cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

tegra186-gpc-dma.c (42637B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 * DMA driver for NVIDIA Tegra GPC DMA controller.
      4 *
      5 * Copyright (c) 2014-2022, NVIDIA CORPORATION.  All rights reserved.
      6 */
      7
      8#include <linux/bitfield.h>
      9#include <linux/dmaengine.h>
     10#include <linux/dma-mapping.h>
     11#include <linux/interrupt.h>
     12#include <linux/iommu.h>
     13#include <linux/iopoll.h>
     14#include <linux/minmax.h>
     15#include <linux/module.h>
     16#include <linux/of_device.h>
     17#include <linux/of_dma.h>
     18#include <linux/platform_device.h>
     19#include <linux/reset.h>
     20#include <linux/slab.h>
     21#include <dt-bindings/memory/tegra186-mc.h>
     22#include "virt-dma.h"
     23
     24/* CSR register */
     25#define TEGRA_GPCDMA_CHAN_CSR			0x00
     26#define TEGRA_GPCDMA_CSR_ENB			BIT(31)
     27#define TEGRA_GPCDMA_CSR_IE_EOC			BIT(30)
     28#define TEGRA_GPCDMA_CSR_ONCE			BIT(27)
     29
     30#define TEGRA_GPCDMA_CSR_FC_MODE		GENMASK(25, 24)
     31#define TEGRA_GPCDMA_CSR_FC_MODE_NO_MMIO	\
     32		FIELD_PREP(TEGRA_GPCDMA_CSR_FC_MODE, 0)
     33#define TEGRA_GPCDMA_CSR_FC_MODE_ONE_MMIO	\
     34		FIELD_PREP(TEGRA_GPCDMA_CSR_FC_MODE, 1)
     35#define TEGRA_GPCDMA_CSR_FC_MODE_TWO_MMIO	\
     36		FIELD_PREP(TEGRA_GPCDMA_CSR_FC_MODE, 2)
     37#define TEGRA_GPCDMA_CSR_FC_MODE_FOUR_MMIO	\
     38		FIELD_PREP(TEGRA_GPCDMA_CSR_FC_MODE, 3)
     39
     40#define TEGRA_GPCDMA_CSR_DMA			GENMASK(23, 21)
     41#define TEGRA_GPCDMA_CSR_DMA_IO2MEM_NO_FC	\
     42		FIELD_PREP(TEGRA_GPCDMA_CSR_DMA, 0)
     43#define TEGRA_GPCDMA_CSR_DMA_IO2MEM_FC		\
     44		FIELD_PREP(TEGRA_GPCDMA_CSR_DMA, 1)
     45#define TEGRA_GPCDMA_CSR_DMA_MEM2IO_NO_FC	\
     46		FIELD_PREP(TEGRA_GPCDMA_CSR_DMA, 2)
     47#define TEGRA_GPCDMA_CSR_DMA_MEM2IO_FC		\
     48		FIELD_PREP(TEGRA_GPCDMA_CSR_DMA, 3)
     49#define TEGRA_GPCDMA_CSR_DMA_MEM2MEM		\
     50		FIELD_PREP(TEGRA_GPCDMA_CSR_DMA, 4)
     51#define TEGRA_GPCDMA_CSR_DMA_FIXED_PAT		\
     52		FIELD_PREP(TEGRA_GPCDMA_CSR_DMA, 6)
     53
     54#define TEGRA_GPCDMA_CSR_REQ_SEL_MASK		GENMASK(20, 16)
     55#define TEGRA_GPCDMA_CSR_REQ_SEL_UNUSED		\
     56					FIELD_PREP(TEGRA_GPCDMA_CSR_REQ_SEL_MASK, 4)
     57#define TEGRA_GPCDMA_CSR_IRQ_MASK		BIT(15)
     58#define TEGRA_GPCDMA_CSR_WEIGHT			GENMASK(13, 10)
     59
     60/* STATUS register */
     61#define TEGRA_GPCDMA_CHAN_STATUS		0x004
     62#define TEGRA_GPCDMA_STATUS_BUSY		BIT(31)
     63#define TEGRA_GPCDMA_STATUS_ISE_EOC		BIT(30)
     64#define TEGRA_GPCDMA_STATUS_PING_PONG		BIT(28)
     65#define TEGRA_GPCDMA_STATUS_DMA_ACTIVITY	BIT(27)
     66#define TEGRA_GPCDMA_STATUS_CHANNEL_PAUSE	BIT(26)
     67#define TEGRA_GPCDMA_STATUS_CHANNEL_RX		BIT(25)
     68#define TEGRA_GPCDMA_STATUS_CHANNEL_TX		BIT(24)
     69#define TEGRA_GPCDMA_STATUS_IRQ_INTR_STA	BIT(23)
     70#define TEGRA_GPCDMA_STATUS_IRQ_STA		BIT(21)
     71#define TEGRA_GPCDMA_STATUS_IRQ_TRIG_STA	BIT(20)
     72
     73#define TEGRA_GPCDMA_CHAN_CSRE			0x008
     74#define TEGRA_GPCDMA_CHAN_CSRE_PAUSE		BIT(31)
     75
     76/* Source address */
     77#define TEGRA_GPCDMA_CHAN_SRC_PTR		0x00C
     78
     79/* Destination address */
     80#define TEGRA_GPCDMA_CHAN_DST_PTR		0x010
     81
     82/* High address pointer */
