cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

ste_dma40.c (98488B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 * Copyright (C) Ericsson AB 2007-2008
      4 * Copyright (C) ST-Ericsson SA 2008-2010
      5 * Author: Per Forlin <per.forlin@stericsson.com> for ST-Ericsson
      6 * Author: Jonas Aaberg <jonas.aberg@stericsson.com> for ST-Ericsson
      7 */
      8
      9#include <linux/dma-mapping.h>
     10#include <linux/kernel.h>
     11#include <linux/slab.h>
     12#include <linux/export.h>
     13#include <linux/dmaengine.h>
     14#include <linux/platform_device.h>
     15#include <linux/clk.h>
     16#include <linux/delay.h>
     17#include <linux/log2.h>
     18#include <linux/pm.h>
     19#include <linux/pm_runtime.h>
     20#include <linux/err.h>
     21#include <linux/of.h>
     22#include <linux/of_dma.h>
     23#include <linux/amba/bus.h>
     24#include <linux/regulator/consumer.h>
     25#include <linux/platform_data/dma-ste-dma40.h>
     26
     27#include "dmaengine.h"
     28#include "ste_dma40_ll.h"
     29
     30#define D40_NAME "dma40"
     31
     32#define D40_PHY_CHAN -1
     33
     34/* For masking out/in 2 bit channel positions */
     35#define D40_CHAN_POS(chan)  (2 * (chan / 2))
     36#define D40_CHAN_POS_MASK(chan) (0x3 << D40_CHAN_POS(chan))
     37
     38/* Maximum iterations taken before giving up suspending a channel */
     39#define D40_SUSPEND_MAX_IT 500
     40
     41/* Milliseconds */
     42#define DMA40_AUTOSUSPEND_DELAY	100
     43
     44/* Hardware requirement on LCLA alignment */
     45#define LCLA_ALIGNMENT 0x40000
     46
     47/* Max number of links per event group */
     48#define D40_LCLA_LINK_PER_EVENT_GRP 128
     49#define D40_LCLA_END D40_LCLA_LINK_PER_EVENT_GRP
     50
     51/* Max number of logical channels per physical channel */
     52#define D40_MAX_LOG_CHAN_PER_PHY 32
     53
     54/* Attempts before giving up to trying to get pages that are aligned */
     55#define MAX_LCLA_ALLOC_ATTEMPTS 256
     56
     57/* Bit markings for allocation map */
     58#define D40_ALLOC_FREE		BIT(31)
     59#define D40_ALLOC_PHY		BIT(30)
     60#define D40_ALLOC_LOG_FREE	0
     61
     62#define D40_MEMCPY_MAX_CHANS	8
     63
     64/* Reserved event lines for memcpy only. */
     65#define DB8500_DMA_MEMCPY_EV_0	51
     66#define DB8500_DMA_MEMCPY_EV_1	56
     67#define DB8500_DMA_MEMCPY_EV_2	57
     68#define DB8500_DMA_MEMCPY_EV_3	58
     69#define DB8500_DMA_MEMCPY_EV_4	59
     70#define DB8500_DMA_MEMCPY_EV_5	60
     71
     72static int dma40_memcpy_channels[] = {
     73	DB8500_DMA_MEMCPY_EV_0,
     74	DB8500_DMA_MEMCPY_EV_1,
     75	DB8500_DMA_MEMCPY_EV_2,
     76	DB8500_DMA_MEMCPY_EV_3,
     77	DB8500_DMA_MEMCPY_EV_4,
     78	DB8500_DMA_MEMCPY_EV_5,
     79};
     80
     81/* Default configuration for physical memcpy */
     82static const struct stedma40_chan_cfg dma40_memcpy_conf_phy = {
     83	.mode = STEDMA40_MODE_PHYSICAL,
     84	.dir = DMA_MEM_TO_MEM,
     85
     86	.src_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
     87	.src_info.psize = STEDMA40_PSIZE_PHY_1,
     88	.src_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
     89
     90	.dst_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
     91	.dst_info.psize = STEDMA40_PSIZE_PHY_1,
     92	.dst_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
     93};
     94
     95/* Default configuration for logical memcpy */
     96static const struct stedma40_chan_cfg dma40_memcpy_conf_log = {
     97	.mode = STEDMA40_MODE_LOGICAL,
     98	.dir = DMA_MEM_TO_MEM,
     99
    100	.src_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
    101	.src_info.psize = STEDMA40_PSIZE_LOG_1,
    102	.src_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
    103
    104	.dst_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
    105	.dst_info.psize = STEDMA40_PSIZE_LOG_1,
    106	.dst_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
    107};
    108
    109/**
    110 * enum 40_command - The different commands and/or statuses.
    111 *
    112 * @D40_DMA_STOP: DMA channel command STOP or status STOPPED,
    113 * @D40_DMA_RUN: The DMA channel is RUNNING of the command RUN.
    114 * @D40_DMA_SUSPEND_REQ: Request the DMA to SUSPEND as soon as possible.
    115 * @D40_DMA_SUSPENDED: The DMA channel is SUSPENDED.
    116 */
    117enum d40_command {
    118	D40_DMA_STOP		= 0,
    119	D40_DMA_RUN		= 1,
    120	D40_DMA_SUSPEND_REQ	= 2,
    121	D40_DMA_SUSPENDED	= 3
    122};
    123
    124/*
    125 * enum d40_events - The different Event Enables for the event lines.
    126 *
    127 * @D40_DEACTIVATE_EVENTLINE: De-activate Event line, stopping the logical chan.
    128 * @D40_ACTIVATE_EVENTLINE: Activate the Event line, to start a logical chan.
    129 * @D40_SUSPEND_REQ_EVENTLINE: Requesting for suspending a event line.
    130 * @D40_ROUND_EVENTLINE: Status check for event line.
    131 */
    132
    133enum d40_events {
    134	D40_DEACTIVATE_EVENTLINE	= 0,
    135	D40_ACTIVATE_EVENTLINE		= 1,
    136	D40_SUSPEND_REQ_EVENTLINE	= 2,
    137	D40_ROUND_EVENTLINE		= 3
    138};
    139
    140/*
    141 * These are the registers that has to be saved and later restored
    142 * when the DMA hw is powered off.
    143 * TODO: Add save/restore of D40_DREG_GCC on dma40 v3 or later, if that works.
    144 */
    145static __maybe_unused u32 d40_backup_regs[] = {
    146	D40_DREG_LCPA,
    147	D40_DREG_LCLA,
    148	D40_DREG_PRMSE,
    149	D40_DREG_PRMSO,
    150	D40_DREG_PRMOE,
    151	D40_DREG_PRMOO,
    152};
    153
    154#define BACKUP_REGS_SZ ARRAY_SIZE(d40_backup_regs)
    155
    156/*
    157 * since 9540 and 8540 has the same HW revision
    158 * use v4a for 9540 or ealier
    159 * use v4b for 8540 or later
    160 * HW revision:
    161 * DB8500ed has revision 0
    162 * DB8500v1 has revision 2
    163 * DB8500v2 has revision 3
    164 * AP9540v1 has revision 4
    165 * DB8540v1 has revision 4
    166 * TODO: Check if all these registers have to be saved/restored on dma40 v4a
    167 */
    168static u32 d40_backup_regs_v4a[] = {
    169	D40_DREG_PSEG1,
    170	D40_DREG_PSEG2,
    171	D40_DREG_PSEG3,
    172	D40_DREG_PSEG4,
    173	D40_DREG_PCEG1,
    174	D40_DREG_PCEG2,
    175	D40_DREG_PCEG3,
    176	D40_DREG_PCEG4,
    177	D40_DREG_RSEG1,
    178	D40_DREG_RSEG2,
    179	D40_DREG_RSEG3,
    180	D40_DREG_RSEG4,
    181	D40_DREG_RCEG1,
    182	D40_DREG_RCEG2,
    183	D40_DREG_RCEG3,
    184	D40_DREG_RCEG4,
    185};
    186
    187#define BACKUP_REGS_SZ_V4A ARRAY_SIZE(d40_backup_regs_v4a)
    188
    189static u32 d40_backup_regs_v4b[] = {
    190	D40_DREG_CPSEG1,
    191	D40_DREG_CPSEG2,
    192	D40_DREG_CPSEG3,
    193	D40_DREG_CPSEG4,
    194	D40_DREG_CPSEG5,
    195	D40_DREG_CPCEG1,
    196	D40_DREG_CPCEG2,
    197	D40_DREG_CPCEG3,
    198	D40_DREG_CPCEG4,
    199	D40_DREG_CPCEG5,
    200	D40_DREG_CRSEG1,
    201	D40_DREG_CRSEG2,
    202	D40_DREG_CRSEG3,
    203	D40_DREG_CRSEG4,
    204	D40_DREG_CRSEG5,
    205	D40_DREG_CRCEG1,
    206	D40_DREG_CRCEG2,
    207	D40_DREG_CRCEG3,
    208	D40_DREG_CRCEG4,
    209	D40_DREG_CRCEG5,
    210};
    211
    212#define BACKUP_REGS_SZ_V4B ARRAY_SIZE(d40_backup_regs_v4b)
    213
    214static __maybe_unused u32 d40_backup_regs_chan[] = {
    215	D40_CHAN_REG_SSCFG,
    216	D40_CHAN_REG_SSELT,
    217	D40_CHAN_REG_SSPTR,
    218	D40_CHAN_REG_SSLNK,
    219	D40_CHAN_REG_SDCFG,
    220	D40_CHAN_REG_SDELT,
    221	D40_CHAN_REG_SDPTR,
    222	D40_CHAN_REG_SDLNK,
    223};
    224
    225#define BACKUP_REGS_SZ_MAX ((BACKUP_REGS_SZ_V4A > BACKUP_REGS_SZ_V4B) ? \
    226			     BACKUP_REGS_SZ_V4A : BACKUP_REGS_SZ_V4B)
    227
    228/**
    229 * struct d40_interrupt_lookup - lookup table for interrupt handler
    230 *
    231 * @src: Interrupt mask register.
    232 * @clr: Interrupt clear register.
    233 * @is_error: true if this is an error interrupt.
    234 * @offset: start delta in the lookup_log_chans in d40_base. If equals to
    235 * D40_PHY_CHAN, the lookup_phy_chans shall be used instead.
    236 */
    237struct d40_interrupt_lookup {
    238	u32 src;
    239	u32 clr;
    240	bool is_error;
    241	int offset;
    242};
    243
    244
    245static struct d40_interrupt_lookup il_v4a[] = {
    246	{D40_DREG_LCTIS0, D40_DREG_LCICR0, false,  0},
    247	{D40_DREG_LCTIS1, D40_DREG_LCICR1, false, 32},
    248	{D40_DREG_LCTIS2, D40_DREG_LCICR2, false, 64},
    249	{D40_DREG_LCTIS3, D40_DREG_LCICR3, false, 96},
    250	{D40_DREG_LCEIS0, D40_DREG_LCICR0, true,   0},
    251	{D40_DREG_LCEIS1, D40_DREG_LCICR1, true,  32},
    252	{D40_DREG_LCEIS2, D40_DREG_LCICR2, true,  64},
    253	{D40_DREG_LCEIS3, D40_DREG_LCICR3, true,  96},
    254	{D40_DREG_PCTIS,  D40_DREG_PCICR,  false, D40_PHY_CHAN},
    255	{D40_DREG_PCEIS,  D40_DREG_PCICR,  true,  D40_PHY_CHAN},
    256};
    257
    258static struct d40_interrupt_lookup il_v4b[] = {
    259	{D40_DREG_CLCTIS1, D40_DREG_CLCICR1, false,  0},
    260	{D40_DREG_CLCTIS2, D40_DREG_CLCICR2, false, 32},
    261	{D40_DREG_CLCTIS3, D40_DREG_CLCICR3, false, 64},
    262	{D40_DREG_CLCTIS4, D40_DREG_CLCICR4, false, 96},
    263	{D40_DREG_CLCTIS5, D40_DREG_CLCICR5, false, 128},
    264	{D40_DREG_CLCEIS1, D40_DREG_CLCICR1, true,   0},
    265	{D40_DREG_CLCEIS2, D40_DREG_CLCICR2, true,  32},
    266	{D40_DREG_CLCEIS3, D40_DREG_CLCICR3, true,  64},
    267	{D40_DREG_CLCEIS4, D40_DREG_CLCICR4, true,  96},
    268	{D40_DREG_CLCEIS5, D40_DREG_CLCICR5, true,  128},
    269	{D40_DREG_CPCTIS,  D40_DREG_CPCICR,  false, D40_PHY_CHAN},
    270	{D40_DREG_CPCEIS,  D40_DREG_CPCICR,  true,  D40_PHY_CHAN},
    271};
    272
    273/**
    274 * struct d40_reg_val - simple lookup struct
    275 *
    276 * @reg: The register.
    277 * @val: The value that belongs to the register in reg.
    278 */
    279struct d40_reg_val {
    280	unsigned int reg;
    281	unsigned int val;
    282};
    283
    284static __initdata struct d40_reg_val dma_init_reg_v4a[] = {
    285	/* Clock every part of the DMA block from start */
    286	{ .reg = D40_DREG_GCC,    .val = D40_DREG_GCC_ENABLE_ALL},
    287
    288	/* Interrupts on all logical channels */
    289	{ .reg = D40_DREG_LCMIS0, .val = 0xFFFFFFFF},
    290	{ .reg = D40_DREG_LCMIS1, .val = 0xFFFFFFFF},
    291	{ .reg = D40_DREG_LCMIS2, .val = 0xFFFFFFFF},
    292	{ .reg = D40_DREG_LCMIS3, .val = 0xFFFFFFFF},
    293	{ .reg = D40_DREG_LCICR0, .val = 0xFFFFFFFF},
    294	{ .reg = D40_DREG_LCICR1, .val = 0xFFFFFFFF},
    295	{ .reg = D40_DREG_LCICR2, .val = 0xFFFFFFFF},
    296	{ .reg = D40_DREG_LCICR3, .val = 0xFFFFFFFF},
    297	{ .reg = D40_DREG_LCTIS0, .val = 0xFFFFFFFF},
    298	{ .reg = D40_DREG_LCTIS1, .val = 0xFFFFFFFF},
    299	{ .reg = D40_DREG_LCTIS2, .val = 0xFFFFFFFF},
    300	{ .reg = D40_DREG_LCTIS3, .val = 0xFFFFFFFF}
    301};
    302static __initdata struct d40_reg_val dma_init_reg_v4b[] = {
    303	/* Clock every part of the DMA block from start */
    304	{ .reg = D40_DREG_GCC,    .val = D40_DREG_GCC_ENABLE_ALL},
    305
    306	/* Interrupts on all logical channels */
    307	{ .reg = D40_DREG_CLCMIS1, .val = 0xFFFFFFFF},
    308	{ .reg = D40_DREG_CLCMIS2, .val = 0xFFFFFFFF},
    309	{ .reg = D40_DREG_CLCMIS3, .val = 0xFFFFFFFF},
    310	{ .reg = D40_DREG_CLCMIS4, .val = 0xFFFFFFFF},
    311	{ .reg = D40_DREG_CLCMIS5, .val = 0xFFFFFFFF},
    312	{ .reg = D40_DREG_CLCICR1, .val = 0xFFFFFFFF},
    313	{ .reg = D40_DREG_CLCICR2, .val = 0xFFFFFFFF},
    314	{ .reg = D40_DREG_CLCICR3, .val = 0xFFFFFFFF},
    315	{ .reg = D40_DREG_CLCICR4, .val = 0xFFFFFFFF},
    316	{ .reg = D40_DREG_CLCICR5, .val = 0xFFFFFFFF},
    317	{ .reg = D40_DREG_CLCTIS1, .val = 0xFFFFFFFF},
    318	{ .reg = D40_DREG_CLCTIS2, .val = 0xFFFFFFFF},
    319	{ .reg = D40_DREG_CLCTIS3, .val = 0xFFFFFFFF},
    320	{ .reg = D40_DREG_CLCTIS4, .val = 0xFFFFFFFF},
    321	{ .reg = D40_DREG_CLCTIS5, .val = 0xFFFFFFFF}
    322};
    323
    324/**
    325 * struct d40_lli_pool - Structure for keeping LLIs in memory
    326 *
    327 * @base: Pointer to memory area when the pre_alloc_lli's are not large
    328 * enough, IE bigger than the most common case, 1 dst and 1 src. NULL if
    329 * pre_alloc_lli is used.
    330 * @dma_addr: DMA address, if mapped
    331 * @size: The size in bytes of the memory at base or the size of pre_alloc_lli.
    332 * @pre_alloc_lli: Pre allocated area for the most common case of transfers,
    333 * one buffer to one buffer.
    334 */
    335struct d40_lli_pool {
    336	void	*base;
    337	int	 size;
    338	dma_addr_t	dma_addr;
    339	/* Space for dst and src, plus an extra for padding */
    340	u8	 pre_alloc_lli[3 * sizeof(struct d40_phy_lli)];
    341};
    342
    343/**
    344 * struct d40_desc - A descriptor is one DMA job.
    345 *
    346 * @lli_phy: LLI settings for physical channel. Both src and dst=
    347 * points into the lli_pool, to base if lli_len > 1 or to pre_alloc_lli if
    348 * lli_len equals one.
    349 * @lli_log: Same as above but for logical channels.
    350 * @lli_pool: The pool with two entries pre-allocated.
    351 * @lli_len: Number of llis of current descriptor.
    352 * @lli_current: Number of transferred llis.
    353 * @lcla_alloc: Number of LCLA entries allocated.
    354 * @txd: DMA engine struct. Used for among other things for communication
    355 * during a transfer.
    356 * @node: List entry.
    357 * @is_in_client_list: true if the client owns this descriptor.
    358 * @cyclic: true if this is a cyclic job
    359 *
    360 * This descriptor is used for both logical and physical transfers.
    361 */
    362struct d40_desc {
    363	/* LLI physical */
    364	struct d40_phy_lli_bidir	 lli_phy;
    365	/* LLI logical */
    366	struct d40_log_lli_bidir	 lli_log;
    367
    368	struct d40_lli_pool		 lli_pool;
    369	int				 lli_len;
    370	int				 lli_current;
    371	int				 lcla_alloc;
    372
    373	struct dma_async_tx_descriptor	 txd;
    374	struct list_head		 node;
    375
    376	bool				 is_in_client_list;
    377	bool				 cyclic;
    378};
    379
    380/**
    381 * struct d40_lcla_pool - LCLA pool settings and data.
    382 *
    383 * @base: The virtual address of LCLA. 18 bit aligned.
    384 * @dma_addr: DMA address, if mapped
    385 * @base_unaligned: The orignal kmalloc pointer, if kmalloc is used.
    386 * This pointer is only there for clean-up on error.
    387 * @pages: The number of pages needed for all physical channels.
    388 * Only used later for clean-up on error
    389 * @lock: Lock to protect the content in this struct.
    390 * @alloc_map: big map over which LCLA entry is own by which job.
