg_dma_address(sgl);
   1696		tre->dword[0] = lower_32_bits(address);
   1697		tre->dword[1] = upper_32_bits(address);
   1698
   1699		tre->dword[2] = u32_encode_bits(sg_dma_len(sgl), TRE_DMA_LEN);
   1700
   1701		tre->dword[3] = u32_encode_bits(TRE_TYPE_DMA, TRE_FLAGS_TYPE);
   1702		tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_IEOT);
   1703	}
   1704
   1705	for (i = 0; i < tre_idx; i++)
   1706		dev_dbg(dev, "TRE:%d %x:%x:%x:%x\n", i, desc->tre[i].dword[0],
   1707			desc->tre[i].dword[1], desc->tre[i].dword[2], desc->tre[i].dword[3]);
   1708
   1709	return tre_idx;
   1710}
   1711
   1712static int gpi_create_spi_tre(struct gchan *chan, struct gpi_desc *desc,
   1713			      struct scatterlist *sgl, enum dma_transfer_direction direction)
   1714{
   1715	struct gpi_spi_config *spi = chan->config;
   1716	struct device *dev = chan->gpii->gpi_dev->dev;
   1717	unsigned int tre_idx = 0;
   1718	dma_addr_t address;
   1719	struct gpi_tre *tre;
   1720	unsigned int i;
   1721
   1722	/* first create config tre if applicable */
   1723	if (direction == DMA_MEM_TO_DEV && spi->set_config) {
   1724		tre = &desc->tre[tre_idx];
   1725		tre_idx++;
   1726
   1727		tre->dword[0] = u32_encode_bits(spi->word_len, TRE_SPI_C0_WORD_SZ);
   1728		tre->dword[0] |= u32_encode_bits(spi->loopback_en, TRE_SPI_C0_LOOPBACK);
   1729		tre->dword[0] |= u32_encode_bits(spi->clock_pol_high, TRE_SPI_C0_CPOL);
   1730		tre->dword[0] |= u32_encode_bits(spi->data_pol_high, TRE_SPI_C0_CPHA);
   1731		tre->dword[0] |= u32_encode_bits(spi->pack_en, TRE_SPI_C0_TX_PACK);
   1732		tre->dword[0] |= u32_encode_bits(spi->pack_en, TRE_SPI_C0_RX_PACK);
   1733
   1734		tre->dword[1] = 0;
   1735
   1736		tre->dword[2] = u32_encode_bits(spi->clk_div, TRE_C0_CLK_DIV);
   1737		tre->dword[2] |= u32_encode_bits(spi->clk_src, TRE_C0_CLK_SRC);
   1738
   1739		tre->dword[3] = u32_encode_bits(TRE_TYPE_CONFIG0, TRE_FLAGS_TYPE);
   1740		tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_CHAIN);
   1741	}
   1742
   1743	/* create the GO tre for Tx */
   1744	if (direction == DMA_MEM_TO_DEV) {
   1745		tre = &desc->tre[tre_idx];
   1746		tre_idx++;
   1747
   1748		tre->dword[0] = u32_encode_bits(spi->fragmentation, TRE_SPI_GO_FRAG);
   1749		tre->dword[0] |= u32_encode_bits(spi->cs, TRE_SPI_GO_CS);
   1750		tre->dword[0] |= u32_encode_bits(spi->cmd, TRE_SPI_GO_CMD);
   1751
   1752		tre->dword[1] = 0;
   1753
   1754		tre->dword[2] = u32_encode_bits(spi->rx_len, TRE_RX_LEN);
   1755
   1756		tre->dword[3] = u32_encode_bits(TRE_TYPE_GO, TRE_FLAGS_TYPE);
   1757		if (spi->cmd == SPI_RX) {
   1758			tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_IEOB);
   1759		} else if (spi->cmd == SPI_TX) {
   1760			tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_CHAIN);
   1761		} else { /* SPI_DUPLEX */
   1762			tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_CHAIN);
   1763			tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_LINK);
   1764		}
   1765	}
   1766
   1767	/* create the dma tre */
   1768	tre = &desc->tre[tre_idx];
   1769	tre_idx++;
   1770
   1771	address = sg_dma_address(sgl);
   1772	tre->dword[0] = lower_32_bits(address);