     83#define TEGRA_GPCDMA_CHAN_HIGH_ADDR_PTR		0x014
     84#define TEGRA_GPCDMA_HIGH_ADDR_SRC_PTR		GENMASK(7, 0)
     85#define TEGRA_GPCDMA_HIGH_ADDR_DST_PTR		GENMASK(23, 16)
     86
     87/* MC sequence register */
     88#define TEGRA_GPCDMA_CHAN_MCSEQ			0x18
     89#define TEGRA_GPCDMA_MCSEQ_DATA_SWAP		BIT(31)
     90#define TEGRA_GPCDMA_MCSEQ_REQ_COUNT		GENMASK(30, 25)
     91#define TEGRA_GPCDMA_MCSEQ_BURST		GENMASK(24, 23)
     92#define TEGRA_GPCDMA_MCSEQ_BURST_2		\
     93		FIELD_PREP(TEGRA_GPCDMA_MCSEQ_BURST, 0)
     94#define TEGRA_GPCDMA_MCSEQ_BURST_16		\
     95		FIELD_PREP(TEGRA_GPCDMA_MCSEQ_BURST, 3)
     96#define TEGRA_GPCDMA_MCSEQ_WRAP1		GENMASK(22, 20)
     97#define TEGRA_GPCDMA_MCSEQ_WRAP0		GENMASK(19, 17)
     98#define TEGRA_GPCDMA_MCSEQ_WRAP_NONE		0
     99
    100#define TEGRA_GPCDMA_MCSEQ_STREAM_ID1_MASK	GENMASK(13, 7)
    101#define TEGRA_GPCDMA_MCSEQ_STREAM_ID0_MASK	GENMASK(6, 0)
    102
    103/* MMIO sequence register */
    104#define TEGRA_GPCDMA_CHAN_MMIOSEQ			0x01c
    105#define TEGRA_GPCDMA_MMIOSEQ_DBL_BUF		BIT(31)
    106#define TEGRA_GPCDMA_MMIOSEQ_BUS_WIDTH		GENMASK(30, 28)
    107#define TEGRA_GPCDMA_MMIOSEQ_BUS_WIDTH_8	\
    108		FIELD_PREP(TEGRA_GPCDMA_MMIOSEQ_BUS_WIDTH, 0)
    109#define TEGRA_GPCDMA_MMIOSEQ_BUS_WIDTH_16	\
    110		FIELD_PREP(TEGRA_GPCDMA_MMIOSEQ_BUS_WIDTH, 1)
    111#define TEGRA_GPCDMA_MMIOSEQ_BUS_WIDTH_32	\
    112		FIELD_PREP(TEGRA_GPCDMA_MMIOSEQ_BUS_WIDTH, 2)
    113#define TEGRA_GPCDMA_MMIOSEQ_DATA_SWAP		BIT(27)
    114#define TEGRA_GPCDMA_MMIOSEQ_BURST_SHIFT	23
    115#define TEGRA_GPCDMA_MMIOSEQ_BURST_MIN		2U
    116#define TEGRA_GPCDMA_MMIOSEQ_BURST_MAX		32U
    117#define TEGRA_GPCDMA_MMIOSEQ_BURST(bs)	\
    118		(GENMASK((fls(bs) - 2), 0) << TEGRA_GPCDMA_MMIOSEQ_BURST_SHIFT)
    119#define TEGRA_GPCDMA_MMIOSEQ_MASTER_ID		GENMASK(22, 19)
    120#define TEGRA_GPCDMA_MMIOSEQ_WRAP_WORD		GENMASK(18, 16)
    121#define TEGRA_GPCDMA_MMIOSEQ_MMIO_PROT		GENMASK(8, 7)
    122
    123/* Channel WCOUNT */
    124#define TEGRA_GPCDMA_CHAN_WCOUNT		0x20
    125
    126/* Transfer count */
    127#define TEGRA_GPCDMA_CHAN_XFER_COUNT		0x24
    128
    129/* DMA byte count status */
    130#define TEGRA_GPCDMA_CHAN_DMA_BYTE_STATUS	0x28
    131
    132/* Error Status Register */
    133#define TEGRA_GPCDMA_CHAN_ERR_STATUS		0x30
    134#define TEGRA_GPCDMA_CHAN_ERR_TYPE_SHIFT	8
    135#define TEGRA_GPCDMA_CHAN_ERR_TYPE_MASK	0xF
    136#define TEGRA_GPCDMA_CHAN_ERR_TYPE(err)	(			\
    137		((err) >> TEGRA_GPCDMA_CHAN_ERR_TYPE_SHIFT) &	\
    138		TEGRA_GPCDMA_CHAN_ERR_TYPE_MASK)
    139#define TEGRA_DMA_BM_FIFO_FULL_ERR		0xF
    140#define TEGRA_DMA_PERIPH_FIFO_FULL_ERR		0xE
    141#define TEGRA_DMA_PERIPH_ID_ERR			0xD
    142#define TEGRA_DMA_STREAM_ID_ERR			0xC
    143#define TEGRA_DMA_MC_SLAVE_ERR			0xB
    144#define TEGRA_DMA_MMIO_SLAVE_ERR		0xA
    145
    146/* Fixed Pattern */
    147#define TEGRA_GPCDMA_CHAN_FIXED_PATTERN		0x34
    148
    149#define TEGRA_GPCDMA_CHAN_TZ			0x38
    150#define TEGRA_GPCDMA_CHAN_TZ_MMIO_PROT_1	BIT(0)
    151#define TEGRA_GPCDMA_CHAN_TZ_MC_PROT_1		BIT(1)
    152
    153#define TEGRA_GPCDMA_CHAN_SPARE			0x3c
    154#define TEGRA_GPCDMA_CHAN_SPARE_EN_LEGACY_FC	BIT(16)
    155
    156/*
    157 * If any burst is in flight and DMA paused then this is the time to complete
    158 * on-flight burst and update DMA status register.