    391 */
    392struct d40_lcla_pool {
    393	void		*base;
    394	dma_addr_t	dma_addr;
    395	void		*base_unaligned;
    396	int		 pages;
    397	spinlock_t	 lock;
    398	struct d40_desc	**alloc_map;
    399};
    400
    401/**
    402 * struct d40_phy_res - struct for handling eventlines mapped to physical
    403 * channels.
    404 *
    405 * @lock: A lock protection this entity.
    406 * @reserved: True if used by secure world or otherwise.
    407 * @num: The physical channel number of this entity.
    408 * @allocated_src: Bit mapped to show which src event line's are mapped to
    409 * this physical channel. Can also be free or physically allocated.
    410 * @allocated_dst: Same as for src but is dst.
    411 * allocated_dst and allocated_src uses the D40_ALLOC* defines as well as
    412 * event line number.
    413 * @use_soft_lli: To mark if the linked lists of channel are managed by SW.
    414 */
    415struct d40_phy_res {
    416	spinlock_t lock;
    417	bool	   reserved;
    418	int	   num;
    419	u32	   allocated_src;
    420	u32	   allocated_dst;
    421	bool	   use_soft_lli;
    422};
    423
    424struct d40_base;
    425
    426/**
    427 * struct d40_chan - Struct that describes a channel.
    428 *
    429 * @lock: A spinlock to protect this struct.
    430 * @log_num: The logical number, if any of this channel.
    431 * @pending_tx: The number of pending transfers. Used between interrupt handler
    432 * and tasklet.
    433 * @busy: Set to true when transfer is ongoing on this channel.
    434 * @phy_chan: Pointer to physical channel which this instance runs on. If this
    435 * point is NULL, then the channel is not allocated.
    436 * @chan: DMA engine handle.
    437 * @tasklet: Tasklet that gets scheduled from interrupt context to complete a
    438 * transfer and call client callback.
    439 * @client: Cliented owned descriptor list.
    440 * @pending_queue: Submitted jobs, to be issued by issue_pending()
    441 * @active: Active descriptor.
    442 * @done: Completed jobs
    443 * @queue: Queued jobs.
    444 * @prepare_queue: Prepared jobs.
    445 * @dma_cfg: The client configuration of this dma channel.
    446 * @slave_config: DMA slave configuration.
    447 * @configured: whether the dma_cfg configuration is valid
    448 * @base: Pointer to the device instance struct.
    449 * @src_def_cfg: Default cfg register setting for src.
    450 * @dst_def_cfg: Default cfg register setting for dst.
    451 * @log_def: Default logical channel settings.
    452 * @lcpa: Pointer to dst and src lcpa settings.
    453 * @runtime_addr: runtime configured address.
    454 * @runtime_direction: runtime configured direction.
    455 *
    456 * This struct can either "be" a logical or a physical channel.
    457 */
    458struct d40_chan {
    459	spinlock_t			 lock;
    460	int				 log_num;
    461	int				 pending_tx;
    462	bool				 busy;
    463	struct d40_phy_res		*phy_chan;
    464	struct dma_chan			 chan;
    465	struct tasklet_struct		 tasklet;
    466	struct list_head		 client;
    467	struct list_head		 pending_queue;
    468	struct list_head		 active;
    469	struct list_head		 done;
    470	struct list_head		 queue;
    471	struct list_head		 prepare_queue;
    472	struct stedma40_chan_cfg	 dma_cfg;
    473	struct dma_slave_config		 slave_config;
    474	bool				 configured;
    475	struct d40_base			*base;
    476	/* Default register configurations */
    477	u32				 src_def_cfg;
    478	u32				 dst_def_cfg;
    479	struct d40_def_lcsp		 log_def;
    480	struct d40_log_lli_full		*lcpa;
    481	/* Runtime reconfiguration */
    482	dma_addr_t			runtime_addr;
    483	enum dma_transfer_direction	runtime_direction;
    484};
    485
    486/**
    487 * struct d40_gen_dmac - generic values to represent u8500/u8540 DMA
    488 * controller
    489 *
    490 * @backup: the pointer to the registers address array for backup
    491 * @backup_size: the size of the registers address array for backup
    492 * @realtime_en: the realtime enable register
    493 * @realtime_clear: the realtime clear register
    494 * @high_prio_en: the high priority enable register
    495 * @high_prio_clear: the high priority clear register
    496 * @interrupt_en: the interrupt enable register
    497 * @interrupt_clear: the interrupt clear register
    498 * @il: the pointer to struct d40_interrupt_lookup
    499 * @il_size: the size of d40_interrupt_lookup array
    500 * @init_reg: the pointer to the struct d40_reg_val
    501 * @init_reg_size: the size of d40_reg_val array
    502 */
    503struct d40_gen_dmac {
    504	u32				*backup;
    505	u32				 backup_size;
    506	u32				 realtime_en;
    507	u32				 realtime_clear;
    508	u32				 high_prio_en;
    509	u32				 high_prio_clear;
    510	u32				 interrupt_en;
    511	u32				 interrupt_clear;
    512	struct d40_interrupt_lookup	*il;
    513	u32				 il_size;
    514	struct d40_reg_val		*init_reg;
    515	u32				 init_reg_size;
    516};
    517
    518/**
    519 * struct d40_base - The big global struct, one for each probe'd instance.
    520 *
    521 * @interrupt_lock: Lock used to make sure one interrupt is handle a time.
    522 * @execmd_lock: Lock for execute command usage since several channels share
    523 * the same physical register.
    524 * @dev: The device structure.
    525 * @virtbase: The virtual base address of the DMA's register.
    526 * @rev: silicon revision detected.
    527 * @clk: Pointer to the DMA clock structure.
    528 * @phy_start: Physical memory start of the DMA registers.
    529 * @phy_size: Size of the DMA register map.
    530 * @irq: The IRQ number.
    531 * @num_memcpy_chans: The number of channels used for memcpy (mem-to-mem
    532 * transfers).
    533 * @num_phy_chans: The number of physical channels. Read from HW. This
    534 * is the number of available channels for this driver, not counting "Secure
    535 * mode" allocated physical channels.
    536 * @num_log_chans: The number of logical channels. Calculated from
    537 * num_phy_chans.
    538 * @dma_both: dma_device channels that can do both memcpy and slave transfers.
    539 * @dma_slave: dma_device channels that can do only do slave transfers.
    540 * @dma_memcpy: dma_device channels that can do only do memcpy transfers.
    541 * @phy_chans: Room for all possible physical channels in system.
    542 * @log_chans: Room for all possible logical channels in system.
    543 * @lookup_log_chans: Used to map interrupt number to logical channel. Points
    544 * to log_chans entries.
    545 * @lookup_phy_chans: Used to map interrupt number to physical channel. Points
    546 * to phy_chans entries.
    547 * @plat_data: Pointer to provided platform_data which is the driver
    548 * configuration.
    549 * @lcpa_regulator: Pointer to hold the regulator for the esram bank for lcla.
    550 * @phy_res: Vector containing all physical channels.
    551 * @lcla_pool: lcla pool settings and data.
    552 * @lcpa_base: The virtual mapped address of LCPA.
    553 * @phy_lcpa: The physical address of the LCPA.
    554 * @lcpa_size: The size of the LCPA area.
    555 * @desc_slab: cache for descriptors.
    556 * @reg_val_backup: Here the values of some hardware registers are stored
    557 * before the DMA is powered off. They are restored when the power is back on.
    558 * @reg_val_backup_v4: Backup of registers that only exits on dma40 v3 and
    559 * later
    560 * @reg_val_backup_chan: Backup data for standard channel parameter registers.
    561 * @regs_interrupt: Scratch space for registers during interrupt.
    562 * @gcc_pwr_off_mask: Mask to maintain the channels that can be turned off.
    563 * @gen_dmac: the struct for generic registers values to represent u8500/8540
    564 * DMA controller
    565 */
    566struct d40_base {
    567	spinlock_t			 interrupt_lock;
    568	spinlock_t			 execmd_lock;
    569	struct device			 *dev;
    570	void __iomem			 *virtbase;
    571	u8				  rev:4;
    572	struct clk			 *clk;
    573	phys_addr_t			  phy_start;
    574	resource_size_t			  phy_size;
    575	int				  irq;
    576	int				  num_memcpy_chans;
    577	int				  num_phy_chans;
    578	int				  num_log_chans;
    579	struct dma_device		  dma_both;
    580	struct dma_device		  dma_slave;
    581	struct dma_device		  dma_memcpy;
    582	struct d40_chan			 *phy_chans;
    583	struct d40_chan			 *log_chans;
    584	struct d40_chan			**lookup_log_chans;
    585	struct d40_chan			**lookup_phy_chans;
    586	struct stedma40_platform_data	 *plat_data;
    587	struct regulator		 *lcpa_regulator;
    588	/* Physical half channels */
    589	struct d40_phy_res		 *phy_res;
    590	struct d40_lcla_pool		  lcla_pool;
    591	void				 *lcpa_base;
    592	dma_addr_t			  phy_lcpa;
    593	resource_size_t			  lcpa_size;
    594	struct kmem_cache		 *desc_slab;
    595	u32				  reg_val_backup[BACKUP_REGS_SZ];
    596	u32				  reg_val_backup_v4[BACKUP_REGS_SZ_MAX];
    597	u32				 *reg_val_backup_chan;
    598	u32				 *regs_interrupt;
    599	u16				  gcc_pwr_off_mask;
    600	struct d40_gen_dmac		  gen_dmac;
    601};
    602
    603static struct device *chan2dev(struct d40_chan *d40c)
    604{
    605	return &d40c->chan.dev->device;
    606}
    607
    608static bool chan_is_physical(struct d40_chan *chan)
    609{
    610	return chan->log_num == D40_PHY_CHAN;
    611}
    612
    613static bool chan_is_logical(struct d40_chan *chan)
    614{
    615	return !chan_is_physical(chan);
    616}
    617
    618static void __iomem *chan_base(struct d40_chan *chan)
    619{
    620	return chan->base->virtbase + D40_DREG_PCBASE +
    621	       chan->phy_chan->num * D40_DREG_PCDELTA;
    622}
    623
    624#define d40_err(dev, format, arg...)		\
    625	dev_err(dev, "[%s] " format, __func__, ## arg)
    626
    627#define chan_err(d40c, format, arg...)		\
    628	d40_err(chan2dev(d40c), format, ## arg)
    629
    630static int d40_set_runtime_config_write(struct dma_chan *chan,
    631				  struct dma_slave_config *config,
    632				  enum dma_transfer_direction direction);
    633
    634static int d40_pool_lli_alloc(struct d40_chan *d40c, struct d40_desc *d40d,
    635			      int lli_len)
    636{
    637	bool is_log = chan_is_logical(d40c);
    638	u32 align;
    639	void *base;
    640
    641	if (is_log)
    642		align = sizeof(struct d40_log_lli);
    643	else
    644		align = sizeof(struct d40_phy_lli);
    645
    646	if (lli_len == 1) {
    647		base = d40d->lli_pool.pre_alloc_lli;
    648		d40d->lli_pool.size = sizeof(d40d->lli_pool.pre_alloc_lli);
    649		d40d->lli_pool.base = NULL;
    650	} else {
    651		d40d->lli_pool.size = lli_len * 2 * align;
    652
    653		base = kmalloc(d40d->lli_pool.size + align, GFP_NOWAIT);
    654		d40d->lli_pool.base = base;
    655
    656		if (d40d->lli_pool.base == NULL)
    657			return -ENOMEM;
    658	}
    659
    660	if (is_log) {
    661		d40d->lli_log.src = PTR_ALIGN(base, align);
    662		d40d->lli_log.dst = d40d->lli_log.src + lli_len;
    663
    664		d40d->lli_pool.dma_addr = 0;
    665	} else {
    666		d40d->lli_phy.src = PTR_ALIGN(base, align);
    667		d40d->lli_phy.dst = d40d->lli_phy.src + lli_len;
    668
    669		d40d->lli_pool.dma_addr = dma_map_single(d40c->base->dev,
    670							 d40d->lli_phy.src,
    671							 d40d->lli_pool.size,
    672							 DMA_TO_DEVICE);
    673
    674		if (dma_mapping_error(d40c->base->dev,
    675				      d40d->lli_pool.dma_addr)) {
    676			kfree(d40d->lli_pool.base);
    677			d40d->lli_pool.base = NULL;
    678			d40d->lli_pool.dma_addr = 0;
    679			return -ENOMEM;
    680		}
    681	}
    682
    683	return 0;
    684}
    685
    686static void d40_pool_lli_free(struct d40_chan *d40c, struct d40_desc *d40d)
    687{
    688	if (d40d->lli_pool.dma_addr)
    689		dma_unmap_single(d40c->base->dev, d40d->lli_pool.dma_addr,
    690				 d40d->lli_pool.size, DMA_TO_DEVICE);
    691
    692	kfree(d40d->lli_pool.base);
    693	d40d->lli_pool.base = NULL;
    694	d40d->lli_pool.size = 0;
    695	d40d->lli_log.src = NULL;
    696	d40d->lli_log.dst = NULL;
    697	d40d->lli_phy.src = NULL;
    698	d40d->lli_phy.dst = NULL;
    699}
    700
    701static int d40_lcla_alloc_one(struct d40_chan *d40c,
    702			      struct d40_desc *d40d)
    703{
    704	unsigned long flags;
    705	int i;
    706	int ret = -EINVAL;
    707
    708	spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
    709
    710	/*
    711	 * Allocate both src and dst at the same time, therefore the half
    712	 * start on 1 since 0 can't be used since zero is used as end marker.
    713	 */
    714	for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
    715		int idx = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP + i;
    716
    717		if (!d40c->base->lcla_pool.alloc_map[idx]) {
    718			d40c->base->lcla_pool.alloc_map[idx] = d40d;
    719			d40d->lcla_alloc++;
    720			ret = i;
    721			break;
    722		}
    723	}
    724
    725	spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
    726
    727	return ret;
    728}
    729
    730static int d40_lcla_free_all(struct d40_chan *d40c,
    731			     struct d40_desc *d40d)
    732{
    733	unsigned long flags;
    734	int i;
    735	int ret = -EINVAL;
    736
    737	if (chan_is_physical(d40c))
    738		return 0;
    739
    740	spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
    741
    742	for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
    743		int idx = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP + i;
    744
    745		if (d40c->base->lcla_pool.alloc_map[idx] == d40d) {
    746			d40c->base->lcla_pool.alloc_map[idx] = NULL;
    747			d40d->lcla_alloc--;
    748			if (d40d->lcla_alloc == 0) {
    749				ret = 0;
    750				break;
    751			}
    752		}
    753	}
    754
    755	spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
    756
    757	return ret;
    758
    759}
    760
    761static void d40_desc_remove(struct d40_desc *d40d)
    762{
    763	list_del(&d40d->node);
    764}
    765
    766static struct d40_desc *d40_desc_get(struct d40_chan *d40c)
    767{
    768	struct d40_desc *desc = NULL;
    769
    770	if (!list_empty(&d40c->client)) {
    771		struct d40_desc *d;
    772		struct d40_desc *_d;
    773
    774		list_for_each_entry_safe(d, _d, &d40c->client, node) {
    775			if (async_tx_test_ack(&d->txd)) {
    776				d40_desc_remove(d);
    777				desc = d;
    778				memset(desc, 0, sizeof(*desc));
    779				break;
    780			}
    781		}
    782	}
    783
    784	if (!desc)
    785		desc = kmem_cache_zalloc(d40c->base->desc_slab, GFP_NOWAIT);
    786
    787	if (desc)
    788		INIT_LIST_HEAD(&desc->node);
    789
    790	return desc;
    791}
    792
    793static void d40_desc_free(struct d40_chan *d40c, struct d40_desc *d40d)
    794{
    795
    796	d40_pool_lli_free(d40c, d40d);
    797	d40_lcla_free_all(d40c, d40d);
    798	kmem_cache_free(d40c->base->desc_slab, d40d);
    799}
    800
    801static void d40_desc_submit(struct d40_chan *d40c, struct d40_desc *desc)
    802{
    803	list_add_tail(&desc->node, &d40c->active);
    804}
    805
    806static void d40_phy_lli_load(struct d40_chan *chan, struct d40_desc *desc)
    807{
    808	struct d40_phy_lli *lli_dst = desc->lli_phy.dst;
    809	struct d40_phy_lli *lli_src = desc->lli_phy.src;
    810	void __iomem *base = chan_base(chan);
    811
    812	writel(lli_src->reg_cfg, base + D40_CHAN_REG_SSCFG);
    813	writel(lli_src->reg_elt, base + D40_CHAN_REG_SSELT);
    814	writel(lli_src->reg_ptr, base + D40_CHAN_REG_SSPTR);
    815	writel(lli_src->reg_lnk, base + D40_CHAN_REG_SSLNK);
    816
    817	writel(lli_dst->reg_cfg, base + D40_CHAN_REG_SDCFG);
    818	writel(lli_dst->reg_elt, base + D40_CHAN_REG_SDELT);
    819	writel(lli_dst->reg_ptr, base + D40_CHAN_REG_SDPTR);
    820	writel(lli_dst->reg_lnk, base + D40_CHAN_REG_SDLNK);
    821}
    822
    823static void d40_desc_done(struct d40_chan *d40c, struct d40_desc *desc)
    824{
    825	list_add_tail(&desc->node, &d40c->done);
    826}
    827
    828static void d40_log_lli_to_lcxa(struct d40_chan *chan, struct d40_desc *desc)
    829{
    830	struct d40_lcla_pool *pool = &chan->base->lcla_pool;
    831	struct d40_log_lli_bidir *lli = &desc->lli_log;
    832	int lli_current = desc->lli_current;
    833	int lli_len = desc->lli_len;
    834	bool cyclic = desc->cyclic;
    835	int curr_lcla = -EINVAL;
    836	int first_lcla = 0;
    837	bool use_esram_lcla = chan->base->plat_data->use_esram_lcla;
    838	bool linkback;
    839
    840	/*
    841	 * We may have partially running cyclic transfers, in case we did't get
    842	 * enough LCLA entries.
    843	 */
    844	linkback = cyclic && lli_current == 0;
    845
    846	/*
    847	 * For linkback, we need one LCLA even with only one link, because we
    848	 * can't link back to the one in LCPA space
    849	 */
    850	if (linkback || (lli_len - lli_current > 1)) {
    851		/*
    852		 * If the channel is expected to use only soft_lli don't
    853		 * allocate a lcla. This is to avoid a HW issue that exists
    854		 * in some controller during a peripheral to memory transfer
    855		 * that uses linked lists.
    856		 */
    857		if (!(chan->phy_chan->use_soft_lli &&
    858			chan->dma_cfg.dir == DMA_DEV_TO_MEM))
    859			curr_lcla = d40_lcla_alloc_one(chan, desc);
    860
    861		first_lcla = curr_lcla;
    862	}
    863
    864	/*
    865	 * For linkback, we normally load the LCPA in the loop since we need to
    866	 * link it to the second LCLA and not the first.  However, if we
    867	 * couldn't even get a first LCLA, then we have to run in LCPA and
    868	 * reload manually.