   1773	tre->dword[1] = upper_32_bits(address);
   1774
   1775	tre->dword[2] = u32_encode_bits(sg_dma_len(sgl), TRE_DMA_LEN);
   1776
   1777	tre->dword[3] = u32_encode_bits(TRE_TYPE_DMA, TRE_FLAGS_TYPE);
   1778	if (direction == DMA_MEM_TO_DEV)
   1779		tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_IEOT);
   1780
   1781	for (i = 0; i < tre_idx; i++)
   1782		dev_dbg(dev, "TRE:%d %x:%x:%x:%x\n", i, desc->tre[i].dword[0],
   1783			desc->tre[i].dword[1], desc->tre[i].dword[2], desc->tre[i].dword[3]);
   1784
   1785	return tre_idx;
   1786}
   1787
   1788/* copy tre into transfer ring */
   1789static struct dma_async_tx_descriptor *
   1790gpi_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
   1791		  unsigned int sg_len, enum dma_transfer_direction direction,
   1792		  unsigned long flags, void *context)
   1793{
   1794	struct gchan *gchan = to_gchan(chan);
   1795	struct gpii *gpii = gchan->gpii;
   1796	struct device *dev = gpii->gpi_dev->dev;
   1797	struct gpi_ring *ch_ring = &gchan->ch_ring;
   1798	struct gpi_desc *gpi_desc;
   1799	u32 nr, nr_tre = 0;
   1800	u8 set_config;
   1801	int i;
   1802
   1803	gpii->ieob_set = false;
   1804	if (!is_slave_direction(direction)) {
   1805		dev_err(gpii->gpi_dev->dev, "invalid dma direction: %d\n", direction);
   1806		return NULL;
   1807	}
   1808
   1809	if (sg_len > 1) {
   1810		dev_err(dev, "Multi sg sent, we support only one atm: %d\n", sg_len);
   1811		return NULL;
   1812	}
   1813
   1814	nr_tre = 3;
   1815	set_config = *(u32 *)gchan->config;
   1816	if (!set_config)
   1817		nr_tre = 2;
   1818	if (direction == DMA_DEV_TO_MEM) /* rx */
   1819		nr_tre = 1;
   1820
   1821	/* calculate # of elements required & available */
   1822	nr = gpi_ring_num_elements_avail(ch_ring);
   1823	if (nr < nr_tre) {
   1824		dev_err(dev, "not enough space in ring, avail:%u required:%u\n", nr, nr_tre);
   1825		return NULL;
   1826	}
   1827
   1828	gpi_desc = kzalloc(sizeof(*gpi_desc), GFP_NOWAIT);
   1829	if (!gpi_desc)
   1830		return NULL;
   1831
   1832	/* create TREs for xfer */
   1833	if (gchan->protocol == QCOM_GPI_SPI) {
   1834		i = gpi_create_spi_tre(gchan, gpi_desc, sgl, direction);
   1835	} else if (gchan->protocol == QCOM_GPI_I2C) {
   1836		i = gpi_create_i2c_tre(gchan, gpi_desc, sgl, direction);
   1837	} else {
   1838		dev_err(dev, "invalid peripheral: %d\n", gchan->protocol);
   1839		kfree(gpi_desc);
   1840		return NULL;
   1841	}
   1842
   1843	/* set up the descriptor */
   1844	gpi_desc->gchan = gchan;
   1845	gpi_desc->len = sg_dma_len(sgl);
   1846	gpi_desc->num_tre  = i;
   1847
   1848	return vchan_tx_prep(&gchan->vc, &gpi_desc->vd, flags);
   1849}
   1850
   1851/* rings transfer ring db to being transfer */
   1852static void gpi_issue_pending(struct dma_chan *chan)
   1853{
   1854	struct gchan *gchan = to_gchan(chan);
   1855	struct gpii *gpii = gchan->gpii;
   1856	unsigned long flags, pm_lock_flags;
   1857	struct virt_dma_desc *vd = NULL;
   1858	struct gpi_desc *gpi_desc;
   1859	struct gpi_ring *ch_ring = &gchan->ch_ring;
   1860	void *tre, *wp = NULL;
   1861	int i;
   1862