    159 */
    160#define TEGRA_GPCDMA_BURST_COMPLETE_TIME	20
    161#define TEGRA_GPCDMA_BURST_COMPLETION_TIMEOUT	100
    162
    163/* Channel base address offset from GPCDMA base address */
    164#define TEGRA_GPCDMA_CHANNEL_BASE_ADD_OFFSET	0x20000
    165
    166struct tegra_dma;
    167struct tegra_dma_channel;
    168
    169/*
    170 * tegra_dma_chip_data Tegra chip specific DMA data
    171 * @nr_channels: Number of channels available in the controller.
    172 * @channel_reg_size: Channel register size.
    173 * @max_dma_count: Maximum DMA transfer count supported by DMA controller.
    174 * @hw_support_pause: DMA HW engine support pause of the channel.
    175 */
    176struct tegra_dma_chip_data {
    177	bool hw_support_pause;
    178	unsigned int nr_channels;
    179	unsigned int channel_reg_size;
    180	unsigned int max_dma_count;
    181	int (*terminate)(struct tegra_dma_channel *tdc);
    182};
    183
    184/* DMA channel registers */
    185struct tegra_dma_channel_regs {
    186	u32 csr;
    187	u32 src_ptr;
    188	u32 dst_ptr;
    189	u32 high_addr_ptr;
    190	u32 mc_seq;
    191	u32 mmio_seq;
    192	u32 wcount;
    193	u32 fixed_pattern;
    194};
    195
    196/*
    197 * tegra_dma_sg_req: DMA request details to configure hardware. This
    198 * contains the details for one transfer to configure DMA hw.
    199 * The client's request for data transfer can be broken into multiple
    200 * sub-transfer as per requester details and hw support. This sub transfer
    201 * get added as an array in Tegra DMA desc which manages the transfer details.
    202 */
    203struct tegra_dma_sg_req {
    204	unsigned int len;
    205	struct tegra_dma_channel_regs ch_regs;
    206};
    207
    208/*
    209 * tegra_dma_desc: Tegra DMA descriptors which uses virt_dma_desc to
    210 * manage client request and keep track of transfer status, callbacks
    211 * and request counts etc.
    212 */
    213struct tegra_dma_desc {
    214	bool cyclic;
    215	unsigned int bytes_req;
    216	unsigned int bytes_xfer;
    217	unsigned int sg_idx;
    218	unsigned int sg_count;
    219	struct virt_dma_desc vd;
    220	struct tegra_dma_channel *tdc;
    221	struct tegra_dma_sg_req sg_req[];
    222};
    223
    224/*
    225 * tegra_dma_channel: Channel specific information
    226 */
    227struct tegra_dma_channel {
    228	bool config_init;
    229	char name[30];
    230	enum dma_transfer_direction sid_dir;
    231	int id;
    232	int irq;
    233	int slave_id;
    234	struct tegra_dma *tdma;
    235	struct virt_dma_chan vc;
    236	struct tegra_dma_desc *dma_desc;
    237	struct dma_slave_config dma_sconfig;
    238	unsigned int stream_id;
    239	unsigned long chan_base_offset;
    240};
    241
    242/*
    243 * tegra_dma: Tegra DMA specific information
    244 */
    245struct tegra_dma {
    246	const struct tegra_dma_chip_data *chip_data;
    247	unsigned long sid_m2d_reserved;
    248	unsigned long sid_d2m_reserved;
    249	void __iomem *base_addr;
    250	struct device *dev;
    251	struct dma_device dma_dev;
    252	struct reset_control *rst;
    253	struct tegra_dma_channel channels[];
    254};
    255
    256static inline void tdc_write(struct tegra_dma_channel *tdc,
    257			     u32 reg, u32 val)
    258{
    259	writel_relaxed(val, tdc->tdma->base_addr + tdc->chan_base_offset + reg);
    260}
    261
    262static inline u32 tdc_read(struct tegra_dma_channel *tdc, u32 reg)
    263{
    264	return readl_relaxed(tdc->tdma->base_addr + tdc->chan_base_offset + reg);
    265}
    266
    267static inline struct tegra_dma_channel *to_tegra_dma_chan(struct dma_chan *dc)
    268{
    269	return container_of(dc, struct tegra_dma_channel, vc.chan);
    270}
    271
    272static inline struct tegra_dma_desc *vd_to_tegra_dma_desc(struct virt_dma_desc *vd)
    273{
    274	return container_of(vd, struct tegra_dma_desc, vd);
    275}