    869	 */
    870	if (!linkback || curr_lcla == -EINVAL) {
    871		unsigned int flags = 0;
    872
    873		if (curr_lcla == -EINVAL)
    874			flags |= LLI_TERM_INT;
    875
    876		d40_log_lli_lcpa_write(chan->lcpa,
    877				       &lli->dst[lli_current],
    878				       &lli->src[lli_current],
    879				       curr_lcla,
    880				       flags);
    881		lli_current++;
    882	}
    883
    884	if (curr_lcla < 0)
    885		goto set_current;
    886
    887	for (; lli_current < lli_len; lli_current++) {
    888		unsigned int lcla_offset = chan->phy_chan->num * 1024 +
    889					   8 * curr_lcla * 2;
    890		struct d40_log_lli *lcla = pool->base + lcla_offset;
    891		unsigned int flags = 0;
    892		int next_lcla;
    893
    894		if (lli_current + 1 < lli_len)
    895			next_lcla = d40_lcla_alloc_one(chan, desc);
    896		else
    897			next_lcla = linkback ? first_lcla : -EINVAL;
    898
    899		if (cyclic || next_lcla == -EINVAL)
    900			flags |= LLI_TERM_INT;
    901
    902		if (linkback && curr_lcla == first_lcla) {
    903			/* First link goes in both LCPA and LCLA */
    904			d40_log_lli_lcpa_write(chan->lcpa,
    905					       &lli->dst[lli_current],
    906					       &lli->src[lli_current],
    907					       next_lcla, flags);
    908		}
    909
    910		/*
    911		 * One unused LCLA in the cyclic case if the very first
    912		 * next_lcla fails...
    913		 */
    914		d40_log_lli_lcla_write(lcla,
    915				       &lli->dst[lli_current],
    916				       &lli->src[lli_current],
    917				       next_lcla, flags);
    918
    919		/*
    920		 * Cache maintenance is not needed if lcla is
    921		 * mapped in esram
    922		 */
    923		if (!use_esram_lcla) {
    924			dma_sync_single_range_for_device(chan->base->dev,
    925						pool->dma_addr, lcla_offset,
    926						2 * sizeof(struct d40_log_lli),
    927						DMA_TO_DEVICE);
    928		}
    929		curr_lcla = next_lcla;
    930
    931		if (curr_lcla == -EINVAL || curr_lcla == first_lcla) {
    932			lli_current++;
    933			break;
    934		}
    935	}
    936 set_current:
    937	desc->lli_current = lli_current;
    938}
    939
    940static void d40_desc_load(struct d40_chan *d40c, struct d40_desc *d40d)
    941{
    942	if (chan_is_physical(d40c)) {
    943		d40_phy_lli_load(d40c, d40d);
    944		d40d->lli_current = d40d->lli_len;
    945	} else
    946		d40_log_lli_to_lcxa(d40c, d40d);
    947}
    948
    949static struct d40_desc *d40_first_active_get(struct d40_chan *d40c)
    950{
    951	return list_first_entry_or_null(&d40c->active, struct d40_desc, node);
    952}
    953
    954/* remove desc from current queue and add it to the pending_queue */
    955static void d40_desc_queue(struct d40_chan *d40c, struct d40_desc *desc)
    956{
    957	d40_desc_remove(desc);
    958	desc->is_in_client_list = false;
    959	list_add_tail(&desc->node, &d40c->pending_queue);
    960}
    961
    962static struct d40_desc *d40_first_pending(struct d40_chan *d40c)
    963{
    964	return list_first_entry_or_null(&d40c->pending_queue, struct d40_desc,
    965					node);
    966}
    967
    968static struct d40_desc *d40_first_queued(struct d40_chan *d40c)
    969{
    970	return list_first_entry_or_null(&d40c->queue, struct d40_desc, node);
    971}
    972
    973static struct d40_desc *d40_first_done(struct d40_chan *d40c)
    974{
    975	return list_first_entry_or_null(&d40c->done, struct d40_desc, node);
    976}
    977
    978static int d40_psize_2_burst_size(bool is_log, int psize)
    979{
    980	if (is_log) {
    981		if (psize == STEDMA40_PSIZE_LOG_1)
    982			return 1;
    983	} else {
    984		if (psize == STEDMA40_PSIZE_PHY_1)
    985			return 1;
    986	}
    987
    988	return 2 << psize;
    989}
    990
    991/*
    992 * The dma only supports transmitting packages up to
    993 * STEDMA40_MAX_SEG_SIZE * data_width, where data_width is stored in Bytes.
    994 *
    995 * Calculate the total number of dma elements required to send the entire sg list.
    996 */
    997static int d40_size_2_dmalen(int size, u32 data_width1, u32 data_width2)
    998{
    999	int dmalen;
   1000	u32 max_w = max(data_width1, data_width2);
   1001	u32 min_w = min(data_width1, data_width2);
   1002	u32 seg_max = ALIGN(STEDMA40_MAX_SEG_SIZE * min_w, max_w);
   1003
   1004	if (seg_max > STEDMA40_MAX_SEG_SIZE)
   1005		seg_max -= max_w;
   1006
   1007	if (!IS_ALIGNED(size, max_w))
   1008		return -EINVAL;
   1009
   1010	if (size <= seg_max)
   1011		dmalen = 1;
   1012	else {
   1013		dmalen = size / seg_max;
   1014		if (dmalen * seg_max < size)
   1015			dmalen++;
   1016	}
   1017	return dmalen;
   1018}
   1019
   1020static int d40_sg_2_dmalen(struct scatterlist *sgl, int sg_len,
   1021			   u32 data_width1, u32 data_width2)
   1022{
   1023	struct scatterlist *sg;
   1024	int i;
   1025	int len = 0;
   1026	int ret;
   1027
   1028	for_each_sg(sgl, sg, sg_len, i) {
   1029		ret = d40_size_2_dmalen(sg_dma_len(sg),
   1030					data_width1, data_width2);
   1031		if (ret < 0)
   1032			return ret;
   1033		len += ret;
   1034	}
   1035	return len;
   1036}
   1037
   1038static int __d40_execute_command_phy(struct d40_chan *d40c,
   1039				     enum d40_command command)
   1040{
   1041	u32 status;
   1042	int i;
   1043	void __iomem *active_reg;
   1044	int ret = 0;
   1045	unsigned long flags;
   1046	u32 wmask;
   1047
   1048	if (command == D40_DMA_STOP) {
   1049		ret = __d40_execute_command_phy(d40c, D40_DMA_SUSPEND_REQ);
   1050		if (ret)
   1051			return ret;
   1052	}
   1053
   1054	spin_lock_irqsave(&d40c->base->execmd_lock, flags);
   1055
   1056	if (d40c->phy_chan->num % 2 == 0)
   1057		active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
   1058	else
   1059		active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
   1060
   1061	if (command == D40_DMA_SUSPEND_REQ) {
   1062		status = (readl(active_reg) &
   1063			  D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
   1064			D40_CHAN_POS(d40c->phy_chan->num);
   1065
   1066		if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
   1067			goto unlock;
   1068	}
   1069
   1070	wmask = 0xffffffff & ~(D40_CHAN_POS_MASK(d40c->phy_chan->num));
   1071	writel(wmask | (command << D40_CHAN_POS(d40c->phy_chan->num)),
   1072	       active_reg);
   1073
   1074	if (command == D40_DMA_SUSPEND_REQ) {
   1075
   1076		for (i = 0 ; i < D40_SUSPEND_MAX_IT; i++) {
   1077			status = (readl(active_reg) &
   1078				  D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
   1079				D40_CHAN_POS(d40c->phy_chan->num);
   1080
   1081			cpu_relax();
   1082			/*
   1083			 * Reduce the number of bus accesses while
   1084			 * waiting for the DMA to suspend.
   1085			 */
   1086			udelay(3);
   1087
   1088			if (status == D40_DMA_STOP ||
   1089			    status == D40_DMA_SUSPENDED)
   1090				break;
   1091		}
   1092
   1093		if (i == D40_SUSPEND_MAX_IT) {
   1094			chan_err(d40c,
   1095				"unable to suspend the chl %d (log: %d) status %x\n",
   1096				d40c->phy_chan->num, d40c->log_num,
   1097				status);
   1098			dump_stack();
   1099			ret = -EBUSY;
   1100		}
   1101
   1102	}
   1103 unlock:
   1104	spin_unlock_irqrestore(&d40c->base->execmd_lock, flags);
   1105	return ret;
   1106}
   1107
   1108static void d40_term_all(struct d40_chan *d40c)
   1109{
   1110	struct d40_desc *d40d;
   1111	struct d40_desc *_d;
   1112
   1113	/* Release completed descriptors */
   1114	while ((d40d = d40_first_done(d40c))) {
   1115		d40_desc_remove(d40d);
   1116		d40_desc_free(d40c, d40d);
   1117	}
   1118
   1119	/* Release active descriptors */
   1120	while ((d40d = d40_first_active_get(d40c))) {
   1121		d40_desc_remove(d40d);
   1122		d40_desc_free(d40c, d40d);
   1123	}
   1124
   1125	/* Release queued descriptors waiting for transfer */
   1126	while ((d40d = d40_first_queued(d40c))) {
   1127		d40_desc_remove(d40d);
   1128		d40_desc_free(d40c, d40d);
   1129	}
   1130
   1131	/* Release pending descriptors */
   1132	while ((d40d = d40_first_pending(d40c))) {
   1133		d40_desc_remove(d40d);
   1134		d40_desc_free(d40c, d40d);
   1135	}
   1136
   1137	/* Release client owned descriptors */
   1138	if (!list_empty(&d40c->client))
   1139		list_for_each_entry_safe(d40d, _d, &d40c->client, node) {
   1140			d40_desc_remove(d40d);
   1141			d40_desc_free(d40c, d40d);
   1142		}
   1143
   1144	/* Release descriptors in prepare queue */
   1145	if (!list_empty(&d40c->prepare_queue))
   1146		list_for_each_entry_safe(d40d, _d,
   1147					 &d40c->prepare_queue, node) {
   1148			d40_desc_remove(d40d);
   1149			d40_desc_free(d40c, d40d);
   1150		}
   1151
   1152	d40c->pending_tx = 0;
   1153}
   1154
   1155static void __d40_config_set_event(struct d40_chan *d40c,
   1156				   enum d40_events event_type, u32 event,
   1157				   int reg)
   1158{
   1159	void __iomem *addr = chan_base(d40c) + reg;
   1160	int tries;
   1161	u32 status;
   1162
   1163	switch (event_type) {
   1164
   1165	case D40_DEACTIVATE_EVENTLINE:
   1166
   1167		writel((D40_DEACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event))
   1168		       | ~D40_EVENTLINE_MASK(event), addr);
   1169		break;
   1170
   1171	case D40_SUSPEND_REQ_EVENTLINE:
   1172		status = (readl(addr) & D40_EVENTLINE_MASK(event)) >>
   1173			  D40_EVENTLINE_POS(event);
   1174
   1175		if (status == D40_DEACTIVATE_EVENTLINE ||
   1176		    status == D40_SUSPEND_REQ_EVENTLINE)
   1177			break;
   1178
   1179		writel((D40_SUSPEND_REQ_EVENTLINE << D40_EVENTLINE_POS(event))
   1180		       | ~D40_EVENTLINE_MASK(event), addr);
   1181
   1182		for (tries = 0 ; tries < D40_SUSPEND_MAX_IT; tries++) {
   1183
   1184			status = (readl(addr) & D40_EVENTLINE_MASK(event)) >>
   1185				  D40_EVENTLINE_POS(event);
   1186
   1187			cpu_relax();
   1188			/*
   1189			 * Reduce the number of bus accesses while
   1190			 * waiting for the DMA to suspend.
   1191			 */
   1192			udelay(3);
   1193
   1194			if (status == D40_DEACTIVATE_EVENTLINE)
   1195				break;
   1196		}
   1197
   1198		if (tries == D40_SUSPEND_MAX_IT) {
   1199			chan_err(d40c,
   1200				"unable to stop the event_line chl %d (log: %d)"
   1201				"status %x\n", d40c->phy_chan->num,
   1202				 d40c->log_num, status);
   1203		}
   1204		break;
   1205
   1206	case D40_ACTIVATE_EVENTLINE:
   1207	/*
   1208	 * The hardware sometimes doesn't register the enable when src and dst
   1209	 * event lines are active on the same logical channel.  Retry to ensure
   1210	 * it does.  Usually only one retry is sufficient.
   1211	 */
   1212		tries = 100;
   1213		while (--tries) {
   1214			writel((D40_ACTIVATE_EVENTLINE <<
   1215				D40_EVENTLINE_POS(event)) |
   1216				~D40_EVENTLINE_MASK(event), addr);
   1217
   1218			if (readl(addr) & D40_EVENTLINE_MASK(event))
   1219				break;
   1220		}
   1221
   1222		if (tries != 99)
   1223			dev_dbg(chan2dev(d40c),
   1224				"[%s] workaround enable S%cLNK (%d tries)\n",
   1225				__func__, reg == D40_CHAN_REG_SSLNK ? 'S' : 'D',
   1226				100 - tries);
   1227
   1228		WARN_ON(!tries);
   1229		break;
   1230
   1231	case D40_ROUND_EVENTLINE:
   1232		BUG();
   1233		break;
   1234
   1235	}
   1236}
   1237
   1238static void d40_config_set_event(struct d40_chan *d40c,
   1239				 enum d40_events event_type)
   1240{
   1241	u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dev_type);
   1242
   1243	/* Enable event line connected to device (or memcpy) */
   1244	if ((d40c->dma_cfg.dir == DMA_DEV_TO_MEM) ||
   1245	    (d40c->dma_cfg.dir == DMA_DEV_TO_DEV))
   1246		__d40_config_set_event(d40c, event_type, event,
   1247				       D40_CHAN_REG_SSLNK);
   1248
   1249	if (d40c->dma_cfg.dir !=  DMA_DEV_TO_MEM)
   1250		__d40_config_set_event(d40c, event_type, event,
   1251				       D40_CHAN_REG_SDLNK);
   1252}
   1253
   1254static u32 d40_chan_has_events(struct d40_chan *d40c)
   1255{
   1256	void __iomem *chanbase = chan_base(d40c);
   1257	u32 val;
   1258
   1259	val = readl(chanbase + D40_CHAN_REG_SSLNK);
   1260	val |= readl(chanbase + D40_CHAN_REG_SDLNK);
   1261
   1262	return val;
   1263}
   1264
   1265static int
   1266__d40_execute_command_log(struct d40_chan *d40c, enum d40_command command)
   1267{
   1268	unsigned long flags;
   1269	int ret = 0;
   1270	u32 active_status;
   1271	void __iomem *active_reg;
   1272
   1273	if (d40c->phy_chan->num % 2 == 0)
   1274		active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
   1275	else
   1276		active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
   1277
   1278
   1279	spin_lock_irqsave(&d40c->phy_chan->lock, flags);
   1280
   1281	switch (command) {
   1282	case D40_DMA_STOP:
   1283	case D40_DMA_SUSPEND_REQ:
   1284
   1285		active_status = (readl(active_reg) &
   1286				 D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
   1287				 D40_CHAN_POS(d40c->phy_chan->num);
   1288
   1289		if (active_status == D40_DMA_RUN)
   1290			d40_config_set_event(d40c, D40_SUSPEND_REQ_EVENTLINE);
   1291		else
   1292			d40_config_set_event(d40c, D40_DEACTIVATE_EVENTLINE);
   1293
   1294		if (!d40_chan_has_events(d40c) && (command == D40_DMA_STOP))
   1295			ret = __d40_execute_command_phy(d40c, command);
   1296
   1297		break;
   1298
   1299	case D40_DMA_RUN:
   1300
   1301		d40_config_set_event(d40c, D40_ACTIVATE_EVENTLINE);
   1302		ret = __d40_execute_command_phy(d40c, command);
   1303		break;
   1304
   1305	case D40_DMA_SUSPENDED:
   1306		BUG();
   1307		break;
   1308	}
   1309
   1310	spin_unlock_irqrestore(&d40c->phy_chan->lock, flags);
   1311	return ret;
   1312}
   1313
   1314static int d40_channel_execute_command(struct d40_chan *d40c,
   1315				       enum d40_command command)
   1316{
   1317	if (chan_is_logical(d40c))
   1318		return __d40_execute_command_log(d40c, command);
   1319	else
   1320		return __d40_execute_command_phy(d40c, command);
   1321}
   1322
   1323static u32 d40_get_prmo(struct d40_chan *d40c)
   1324{
   1325	static const unsigned int phy_map[] = {
   1326		[STEDMA40_PCHAN_BASIC_MODE]
   1327			= D40_DREG_PRMO_PCHAN_BASIC,
   1328		[STEDMA40_PCHAN_MODULO_MODE]
   1329			= D40_DREG_PRMO_PCHAN_MODULO,
   1330		[STEDMA40_PCHAN_DOUBLE_DST_MODE]
   1331			= D40_DREG_PRMO_PCHAN_DOUBLE_DST,
   1332	};
   1333	static const unsigned int log_map[] = {
   1334		[STEDMA40_LCHAN_SRC_PHY_DST_LOG]
   1335			= D40_DREG_PRMO_LCHAN_SRC_PHY_DST_LOG,
   1336		[STEDMA40_LCHAN_SRC_LOG_DST_PHY]
   1337			= D40_DREG_PRMO_LCHAN_SRC_LOG_DST_PHY,
   1338		[STEDMA40_LCHAN_SRC_LOG_DST_LOG]
   1339			= D40_DREG_PRMO_LCHAN_SRC_LOG_DST_LOG,
   1340	};
   1341
   1342	if (chan_is_physical(d40c))
   1343		return phy_map[d40c->dma_cfg.mode_opt];
   1344	else
   1345		return log_map[d40c->dma_cfg.mode_opt];
   1346}
   1347
   1348static void d40_config_write(struct d40_chan *d40c)
   1349{
   1350	u32 addr_base;
   1351	u32 var;
   1352
   1353	/* Odd addresses are even addresses + 4 */
   1354	addr_base = (d40c->phy_chan->num % 2) * 4;
   1355	/* Setup channel mode to logical or physical */
   1356	var = ((u32)(chan_is_logical(d40c)) + 1) <<
   1357		D40_CHAN_POS(d40c->phy_chan->num);
   1358	writel(var, d40c->base->virtbase + D40_DREG_PRMSE + addr_base);
   1359
   1360	/* Setup operational mode option register */
   1361	var = d40_get_prmo(d40c) << D40_CHAN_POS(d40c->phy_chan->num);
   1362
   1363	writel(var, d40c->base->virtbase + D40_DREG_PRMOE + addr_base);
   1364
   1365	if (chan_is_logical(d40c)) {
   1366		int lidx = (d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS)
   1367			   & D40_SREG_ELEM_LOG_LIDX_MASK;
   1368		void __iomem *chanbase = chan_base(d40c);
   1369
   1370		/* Set default config for CFG reg */
   1371		writel(d40c->src_def_cfg, chanbase + D40_CHAN_REG_SSCFG);
   1372		writel(d40c->dst_def_cfg, chanbase + D40_CHAN_REG_SDCFG);
   1373
   1374		/* Set LIDX for lcla */
   1375		writel(lidx, chanbase + D40_CHAN_REG_SSELT);
   1376		writel(lidx, chanbase + D40_CHAN_REG_SDELT);
   1377
   1378		/* Clear LNK which will be used by d40_chan_has_events() */
   1379		writel(0, chanbase + D40_CHAN_REG_SSLNK);
   1380		writel(0, chanbase + D40_CHAN_REG_SDLNK);
   1381	}
   1382}
   1383
   1384static u32 d40_residue(struct d40_chan *d40c)
   1385{
   1386	u32 num_elt;
   1387
   1388	if (chan_is_logical(d40c))
   1389		num_elt = (readl(&d40c->lcpa->lcsp2) & D40_MEM_LCSP2_ECNT_MASK)
   1390			>> D40_MEM_LCSP2_ECNT_POS;