   1863	read_lock_irqsave(&gpii->pm_lock, pm_lock_flags);
   1864
   1865	/* move all submitted discriptors to issued list */
   1866	spin_lock_irqsave(&gchan->vc.lock, flags);
   1867	if (vchan_issue_pending(&gchan->vc))
   1868		vd = list_last_entry(&gchan->vc.desc_issued,
   1869				     struct virt_dma_desc, node);
   1870	spin_unlock_irqrestore(&gchan->vc.lock, flags);
   1871
   1872	/* nothing to do list is empty */
   1873	if (!vd) {
   1874		read_unlock_irqrestore(&gpii->pm_lock, pm_lock_flags);
   1875		return;
   1876	}
   1877
   1878	gpi_desc = to_gpi_desc(vd);
   1879	for (i = 0; i < gpi_desc->num_tre; i++) {
   1880		tre = &gpi_desc->tre[i];
   1881		gpi_queue_xfer(gpii, gchan, tre, &wp);
   1882	}
   1883
   1884	gpi_desc->db = ch_ring->wp;
   1885	gpi_write_ch_db(gchan, &gchan->ch_ring, gpi_desc->db);
   1886	read_unlock_irqrestore(&gpii->pm_lock, pm_lock_flags);
   1887}
   1888
   1889static int gpi_ch_init(struct gchan *gchan)
   1890{
   1891	struct gpii *gpii = gchan->gpii;
   1892	const int ev_factor = gpii->gpi_dev->ev_factor;
   1893	u32 elements;
   1894	int i = 0, ret = 0;
   1895
   1896	gchan->pm_state = CONFIG_STATE;
   1897
   1898	/* check if both channels are configured before continue */
   1899	for (i = 0; i < MAX_CHANNELS_PER_GPII; i++)
   1900		if (gpii->gchan[i].pm_state != CONFIG_STATE)
   1901			goto exit_gpi_init;
   1902
   1903	/* protocol must be same for both channels */
   1904	if (gpii->gchan[0].protocol != gpii->gchan[1].protocol) {
   1905		dev_err(gpii->gpi_dev->dev, "protocol did not match protocol %u != %u\n",
   1906			gpii->gchan[0].protocol, gpii->gchan[1].protocol);
   1907		ret = -EINVAL;
   1908		goto exit_gpi_init;
   1909	}
   1910
   1911	/* allocate memory for event ring */
   1912	elements = CHAN_TRES << ev_factor;
   1913	ret = gpi_alloc_ring(&gpii->ev_ring, elements,
   1914			     sizeof(union gpi_event), gpii);
   1915	if (ret)
   1916		goto exit_gpi_init;
   1917
   1918	/* configure interrupts */
   1919	write_lock_irq(&gpii->pm_lock);
   1920	gpii->pm_state = PREPARE_HARDWARE;
   1921	write_unlock_irq(&gpii->pm_lock);
   1922	ret = gpi_config_interrupts(gpii, DEFAULT_IRQ_SETTINGS, 0);
   1923	if (ret) {
   1924		dev_err(gpii->gpi_dev->dev, "error config. interrupts, ret:%d\n", ret);
   1925		goto error_config_int;
   1926	}
   1927
   1928	/* allocate event rings */
   1929	ret = gpi_alloc_ev_chan(gpii);
   1930	if (ret) {
   1931		dev_err(gpii->gpi_dev->dev, "error alloc_ev_chan:%d\n", ret);
   1932		goto error_alloc_ev_ring;
   1933	}
   1934
   1935	/* Allocate all channels */
   1936	for (i = 0; i < MAX_CHANNELS_PER_GPII; i++) {
   1937		ret = gpi_alloc_chan(&gpii->gchan[i], true);
   1938		if (ret) {
   1939			dev_err(gpii->gpi_dev->dev, "Error allocating chan:%d\n", ret);
   1940			goto error_alloc_chan;
   1941		}
   1942	}
   1943
   1944	/* start channels  */
   1945	for (i = 0; i < MAX_CHANNELS_PER_GPII; i++) {
   1946		ret = gpi_start_chan(&gpii->gchan[i]);
   1947		if (ret) {
   1948			dev_err(gpii->gpi_dev->dev, "Error start chan:%d\n", ret);
   1949			goto error_start_chan;
   1950		}
   1951	}
   1952	return ret;
   1953
   1954error_start_chan:
   1955	for (i = i - 1; i >= 0; i--) {
   1956		gpi_stop_chan(&gpii->gchan[i]);
   1957		gpi_send_cmd(gpii, gchan, GPI_CH_CMD_RESET);
   1958	}
   1959	i = 2;
   1960error_alloc_chan:
   1961	for (i = i - 1; i >= 0; i--)
   1962		gpi_reset_chan(gchan, GPI_CH_CMD_DE_ALLOC);
   1963error_alloc_ev_ring:
   1964	gpi_disable_interrupts(gpii);
   1965error_config_int:
   1966	gpi_free_ring(&gpii->ev_ring, gpii);
   1967exit_gpi_init:
   1968	mutex_unlock(&gpii->ctrl_lock);
   1969	return ret;
   1970}
   1971
   1972/* release all channel resources */
   1973static void gpi_free_chan_resources(struct dma_chan *chan)
   1974{
   1975	struct gchan *gchan = to_gchan(chan);
   1976	struct gpii *gpii = gchan->gpii;
   1977	enum gpi_pm_state cur_state;
   1978	int ret, i;
   1979
   1980	mutex_lock(&gpii->ctrl_lock);
   1981
   1982	cur_state = gchan->pm_state;
   1983
   1984	/* disable ch state so no more TRE processing for this channel */
   1985	write_lock_irq(&gpii->pm_lock);
   1986	gchan->pm_state = PREPARE_TERMINATE;
   1987	write_unlock_irq(&gpii->pm_lock);
   1988
   1989	/* attempt to do graceful hardware shutdown */
   1990	if (cur_state == ACTIVE_STATE) {
   1991		gpi_stop_chan(gchan);
   1992
   1993		ret = gpi_send_cmd(gpii, gchan, GPI_CH_CMD_RESET);
   1994		if (ret)
   1995			dev_err(gpii->gpi_dev->dev, "error resetting channel:%d\n", ret);
   1996
   1997		gpi_reset_chan(gchan, GPI_CH_CMD_DE_ALLOC);
   1998	}
   1999
   2000	/* free all allocated memory */
   2001	gpi_free_ring(&gchan->ch_ring, gpii);
   2002	vchan_free_chan_resources(&gchan->vc);
   2003	kfree(gchan->config);
   2004
   2005	write_lock_irq(&gpii->pm_lock);
   2006	gchan->pm_state = DISABLE_STATE;
   2007	write_unlock_irq(&gpii->pm_lock);
   2008
   2009	/* if other rings are still active exit */
   2010	for (i = 0; i < MAX_CHANNELS_PER_GPII; i++)
   2011		if (gpii->gchan[i].ch_ring.configured)
   2012			goto exit_free;
   2013
   2014	/* deallocate EV Ring */
   2015	cur_state = gpii->pm_state;
   2016	write_lock_irq(&gpii->pm_lock);
   2017	gpii->pm_state = PREPARE_TERMINATE;
   2018	write_unlock_irq(&gpii->pm_lock);
   2019
   2020	/* wait for threads to complete out */
   2021	tasklet_kill(&gpii->ev_task);
   2022
   2023	/* send command to de allocate event ring */
   2024	if (cur_state == ACTIVE_STATE)
   2025		gpi_send_cmd(gpii, NULL, GPI_EV_CMD_DEALLOC);
   2026
   2027	gpi_free_ring(&gpii->ev_ring, gpii);
   2028
   2029	/* disable interrupts */
   2030	if (cur_state == ACTIVE_STATE)
   2031		gpi_disable_interrupts(gpii);
   2032
   2033	/* set final state to disable */
   2034	write_lock_irq(&gpii->pm_lock);
   2035	gpii->pm_state = DISABLE_STATE;
   2036	write_unlock_irq(&gpii->pm_lock);
   2037
   2038exit_free:
   2039	mutex_unlock(&gpii->ctrl_lock);
   2040}
   2041
   2042/* allocate channel resources */
   2043static int gpi_alloc_chan_resources(struct dma_chan *chan)
   2044{
   2045	struct gchan *gchan = to_gchan(chan);
   2046	struct gpii *gpii = gchan->gpii;
   2047	int ret;
   2048
   2049	mutex_lock(&gpii->ctrl_lock);
   2050
   2051	/* allocate memory for transfer ring */
   2052	ret = gpi_alloc_ring(&gchan->ch_ring, CHAN_TRES,