    276
    277static inline struct device *tdc2dev(struct tegra_dma_channel *tdc)
    278{
    279	return tdc->vc.chan.device->dev;
    280}
    281
    282static void tegra_dma_dump_chan_regs(struct tegra_dma_channel *tdc)
    283{
    284	dev_dbg(tdc2dev(tdc), "DMA Channel %d name %s register dump:\n",
    285		tdc->id, tdc->name);
    286	dev_dbg(tdc2dev(tdc), "CSR %x STA %x CSRE %x SRC %x DST %x\n",
    287		tdc_read(tdc, TEGRA_GPCDMA_CHAN_CSR),
    288		tdc_read(tdc, TEGRA_GPCDMA_CHAN_STATUS),
    289		tdc_read(tdc, TEGRA_GPCDMA_CHAN_CSRE),
    290		tdc_read(tdc, TEGRA_GPCDMA_CHAN_SRC_PTR),
    291		tdc_read(tdc, TEGRA_GPCDMA_CHAN_DST_PTR)
    292	);
    293	dev_dbg(tdc2dev(tdc), "MCSEQ %x IOSEQ %x WCNT %x XFER %x BSTA %x\n",
    294		tdc_read(tdc, TEGRA_GPCDMA_CHAN_MCSEQ),
    295		tdc_read(tdc, TEGRA_GPCDMA_CHAN_MMIOSEQ),
    296		tdc_read(tdc, TEGRA_GPCDMA_CHAN_WCOUNT),
    297		tdc_read(tdc, TEGRA_GPCDMA_CHAN_XFER_COUNT),
    298		tdc_read(tdc, TEGRA_GPCDMA_CHAN_DMA_BYTE_STATUS)
    299	);
    300	dev_dbg(tdc2dev(tdc), "DMA ERR_STA %x\n",
    301		tdc_read(tdc, TEGRA_GPCDMA_CHAN_ERR_STATUS));
    302}
    303
    304static int tegra_dma_sid_reserve(struct tegra_dma_channel *tdc,
    305				 enum dma_transfer_direction direction)
    306{
    307	struct tegra_dma *tdma = tdc->tdma;
    308	int sid = tdc->slave_id;
    309
    310	if (!is_slave_direction(direction))
    311		return 0;
    312
    313	switch (direction) {
    314	case DMA_MEM_TO_DEV:
    315		if (test_and_set_bit(sid, &tdma->sid_m2d_reserved)) {
    316			dev_err(tdma->dev, "slave id already in use\n");
    317			return -EINVAL;
    318		}
    319		break;
    320	case DMA_DEV_TO_MEM:
    321		if (test_and_set_bit(sid, &tdma->sid_d2m_reserved)) {
    322			dev_err(tdma->dev, "slave id already in use\n");
    323			return -EINVAL;
    324		}
    325		break;
    326	default:
    327		break;
    328	}
    329
    330	tdc->sid_dir = direction;
    331
    332	return 0;
    333}
    334
    335static void tegra_dma_sid_free(struct tegra_dma_channel *tdc)
    336{
    337	struct tegra_dma *tdma = tdc->tdma;
    338	int sid = tdc->slave_id;
    339
    340	switch (tdc->sid_dir) {
    341	case DMA_MEM_TO_DEV:
    342		clear_bit(sid,  &tdma->sid_m2d_reserved);
    343		break;
    344	case DMA_DEV_TO_MEM:
    345		clear_bit(sid,  &tdma->sid_d2m_reserved);
    346		break;
    347	default:
    348		break;
    349	}
    350
    351	tdc->sid_dir = DMA_TRANS_NONE;
    352}
    353
    354static void tegra_dma_desc_free(struct virt_dma_desc *vd)
    355{
    356	kfree(container_of(vd, struct tegra_dma_desc, vd));
    357}
    358
    359static int tegra_dma_slave_config(struct dma_chan *dc,
    360				  struct dma_slave_config *sconfig)
    361{
    362	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
    363
    364	memcpy(&tdc->dma_sconfig, sconfig, sizeof(*sconfig));
    365	tdc->config_init = true;
    366
    367	return 0;
    368}
    369
    370static int tegra_dma_pause(struct tegra_dma_channel *tdc)
    371{
    372	int ret;
    373	u32 val;
    374
    375	val = tdc_read(tdc, TEGRA_GPCDMA_CHAN_CSRE);
    376	val |= TEGRA_GPCDMA_CHAN_CSRE_PAUSE;
    377	tdc_write(tdc, TEGRA_GPCDMA_CHAN_CSRE, val);
    378
    379	/* Wait until busy bit is de-asserted */
    380	ret = readl_relaxed_poll_timeout_atomic(tdc->tdma->base_addr +
    381			tdc->chan_base_offset + TEGRA_GPCDMA_CHAN_STATUS,
    382			val,
    383			!(val & TEGRA_GPCDMA_STATUS_BUSY),
    384			TEGRA_GPCDMA_BURST_COMPLETE_TIME,
    385			TEGRA_GPCDMA_BURST_COMPLETION_TIMEOUT);
    386
    387	if (ret) {
    388		dev_err(tdc2dev(tdc), "DMA pause timed out\n");
    389		tegra_dma_dump_chan_regs(tdc);
    390	}
    391
    392	return ret;
    393}
    394
    395static int tegra_dma_device_pause(struct dma_chan *dc)
    396{
    397	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
    398	unsigned long flags;