   1391	else {
   1392		u32 val = readl(chan_base(d40c) + D40_CHAN_REG_SDELT);
   1393		num_elt = (val & D40_SREG_ELEM_PHY_ECNT_MASK)
   1394			  >> D40_SREG_ELEM_PHY_ECNT_POS;
   1395	}
   1396
   1397	return num_elt * d40c->dma_cfg.dst_info.data_width;
   1398}
   1399
   1400static bool d40_tx_is_linked(struct d40_chan *d40c)
   1401{
   1402	bool is_link;
   1403
   1404	if (chan_is_logical(d40c))
   1405		is_link = readl(&d40c->lcpa->lcsp3) &  D40_MEM_LCSP3_DLOS_MASK;
   1406	else
   1407		is_link = readl(chan_base(d40c) + D40_CHAN_REG_SDLNK)
   1408			  & D40_SREG_LNK_PHYS_LNK_MASK;
   1409
   1410	return is_link;
   1411}
   1412
   1413static int d40_pause(struct dma_chan *chan)
   1414{
   1415	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
   1416	int res = 0;
   1417	unsigned long flags;
   1418
   1419	if (d40c->phy_chan == NULL) {
   1420		chan_err(d40c, "Channel is not allocated!\n");
   1421		return -EINVAL;
   1422	}
   1423
   1424	if (!d40c->busy)
   1425		return 0;
   1426
   1427	spin_lock_irqsave(&d40c->lock, flags);
   1428	pm_runtime_get_sync(d40c->base->dev);
   1429
   1430	res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
   1431
   1432	pm_runtime_mark_last_busy(d40c->base->dev);
   1433	pm_runtime_put_autosuspend(d40c->base->dev);
   1434	spin_unlock_irqrestore(&d40c->lock, flags);
   1435	return res;
   1436}
   1437
   1438static int d40_resume(struct dma_chan *chan)
   1439{
   1440	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
   1441	int res = 0;
   1442	unsigned long flags;
   1443
   1444	if (d40c->phy_chan == NULL) {
   1445		chan_err(d40c, "Channel is not allocated!\n");
   1446		return -EINVAL;
   1447	}
   1448
   1449	if (!d40c->busy)
   1450		return 0;
   1451
   1452	spin_lock_irqsave(&d40c->lock, flags);
   1453	pm_runtime_get_sync(d40c->base->dev);
   1454
   1455	/* If bytes left to transfer or linked tx resume job */
   1456	if (d40_residue(d40c) || d40_tx_is_linked(d40c))
   1457		res = d40_channel_execute_command(d40c, D40_DMA_RUN);
   1458
   1459	pm_runtime_mark_last_busy(d40c->base->dev);
   1460	pm_runtime_put_autosuspend(d40c->base->dev);
   1461	spin_unlock_irqrestore(&d40c->lock, flags);
   1462	return res;
   1463}
   1464
   1465static dma_cookie_t d40_tx_submit(struct dma_async_tx_descriptor *tx)
   1466{
   1467	struct d40_chan *d40c = container_of(tx->chan,
   1468					     struct d40_chan,
   1469					     chan);
   1470	struct d40_desc *d40d = container_of(tx, struct d40_desc, txd);
   1471	unsigned long flags;
   1472	dma_cookie_t cookie;
   1473
   1474	spin_lock_irqsave(&d40c->lock, flags);
   1475	cookie = dma_cookie_assign(tx);
   1476	d40_desc_queue(d40c, d40d);
   1477	spin_unlock_irqrestore(&d40c->lock, flags);
   1478
   1479	return cookie;
   1480}
   1481
   1482static int d40_start(struct d40_chan *d40c)
   1483{
   1484	return d40_channel_execute_command(d40c, D40_DMA_RUN);
   1485}
   1486
   1487static struct d40_desc *d40_queue_start(struct d40_chan *d40c)
   1488{
   1489	struct d40_desc *d40d;
   1490	int err;
   1491
   1492	/* Start queued jobs, if any */
   1493	d40d = d40_first_queued(d40c);
   1494
   1495	if (d40d != NULL) {
   1496		if (!d40c->busy) {
   1497			d40c->busy = true;
   1498			pm_runtime_get_sync(d40c->base->dev);
   1499		}
   1500
   1501		/* Remove from queue */
   1502		d40_desc_remove(d40d);
   1503
   1504		/* Add to active queue */
   1505		d40_desc_submit(d40c, d40d);
   1506
   1507		/* Initiate DMA job */
   1508		d40_desc_load(d40c, d40d);
   1509
   1510		/* Start dma job */
   1511		err = d40_start(d40c);
   1512
   1513		if (err)
   1514			return NULL;
   1515	}
   1516
   1517	return d40d;
   1518}
   1519
   1520/* called from interrupt context */
   1521static void dma_tc_handle(struct d40_chan *d40c)
   1522{
   1523	struct d40_desc *d40d;
   1524
   1525	/* Get first active entry from list */
   1526	d40d = d40_first_active_get(d40c);
   1527
   1528	if (d40d == NULL)
   1529		return;
   1530
   1531	if (d40d->cyclic) {
   1532		/*
   1533		 * If this was a paritially loaded list, we need to reloaded
   1534		 * it, and only when the list is completed.  We need to check
   1535		 * for done because the interrupt will hit for every link, and
   1536		 * not just the last one.
   1537		 */
   1538		if (d40d->lli_current < d40d->lli_len
   1539		    && !d40_tx_is_linked(d40c)
   1540		    && !d40_residue(d40c)) {
   1541			d40_lcla_free_all(d40c, d40d);
   1542			d40_desc_load(d40c, d40d);
   1543			(void) d40_start(d40c);
   1544
   1545			if (d40d->lli_current == d40d->lli_len)
   1546				d40d->lli_current = 0;
   1547		}
   1548	} else {
   1549		d40_lcla_free_all(d40c, d40d);
   1550
   1551		if (d40d->lli_current < d40d->lli_len) {
   1552			d40_desc_load(d40c, d40d);
   1553			/* Start dma job */
   1554			(void) d40_start(d40c);
   1555			return;
   1556		}
   1557
   1558		if (d40_queue_start(d40c) == NULL) {
   1559			d40c->busy = false;
   1560
   1561			pm_runtime_mark_last_busy(d40c->base->dev);
   1562			pm_runtime_put_autosuspend(d40c->base->dev);
   1563		}
   1564
   1565		d40_desc_remove(d40d);
   1566		d40_desc_done(d40c, d40d);
   1567	}
   1568
   1569	d40c->pending_tx++;
   1570	tasklet_schedule(&d40c->tasklet);
   1571
   1572}
   1573
   1574static void dma_tasklet(struct tasklet_struct *t)
   1575{
   1576	struct d40_chan *d40c = from_tasklet(d40c, t, tasklet);
   1577	struct d40_desc *d40d;
   1578	unsigned long flags;
   1579	bool callback_active;
   1580	struct dmaengine_desc_callback cb;
   1581
   1582	spin_lock_irqsave(&d40c->lock, flags);
   1583
   1584	/* Get first entry from the done list */
   1585	d40d = d40_first_done(d40c);
   1586	if (d40d == NULL) {
   1587		/* Check if we have reached here for cyclic job */
   1588		d40d = d40_first_active_get(d40c);
   1589		if (d40d == NULL || !d40d->cyclic)
   1590			goto check_pending_tx;
   1591	}
   1592
   1593	if (!d40d->cyclic)
   1594		dma_cookie_complete(&d40d->txd);
   1595
   1596	/*
   1597	 * If terminating a channel pending_tx is set to zero.
   1598	 * This prevents any finished active jobs to return to the client.
   1599	 */
   1600	if (d40c->pending_tx == 0) {
   1601		spin_unlock_irqrestore(&d40c->lock, flags);
   1602		return;
   1603	}
   1604
   1605	/* Callback to client */
   1606	callback_active = !!(d40d->txd.flags & DMA_PREP_INTERRUPT);
   1607	dmaengine_desc_get_callback(&d40d->txd, &cb);
   1608
   1609	if (!d40d->cyclic) {
   1610		if (async_tx_test_ack(&d40d->txd)) {
   1611			d40_desc_remove(d40d);
   1612			d40_desc_free(d40c, d40d);
   1613		} else if (!d40d->is_in_client_list) {
   1614			d40_desc_remove(d40d);
   1615			d40_lcla_free_all(d40c, d40d);
   1616			list_add_tail(&d40d->node, &d40c->client);
   1617			d40d->is_in_client_list = true;
   1618		}
   1619	}
   1620
   1621	d40c->pending_tx--;
   1622
   1623	if (d40c->pending_tx)
   1624		tasklet_schedule(&d40c->tasklet);
   1625
   1626	spin_unlock_irqrestore(&d40c->lock, flags);
   1627
   1628	if (callback_active)
   1629		dmaengine_desc_callback_invoke(&cb, NULL);
   1630
   1631	return;
   1632 check_pending_tx:
   1633	/* Rescue manouver if receiving double interrupts */
   1634	if (d40c->pending_tx > 0)
   1635		d40c->pending_tx--;
   1636	spin_unlock_irqrestore(&d40c->lock, flags);
   1637}
   1638
   1639static irqreturn_t d40_handle_interrupt(int irq, void *data)
   1640{
   1641	int i;
   1642	u32 idx;
   1643	u32 row;
   1644	long chan = -1;
   1645	struct d40_chan *d40c;
   1646	struct d40_base *base = data;
   1647	u32 *regs = base->regs_interrupt;
   1648	struct d40_interrupt_lookup *il = base->gen_dmac.il;
   1649	u32 il_size = base->gen_dmac.il_size;
   1650
   1651	spin_lock(&base->interrupt_lock);
   1652
   1653	/* Read interrupt status of both logical and physical channels */
   1654	for (i = 0; i < il_size; i++)
   1655		regs[i] = readl(base->virtbase + il[i].src);
   1656
   1657	for (;;) {
   1658
   1659		chan = find_next_bit((unsigned long *)regs,
   1660				     BITS_PER_LONG * il_size, chan + 1);
   1661
   1662		/* No more set bits found? */
   1663		if (chan == BITS_PER_LONG * il_size)
   1664			break;
   1665
   1666		row = chan / BITS_PER_LONG;
   1667		idx = chan & (BITS_PER_LONG - 1);
   1668
   1669		if (il[row].offset == D40_PHY_CHAN)
   1670			d40c = base->lookup_phy_chans[idx];
   1671		else
   1672			d40c = base->lookup_log_chans[il[row].offset + idx];
   1673
   1674		if (!d40c) {
   1675			/*
   1676			 * No error because this can happen if something else
   1677			 * in the system is using the channel.
   1678			 */
   1679			continue;
   1680		}
   1681
   1682		/* ACK interrupt */
   1683		writel(BIT(idx), base->virtbase + il[row].clr);
   1684
   1685		spin_lock(&d40c->lock);
   1686
   1687		if (!il[row].is_error)
   1688			dma_tc_handle(d40c);
   1689		else
   1690			d40_err(base->dev, "IRQ chan: %ld offset %d idx %d\n",
   1691				chan, il[row].offset, idx);
   1692
   1693		spin_unlock(&d40c->lock);
   1694	}
   1695
   1696	spin_unlock(&base->interrupt_lock);
   1697
   1698	return IRQ_HANDLED;
   1699}
   1700
   1701static int d40_validate_conf(struct d40_chan *d40c,
   1702			     struct stedma40_chan_cfg *conf)
   1703{
   1704	int res = 0;
   1705	bool is_log = conf->mode == STEDMA40_MODE_LOGICAL;
   1706
   1707	if (!conf->dir) {
   1708		chan_err(d40c, "Invalid direction.\n");
   1709		res = -EINVAL;
   1710	}
   1711
   1712	if ((is_log && conf->dev_type > d40c->base->num_log_chans)  ||
   1713	    (!is_log && conf->dev_type > d40c->base->num_phy_chans) ||
   1714	    (conf->dev_type < 0)) {
   1715		chan_err(d40c, "Invalid device type (%d)\n", conf->dev_type);
   1716		res = -EINVAL;
   1717	}
   1718
   1719	if (conf->dir == DMA_DEV_TO_DEV) {
   1720		/*
   1721		 * DMAC HW supports it. Will be added to this driver,
   1722		 * in case any dma client requires it.
   1723		 */
   1724		chan_err(d40c, "periph to periph not supported\n");
   1725		res = -EINVAL;
   1726	}
   1727
   1728	if (d40_psize_2_burst_size(is_log, conf->src_info.psize) *
   1729	    conf->src_info.data_width !=
   1730	    d40_psize_2_burst_size(is_log, conf->dst_info.psize) *
   1731	    conf->dst_info.data_width) {
   1732		/*
   1733		 * The DMAC hardware only supports
   1734		 * src (burst x width) == dst (burst x width)
   1735		 */
   1736
   1737		chan_err(d40c, "src (burst x width) != dst (burst x width)\n");
   1738		res = -EINVAL;
   1739	}
   1740
   1741	return res;
   1742}
   1743
   1744static bool d40_alloc_mask_set(struct d40_phy_res *phy,
   1745			       bool is_src, int log_event_line, bool is_log,
   1746			       bool *first_user)
   1747{
   1748	unsigned long flags;
   1749	spin_lock_irqsave(&phy->lock, flags);
   1750
   1751	*first_user = ((phy->allocated_src | phy->allocated_dst)
   1752			== D40_ALLOC_FREE);
   1753
   1754	if (!is_log) {
   1755		/* Physical interrupts are masked per physical full channel */
   1756		if (phy->allocated_src == D40_ALLOC_FREE &&
   1757		    phy->allocated_dst == D40_ALLOC_FREE) {
   1758			phy->allocated_dst = D40_ALLOC_PHY;
   1759			phy->allocated_src = D40_ALLOC_PHY;
   1760			goto found_unlock;
   1761		} else
   1762			goto not_found_unlock;
   1763	}
   1764
   1765	/* Logical channel */
   1766	if (is_src) {
   1767		if (phy->allocated_src == D40_ALLOC_PHY)
   1768			goto not_found_unlock;
   1769
   1770		if (phy->allocated_src == D40_ALLOC_FREE)
   1771			phy->allocated_src = D40_ALLOC_LOG_FREE;
   1772
   1773		if (!(phy->allocated_src & BIT(log_event_line))) {
   1774			phy->allocated_src |= BIT(log_event_line);
   1775			goto found_unlock;
   1776		} else
   1777			goto not_found_unlock;
   1778	} else {
   1779		if (phy->allocated_dst == D40_ALLOC_PHY)
   1780			goto not_found_unlock;
   1781
   1782		if (phy->allocated_dst == D40_ALLOC_FREE)
   1783			phy->allocated_dst = D40_ALLOC_LOG_FREE;
   1784
   1785		if (!(phy->allocated_dst & BIT(log_event_line))) {
   1786			phy->allocated_dst |= BIT(log_event_line);
   1787			goto found_unlock;
   1788		}
   1789	}
   1790 not_found_unlock:
   1791	spin_unlock_irqrestore(&phy->lock, flags);
   1792	return false;
   1793 found_unlock:
   1794	spin_unlock_irqrestore(&phy->lock, flags);
   1795	return true;
   1796}
   1797
   1798static bool d40_alloc_mask_free(struct d40_phy_res *phy, bool is_src,
   1799			       int log_event_line)
   1800{
   1801	unsigned long flags;
   1802	bool is_free = false;
   1803
   1804	spin_lock_irqsave(&phy->lock, flags);
   1805	if (!log_event_line) {
   1806		phy->allocated_dst = D40_ALLOC_FREE;
   1807		phy->allocated_src = D40_ALLOC_FREE;
   1808		is_free = true;
   1809		goto unlock;
   1810	}
   1811
   1812	/* Logical channel */
   1813	if (is_src) {
   1814		phy->allocated_src &= ~BIT(log_event_line);
   1815		if (phy->allocated_src == D40_ALLOC_LOG_FREE)
   1816			phy->allocated_src = D40_ALLOC_FREE;
   1817	} else {
   1818		phy->allocated_dst &= ~BIT(log_event_line);
   1819		if (phy->allocated_dst == D40_ALLOC_LOG_FREE)
   1820			phy->allocated_dst = D40_ALLOC_FREE;
   1821	}
   1822
   1823	is_free = ((phy->allocated_src | phy->allocated_dst) ==
   1824		   D40_ALLOC_FREE);
   1825 unlock:
   1826	spin_unlock_irqrestore(&phy->lock, flags);
   1827
   1828	return is_free;
   1829}
   1830
   1831static int d40_allocate_channel(struct d40_chan *d40c, bool *first_phy_user)
   1832{
   1833	int dev_type = d40c->dma_cfg.dev_type;
   1834	int event_group;
   1835	int event_line;
   1836	struct d40_phy_res *phys;
   1837	int i;
   1838	int j;
   1839	int log_num;
   1840	int num_phy_chans;
   1841	bool is_src;
   1842	bool is_log = d40c->dma_cfg.mode == STEDMA40_MODE_LOGICAL;
   1843
   1844	phys = d40c->base->phy_res;
   1845	num_phy_chans = d40c->base->num_phy_chans;
   1846
   1847	if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM) {
   1848		log_num = 2 * dev_type;
   1849		is_src = true;
   1850	} else if (d40c->dma_cfg.dir == DMA_MEM_TO_DEV ||
   1851		   d40c->dma_cfg.dir == DMA_MEM_TO_MEM) {
   1852		/* dst event lines are used for logical memcpy */
   1853		log_num = 2 * dev_type + 1;
   1854		is_src = false;
   1855	} else
   1856		return -EINVAL;
   1857
   1858	event_group = D40_TYPE_TO_GROUP(dev_type);
   1859	event_line = D40_TYPE_TO_EVENT(dev_type);
   1860
   1861	if (!is_log) {
   1862		if (d40c->dma_cfg.dir == DMA_MEM_TO_MEM) {
   1863			/* Find physical half channel */
   1864			if (d40c->dma_cfg.use_fixed_channel) {
   1865				i = d40c->dma_cfg.phy_channel;
   1866				if (d40_alloc_mask_set(&phys[i], is_src,
   1867						       0, is_log,
   1868						       first_phy_user))
   1869					goto found_phy;
   1870			} else {
   1871				for (i = 0; i < num_phy_chans; i++) {
   1872					if (d40_alloc_mask_set(&phys[i], is_src,
   1873						       0, is_log,
   1874						       first_phy_user))
   1875						goto found_phy;
   1876				}
   1877			}
   1878		} else
   1879			for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
   1880				int phy_num = j  + event_group * 2;
   1881				for (i = phy_num; i < phy_num + 2; i++) {
   1882					if (d40_alloc_mask_set(&phys[i],
   1883							       is_src,
   1884							       0,
   1885							       is_log,
   1886							       first_phy_user))
   1887						goto found_phy;
   1888				}
   1889			}
   1890		return -EINVAL;
   1891found_phy:
   1892		d40c->phy_chan = &phys[i];
   1893		d40c->log_num = D40_PHY_CHAN;
   1894		goto out;
   1895	}
   1896	if (dev_type == -1)
   1897		return -EINVAL;
   1898
   1899	/* Find logical channel */
   1900	for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
   1901		int phy_num = j + event_group * 2;
   1902
   1903		if (d40c->dma_cfg.use_fixed_channel) {
   1904			i = d40c->dma_cfg.phy_channel;
   1905
   1906			if ((i != phy_num) && (i != phy_num + 1)) {
   1907				dev_err(chan2dev(d40c),
   1908					"invalid fixed phy channel %d\n", i);
   1909				return -EINVAL;
   1910			}
   1911
   1912			if (d40_alloc_mask_set(&phys[i], is_src, event_line,
   1913					       is_log, first_phy_user))
   1914				goto found_log;
   1915
   1916			dev_err(chan2dev(d40c),
   1917				"could not allocate fixed phy channel %d\n", i);
   1918			return -EINVAL;
   1919		}
   1920
   1921		/*
   1922		 * Spread logical channels across all available physical rather
   1923		 * than pack every logical channel at the first available phy
   1924		 * channels.