   2053			     sizeof(struct gpi_tre), gpii);
   2054	if (ret)
   2055		goto xfer_alloc_err;
   2056
   2057	ret = gpi_ch_init(gchan);
   2058
   2059	mutex_unlock(&gpii->ctrl_lock);
   2060
   2061	return ret;
   2062xfer_alloc_err:
   2063	mutex_unlock(&gpii->ctrl_lock);
   2064
   2065	return ret;
   2066}
   2067
   2068static int gpi_find_avail_gpii(struct gpi_dev *gpi_dev, u32 seid)
   2069{
   2070	struct gchan *tx_chan, *rx_chan;
   2071	unsigned int gpii;
   2072
   2073	/* check if same seid is already configured for another chid */
   2074	for (gpii = 0; gpii < gpi_dev->max_gpii; gpii++) {
   2075		if (!((1 << gpii) & gpi_dev->gpii_mask))
   2076			continue;
   2077
   2078		tx_chan = &gpi_dev->gpiis[gpii].gchan[GPI_TX_CHAN];
   2079		rx_chan = &gpi_dev->gpiis[gpii].gchan[GPI_RX_CHAN];
   2080
   2081		if (rx_chan->vc.chan.client_count && rx_chan->seid == seid)
   2082			return gpii;
   2083		if (tx_chan->vc.chan.client_count && tx_chan->seid == seid)
   2084			return gpii;
   2085	}
   2086
   2087	/* no channels configured with same seid, return next avail gpii */
   2088	for (gpii = 0; gpii < gpi_dev->max_gpii; gpii++) {
   2089		if (!((1 << gpii) & gpi_dev->gpii_mask))
   2090			continue;
   2091
   2092		tx_chan = &gpi_dev->gpiis[gpii].gchan[GPI_TX_CHAN];
   2093		rx_chan = &gpi_dev->gpiis[gpii].gchan[GPI_RX_CHAN];
   2094
   2095		/* check if gpii is configured */
   2096		if (tx_chan->vc.chan.client_count ||
   2097		    rx_chan->vc.chan.client_count)
   2098			continue;
   2099
   2100		/* found a free gpii */
   2101		return gpii;
   2102	}
   2103
   2104	/* no gpii instance available to use */
   2105	return -EIO;
   2106}
   2107
   2108/* gpi_of_dma_xlate: open client requested channel */
   2109static struct dma_chan *gpi_of_dma_xlate(struct of_phandle_args *args,
   2110					 struct of_dma *of_dma)
   2111{
   2112	struct gpi_dev *gpi_dev = (struct gpi_dev *)of_dma->of_dma_data;
   2113	u32 seid, chid;
   2114	int gpii;
   2115	struct gchan *gchan;
   2116
   2117	if (args->args_count < 3) {
   2118		dev_err(gpi_dev->dev, "gpii require minimum 2 args, client passed:%d args\n",
   2119			args->args_count);
   2120		return NULL;
   2121	}
   2122
   2123	chid = args->args[0];
   2124	if (chid >= MAX_CHANNELS_PER_GPII) {
   2125		dev_err(gpi_dev->dev, "gpii channel:%d not valid\n", chid);
   2126		return NULL;
   2127	}
   2128
   2129	seid = args->args[1];
   2130
   2131	/* find next available gpii to use */
   2132	gpii = gpi_find_avail_gpii(gpi_dev, seid);
   2133	if (gpii < 0) {
   2134		dev_err(gpi_dev->dev, "no available gpii instances\n");
   2135		return NULL;
   2136	}
   2137
   2138	gchan = &gpi_dev->gpiis[gpii].gchan[chid];
   2139	if (gchan->vc.chan.client_count) {
   2140		dev_err(gpi_dev->dev, "gpii:%d chid:%d seid:%d already configured\n",
   2141			gpii, chid, gchan->seid);
   2142		return NULL;
   2143	}
   2144
   2145	gchan->seid = seid;
   2146	gchan->protocol = args->args[2];
   2147
   2148	return dma_get_slave_channel(&gchan->vc.chan);
   2149}
   2150
   2151static int gpi_probe(struct platform_device *pdev)
   2152{
   2153	struct gpi_dev *gpi_dev;