    399	int ret;
    400
    401	if (!tdc->tdma->chip_data->hw_support_pause)
    402		return -ENOSYS;
    403
    404	spin_lock_irqsave(&tdc->vc.lock, flags);
    405	ret = tegra_dma_pause(tdc);
    406	spin_unlock_irqrestore(&tdc->vc.lock, flags);
    407
    408	return ret;
    409}
    410
    411static void tegra_dma_resume(struct tegra_dma_channel *tdc)
    412{
    413	u32 val;
    414
    415	val = tdc_read(tdc, TEGRA_GPCDMA_CHAN_CSRE);
    416	val &= ~TEGRA_GPCDMA_CHAN_CSRE_PAUSE;
    417	tdc_write(tdc, TEGRA_GPCDMA_CHAN_CSRE, val);
    418}
    419
    420static int tegra_dma_device_resume(struct dma_chan *dc)
    421{
    422	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
    423	unsigned long flags;
    424
    425	if (!tdc->tdma->chip_data->hw_support_pause)
    426		return -ENOSYS;
    427
    428	spin_lock_irqsave(&tdc->vc.lock, flags);
    429	tegra_dma_resume(tdc);
    430	spin_unlock_irqrestore(&tdc->vc.lock, flags);
    431
    432	return 0;
    433}
    434
    435static void tegra_dma_disable(struct tegra_dma_channel *tdc)
    436{
    437	u32 csr, status;
    438
    439	csr = tdc_read(tdc, TEGRA_GPCDMA_CHAN_CSR);
    440
    441	/* Disable interrupts */
    442	csr &= ~TEGRA_GPCDMA_CSR_IE_EOC;
    443
    444	/* Disable DMA */
    445	csr &= ~TEGRA_GPCDMA_CSR_ENB;
    446	tdc_write(tdc, TEGRA_GPCDMA_CHAN_CSR, csr);
    447
    448	/* Clear interrupt status if it is there */
    449	status = tdc_read(tdc, TEGRA_GPCDMA_CHAN_STATUS);
    450	if (status & TEGRA_GPCDMA_STATUS_ISE_EOC) {
    451		dev_dbg(tdc2dev(tdc), "%s():clearing interrupt\n", __func__);
    452		tdc_write(tdc, TEGRA_GPCDMA_CHAN_STATUS, status);
    453	}
    454}
    455
    456static void tegra_dma_configure_next_sg(struct tegra_dma_channel *tdc)
    457{
    458	struct tegra_dma_desc *dma_desc = tdc->dma_desc;
    459	struct tegra_dma_channel_regs *ch_regs;
    460	int ret;
    461	u32 val;
    462
    463	dma_desc->sg_idx++;
    464
    465	/* Reset the sg index for cyclic transfers */
    466	if (dma_desc->sg_idx == dma_desc->sg_count)
    467		dma_desc->sg_idx = 0;
    468
    469	/* Configure next transfer immediately after DMA is busy */
    470	ret = readl_relaxed_poll_timeout_atomic(tdc->tdma->base_addr +
    471			tdc->chan_base_offset + TEGRA_GPCDMA_CHAN_STATUS,
    472			val,
    473			(val & TEGRA_GPCDMA_STATUS_BUSY), 0,
    474			TEGRA_GPCDMA_BURST_COMPLETION_TIMEOUT);
    475	if (ret)
    476		return;
    477
    478	ch_regs = &dma_desc->sg_req[dma_desc->sg_idx].ch_regs;
    479
    480	tdc_write(tdc, TEGRA_GPCDMA_CHAN_WCOUNT, ch_regs->wcount);
    481	tdc_write(tdc, TEGRA_GPCDMA_CHAN_SRC_PTR, ch_regs->src_ptr);
    482	tdc_write(tdc, TEGRA_GPCDMA_CHAN_DST_PTR, ch_regs->dst_ptr);
    483	tdc_write(tdc, TEGRA_GPCDMA_CHAN_HIGH_ADDR_PTR, ch_regs->high_addr_ptr);
    484
    485	/* Start DMA */
    486	tdc_write(tdc, TEGRA_GPCDMA_CHAN_CSR,
    487		  ch_regs->csr | TEGRA_GPCDMA_CSR_ENB);
    488}
    489
    490static void tegra_dma_start(struct tegra_dma_channel *tdc)
    491{
    492	struct tegra_dma_desc *dma_desc = tdc->dma_desc;
    493	struct tegra_dma_channel_regs *ch_regs;
    494	struct virt_dma_desc *vdesc;
    495
    496	if (!dma_desc) {
    497		vdesc = vchan_next_desc(&tdc->vc);
    498		if (!vdesc)
    499			return;
    500
    501		dma_desc = vd_to_tegra_dma_desc(vdesc);
    502		list_del(&vdesc->node);
    503		dma_desc->tdc = tdc;
    504		tdc->dma_desc = dma_desc;
    505
    506		tegra_dma_resume(tdc);
    507	}
    508
    509	ch_regs = &dma_desc->sg_req[dma_desc->sg_idx].ch_regs;
    510
    511	tdc_write(tdc, TEGRA_GPCDMA_CHAN_WCOUNT, ch_regs->wcount);
    512	tdc_write(tdc, TEGRA_GPCDMA_CHAN_CSR, 0);
    513	tdc_write(tdc, TEGRA_GPCDMA_CHAN_SRC_PTR, ch_regs->src_ptr);
    514	tdc_write(tdc, TEGRA_GPCDMA_CHAN_DST_PTR, ch_regs->dst_ptr);
    515	tdc_write(tdc, TEGRA_GPCDMA_CHAN_HIGH_ADDR_PTR, ch_regs->high_addr_ptr);