   1925		 */
   1926		if (is_src) {
   1927			for (i = phy_num; i < phy_num + 2; i++) {
   1928				if (d40_alloc_mask_set(&phys[i], is_src,
   1929						       event_line, is_log,
   1930						       first_phy_user))
   1931					goto found_log;
   1932			}
   1933		} else {
   1934			for (i = phy_num + 1; i >= phy_num; i--) {
   1935				if (d40_alloc_mask_set(&phys[i], is_src,
   1936						       event_line, is_log,
   1937						       first_phy_user))
   1938					goto found_log;
   1939			}
   1940		}
   1941	}
   1942	return -EINVAL;
   1943
   1944found_log:
   1945	d40c->phy_chan = &phys[i];
   1946	d40c->log_num = log_num;
   1947out:
   1948
   1949	if (is_log)
   1950		d40c->base->lookup_log_chans[d40c->log_num] = d40c;
   1951	else
   1952		d40c->base->lookup_phy_chans[d40c->phy_chan->num] = d40c;
   1953
   1954	return 0;
   1955
   1956}
   1957
   1958static int d40_config_memcpy(struct d40_chan *d40c)
   1959{
   1960	dma_cap_mask_t cap = d40c->chan.device->cap_mask;
   1961
   1962	if (dma_has_cap(DMA_MEMCPY, cap) && !dma_has_cap(DMA_SLAVE, cap)) {
   1963		d40c->dma_cfg = dma40_memcpy_conf_log;
   1964		d40c->dma_cfg.dev_type = dma40_memcpy_channels[d40c->chan.chan_id];
   1965
   1966		d40_log_cfg(&d40c->dma_cfg,
   1967			    &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
   1968
   1969	} else if (dma_has_cap(DMA_MEMCPY, cap) &&
   1970		   dma_has_cap(DMA_SLAVE, cap)) {
   1971		d40c->dma_cfg = dma40_memcpy_conf_phy;
   1972
   1973		/* Generate interrrupt at end of transfer or relink. */
   1974		d40c->dst_def_cfg |= BIT(D40_SREG_CFG_TIM_POS);
   1975
   1976		/* Generate interrupt on error. */
   1977		d40c->src_def_cfg |= BIT(D40_SREG_CFG_EIM_POS);
   1978		d40c->dst_def_cfg |= BIT(D40_SREG_CFG_EIM_POS);
   1979
   1980	} else {
   1981		chan_err(d40c, "No memcpy\n");
   1982		return -EINVAL;
   1983	}
   1984
   1985	return 0;
   1986}
   1987
   1988static int d40_free_dma(struct d40_chan *d40c)
   1989{
   1990
   1991	int res = 0;
   1992	u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dev_type);
   1993	struct d40_phy_res *phy = d40c->phy_chan;
   1994	bool is_src;
   1995
   1996	/* Terminate all queued and active transfers */
   1997	d40_term_all(d40c);
   1998
   1999	if (phy == NULL) {
   2000		chan_err(d40c, "phy == null\n");
   2001		return -EINVAL;
   2002	}
   2003
   2004	if (phy->allocated_src == D40_ALLOC_FREE &&
   2005	    phy->allocated_dst == D40_ALLOC_FREE) {
   2006		chan_err(d40c, "channel already free\n");
   2007		return -EINVAL;
   2008	}
   2009
   2010	if (d40c->dma_cfg.dir == DMA_MEM_TO_DEV ||
   2011	    d40c->dma_cfg.dir == DMA_MEM_TO_MEM)
   2012		is_src = false;
   2013	else if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM)
   2014		is_src = true;
   2015	else {
   2016		chan_err(d40c, "Unknown direction\n");
   2017		return -EINVAL;
   2018	}
   2019
   2020	pm_runtime_get_sync(d40c->base->dev);
   2021	res = d40_channel_execute_command(d40c, D40_DMA_STOP);
   2022	if (res) {
   2023		chan_err(d40c, "stop failed\n");
   2024		goto mark_last_busy;
   2025	}
   2026
   2027	d40_alloc_mask_free(phy, is_src, chan_is_logical(d40c) ? event : 0);
   2028
   2029	if (chan_is_logical(d40c))
   2030		d40c->base->lookup_log_chans[d40c->log_num] = NULL;
   2031	else
   2032		d40c->base->lookup_phy_chans[phy->num] = NULL;
   2033
   2034	if (d40c->busy) {
   2035		pm_runtime_mark_last_busy(d40c->base->dev);
   2036		pm_runtime_put_autosuspend(d40c->base->dev);
   2037	}
   2038
   2039	d40c->busy = false;
   2040	d40c->phy_chan = NULL;
   2041	d40c->configured = false;
   2042 mark_last_busy:
   2043	pm_runtime_mark_last_busy(d40c->base->dev);
   2044	pm_runtime_put_autosuspend(d40c->base->dev);
   2045	return res;
   2046}
   2047
   2048static bool d40_is_paused(struct d40_chan *d40c)
   2049{
   2050	void __iomem *chanbase = chan_base(d40c);
   2051	bool is_paused = false;
   2052	unsigned long flags;
   2053	void __iomem *active_reg;
   2054	u32 status;
   2055	u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dev_type);
   2056
   2057	spin_lock_irqsave(&d40c->lock, flags);
   2058
   2059	if (chan_is_physical(d40c)) {
   2060		if (d40c->phy_chan->num % 2 == 0)
   2061			active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
   2062		else
   2063			active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
   2064
   2065		status = (readl(active_reg) &
   2066			  D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
   2067			D40_CHAN_POS(d40c->phy_chan->num);
   2068		if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
   2069			is_paused = true;
   2070		goto unlock;
   2071	}
   2072
   2073	if (d40c->dma_cfg.dir == DMA_MEM_TO_DEV ||
   2074	    d40c->dma_cfg.dir == DMA_MEM_TO_MEM) {
   2075		status = readl(chanbase + D40_CHAN_REG_SDLNK);
   2076	} else if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM) {
   2077		status = readl(chanbase + D40_CHAN_REG_SSLNK);
   2078	} else {
   2079		chan_err(d40c, "Unknown direction\n");
   2080		goto unlock;
   2081	}
   2082
   2083	status = (status & D40_EVENTLINE_MASK(event)) >>
   2084		D40_EVENTLINE_POS(event);
   2085
   2086	if (status != D40_DMA_RUN)
   2087		is_paused = true;
   2088 unlock:
   2089	spin_unlock_irqrestore(&d40c->lock, flags);
   2090	return is_paused;
   2091
   2092}
   2093
   2094static u32 stedma40_residue(struct dma_chan *chan)
   2095{
   2096	struct d40_chan *d40c =
   2097		container_of(chan, struct d40_chan, chan);
   2098	u32 bytes_left;
   2099	unsigned long flags;
   2100
   2101	spin_lock_irqsave(&d40c->lock, flags);
   2102	bytes_left = d40_residue(d40c);
   2103	spin_unlock_irqrestore(&d40c->lock, flags);
   2104
   2105	return bytes_left;
   2106}
   2107
   2108static int
   2109d40_prep_sg_log(struct d40_chan *chan, struct d40_desc *desc,
   2110		struct scatterlist *sg_src, struct scatterlist *sg_dst,
   2111		unsigned int sg_len, dma_addr_t src_dev_addr,
   2112		dma_addr_t dst_dev_addr)
   2113{
   2114	struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
   2115	struct stedma40_half_channel_info *src_info = &cfg->src_info;
   2116	struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
   2117	int ret;
   2118
   2119	ret = d40_log_sg_to_lli(sg_src, sg_len,
   2120				src_dev_addr,
   2121				desc->lli_log.src,
   2122				chan->log_def.lcsp1,
   2123				src_info->data_width,
   2124				dst_info->data_width);
   2125
   2126	ret = d40_log_sg_to_lli(sg_dst, sg_len,
   2127				dst_dev_addr,
   2128				desc->lli_log.dst,
   2129				chan->log_def.lcsp3,
   2130				dst_info->data_width,
   2131				src_info->data_width);
   2132
   2133	return ret < 0 ? ret : 0;
   2134}
   2135
   2136static int
   2137d40_prep_sg_phy(struct d40_chan *chan, struct d40_desc *desc,
   2138		struct scatterlist *sg_src, struct scatterlist *sg_dst,
   2139		unsigned int sg_len, dma_addr_t src_dev_addr,
   2140		dma_addr_t dst_dev_addr)
   2141{
   2142	struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
   2143	struct stedma40_half_channel_info *src_info = &cfg->src_info;
   2144	struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
   2145	unsigned long flags = 0;
   2146	int ret;
   2147
   2148	if (desc->cyclic)
   2149		flags |= LLI_CYCLIC | LLI_TERM_INT;
   2150
   2151	ret = d40_phy_sg_to_lli(sg_src, sg_len, src_dev_addr,
   2152				desc->lli_phy.src,
   2153				virt_to_phys(desc->lli_phy.src),
   2154				chan->src_def_cfg,
   2155				src_info, dst_info, flags);
   2156
   2157	ret = d40_phy_sg_to_lli(sg_dst, sg_len, dst_dev_addr,
   2158				desc->lli_phy.dst,
   2159				virt_to_phys(desc->lli_phy.dst),
   2160				chan->dst_def_cfg,
   2161				dst_info, src_info, flags);
   2162
   2163	dma_sync_single_for_device(chan->base->dev, desc->lli_pool.dma_addr,
   2164				   desc->lli_pool.size, DMA_TO_DEVICE);
   2165
   2166	return ret < 0 ? ret : 0;
   2167}
   2168
   2169static struct d40_desc *
   2170d40_prep_desc(struct d40_chan *chan, struct scatterlist *sg,
   2171	      unsigned int sg_len, unsigned long dma_flags)
   2172{
   2173	struct stedma40_chan_cfg *cfg;
   2174	struct d40_desc *desc;
   2175	int ret;
   2176
   2177	desc = d40_desc_get(chan);
   2178	if (!desc)
   2179		return NULL;
   2180
   2181	cfg = &chan->dma_cfg;
   2182	desc->lli_len = d40_sg_2_dmalen(sg, sg_len, cfg->src_info.data_width,
   2183					cfg->dst_info.data_width);
   2184	if (desc->lli_len < 0) {
   2185		chan_err(chan, "Unaligned size\n");
   2186		goto free_desc;
   2187	}
   2188
   2189	ret = d40_pool_lli_alloc(chan, desc, desc->lli_len);
   2190	if (ret < 0) {
   2191		chan_err(chan, "Could not allocate lli\n");
   2192		goto free_desc;
   2193	}
   2194
   2195	desc->lli_current = 0;
   2196	desc->txd.flags = dma_flags;
   2197	desc->txd.tx_submit = d40_tx_submit;
   2198
   2199	dma_async_tx_descriptor_init(&desc->txd, &chan->chan);
   2200
   2201	return desc;
   2202 free_desc:
   2203	d40_desc_free(chan, desc);
   2204	return NULL;
   2205}
   2206
   2207static struct dma_async_tx_descriptor *
   2208d40_prep_sg(struct dma_chan *dchan, struct scatterlist *sg_src,
   2209	    struct scatterlist *sg_dst, unsigned int sg_len,
   2210	    enum dma_transfer_direction direction, unsigned long dma_flags)
   2211{
   2212	struct d40_chan *chan = container_of(dchan, struct d40_chan, chan);
   2213	dma_addr_t src_dev_addr;
   2214	dma_addr_t dst_dev_addr;
   2215	struct d40_desc *desc;
   2216	unsigned long flags;
   2217	int ret;
   2218
   2219	if (!chan->phy_chan) {
   2220		chan_err(chan, "Cannot prepare unallocated channel\n");
   2221		return NULL;
   2222	}
   2223
   2224	d40_set_runtime_config_write(dchan, &chan->slave_config, direction);
   2225
   2226	spin_lock_irqsave(&chan->lock, flags);
   2227
   2228	desc = d40_prep_desc(chan, sg_src, sg_len, dma_flags);
   2229	if (desc == NULL)
   2230		goto unlock;
   2231
   2232	if (sg_next(&sg_src[sg_len - 1]) == sg_src)
   2233		desc->cyclic = true;
   2234
   2235	src_dev_addr = 0;
   2236	dst_dev_addr = 0;
   2237	if (direction == DMA_DEV_TO_MEM)
   2238		src_dev_addr = chan->runtime_addr;
   2239	else if (direction == DMA_MEM_TO_DEV)
   2240		dst_dev_addr = chan->runtime_addr;
   2241
   2242	if (chan_is_logical(chan))
   2243		ret = d40_prep_sg_log(chan, desc, sg_src, sg_dst,
   2244				      sg_len, src_dev_addr, dst_dev_addr);
   2245	else
   2246		ret = d40_prep_sg_phy(chan, desc, sg_src, sg_dst,
   2247				      sg_len, src_dev_addr, dst_dev_addr);
   2248
   2249	if (ret) {
   2250		chan_err(chan, "Failed to prepare %s sg job: %d\n",
   2251			 chan_is_logical(chan) ? "log" : "phy", ret);
   2252		goto free_desc;
   2253	}
   2254
   2255	/*
   2256	 * add descriptor to the prepare queue in order to be able
   2257	 * to free them later in terminate_all
   2258	 */
   2259	list_add_tail(&desc->node, &chan->prepare_queue);
   2260
   2261	spin_unlock_irqrestore(&chan->lock, flags);
   2262
   2263	return &desc->txd;
   2264 free_desc:
   2265	d40_desc_free(chan, desc);
   2266 unlock:
   2267	spin_unlock_irqrestore(&chan->lock, flags);
   2268	return NULL;
   2269}
   2270
   2271bool stedma40_filter(struct dma_chan *chan, void *data)
   2272{
   2273	struct stedma40_chan_cfg *info = data;
   2274	struct d40_chan *d40c =
   2275		container_of(chan, struct d40_chan, chan);
   2276	int err;
   2277
   2278	if (data) {
   2279		err = d40_validate_conf(d40c, info);
   2280		if (!err)
   2281			d40c->dma_cfg = *info;
   2282	} else
   2283		err = d40_config_memcpy(d40c);
   2284
   2285	if (!err)
   2286		d40c->configured = true;
   2287
   2288	return err == 0;
   2289}
   2290EXPORT_SYMBOL(stedma40_filter);
   2291
   2292static void __d40_set_prio_rt(struct d40_chan *d40c, int dev_type, bool src)
   2293{
   2294	bool realtime = d40c->dma_cfg.realtime;
   2295	bool highprio = d40c->dma_cfg.high_priority;
   2296	u32 rtreg;
   2297	u32 event = D40_TYPE_TO_EVENT(dev_type);
   2298	u32 group = D40_TYPE_TO_GROUP(dev_type);
   2299	u32 bit = BIT(event);
   2300	u32 prioreg;
   2301	struct d40_gen_dmac *dmac = &d40c->base->gen_dmac;
   2302
   2303	rtreg = realtime ? dmac->realtime_en : dmac->realtime_clear;
   2304	/*
   2305	 * Due to a hardware bug, in some cases a logical channel triggered by
   2306	 * a high priority destination event line can generate extra packet
   2307	 * transactions.
   2308	 *
   2309	 * The workaround is to not set the high priority level for the
   2310	 * destination event lines that trigger logical channels.