   2154	unsigned int i;
   2155	u32 ee_offset;
   2156	int ret;
   2157
   2158	gpi_dev = devm_kzalloc(&pdev->dev, sizeof(*gpi_dev), GFP_KERNEL);
   2159	if (!gpi_dev)
   2160		return -ENOMEM;
   2161
   2162	gpi_dev->dev = &pdev->dev;
   2163	gpi_dev->res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
   2164	gpi_dev->regs = devm_ioremap_resource(gpi_dev->dev, gpi_dev->res);
   2165	if (IS_ERR(gpi_dev->regs))
   2166		return PTR_ERR(gpi_dev->regs);
   2167	gpi_dev->ee_base = gpi_dev->regs;
   2168
   2169	ret = of_property_read_u32(gpi_dev->dev->of_node, "dma-channels",
   2170				   &gpi_dev->max_gpii);
   2171	if (ret) {
   2172		dev_err(gpi_dev->dev, "missing 'max-no-gpii' DT node\n");
   2173		return ret;
   2174	}
   2175
   2176	ret = of_property_read_u32(gpi_dev->dev->of_node, "dma-channel-mask",
   2177				   &gpi_dev->gpii_mask);
   2178	if (ret) {
   2179		dev_err(gpi_dev->dev, "missing 'gpii-mask' DT node\n");
   2180		return ret;
   2181	}
   2182
   2183	ee_offset = (uintptr_t)device_get_match_data(gpi_dev->dev);
   2184	gpi_dev->ee_base = gpi_dev->ee_base - ee_offset;
   2185
   2186	gpi_dev->ev_factor = EV_FACTOR;
   2187
   2188	ret = dma_set_mask(gpi_dev->dev, DMA_BIT_MASK(64));
   2189	if (ret) {
   2190		dev_err(gpi_dev->dev, "Error setting dma_mask to 64, ret:%d\n", ret);
   2191		return ret;
   2192	}
   2193
   2194	gpi_dev->gpiis = devm_kzalloc(gpi_dev->dev, sizeof(*gpi_dev->gpiis) *
   2195				      gpi_dev->max_gpii, GFP_KERNEL);
   2196	if (!gpi_dev->gpiis)
   2197		return -ENOMEM;
   2198
   2199	/* setup all the supported gpii */
   2200	INIT_LIST_HEAD(&gpi_dev->dma_device.channels);
   2201	for (i = 0; i < gpi_dev->max_gpii; i++) {
   2202		struct gpii *gpii = &gpi_dev->gpiis[i];
   2203		int chan;
   2204
   2205		if (!((1 << i) & gpi_dev->gpii_mask))
   2206			continue;
   2207
   2208		/* set up ev cntxt register map */
   2209		gpii->ev_cntxt_base_reg = gpi_dev->ee_base + GPII_n_EV_CH_k_CNTXT_0_OFFS(i, 0);
   2210		gpii->ev_cntxt_db_reg = gpi_dev->ee_base + GPII_n_EV_CH_k_DOORBELL_0_OFFS(i, 0);
   2211		gpii->ev_ring_rp_lsb_reg = gpii->ev_cntxt_base_reg + CNTXT_4_RING_RP_LSB;
   2212		gpii->ev_cmd_reg = gpi_dev->ee_base + GPII_n_EV_CH_CMD_OFFS(i);
   2213		gpii->ieob_clr_reg = gpi_dev->ee_base + GPII_n_CNTXT_SRC_IEOB_IRQ_CLR_OFFS(i);
   2214
   2215		/* set up irq */
   2216		ret = platform_get_irq(pdev, i);
   2217		if (ret < 0)
   2218			return ret;
   2219		gpii->irq = ret;
   2220
   2221		/* set up channel specific register info */
   2222		for (chan = 0; chan < MAX_CHANNELS_PER_GPII; chan++) {
   2223			struct gchan *gchan = &gpii->gchan[chan];
   2224
   2225			/* set up ch cntxt register map */
   2226			gchan->ch_cntxt_base_reg = gpi_dev->ee_base +
   2227				GPII_n_CH_k_CNTXT_0_OFFS(i, chan);
   2228			gchan->ch_cntxt_db_reg = gpi_dev->ee_base +
   2229				GPII_n_CH_k_DOORBELL_0_OFFS(i, chan);
   2230			gchan->ch_cmd_reg = gpi_dev->ee_base + GPII_n_CH_CMD_OFFS(i);
   2231
   2232			/* vchan setup */
   2233			vchan_init(&gchan->vc, &gpi_dev->dma_device);
   2234			gchan->vc.desc_free = gpi_desc_free;
   2235			gchan->chid = chan;
   2236			gchan->gpii = gpii;