    516	tdc_write(tdc, TEGRA_GPCDMA_CHAN_FIXED_PATTERN, ch_regs->fixed_pattern);
    517	tdc_write(tdc, TEGRA_GPCDMA_CHAN_MMIOSEQ, ch_regs->mmio_seq);
    518	tdc_write(tdc, TEGRA_GPCDMA_CHAN_MCSEQ, ch_regs->mc_seq);
    519	tdc_write(tdc, TEGRA_GPCDMA_CHAN_CSR, ch_regs->csr);
    520
    521	/* Start DMA */
    522	tdc_write(tdc, TEGRA_GPCDMA_CHAN_CSR,
    523		  ch_regs->csr | TEGRA_GPCDMA_CSR_ENB);
    524}
    525
    526static void tegra_dma_xfer_complete(struct tegra_dma_channel *tdc)
    527{
    528	vchan_cookie_complete(&tdc->dma_desc->vd);
    529
    530	tegra_dma_sid_free(tdc);
    531	tdc->dma_desc = NULL;
    532}
    533
    534static void tegra_dma_chan_decode_error(struct tegra_dma_channel *tdc,
    535					unsigned int err_status)
    536{
    537	switch (TEGRA_GPCDMA_CHAN_ERR_TYPE(err_status)) {
    538	case TEGRA_DMA_BM_FIFO_FULL_ERR:
    539		dev_err(tdc->tdma->dev,
    540			"GPCDMA CH%d bm fifo full\n", tdc->id);
    541		break;
    542
    543	case TEGRA_DMA_PERIPH_FIFO_FULL_ERR:
    544		dev_err(tdc->tdma->dev,
    545			"GPCDMA CH%d peripheral fifo full\n", tdc->id);
    546		break;
    547
    548	case TEGRA_DMA_PERIPH_ID_ERR:
    549		dev_err(tdc->tdma->dev,
    550			"GPCDMA CH%d illegal peripheral id\n", tdc->id);
    551		break;
    552
    553	case TEGRA_DMA_STREAM_ID_ERR:
    554		dev_err(tdc->tdma->dev,
    555			"GPCDMA CH%d illegal stream id\n", tdc->id);
    556		break;
    557
    558	case TEGRA_DMA_MC_SLAVE_ERR:
    559		dev_err(tdc->tdma->dev,
    560			"GPCDMA CH%d mc slave error\n", tdc->id);
    561		break;
    562
    563	case TEGRA_DMA_MMIO_SLAVE_ERR:
    564		dev_err(tdc->tdma->dev,
    565			"GPCDMA CH%d mmio slave error\n", tdc->id);
    566		break;
    567
    568	default:
    569		dev_err(tdc->tdma->dev,
    570			"GPCDMA CH%d security violation %x\n", tdc->id,
    571			err_status);
    572	}
    573}
    574
    575static irqreturn_t tegra_dma_isr(int irq, void *dev_id)
    576{
    577	struct tegra_dma_channel *tdc = dev_id;
    578	struct tegra_dma_desc *dma_desc = tdc->dma_desc;
    579	struct tegra_dma_sg_req *sg_req;
    580	u32 status;
    581
    582	/* Check channel error status register */
    583	status = tdc_read(tdc, TEGRA_GPCDMA_CHAN_ERR_STATUS);
    584	if (status) {
    585		tegra_dma_chan_decode_error(tdc, status);
    586		tegra_dma_dump_chan_regs(tdc);
    587		tdc_write(tdc, TEGRA_GPCDMA_CHAN_ERR_STATUS, 0xFFFFFFFF);
    588	}
    589
    590	spin_lock(&tdc->vc.lock);
    591	status = tdc_read(tdc, TEGRA_GPCDMA_CHAN_STATUS);
    592	if (!(status & TEGRA_GPCDMA_STATUS_ISE_EOC))
    593		goto irq_done;
    594
    595	tdc_write(tdc, TEGRA_GPCDMA_CHAN_STATUS,
    596		  TEGRA_GPCDMA_STATUS_ISE_EOC);
    597
    598	if (!dma_desc)
    599		goto irq_done;
    600
    601	sg_req = dma_desc->sg_req;
    602	dma_desc->bytes_xfer += sg_req[dma_desc->sg_idx].len;
    603
    604	if (dma_desc->cyclic) {
    605		vchan_cyclic_callback(&dma_desc->vd);
    606		tegra_dma_configure_next_sg(tdc);
    607	} else {
    608		dma_desc->sg_idx++;
    609		if (dma_desc->sg_idx == dma_desc->sg_count)
    610			tegra_dma_xfer_complete(tdc);
    611		else
    612			tegra_dma_start(tdc);
    613	}
    614
    615irq_done:
    616	spin_unlock(&tdc->vc.lock);
    617	return IRQ_HANDLED;
    618}
    619
    620static void tegra_dma_issue_pending(struct dma_chan *dc)
    621{
    622	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
    623	unsigned long flags;
    624
    625	if (tdc->dma_desc)
    626		return;
    627
    628	spin_lock_irqsave(&tdc->vc.lock, flags);
    629	if (vchan_issue_pending(&tdc->vc))
    630		tegra_dma_start(tdc);
    631
    632	/*
    633	 * For cyclic DMA transfers, program the second
    634	 * transfer parameters as soon as the first DMA
    635	 * transfer is started inorder for the DMA
    636	 * controller to trigger the second transfer
    637	 * with the correct parameters.