   2311	 */
   2312	if (!src && chan_is_logical(d40c))
   2313		highprio = false;
   2314
   2315	prioreg = highprio ? dmac->high_prio_en : dmac->high_prio_clear;
   2316
   2317	/* Destination event lines are stored in the upper halfword */
   2318	if (!src)
   2319		bit <<= 16;
   2320
   2321	writel(bit, d40c->base->virtbase + prioreg + group * 4);
   2322	writel(bit, d40c->base->virtbase + rtreg + group * 4);
   2323}
   2324
   2325static void d40_set_prio_realtime(struct d40_chan *d40c)
   2326{
   2327	if (d40c->base->rev < 3)
   2328		return;
   2329
   2330	if ((d40c->dma_cfg.dir ==  DMA_DEV_TO_MEM) ||
   2331	    (d40c->dma_cfg.dir == DMA_DEV_TO_DEV))
   2332		__d40_set_prio_rt(d40c, d40c->dma_cfg.dev_type, true);
   2333
   2334	if ((d40c->dma_cfg.dir ==  DMA_MEM_TO_DEV) ||
   2335	    (d40c->dma_cfg.dir == DMA_DEV_TO_DEV))
   2336		__d40_set_prio_rt(d40c, d40c->dma_cfg.dev_type, false);
   2337}
   2338
   2339#define D40_DT_FLAGS_MODE(flags)       ((flags >> 0) & 0x1)
   2340#define D40_DT_FLAGS_DIR(flags)        ((flags >> 1) & 0x1)
   2341#define D40_DT_FLAGS_BIG_ENDIAN(flags) ((flags >> 2) & 0x1)
   2342#define D40_DT_FLAGS_FIXED_CHAN(flags) ((flags >> 3) & 0x1)
   2343#define D40_DT_FLAGS_HIGH_PRIO(flags)  ((flags >> 4) & 0x1)
   2344
   2345static struct dma_chan *d40_xlate(struct of_phandle_args *dma_spec,
   2346				  struct of_dma *ofdma)
   2347{
   2348	struct stedma40_chan_cfg cfg;
   2349	dma_cap_mask_t cap;
   2350	u32 flags;
   2351
   2352	memset(&cfg, 0, sizeof(struct stedma40_chan_cfg));
   2353
   2354	dma_cap_zero(cap);
   2355	dma_cap_set(DMA_SLAVE, cap);
   2356
   2357	cfg.dev_type = dma_spec->args[0];
   2358	flags = dma_spec->args[2];
   2359
   2360	switch (D40_DT_FLAGS_MODE(flags)) {
   2361	case 0: cfg.mode = STEDMA40_MODE_LOGICAL; break;
   2362	case 1: cfg.mode = STEDMA40_MODE_PHYSICAL; break;
   2363	}
   2364
   2365	switch (D40_DT_FLAGS_DIR(flags)) {
   2366	case 0:
   2367		cfg.dir = DMA_MEM_TO_DEV;
   2368		cfg.dst_info.big_endian = D40_DT_FLAGS_BIG_ENDIAN(flags);
   2369		break;
   2370	case 1:
   2371		cfg.dir = DMA_DEV_TO_MEM;
   2372		cfg.src_info.big_endian = D40_DT_FLAGS_BIG_ENDIAN(flags);
   2373		break;
   2374	}
   2375
   2376	if (D40_DT_FLAGS_FIXED_CHAN(flags)) {
   2377		cfg.phy_channel = dma_spec->args[1];
   2378		cfg.use_fixed_channel = true;
   2379	}
   2380
   2381	if (D40_DT_FLAGS_HIGH_PRIO(flags))
   2382		cfg.high_priority = true;
   2383
   2384	return dma_request_channel(cap, stedma40_filter, &cfg);
   2385}
   2386
   2387/* DMA ENGINE functions */
   2388static int d40_alloc_chan_resources(struct dma_chan *chan)
   2389{
   2390	int err;
   2391	unsigned long flags;
   2392	struct d40_chan *d40c =
   2393		container_of(chan, struct d40_chan, chan);
   2394	bool is_free_phy;
   2395	spin_lock_irqsave(&d40c->lock, flags);
   2396
   2397	dma_cookie_init(chan);
   2398
   2399	/* If no dma configuration is set use default configuration (memcpy) */
   2400	if (!d40c->configured) {
   2401		err = d40_config_memcpy(d40c);
   2402		if (err) {
   2403			chan_err(d40c, "Failed to configure memcpy channel\n");
   2404			goto mark_last_busy;
   2405		}
   2406	}
   2407
   2408	err = d40_allocate_channel(d40c, &is_free_phy);
   2409	if (err) {
   2410		chan_err(d40c, "Failed to allocate channel\n");
   2411		d40c->configured = false;
   2412		goto mark_last_busy;
   2413	}
   2414
   2415	pm_runtime_get_sync(d40c->base->dev);
   2416
   2417	d40_set_prio_realtime(d40c);
   2418
   2419	if (chan_is_logical(d40c)) {
   2420		if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM)
   2421			d40c->lcpa = d40c->base->lcpa_base +
   2422				d40c->dma_cfg.dev_type * D40_LCPA_CHAN_SIZE;
   2423		else
   2424			d40c->lcpa = d40c->base->lcpa_base +
   2425				d40c->dma_cfg.dev_type *
   2426				D40_LCPA_CHAN_SIZE + D40_LCPA_CHAN_DST_DELTA;
   2427
   2428		/* Unmask the Global Interrupt Mask. */
   2429		d40c->src_def_cfg |= BIT(D40_SREG_CFG_LOG_GIM_POS);
   2430		d40c->dst_def_cfg |= BIT(D40_SREG_CFG_LOG_GIM_POS);
   2431	}
   2432
   2433	dev_dbg(chan2dev(d40c), "allocated %s channel (phy %d%s)\n",
   2434		 chan_is_logical(d40c) ? "logical" : "physical",
   2435		 d40c->phy_chan->num,
   2436		 d40c->dma_cfg.use_fixed_channel ? ", fixed" : "");
   2437
   2438
   2439	/*
   2440	 * Only write channel configuration to the DMA if the physical
   2441	 * resource is free. In case of multiple logical channels
   2442	 * on the same physical resource, only the first write is necessary.
   2443	 */
   2444	if (is_free_phy)
   2445		d40_config_write(d40c);
   2446 mark_last_busy:
   2447	pm_runtime_mark_last_busy(d40c->base->dev);
   2448	pm_runtime_put_autosuspend(d40c->base->dev);
   2449	spin_unlock_irqrestore(&d40c->lock, flags);
   2450	return err;
   2451}
   2452
   2453static void d40_free_chan_resources(struct dma_chan *chan)
   2454{
   2455	struct d40_chan *d40c =
   2456		container_of(chan, struct d40_chan, chan);
   2457	int err;
   2458	unsigned long flags;
   2459
   2460	if (d40c->phy_chan == NULL) {
   2461		chan_err(d40c, "Cannot free unallocated channel\n");
   2462		return;
   2463	}
   2464
   2465	spin_lock_irqsave(&d40c->lock, flags);
   2466
   2467	err = d40_free_dma(d40c);
   2468
   2469	if (err)
   2470		chan_err(d40c, "Failed to free channel\n");
   2471	spin_unlock_irqrestore(&d40c->lock, flags);
   2472}
   2473
   2474static struct dma_async_tx_descriptor *d40_prep_memcpy(struct dma_chan *chan,
   2475						       dma_addr_t dst,
   2476						       dma_addr_t src,
   2477						       size_t size,
   2478						       unsigned long dma_flags)
   2479{
   2480	struct scatterlist dst_sg;
   2481	struct scatterlist src_sg;
   2482
   2483	sg_init_table(&dst_sg, 1);
   2484	sg_init_table(&src_sg, 1);
   2485
   2486	sg_dma_address(&dst_sg) = dst;
   2487	sg_dma_address(&src_sg) = src;
   2488
   2489	sg_dma_len(&dst_sg) = size;
   2490	sg_dma_len(&src_sg) = size;
   2491
   2492	return d40_prep_sg(chan, &src_sg, &dst_sg, 1,
   2493			   DMA_MEM_TO_MEM, dma_flags);
   2494}
   2495
   2496static struct dma_async_tx_descriptor *
   2497d40_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
   2498		  unsigned int sg_len, enum dma_transfer_direction direction,
   2499		  unsigned long dma_flags, void *context)
   2500{
   2501	if (!is_slave_direction(direction))
   2502		return NULL;
   2503
   2504	return d40_prep_sg(chan, sgl, sgl, sg_len, direction, dma_flags);
   2505}
   2506
   2507static struct dma_async_tx_descriptor *
   2508dma40_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t dma_addr,
   2509		     size_t buf_len, size_t period_len,
   2510		     enum dma_transfer_direction direction, unsigned long flags)
   2511{
   2512	unsigned int periods = buf_len / period_len;
   2513	struct dma_async_tx_descriptor *txd;
   2514	struct scatterlist *sg;
   2515	int i;
   2516
   2517	sg = kcalloc(periods + 1, sizeof(struct scatterlist), GFP_NOWAIT);
   2518	if (!sg)
   2519		return NULL;
   2520
   2521	for (i = 0; i < periods; i++) {
   2522		sg_dma_address(&sg[i]) = dma_addr;
   2523		sg_dma_len(&sg[i]) = period_len;
   2524		dma_addr += period_len;
   2525	}
   2526
   2527	sg_chain(sg, periods + 1, sg);
   2528
   2529	txd = d40_prep_sg(chan, sg, sg, periods, direction,
   2530			  DMA_PREP_INTERRUPT);
   2531
   2532	kfree(sg);
   2533
   2534	return txd;
   2535}
   2536
   2537static enum dma_status d40_tx_status(struct dma_chan *chan,
   2538				     dma_cookie_t cookie,
   2539				     struct dma_tx_state *txstate)
   2540{
   2541	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
   2542	enum dma_status ret;
   2543
   2544	if (d40c->phy_chan == NULL) {
   2545		chan_err(d40c, "Cannot read status of unallocated channel\n");
   2546		return -EINVAL;
   2547	}
   2548
   2549	ret = dma_cookie_status(chan, cookie, txstate);
   2550	if (ret != DMA_COMPLETE && txstate)
   2551		dma_set_residue(txstate, stedma40_residue(chan));
   2552
   2553	if (d40_is_paused(d40c))
   2554		ret = DMA_PAUSED;
   2555
   2556	return ret;
   2557}
   2558
   2559static void d40_issue_pending(struct dma_chan *chan)
   2560{
   2561	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
   2562	unsigned long flags;
   2563
   2564	if (d40c->phy_chan == NULL) {
   2565		chan_err(d40c, "Channel is not allocated!\n");
   2566		return;
   2567	}
   2568
   2569	spin_lock_irqsave(&d40c->lock, flags);
   2570
   2571	list_splice_tail_init(&d40c->pending_queue, &d40c->queue);
   2572
   2573	/* Busy means that queued jobs are already being processed */
   2574	if (!d40c->busy)
   2575		(void) d40_queue_start(d40c);
   2576
   2577	spin_unlock_irqrestore(&d40c->lock, flags);
   2578}
   2579
   2580static int d40_terminate_all(struct dma_chan *chan)
   2581{
   2582	unsigned long flags;
   2583	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
   2584	int ret;
   2585
   2586	if (d40c->phy_chan == NULL) {
   2587		chan_err(d40c, "Channel is not allocated!\n");
   2588		return -EINVAL;
   2589	}
   2590
   2591	spin_lock_irqsave(&d40c->lock, flags);
   2592
   2593	pm_runtime_get_sync(d40c->base->dev);
   2594	ret = d40_channel_execute_command(d40c, D40_DMA_STOP);
   2595	if (ret)
   2596		chan_err(d40c, "Failed to stop channel\n");
   2597
   2598	d40_term_all(d40c);
   2599	pm_runtime_mark_last_busy(d40c->base->dev);
   2600	pm_runtime_put_autosuspend(d40c->base->dev);
   2601	if (d40c->busy) {
   2602		pm_runtime_mark_last_busy(d40c->base->dev);
   2603		pm_runtime_put_autosuspend(d40c->base->dev);
   2604	}
   2605	d40c->busy = false;
   2606
   2607	spin_unlock_irqrestore(&d40c->lock, flags);
   2608	return 0;
   2609}
   2610
   2611static int
   2612dma40_config_to_halfchannel(struct d40_chan *d40c,
   2613			    struct stedma40_half_channel_info *info,
   2614			    u32 maxburst)
   2615{
   2616	int psize;
   2617
   2618	if (chan_is_logical(d40c)) {
   2619		if (maxburst >= 16)
   2620			psize = STEDMA40_PSIZE_LOG_16;
   2621		else if (maxburst >= 8)
   2622			psize = STEDMA40_PSIZE_LOG_8;
   2623		else if (maxburst >= 4)
   2624			psize = STEDMA40_PSIZE_LOG_4;
   2625		else
   2626			psize = STEDMA40_PSIZE_LOG_1;
   2627	} else {
   2628		if (maxburst >= 16)
   2629			psize = STEDMA40_PSIZE_PHY_16;
   2630		else if (maxburst >= 8)
   2631			psize = STEDMA40_PSIZE_PHY_8;
   2632		else if (maxburst >= 4)
   2633			psize = STEDMA40_PSIZE_PHY_4;
   2634		else
   2635			psize = STEDMA40_PSIZE_PHY_1;
   2636	}
   2637
   2638	info->psize = psize;
   2639	info->flow_ctrl = STEDMA40_NO_FLOW_CTRL;
   2640
   2641	return 0;
   2642}
   2643
   2644static int d40_set_runtime_config(struct dma_chan *chan,
   2645				  struct dma_slave_config *config)
   2646{
   2647	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
   2648
   2649	memcpy(&d40c->slave_config, config, sizeof(*config));
   2650
   2651	return 0;
   2652}
   2653
   2654/* Runtime reconfiguration extension */
   2655static int d40_set_runtime_config_write(struct dma_chan *chan,
   2656				  struct dma_slave_config *config,
   2657				  enum dma_transfer_direction direction)
   2658{
   2659	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
   2660	struct stedma40_chan_cfg *cfg = &d40c->dma_cfg;
   2661	enum dma_slave_buswidth src_addr_width, dst_addr_width;
   2662	dma_addr_t config_addr;
   2663	u32 src_maxburst, dst_maxburst;
   2664	int ret;
   2665
   2666	if (d40c->phy_chan == NULL) {
   2667		chan_err(d40c, "Channel is not allocated!\n");
   2668		return -EINVAL;
   2669	}
   2670
   2671	src_addr_width = config->src_addr_width;
   2672	src_maxburst = config->src_maxburst;
   2673	dst_addr_width = config->dst_addr_width;
   2674	dst_maxburst = config->dst_maxburst;
   2675
   2676	if (direction == DMA_DEV_TO_MEM) {
   2677		config_addr = config->src_addr;
   2678
   2679		if (cfg->dir != DMA_DEV_TO_MEM)
   2680			dev_dbg(d40c->base->dev,
   2681				"channel was not configured for peripheral "
   2682				"to memory transfer (%d) overriding\n",
   2683				cfg->dir);
   2684		cfg->dir = DMA_DEV_TO_MEM;
   2685
   2686		/* Configure the memory side */
   2687		if (dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
   2688			dst_addr_width = src_addr_width;
   2689		if (dst_maxburst == 0)
   2690			dst_maxburst = src_maxburst;
   2691
   2692	} else if (direction == DMA_MEM_TO_DEV) {
   2693		config_addr = config->dst_addr;
   2694
   2695		if (cfg->dir != DMA_MEM_TO_DEV)
   2696			dev_dbg(d40c->base->dev,
   2697				"channel was not configured for memory "
   2698				"to peripheral transfer (%d) overriding\n",
   2699				cfg->dir);
   2700		cfg->dir = DMA_MEM_TO_DEV;
   2701
   2702		/* Configure the memory side */
   2703		if (src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
   2704			src_addr_width = dst_addr_width;
   2705		if (src_maxburst == 0)
   2706			src_maxburst = dst_maxburst;
   2707	} else {
   2708		dev_err(d40c->base->dev,
   2709			"unrecognized channel direction %d\n",
   2710			direction);
   2711		return -EINVAL;
   2712	}
   2713
   2714	if (config_addr <= 0) {
   2715		dev_err(d40c->base->dev, "no address supplied\n");
   2716		return -EINVAL;
   2717	}
   2718
   2719	if (src_maxburst * src_addr_width != dst_maxburst * dst_addr_width) {
   2720		dev_err(d40c->base->dev,
   2721			"src/dst width/maxburst mismatch: %d*%d != %d*%d\n",
   2722			src_maxburst,
   2723			src_addr_width,
   2724			dst_maxburst,
   2725			dst_addr_width);
   2726		return -EINVAL;
   2727	}
   2728
   2729	if (src_maxburst > 16) {
   2730		src_maxburst = 16;
   2731		dst_maxburst = src_maxburst * src_addr_width / dst_addr_width;
   2732	} else if (dst_maxburst > 16) {
   2733		dst_maxburst = 16;
   2734		src_maxburst = dst_maxburst * dst_addr_width / src_addr_width;
   2735	}
   2736
   2737	/* Only valid widths are; 1, 2, 4 and 8. */
   2738	if (src_addr_width <= DMA_SLAVE_BUSWIDTH_UNDEFINED ||
   2739	    src_addr_width >  DMA_SLAVE_BUSWIDTH_8_BYTES   ||
   2740	    dst_addr_width <= DMA_SLAVE_BUSWIDTH_UNDEFINED ||
   2741	    dst_addr_width >  DMA_SLAVE_BUSWIDTH_8_BYTES   ||
   2742	    !is_power_of_2(src_addr_width) ||
   2743	    !is_power_of_2(dst_addr_width))
   2744		return -EINVAL;
   2745
   2746	cfg->src_info.data_width = src_addr_width;
   2747	cfg->dst_info.data_width = dst_addr_width;
   2748
   2749	ret = dma40_config_to_halfchannel(d40c, &cfg->src_info,
   2750					  src_maxburst);
   2751	if (ret)
   2752		return ret;
   2753
   2754	ret = dma40_config_to_halfchannel(d40c, &cfg->dst_info,
   2755					  dst_maxburst);
   2756	if (ret)
   2757		return ret;
   2758
   2759	/* Fill in register values */
   2760	if (chan_is_logical(d40c))
   2761		d40_log_cfg(cfg, &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
   2762	else
   2763		d40_phy_cfg(cfg, &d40c->src_def_cfg, &d40c->dst_def_cfg);
   2764
   2765	/* These settings will take precedence later */
   2766	d40c->runtime_addr = config_addr;
   2767	d40c->runtime_direction = direction;
   2768	dev_dbg(d40c->base->dev,
   2769		"configured channel %s for %s, data width %d/%d, "
   2770		"maxburst %d/%d elements, LE, no flow control\n",
   2771		dma_chan_name(chan),
   2772		(direction == DMA_DEV_TO_MEM) ? "RX" : "TX",
   2773		src_addr_width, dst_addr_width,
   2774		src_maxburst, dst_maxburst);
   2775
   2776	return 0;
   2777}
   2778
   2779/* Initialization functions */
   2780
   2781static void __init d40_chan_init(struct d40_base *base, struct dma_device *dma,
   2782				 struct d40_chan *chans, int offset,
   2783				 int num_chans)
   2784{
   2785	int i = 0;
   2786	struct d40_chan *d40c;
   2787
   2788	INIT_LIST_HEAD(&dma->channels);
   2789
   2790	for (i = offset; i < offset + num_chans; i++) {
   2791		d40c = &chans[i];
   2792		d40c->base = base;
   2793		d40c->chan.device = dma;
   2794
   2795		spin_lock_init(&d40c->lock);
   2796
   2797		d40c->log_num = D40_PHY_CHAN;
   2798
   2799		INIT_LIST_HEAD(&d40c->done);
   2800		INIT_LIST_HEAD(&d40c->active);
   2801		INIT_LIST_HEAD(&d40c->queue);
   2802		INIT_LIST_HEAD(&d40c->pending_queue);
   2803		INIT_LIST_HEAD(&d40c->client);
   2804		INIT_LIST_HEAD(&d40c->prepare_queue);
   2805
   2806		tasklet_setup(&d40c->tasklet, dma_tasklet);
   2807
   2808		list_add_tail(&d40c->chan.device_node,
   2809			      &dma->channels);
   2810	}
   2811}
   2812
   2813static void d40_ops_init(struct d40_base *base, struct dma_device *dev)
   2814{
   2815	if (dma_has_cap(DMA_SLAVE, dev->cap_mask)) {
   2816		dev->device_prep_slave_sg = d40_prep_slave_sg;
   2817		dev->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
   2818	}
   2819
   2820	if (dma_has_cap(DMA_MEMCPY, dev->cap_mask)) {
   2821		dev->device_prep_dma_memcpy = d40_prep_memcpy;
   2822		dev->directions = BIT(DMA_MEM_TO_MEM);
   2823		/*
   2824		 * This controller can only access address at even
   2825		 * 32bit boundaries, i.e. 2^2
   2826		 */
   2827		dev->copy_align = DMAENGINE_ALIGN_4_BYTES;
   2828	}
   2829
   2830	if (dma_has_cap(DMA_CYCLIC, dev->cap_mask))
   2831		dev->device_prep_dma_cyclic = dma40_prep_dma_cyclic;
   2832
   2833	dev->device_alloc_chan_resources = d40_alloc_chan_resources;
   2834	dev->device_free_chan_resources = d40_free_chan_resources;
   2835	dev->device_issue_pending = d40_issue_pending;
   2836	dev->device_tx_status = d40_tx_status;
   2837	dev->device_config = d40_set_runtime_config;
   2838	dev->device_pause = d40_pause;
   2839	dev->device_resume = d40_resume;
   2840	dev->device_terminate_all = d40_terminate_all;
   2841	dev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
   2842	dev->dev = base->dev;
   2843}
   2844
   2845static int __init d40_dmaengine_init(struct d40_base *base,
   2846				     int num_reserved_chans)
   2847{
   2848	int err ;
   2849
   2850	d40_chan_init(base, &base->dma_slave, base->log_chans,
   2851		      0, base->num_log_chans);
   2852
   2853	dma_cap_zero(base->dma_slave.cap_mask);