   2237			gchan->dir = GPII_CHAN_DIR[chan];
   2238		}
   2239		mutex_init(&gpii->ctrl_lock);
   2240		rwlock_init(&gpii->pm_lock);
   2241		tasklet_init(&gpii->ev_task, gpi_ev_tasklet,
   2242			     (unsigned long)gpii);
   2243		init_completion(&gpii->cmd_completion);
   2244		gpii->gpii_id = i;
   2245		gpii->regs = gpi_dev->ee_base;
   2246		gpii->gpi_dev = gpi_dev;
   2247	}
   2248
   2249	platform_set_drvdata(pdev, gpi_dev);
   2250
   2251	/* clear and Set capabilities */
   2252	dma_cap_zero(gpi_dev->dma_device.cap_mask);
   2253	dma_cap_set(DMA_SLAVE, gpi_dev->dma_device.cap_mask);
   2254
   2255	/* configure dmaengine apis */
   2256	gpi_dev->dma_device.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
   2257	gpi_dev->dma_device.residue_granularity = DMA_RESIDUE_GRANULARITY_DESCRIPTOR;
   2258	gpi_dev->dma_device.src_addr_widths = DMA_SLAVE_BUSWIDTH_8_BYTES;
   2259	gpi_dev->dma_device.dst_addr_widths = DMA_SLAVE_BUSWIDTH_8_BYTES;
   2260	gpi_dev->dma_device.device_alloc_chan_resources = gpi_alloc_chan_resources;
   2261	gpi_dev->dma_device.device_free_chan_resources = gpi_free_chan_resources;
   2262	gpi_dev->dma_device.device_tx_status = dma_cookie_status;
   2263	gpi_dev->dma_device.device_issue_pending = gpi_issue_pending;
   2264	gpi_dev->dma_device.device_prep_slave_sg = gpi_prep_slave_sg;
   2265	gpi_dev->dma_device.device_config = gpi_peripheral_config;
   2266	gpi_dev->dma_device.device_terminate_all = gpi_terminate_all;
   2267	gpi_dev->dma_device.dev = gpi_dev->dev;
   2268	gpi_dev->dma_device.device_pause = gpi_pause;
   2269	gpi_dev->dma_device.device_resume = gpi_resume;
   2270
   2271	/* register with dmaengine framework */
   2272	ret = dma_async_device_register(&gpi_dev->dma_device);
   2273	if (ret) {
   2274		dev_err(gpi_dev->dev, "async_device_register failed ret:%d", ret);
   2275		return ret;
   2276	}
   2277
   2278	ret = of_dma_controller_register(gpi_dev->dev->of_node,
   2279					 gpi_of_dma_xlate, gpi_dev);
   2280	if (ret) {
   2281		dev_err(gpi_dev->dev, "of_dma_controller_reg failed ret:%d", ret);
   2282		return ret;
   2283	}
   2284
   2285	return ret;
   2286}
   2287
   2288static const struct of_device_id gpi_of_match[] = {
   2289	{ .compatible = "qcom,sc7280-gpi-dma", .data = (void *)0x10000 },
   2290	{ .compatible = "qcom,sdm845-gpi-dma", .data = (void *)0x0 },
   2291	{ .compatible = "qcom,sm8150-gpi-dma", .data = (void *)0x0 },
   2292	{ .compatible = "qcom,sm8250-gpi-dma", .data = (void *)0x0 },
   2293	{ .compatible = "qcom,sm8350-gpi-dma", .data = (void *)0x10000 },
   2294	{ .compatible = "qcom,sm8450-gpi-dma", .data = (void *)0x10000 },
   2295	{ },
   2296};
   2297MODULE_DEVICE_TABLE(of, gpi_of_match);
   2298
   2299static struct platform_driver gpi_driver = {
   2300	.probe = gpi_probe,
   2301	.driver = {
   2302		.name = KBUILD_MODNAME,
   2303		.of_match_table = gpi_of_match,
   2304	},
   2305};
   2306
   2307static int __init gpi_init(void)
   2308{
   2309	return platform_driver_register(&gpi_driver);
   2310}
   2311subsys_initcall(gpi_init)
   2312
   2313MODULE_DESCRIPTION("QCOM GPI DMA engine driver");
   2314MODULE_LICENSE("GPL v2");