    638	 */
    639	if (tdc->dma_desc && tdc->dma_desc->cyclic)
    640		tegra_dma_configure_next_sg(tdc);
    641
    642	spin_unlock_irqrestore(&tdc->vc.lock, flags);
    643}
    644
    645static int tegra_dma_stop_client(struct tegra_dma_channel *tdc)
    646{
    647	int ret;
    648	u32 status, csr;
    649
    650	/*
    651	 * Change the client associated with the DMA channel
    652	 * to stop DMA engine from starting any more bursts for
    653	 * the given client and wait for in flight bursts to complete
    654	 */
    655	csr = tdc_read(tdc, TEGRA_GPCDMA_CHAN_CSR);
    656	csr &= ~(TEGRA_GPCDMA_CSR_REQ_SEL_MASK);
    657	csr |= TEGRA_GPCDMA_CSR_REQ_SEL_UNUSED;
    658	tdc_write(tdc, TEGRA_GPCDMA_CHAN_CSR, csr);
    659
    660	/* Wait for in flight data transfer to finish */
    661	udelay(TEGRA_GPCDMA_BURST_COMPLETE_TIME);
    662
    663	/* If TX/RX path is still active wait till it becomes
    664	 * inactive
    665	 */
    666
    667	ret = readl_relaxed_poll_timeout_atomic(tdc->tdma->base_addr +
    668				tdc->chan_base_offset +
    669				TEGRA_GPCDMA_CHAN_STATUS,
    670				status,
    671				!(status & (TEGRA_GPCDMA_STATUS_CHANNEL_TX |
    672				TEGRA_GPCDMA_STATUS_CHANNEL_RX)),
    673				5,
    674				TEGRA_GPCDMA_BURST_COMPLETION_TIMEOUT);
    675	if (ret) {
    676		dev_err(tdc2dev(tdc), "Timeout waiting for DMA burst completion!\n");
    677		tegra_dma_dump_chan_regs(tdc);
    678	}
    679
    680	return ret;
    681}
    682
    683static int tegra_dma_terminate_all(struct dma_chan *dc)
    684{
    685	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
    686	unsigned long flags;
    687	LIST_HEAD(head);
    688	int err;
    689
    690	spin_lock_irqsave(&tdc->vc.lock, flags);
    691
    692	if (tdc->dma_desc) {
    693		err = tdc->tdma->chip_data->terminate(tdc);
    694		if (err) {
    695			spin_unlock_irqrestore(&tdc->vc.lock, flags);
    696			return err;
    697		}
    698
    699		tegra_dma_disable(tdc);
    700		tdc->dma_desc = NULL;
    701	}
    702
    703	tegra_dma_sid_free(tdc);
    704	vchan_get_all_descriptors(&tdc->vc, &head);
    705	spin_unlock_irqrestore(&tdc->vc.lock, flags);
    706
    707	vchan_dma_desc_free_list(&tdc->vc, &head);
    708
    709	return 0;
    710}
    711
    712static int tegra_dma_get_residual(struct tegra_dma_channel *tdc)
    713{
    714	struct tegra_dma_desc *dma_desc = tdc->dma_desc;
    715	struct tegra_dma_sg_req *sg_req = dma_desc->sg_req;
    716	unsigned int bytes_xfer, residual;
    717	u32 wcount = 0, status;
    718
    719	wcount = tdc_read(tdc, TEGRA_GPCDMA_CHAN_XFER_COUNT);
    720
    721	/*
    722	 * Set wcount = 0 if EOC bit is set. The transfer would have
    723	 * already completed and the CHAN_XFER_COUNT could have updated
    724	 * for the next transfer, specifically in case of cyclic transfers.
    725	 */
    726	status = tdc_read(tdc, TEGRA_GPCDMA_CHAN_STATUS);
    727	if (status & TEGRA_GPCDMA_STATUS_ISE_EOC)
    728		wcount = 0;
    729
    730	bytes_xfer = dma_desc->bytes_xfer +
    731		     sg_req[dma_desc->sg_idx].len - (wcount * 4);
    732
    733	residual = dma_desc->bytes_req - (bytes_xfer % dma_desc->bytes_req);
    734
    735	return residual;
    736}
    737
    738static enum dma_status tegra_dma_tx_status(struct dma_chan *dc,
    739					   dma_cookie_t cookie,
    740					   struct dma_tx_state *txstate)
    741{
    742	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
    743	struct tegra_dma_desc *dma_desc;
    744	struct virt_dma_desc *vd;
    745	unsigned int residual;
    746	unsigned long flags;
    747	enum dma_status ret;
    748
    749	ret = dma_cookie_status(dc, cookie, txstate);
    750	if (ret == DMA_COMPLETE)
    751		return ret;
    752
    753	spin_lock_irqsave(&tdc->vc.lock, flags);
    754	vd = vchan_find_desc(&tdc->vc, cookie);
    755	if (vd) {
    756		dma_desc = vd_to_tegra_dma_desc(vd);
    757		residual = dma_desc->bytes_req;
    758		dma_set_residue(txstate, residual);
    759	} else if (tdc->dma_desc && tdc->dma_desc->vd.tx.cookie == cookie) {
    760		residual =  tegra_dma_get_residual(tdc);
    761		dma_set_residue(txstate, residual);
    762	} else {
    763		dev_err(tdc2dev(tdc), "cookie %d is not found\n", cookie);
    764	}
    765	spin_unlock_irqrestore(&tdc->vc.lock, flags);
    766
    767	return ret;
    768}
    769
    770static inline int get_bus_width(struct tegra_dma_channel *tdc,
    771				enum dma_slave_buswidth slave_bw)
    772{
    773	switch (slave_bw) {
    774	case DMA_SLAVE_BUSWIDTH_1_BYTE:
    775		return TEGRA_GPCDMA_MMIOSEQ_BUS_WIDTH_8;
    776	case DMA_SLAVE_BUSWIDTH_2_BYTES:
    777		return TEGRA_GPCDMA_MMIOSEQ_BUS_WIDTH_16;
    778	case DMA_SLAVE_BUSWIDTH_4_BYTES:
    779		return TEGRA_GPCDMA_MMIOSEQ_BUS_WIDTH_32;
    780	default:
    781		dev_err(tdc2dev(tdc), "given slave bus width is not supported\n");
    782		return -EINVAL;
    783	}
    784}
    785
    786static unsigned int get_burst_size(struct tegra_dma_channel *tdc,
    787				   u32 burst_size, enum dma_slave_buswidth slave_bw,
    788				   int len)
    789{
    790	unsigned int burst_mmio_width, burst_byte;
    791
    792	/*
    793	 * burst_size from client is in terms of the bus_width.
    794	 * convert that into words.