   2854	dma_cap_set(DMA_SLAVE, base->dma_slave.cap_mask);
   2855	dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
   2856
   2857	d40_ops_init(base, &base->dma_slave);
   2858
   2859	err = dmaenginem_async_device_register(&base->dma_slave);
   2860
   2861	if (err) {
   2862		d40_err(base->dev, "Failed to register slave channels\n");
   2863		goto exit;
   2864	}
   2865
   2866	d40_chan_init(base, &base->dma_memcpy, base->log_chans,
   2867		      base->num_log_chans, base->num_memcpy_chans);
   2868
   2869	dma_cap_zero(base->dma_memcpy.cap_mask);
   2870	dma_cap_set(DMA_MEMCPY, base->dma_memcpy.cap_mask);
   2871
   2872	d40_ops_init(base, &base->dma_memcpy);
   2873
   2874	err = dmaenginem_async_device_register(&base->dma_memcpy);
   2875
   2876	if (err) {
   2877		d40_err(base->dev,
   2878			"Failed to register memcpy only channels\n");
   2879		goto exit;
   2880	}
   2881
   2882	d40_chan_init(base, &base->dma_both, base->phy_chans,
   2883		      0, num_reserved_chans);
   2884
   2885	dma_cap_zero(base->dma_both.cap_mask);
   2886	dma_cap_set(DMA_SLAVE, base->dma_both.cap_mask);
   2887	dma_cap_set(DMA_MEMCPY, base->dma_both.cap_mask);
   2888	dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
   2889
   2890	d40_ops_init(base, &base->dma_both);
   2891	err = dmaenginem_async_device_register(&base->dma_both);
   2892
   2893	if (err) {
   2894		d40_err(base->dev,
   2895			"Failed to register logical and physical capable channels\n");
   2896		goto exit;
   2897	}
   2898	return 0;
   2899 exit:
   2900	return err;
   2901}
   2902
   2903/* Suspend resume functionality */
   2904#ifdef CONFIG_PM_SLEEP
   2905static int dma40_suspend(struct device *dev)
   2906{
   2907	struct d40_base *base = dev_get_drvdata(dev);
   2908	int ret;
   2909
   2910	ret = pm_runtime_force_suspend(dev);
   2911	if (ret)
   2912		return ret;
   2913
   2914	if (base->lcpa_regulator)
   2915		ret = regulator_disable(base->lcpa_regulator);
   2916	return ret;
   2917}
   2918
   2919static int dma40_resume(struct device *dev)
   2920{
   2921	struct d40_base *base = dev_get_drvdata(dev);
   2922	int ret = 0;
   2923
   2924	if (base->lcpa_regulator) {
   2925		ret = regulator_enable(base->lcpa_regulator);
   2926		if (ret)
   2927			return ret;
   2928	}
   2929
   2930	return pm_runtime_force_resume(dev);
   2931}
   2932#endif
   2933
   2934#ifdef CONFIG_PM
   2935static void dma40_backup(void __iomem *baseaddr, u32 *backup,
   2936			 u32 *regaddr, int num, bool save)
   2937{
   2938	int i;
   2939
   2940	for (i = 0; i < num; i++) {
   2941		void __iomem *addr = baseaddr + regaddr[i];
   2942
   2943		if (save)
   2944			backup[i] = readl_relaxed(addr);
   2945		else
   2946			writel_relaxed(backup[i], addr);
   2947	}
   2948}
   2949
   2950static void d40_save_restore_registers(struct d40_base *base, bool save)
   2951{
   2952	int i;
   2953
   2954	/* Save/Restore channel specific registers */
   2955	for (i = 0; i < base->num_phy_chans; i++) {
   2956		void __iomem *addr;
   2957		int idx;
   2958
   2959		if (base->phy_res[i].reserved)
   2960			continue;
   2961
   2962		addr = base->virtbase + D40_DREG_PCBASE + i * D40_DREG_PCDELTA;
   2963		idx = i * ARRAY_SIZE(d40_backup_regs_chan);
   2964
   2965		dma40_backup(addr, &base->reg_val_backup_chan[idx],
   2966			     d40_backup_regs_chan,
   2967			     ARRAY_SIZE(d40_backup_regs_chan),
   2968			     save);
   2969	}
   2970
   2971	/* Save/Restore global registers */
   2972	dma40_backup(base->virtbase, base->reg_val_backup,
   2973		     d40_backup_regs, ARRAY_SIZE(d40_backup_regs),
   2974		     save);
   2975
   2976	/* Save/Restore registers only existing on dma40 v3 and later */
   2977	if (base->gen_dmac.backup)
   2978		dma40_backup(base->virtbase, base->reg_val_backup_v4,
   2979			     base->gen_dmac.backup,
   2980			base->gen_dmac.backup_size,
   2981			save);
   2982}
   2983
   2984static int dma40_runtime_suspend(struct device *dev)
   2985{
   2986	struct d40_base *base = dev_get_drvdata(dev);
   2987
   2988	d40_save_restore_registers(base, true);
   2989
   2990	/* Don't disable/enable clocks for v1 due to HW bugs */
   2991	if (base->rev != 1)
   2992		writel_relaxed(base->gcc_pwr_off_mask,
   2993			       base->virtbase + D40_DREG_GCC);
   2994
   2995	return 0;
   2996}
   2997
   2998static int dma40_runtime_resume(struct device *dev)
   2999{
   3000	struct d40_base *base = dev_get_drvdata(dev);
   3001
   3002	d40_save_restore_registers(base, false);
   3003
   3004	writel_relaxed(D40_DREG_GCC_ENABLE_ALL,
   3005		       base->virtbase + D40_DREG_GCC);
   3006	return 0;
   3007}
   3008#endif
   3009
   3010static const struct dev_pm_ops dma40_pm_ops = {
   3011	SET_LATE_SYSTEM_SLEEP_PM_OPS(dma40_suspend, dma40_resume)
   3012	SET_RUNTIME_PM_OPS(dma40_runtime_suspend,
   3013				dma40_runtime_resume,
   3014				NULL)
   3015};
   3016
   3017/* Initialization functions. */
   3018
   3019static int __init d40_phy_res_init(struct d40_base *base)
   3020{
   3021	int i;
   3022	int num_phy_chans_avail = 0;
   3023	u32 val[2];
   3024	int odd_even_bit = -2;
   3025	int gcc = D40_DREG_GCC_ENA;
   3026
   3027	val[0] = readl(base->virtbase + D40_DREG_PRSME);
   3028	val[1] = readl(base->virtbase + D40_DREG_PRSMO);
   3029
   3030	for (i = 0; i < base->num_phy_chans; i++) {
   3031		base->phy_res[i].num = i;
   3032		odd_even_bit += 2 * ((i % 2) == 0);
   3033		if (((val[i % 2] >> odd_even_bit) & 3) == 1) {
   3034			/* Mark security only channels as occupied */
   3035			base->phy_res[i].allocated_src = D40_ALLOC_PHY;
   3036			base->phy_res[i].allocated_dst = D40_ALLOC_PHY;
   3037			base->phy_res[i].reserved = true;
   3038			gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i),
   3039						       D40_DREG_GCC_SRC);
   3040			gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i),
   3041						       D40_DREG_GCC_DST);
   3042
   3043
   3044		} else {
   3045			base->phy_res[i].allocated_src = D40_ALLOC_FREE;
   3046			base->phy_res[i].allocated_dst = D40_ALLOC_FREE;
   3047			base->phy_res[i].reserved = false;
   3048			num_phy_chans_avail++;
   3049		}
   3050		spin_lock_init(&base->phy_res[i].lock);
   3051	}
   3052
   3053	/* Mark disabled channels as occupied */
   3054	for (i = 0; base->plat_data->disabled_channels[i] != -1; i++) {
   3055		int chan = base->plat_data->disabled_channels[i];
   3056
   3057		base->phy_res[chan].allocated_src = D40_ALLOC_PHY;
   3058		base->phy_res[chan].allocated_dst = D40_ALLOC_PHY;
   3059		base->phy_res[chan].reserved = true;
   3060		gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan),
   3061					       D40_DREG_GCC_SRC);
   3062		gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan),
   3063					       D40_DREG_GCC_DST);
   3064		num_phy_chans_avail--;
   3065	}
   3066
   3067	/* Mark soft_lli channels */
   3068	for (i = 0; i < base->plat_data->num_of_soft_lli_chans; i++) {
   3069		int chan = base->plat_data->soft_lli_chans[i];
   3070
   3071		base->phy_res[chan].use_soft_lli = true;
   3072	}
   3073
   3074	dev_info(base->dev, "%d of %d physical DMA channels available\n",
   3075		 num_phy_chans_avail, base->num_phy_chans);
   3076
   3077	/* Verify settings extended vs standard */
   3078	val[0] = readl(base->virtbase + D40_DREG_PRTYP);
   3079
   3080	for (i = 0; i < base->num_phy_chans; i++) {
   3081
   3082		if (base->phy_res[i].allocated_src == D40_ALLOC_FREE &&
   3083		    (val[0] & 0x3) != 1)
   3084			dev_info(base->dev,
   3085				 "[%s] INFO: channel %d is misconfigured (%d)\n",
   3086				 __func__, i, val[0] & 0x3);
   3087
   3088		val[0] = val[0] >> 2;
   3089	}
   3090
   3091	/*
   3092	 * To keep things simple, Enable all clocks initially.
   3093	 * The clocks will get managed later post channel allocation.
   3094	 * The clocks for the event lines on which reserved channels exists
   3095	 * are not managed here.
   3096	 */
   3097	writel(D40_DREG_GCC_ENABLE_ALL, base->virtbase + D40_DREG_GCC);
   3098	base->gcc_pwr_off_mask = gcc;
   3099
   3100	return num_phy_chans_avail;
   3101}
   3102
   3103static struct d40_base * __init d40_hw_detect_init(struct platform_device *pdev)
   3104{
   3105	struct stedma40_platform_data *plat_data = dev_get_platdata(&pdev->dev);
   3106	struct clk *clk;
   3107	void __iomem *virtbase;
   3108	struct resource *res;
   3109	struct d40_base *base;
   3110	int num_log_chans;
   3111	int num_phy_chans;
   3112	int num_memcpy_chans;
   3113	int clk_ret = -EINVAL;
   3114	int i;
   3115	u32 pid;
   3116	u32 cid;
   3117	u8 rev;
   3118
   3119	clk = clk_get(&pdev->dev, NULL);
   3120	if (IS_ERR(clk)) {
   3121		d40_err(&pdev->dev, "No matching clock found\n");
   3122		goto check_prepare_enabled;
   3123	}
   3124
   3125	clk_ret = clk_prepare_enable(clk);
   3126	if (clk_ret) {
   3127		d40_err(&pdev->dev, "Failed to prepare/enable clock\n");
   3128		goto disable_unprepare;
   3129	}
   3130
   3131	/* Get IO for DMAC base address */
   3132	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "base");
   3133	if (!res)
   3134		goto disable_unprepare;
   3135
   3136	if (request_mem_region(res->start, resource_size(res),
   3137			       D40_NAME " I/O base") == NULL)
   3138		goto release_region;
   3139
   3140	virtbase = ioremap(res->start, resource_size(res));
   3141	if (!virtbase)
   3142		goto release_region;
   3143
   3144	/* This is just a regular AMBA PrimeCell ID actually */
   3145	for (pid = 0, i = 0; i < 4; i++)
   3146		pid |= (readl(virtbase + resource_size(res) - 0x20 + 4 * i)
   3147			& 255) << (i * 8);
   3148	for (cid = 0, i = 0; i < 4; i++)
   3149		cid |= (readl(virtbase + resource_size(res) - 0x10 + 4 * i)
   3150			& 255) << (i * 8);
   3151
   3152	if (cid != AMBA_CID) {
   3153		d40_err(&pdev->dev, "Unknown hardware! No PrimeCell ID\n");
   3154		goto unmap_io;
   3155	}
   3156	if (AMBA_MANF_BITS(pid) != AMBA_VENDOR_ST) {
   3157		d40_err(&pdev->dev, "Unknown designer! Got %x wanted %x\n",
   3158			AMBA_MANF_BITS(pid),
   3159			AMBA_VENDOR_ST);
   3160		goto unmap_io;
   3161	}
   3162	/*
   3163	 * HW revision:
   3164	 * DB8500ed has revision 0
   3165	 * ? has revision 1
   3166	 * DB8500v1 has revision 2
   3167	 * DB8500v2 has revision 3
   3168	 * AP9540v1 has revision 4
   3169	 * DB8540v1 has revision 4
   3170	 */
   3171	rev = AMBA_REV_BITS(pid);
   3172	if (rev < 2) {
   3173		d40_err(&pdev->dev, "hardware revision: %d is not supported", rev);
   3174		goto unmap_io;
   3175	}
   3176
   3177	/* The number of physical channels on this HW */
   3178	if (plat_data->num_of_phy_chans)
   3179		num_phy_chans = plat_data->num_of_phy_chans;
   3180	else
   3181		num_phy_chans = 4 * (readl(virtbase + D40_DREG_ICFG) & 0x7) + 4;
   3182
   3183	/* The number of channels used for memcpy */
   3184	if (plat_data->num_of_memcpy_chans)
   3185		num_memcpy_chans = plat_data->num_of_memcpy_chans;
   3186	else
   3187		num_memcpy_chans = ARRAY_SIZE(dma40_memcpy_channels);
   3188
   3189	num_log_chans = num_phy_chans * D40_MAX_LOG_CHAN_PER_PHY;
   3190
   3191	dev_info(&pdev->dev,
   3192		 "hardware rev: %d @ %pa with %d physical and %d logical channels\n",
   3193		 rev, &res->start, num_phy_chans, num_log_chans);
   3194
   3195	base = kzalloc(ALIGN(sizeof(struct d40_base), 4) +
   3196		       (num_phy_chans + num_log_chans + num_memcpy_chans) *
   3197		       sizeof(struct d40_chan), GFP_KERNEL);
   3198
   3199	if (base == NULL)
   3200		goto unmap_io;
   3201
   3202	base->rev = rev;
   3203	base->clk = clk;
   3204	base->num_memcpy_chans = num_memcpy_chans;
   3205	base->num_phy_chans = num_phy_chans;
   3206	base->num_log_chans = num_log_chans;
   3207	base->phy_start = res->start;
   3208	base->phy_size = resource_size(res);
   3209	base->virtbase = virtbase;
   3210	base->plat_data = plat_data;
   3211	base->dev = &pdev->dev;
   3212	base->phy_chans = ((void *)base) + ALIGN(sizeof(struct d40_base), 4);
   3213	base->log_chans = &base->phy_chans[num_phy_chans];
   3214
   3215	if (base->plat_data->num_of_phy_chans == 14) {
   3216		base->gen_dmac.backup = d40_backup_regs_v4b;
   3217		base->gen_dmac.backup_size = BACKUP_REGS_SZ_V4B;
   3218		base->gen_dmac.interrupt_en = D40_DREG_CPCMIS;
   3219		base->gen_dmac.interrupt_clear = D40_DREG_CPCICR;
   3220		base->gen_dmac.realtime_en = D40_DREG_CRSEG1;
   3221		base->gen_dmac.realtime_clear = D40_DREG_CRCEG1;
   3222		base->gen_dmac.high_prio_en = D40_DREG_CPSEG1;
   3223		base->gen_dmac.high_prio_clear = D40_DREG_CPCEG1;
   3224		base->gen_dmac.il = il_v4b;
   3225		base->gen_dmac.il_size = ARRAY_SIZE(il_v4b);
   3226		base->gen_dmac.init_reg = dma_init_reg_v4b;
   3227		base->gen_dmac.init_reg_size = ARRAY_SIZE(dma_init_reg_v4b);
   3228	} else {
   3229		if (base->rev >= 3) {
   3230			base->gen_dmac.backup = d40_backup_regs_v4a;
   3231			base->gen_dmac.backup_size = BACKUP_REGS_SZ_V4A;
   3232		}
   3233		base->gen_dmac.interrupt_en = D40_DREG_PCMIS;
   3234		base->gen_dmac.interrupt_clear = D40_DREG_PCICR;
   3235		base->gen_dmac.realtime_en = D40_DREG_RSEG1;
   3236		base->gen_dmac.realtime_clear = D40_DREG_RCEG1;
   3237		base->gen_dmac.high_prio_en = D40_DREG_PSEG1;
   3238		base->gen_dmac.high_prio_clear = D40_DREG_PCEG1;
   3239		base->gen_dmac.il = il_v4a;
   3240		base->gen_dmac.il_size = ARRAY_SIZE(il_v4a);
   3241		base->gen_dmac.init_reg = dma_init_reg_v4a;
   3242		base->gen_dmac.init_reg_size = ARRAY_SIZE(dma_init_reg_v4a);
   3243	}
   3244
   3245	base->phy_res = kcalloc(num_phy_chans,
   3246				sizeof(*base->phy_res),
   3247				GFP_KERNEL);
   3248	if (!base->phy_res)
   3249		goto free_base;
   3250
   3251	base->lookup_phy_chans = kcalloc(num_phy_chans,
   3252					 sizeof(*base->lookup_phy_chans),
   3253					 GFP_KERNEL);
   3254	if (!base->lookup_phy_chans)
   3255		goto free_phy_res;
   3256
   3257	base->lookup_log_chans = kcalloc(num_log_chans,
   3258					 sizeof(*base->lookup_log_chans),
   3259					 GFP_KERNEL);
   3260	if (!base->lookup_log_chans)
   3261		goto free_phy_chans;
   3262
   3263	base->reg_val_backup_chan = kmalloc_array(base->num_phy_chans,
   3264						  sizeof(d40_backup_regs_chan),
   3265						  GFP_KERNEL);
   3266	if (!base->reg_val_backup_chan)
   3267		goto free_log_chans;
   3268
   3269	base->lcla_pool.alloc_map = kcalloc(num_phy_chans
   3270					    * D40_LCLA_LINK_PER_EVENT_GRP,
   3271					    sizeof(*base->lcla_pool.alloc_map),
   3272					    GFP_KERNEL);
   3273	if (!base->lcla_pool.alloc_map)
   3274		goto free_backup_chan;
   3275
   3276	base->regs_interrupt = kmalloc_array(base->gen_dmac.il_size,
   3277					     sizeof(*base->regs_interrupt),
   3278					     GFP_KERNEL);
   3279	if (!base->regs_interrupt)
   3280		goto free_map;
   3281
   3282	base->desc_slab = kmem_cache_create(D40_NAME, sizeof(struct d40_desc),
   3283					    0, SLAB_HWCACHE_ALIGN,
   3284					    NULL);
   3285	if (base->desc_slab == NULL)
   3286		goto free_regs;
   3287
   3288
   3289	return base;
   3290 free_regs:
   3291	kfree(base->regs_interrupt);
   3292 free_map:
   3293	kfree(base->lcla_pool.alloc_map);
   3294 free_backup_chan:
   3295	kfree(base->reg_val_backup_chan);
   3296 free_log_chans:
   3297	kfree(base->lookup_log_chans);
   3298 free_phy_chans:
   3299	kfree(base->lookup_phy_chans);
   3300 free_phy_res:
   3301	kfree(base->phy_res);
   3302 free_base:
   3303	kfree(base);
   3304 unmap_io:
   3305	iounmap(virtbase);
   3306 release_region:
   3307	release_mem_region(res->start, resource_size(res));
   3308 check_prepare_enabled:
   3309	if (!clk_ret)
   3310 disable_unprepare:
   3311		clk_disable_unprepare(clk);
   3312	if (!IS_ERR(clk))
   3313		clk_put(clk);
   3314	return NULL;
   3315}
   3316
   3317static void __init d40_hw_init(struct d40_base *base)
   3318{
   3319
   3320	int i;
   3321	u32 prmseo[2] = {0, 0};
   3322	u32 activeo[2] = {0xFFFFFFFF, 0xFFFFFFFF};
   3323	u32 pcmis = 0;
   3324	u32 pcicr = 0;
   3325	struct d40_reg_val *dma_init_reg = base->gen_dmac.init_reg;
   3326	u32 reg_size = base->gen_dmac.init_reg_size;
   3327
   3328	for (i = 0; i < reg_size; i++)
   3329		writel(dma_init_reg[i].val,
   3330		       base->virtbase + dma_init_reg[i].reg);
   3331
   3332	/* Configure all our dma channels to default settings */
   3333	for (i = 0; i < base->num_phy_chans; i++) {
   3334
   3335		activeo[i % 2] = activeo[i % 2] << 2;
   3336
   3337		if (base->phy_res[base->num_phy_chans - i - 1].allocated_src
   3338		    == D40_ALLOC_PHY) {
   3339			activeo[i % 2] |= 3;
   3340			continue;
   3341		}
   3342
   3343		/* Enable interrupt # */
   3344		pcmis = (pcmis << 1) | 1;
   3345
   3346		/* Clear interrupt # */
   3347		pcicr = (pcicr << 1) | 1;
   3348
   3349		/* Set channel to physical mode */
   3350		prmseo[i % 2] = prmseo[i % 2] << 2;
   3351		prmseo[i % 2] |= 1;
   3352
   3353	}
   3354
   3355	writel(prmseo[1], base->virtbase + D40_DREG_PRMSE);
   3356	writel(prmseo[0], base->virtbase + D40_DREG_PRMSO);
   3357	writel(activeo[1], base->virtbase + D40_DREG_ACTIVE);
   3358	writel(activeo[0], base->virtbase + D40_DREG_ACTIVO);
   3359
   3360	/* Write which interrupt to enable */
   3361	writel(pcmis, base->virtbase + base->gen_dmac.interrupt_en);
   3362
   3363	/* Write which interrupt to clear */
   3364	writel(pcicr, base->virtbase + base->gen_dmac.interrupt_clear);
   3365
   3366	/* These are __initdata and cannot be accessed after init */
   3367	base->gen_dmac.init_reg = NULL;
   3368	base->gen_dmac.init_reg_size = 0;
   3369}
   3370
   3371static int __init d40_lcla_allocate(struct d40_base *base)
   3372{
   3373	struct d40_lcla_pool *pool = &base->lcla_pool;
   3374	unsigned long *page_list;
   3375	int i, j;
   3376	int ret;
   3377
   3378	/*
   3379	 * This is somewhat ugly. We need 8192 bytes that are 18 bit aligned,
   3380	 * To full fill this hardware requirement without wasting 256 kb
   3381	 * we allocate pages until we get an aligned one.
   3382	 */
   3383	page_list = kmalloc_array(MAX_LCLA_ALLOC_ATTEMPTS,
   3384				  sizeof(*page_list),
   3385				  GFP_KERNEL);
   3386	if (!page_list)
   3387		return -ENOMEM;
   3388
   3389	/* Calculating how many pages that are required */
   3390	base->lcla_pool.pages = SZ_1K * base->num_phy_chans / PAGE_SIZE;
   3391
   3392	for (i = 0; i < MAX_LCLA_ALLOC_ATTEMPTS; i++) {
   3393		page_list[i] = __get_free_pages(GFP_KERNEL,
   3394						base->lcla_pool.pages);
   3395		if (!page_list[i]) {
   3396
   3397			d40_err(base->dev, "Failed to allocate %d pages.\n",
   3398				base->lcla_pool.pages);
   3399			ret = -ENOMEM;
   3400
   3401			for (j = 0; j < i; j++)
   3402				free_pages(page_list[j], base->lcla_pool.pages);
   3403			goto free_page_list;
   3404		}
   3405
   3406		if ((virt_to_phys((void *)page_list[i]) &
   3407		     (LCLA_ALIGNMENT - 1)) == 0)
   3408			break;
   3409	}
   3410
   3411	for (j = 0; j < i; j++)
   3412		free_pages(page_list[j], base->lcla_pool.pages);
   3413
   3414	if (i < MAX_LCLA_ALLOC_ATTEMPTS) {
   3415		base->lcla_pool.base = (void *)page_list[i];
   3416	} else {
   3417		/*
   3418		 * After many attempts and no succees with finding the correct
   3419		 * alignment, try with allocating a big buffer.
   3420		 */
   3421		dev_warn(base->dev,
   3422			 "[%s] Failed to get %d pages @ 18 bit align.\n",
   3423			 __func__, base->lcla_pool.pages);
   3424		base->lcla_pool.base_unaligned = kmalloc(SZ_1K *
   3425							 base->num_phy_chans +
   3426							 LCLA_ALIGNMENT,
   3427							 GFP_KERNEL);
   3428		if (!base->lcla_pool.base_unaligned) {
   3429			ret = -ENOMEM;
   3430			goto free_page_list;
   3431		}
   3432
   3433		base->lcla_pool.base = PTR_ALIGN(base->lcla_pool.base_unaligned,
   3434						 LCLA_ALIGNMENT);
   3435	}
   3436
   3437	pool->dma_addr = dma_map_single(base->dev, pool->base,
   3438					SZ_1K * base->num_phy_chans,
   3439					DMA_TO_DEVICE);
   3440	if (dma_mapping_error(base->dev, pool->dma_addr)) {
   3441		pool->dma_addr = 0;
   3442		ret = -ENOMEM;
   3443		goto free_page_list;
   3444	}
   3445
   3446	writel(virt_to_phys(base->lcla_pool.base),
   3447	       base->virtbase + D40_DREG_LCLA);
   3448	ret = 0;
   3449 free_page_list:
   3450	kfree(page_list);
   3451	return ret;
   3452}
   3453
   3454static int __init d40_of_probe(struct platform_device *pdev,
   3455			       struct device_node *np)
   3456{
   3457	struct stedma40_platform_data *pdata;
   3458	int num_phy = 0, num_memcpy = 0, num_disabled = 0;
   3459	const __be32 *list;
   3460
   3461	pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
   3462	if (!pdata)
   3463		return -ENOMEM;
   3464
   3465	/* If absent this value will be obtained from h/w. */
   3466	of_property_read_u32(np, "dma-channels", &num_phy);
   3467	if (num_phy > 0)
   3468		pdata->num_of_phy_chans = num_phy;
   3469
   3470	list = of_get_property(np, "memcpy-channels", &num_memcpy);
   3471	num_memcpy /= sizeof(*list);
   3472
   3473	if (num_memcpy > D40_MEMCPY_MAX_CHANS || num_memcpy <= 0) {
   3474		d40_err(&pdev->dev,
   3475			"Invalid number of memcpy channels specified (%d)\n",
   3476			num_memcpy);
   3477		return -EINVAL;
   3478	}
   3479	pdata->num_of_memcpy_chans = num_memcpy;
   3480
   3481	of_property_read_u32_array(np, "memcpy-channels",
   3482				   dma40_memcpy_channels,
   3483				   num_memcpy);
   3484
   3485	list = of_get_property(np, "disabled-channels", &num_disabled);
   3486	num_disabled /= sizeof(*list);
   3487
   3488	if (num_disabled >= STEDMA40_MAX_PHYS || num_disabled < 0) {
   3489		d40_err(&pdev->dev,
   3490			"Invalid number of disabled channels specified (%d)\n",
   3491			num_disabled);
   3492		return -EINVAL;
   3493	}
   3494
   3495	of_property_read_u32_array(np, "disabled-channels",
   3496				   pdata->disabled_channels,
   3497				   num_disabled);
   3498	pdata->disabled_channels[num_disabled] = -1;
   3499
   3500	pdev->dev.platform_data = pdata;
   3501
   3502	return 0;
   3503}
   3504
   3505static int __init d40_probe(struct platform_device *pdev)
   3506{
   3507	struct stedma40_platform_data *plat_data = dev_get_platdata(&pdev->dev);
   3508	struct device_node *np = pdev->dev.of_node;
   3509	int ret = -ENOENT;
   3510	struct d40_base *base;
   3511	struct resource *res;
   3512	int num_reserved_chans;
   3513	u32 val;
   3514
   3515	if (!plat_data) {
   3516		if (np) {
   3517			if (d40_of_probe(pdev, np)) {
   3518				ret = -ENOMEM;
   3519				goto report_failure;
   3520			}
   3521		} else {
   3522			d40_err(&pdev->dev, "No pdata or Device Tree provided\n");
   3523			goto report_failure;
   3524		}
   3525	}
   3526
   3527	base = d40_hw_detect_init(pdev);
   3528	if (!base)
   3529		goto report_failure;
   3530
   3531	num_reserved_chans = d40_phy_res_init(base);
   3532
   3533	platform_set_drvdata(pdev, base);
   3534
   3535	spin_lock_init(&base->interrupt_lock);
   3536	spin_lock_init(&base->execmd_lock);
   3537
   3538	/* Get IO for logical channel parameter address */
   3539	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lcpa");
   3540	if (!res) {
   3541		ret = -ENOENT;
   3542		d40_err(&pdev->dev, "No \"lcpa\" memory resource\n");
   3543		goto destroy_cache;
   3544	}
   3545	base->lcpa_size = resource_size(res);
   3546	base->phy_lcpa = res->start;
   3547
   3548	if (request_mem_region(res->start, resource_size(res),
   3549			       D40_NAME " I/O lcpa") == NULL) {
   3550		ret = -EBUSY;
   3551		d40_err(&pdev->dev, "Failed to request LCPA region %pR\n", res);
   3552		goto destroy_cache;
   3553	}
   3554
   3555	/* We make use of ESRAM memory for this. */
   3556	val = readl(base->virtbase + D40_DREG_LCPA);
   3557	if (res->start != val && val != 0) {
   3558		dev_warn(&pdev->dev,
   3559			 "[%s] Mismatch LCPA dma 0x%x, def %pa\n",
   3560			 __func__, val, &res->start);
   3561	} else
   3562		writel(res->start, base->virtbase + D40_DREG_LCPA);
   3563
   3564	base->lcpa_base = ioremap(res->start, resource_size(res));
   3565	if (!base->lcpa_base) {
   3566		ret = -ENOMEM;
   3567		d40_err(&pdev->dev, "Failed to ioremap LCPA region\n");
   3568		goto destroy_cache;
   3569	}
   3570	/* If lcla has to be located in ESRAM we don't need to allocate */
   3571	if (base->plat_data->use_esram_lcla) {
   3572		res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
   3573							"lcla_esram");
   3574		if (!res) {
   3575			ret = -ENOENT;
   3576			d40_err(&pdev->dev,
   3577				"No \"lcla_esram\" memory resource\n");
   3578			goto destroy_cache;
   3579		}
   3580		base->lcla_pool.base = ioremap(res->start,
   3581						resource_size(res));
   3582		if (!base->lcla_pool.base) {
   3583			ret = -ENOMEM;
   3584			d40_err(&pdev->dev, "Failed to ioremap LCLA region\n");
   3585			goto destroy_cache;
   3586		}
   3587		writel(res->start, base->virtbase + D40_DREG_LCLA);
   3588
   3589	} else {
   3590		ret = d40_lcla_allocate(base);
   3591		if (ret) {
   3592			d40_err(&pdev->dev, "Failed to allocate LCLA area\n");
   3593			goto destroy_cache;
   3594		}
   3595	}
   3596
   3597	spin_lock_init(&base->lcla_pool.lock);
   3598
   3599	base->irq = platform_get_irq(pdev, 0);
   3600
   3601	ret = request_irq(base->irq, d40_handle_interrupt, 0, D40_NAME, base);
   3602	if (ret) {
   3603		d40_err(&pdev->dev, "No IRQ defined\n");
   3604		goto destroy_cache;
   3605	}
   3606
   3607	if (base->plat_data->use_esram_lcla) {
   3608
   3609		base->lcpa_regulator = regulator_get(base->dev, "lcla_esram");
   3610		if (IS_ERR(base->lcpa_regulator)) {
   3611			d40_err(&pdev->dev, "Failed to get lcpa_regulator\n");
   3612			ret = PTR_ERR(base->lcpa_regulator);
   3613			base->lcpa_regulator = NULL;
   3614			goto destroy_cache;
   3615		}
   3616
   3617		ret = regulator_enable(base->lcpa_regulator);
   3618		if (ret) {
   3619			d40_err(&pdev->dev,
   3620				"Failed to enable lcpa_regulator\n");
   3621			regulator_put(base->lcpa_regulator);
   3622			base->lcpa_regulator = NULL;
   3623			goto destroy_cache;
   3624		}
   3625	}
   3626
   3627	writel_relaxed(D40_DREG_GCC_ENABLE_ALL, base->virtbase + D40_DREG_GCC);
   3628
   3629	pm_runtime_irq_safe(base->dev);
   3630	pm_runtime_set_autosuspend_delay(base->dev, DMA40_AUTOSUSPEND_DELAY);
   3631	pm_runtime_use_autosuspend(base->dev);
   3632	pm_runtime_mark_last_busy(base->dev);
   3633	pm_runtime_set_active(base->dev);
   3634	pm_runtime_enable(base->dev);
   3635
   3636	ret = d40_dmaengine_init(base, num_reserved_chans);
   3637	if (ret)
   3638		goto destroy_cache;
   3639
   3640	ret = dma_set_max_seg_size(base->dev, STEDMA40_MAX_SEG_SIZE);
   3641	if (ret) {
   3642		d40_err(&pdev->dev, "Failed to set dma max seg size\n");
   3643		goto destroy_cache;
   3644	}
   3645
   3646	d40_hw_init(base);
   3647
   3648	if (np) {
   3649		ret = of_dma_controller_register(np, d40_xlate, NULL);
   3650		if (ret)
   3651			dev_err(&pdev->dev,
   3652				"could not register of_dma_controller\n");
   3653	}
   3654
   3655	dev_info(base->dev, "initialized\n");
   3656	return 0;
   3657 destroy_cache:
   3658	kmem_cache_destroy(base->desc_slab);
   3659	if (base->virtbase)
   3660		iounmap(base->virtbase);
   3661
   3662	if (base->lcla_pool.base && base->plat_data->use_esram_lcla) {
   3663		iounmap(base->lcla_pool.base);
   3664		base->lcla_pool.base = NULL;
   3665	}
   3666
   3667	if (base->lcla_pool.dma_addr)
   3668		dma_unmap_single(base->dev, base->lcla_pool.dma_addr,
   3669				 SZ_1K * base->num_phy_chans,
   3670				 DMA_TO_DEVICE);
   3671
   3672	if (!base->lcla_pool.base_unaligned && base->lcla_pool.base)
   3673		free_pages((unsigned long)base->lcla_pool.base,
   3674			   base->lcla_pool.pages);
   3675
   3676	kfree(base->lcla_pool.base_unaligned);
   3677
   3678	if (base->lcpa_base)
   3679		iounmap(base->lcpa_base);
   3680
   3681	if (base->phy_lcpa)
   3682		release_mem_region(base->phy_lcpa,
   3683				   base->lcpa_size);
   3684	if (base->phy_start)
   3685		release_mem_region(base->phy_start,
   3686				   base->phy_size);
   3687	if (base->clk) {
   3688		clk_disable_unprepare(base->clk);
   3689		clk_put(base->clk);
   3690	}
   3691
   3692	if (base->lcpa_regulator) {
   3693		regulator_disable(base->lcpa_regulator);
   3694		regulator_put(base->lcpa_regulator);
   3695	}
   3696
   3697	kfree(base->lcla_pool.alloc_map);
   3698	kfree(base->lookup_log_chans);
   3699	kfree(base->lookup_phy_chans);
   3700	kfree(base->phy_res);
   3701	kfree(base);
   3702 report_failure:
   3703	d40_err(&pdev->dev, "probe failed\n");
   3704	return ret;
   3705}
   3706
   3707static const struct of_device_id d40_match[] = {
   3708        { .compatible = "stericsson,dma40", },
   3709        {}
   3710};
   3711
   3712static struct platform_driver d40_driver = {
   3713	.driver = {
   3714		.name  = D40_NAME,
   3715		.pm = &dma40_pm_ops,
   3716		.of_match_table = d40_match,
   3717	},
   3718};
   3719
   3720static int __init stedma40_init(void)
   3721{
   3722	return platform_driver_probe(&d40_driver, d40_probe);
   3723}
   3724subsys_initcall(stedma40_init);