    795	 * If burst_size is not specified from client, then use
    796	 * len to calculate the optimum burst size
    797	 */
    798	burst_byte = burst_size ? burst_size * slave_bw : len;
    799	burst_mmio_width = burst_byte / 4;
    800
    801	if (burst_mmio_width < TEGRA_GPCDMA_MMIOSEQ_BURST_MIN)
    802		return 0;
    803
    804	burst_mmio_width = min(burst_mmio_width, TEGRA_GPCDMA_MMIOSEQ_BURST_MAX);
    805
    806	return TEGRA_GPCDMA_MMIOSEQ_BURST(burst_mmio_width);
    807}
    808
    809static int get_transfer_param(struct tegra_dma_channel *tdc,
    810			      enum dma_transfer_direction direction,
    811			      u32 *apb_addr,
    812			      u32 *mmio_seq,
    813			      u32 *csr,
    814			      unsigned int *burst_size,
    815			      enum dma_slave_buswidth *slave_bw)
    816{
    817	switch (direction) {
    818	case DMA_MEM_TO_DEV:
    819		*apb_addr = tdc->dma_sconfig.dst_addr;
    820		*mmio_seq = get_bus_width(tdc, tdc->dma_sconfig.dst_addr_width);
    821		*burst_size = tdc->dma_sconfig.dst_maxburst;
    822		*slave_bw = tdc->dma_sconfig.dst_addr_width;
    823		*csr = TEGRA_GPCDMA_CSR_DMA_MEM2IO_FC;
    824		return 0;
    825	case DMA_DEV_TO_MEM:
    826		*apb_addr = tdc->dma_sconfig.src_addr;
    827		*mmio_seq = get_bus_width(tdc, tdc->dma_sconfig.src_addr_width);
    828		*burst_size = tdc->dma_sconfig.src_maxburst;
    829		*slave_bw = tdc->dma_sconfig.src_addr_width;
    830		*csr = TEGRA_GPCDMA_CSR_DMA_IO2MEM_FC;
    831		return 0;
    832	default:
    833		dev_err(tdc2dev(tdc), "DMA direction is not supported\n");
    834	}
    835
    836	return -EINVAL;
    837}
    838
    839static struct dma_async_tx_descriptor *
    840tegra_dma_prep_dma_memset(struct dma_chan *dc, dma_addr_t dest, int value,
    841			  size_t len, unsigned long flags)
    842{
    843	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
    844	unsigned int max_dma_count = tdc->tdma->chip_data->max_dma_count;
    845	struct tegra_dma_sg_req *sg_req;
    846	struct tegra_dma_desc *dma_desc;
    847	u32 csr, mc_seq;
    848
    849	if ((len & 3) || (dest & 3) || len > max_dma_count) {
    850		dev_err(tdc2dev(tdc),
    851			"DMA length/memory address is not supported\n");
    852		return NULL;
    853	}
    854
    855	/* Set DMA mode to fixed pattern */
    856	csr = TEGRA_GPCDMA_CSR_DMA_FIXED_PAT;
    857	/* Enable once or continuous mode */
    858	csr |= TEGRA_GPCDMA_CSR_ONCE;
    859	/* Enable IRQ mask */
    860	csr |= TEGRA_GPCDMA_CSR_IRQ_MASK;
    861	/* Enable the DMA interrupt */
    862	if (flags & DMA_PREP_INTERRUPT)
    863		csr |= TEGRA_GPCDMA_CSR_IE_EOC;
    864	/* Configure default priority weight for the channel */
    865	csr |= FIELD_PREP(TEGRA_GPCDMA_CSR_WEIGHT, 1);
    866
    867	mc_seq =  tdc_read(tdc, TEGRA_GPCDMA_CHAN_MCSEQ);
    868	/* retain stream-id and clean rest */
    869	mc_seq &= TEGRA_GPCDMA_MCSEQ_STREAM_ID0_MASK;
    870
    871	/* Set the address wrapping */
    872	mc_seq |= FIELD_PREP(TEGRA_GPCDMA_MCSEQ_WRAP0,
    873						TEGRA_GPCDMA_MCSEQ_WRAP_NONE);
    874	mc_seq |= FIELD_PREP(TEGRA_GPCDMA_MCSEQ_WRAP1,
    875						TEGRA_GPCDMA_MCSEQ_WRAP_NONE);
    876
    877	/* Program outstanding MC requests */
    878	mc_seq |= FIELD_PREP(TEGRA_GPCDMA_MCSEQ_REQ_COUNT, 1);
    879	/* Set burst size */
    880	mc_seq |= TEGRA_GPCDMA_MCSEQ_BURST_16;
    881
    882	dma_desc = kzalloc(struct_size(dma_desc, sg_req, 1), GFP_NOWAIT);
    883	if (!dma_desc)
    884		return NULL;
    885
    886	dma_desc->bytes_req = len;
    887	dma_desc->sg_count = 1;
    888	sg_req = dma_desc->sg_req;
    889
    890	sg_req[0].ch_regs.src_ptr = 0;
    891	sg_req[0].ch_regs.dst_ptr = dest;
    892	sg_req[0].ch_regs.high_addr_ptr =
    893			FIELD_PREP(TEGRA_GPCDMA_HIGH_ADDR_DST_PTR, (dest >> 32));
    894	sg_req[0].ch_regs.fixed_pattern = value;
    895	/* Word count reg takes value as (N +1) words */
    896	sg_req[0].ch_regs.wcount = ((len - 4) >> 2);
    897	sg_req[0].ch_regs.csr = csr;
    898	sg_req[0].ch_regs.mmio_seq = 0;
    899	sg_req[0].ch_regs.mc_seq = mc_seq;
    900	sg_req[0].len = len;
    901
    902	dma_desc->cyclic = false;
    903	return vchan_tx_prep(&tdc->vc, &dma_desc->vd, flags);
    904}
    905
    906static struct dma_async_tx_descriptor *
    907tegra_dma_prep_dma_memcpy(struct dma_chan *dc, dma_addr_t dest,
    908			  dma_addr_t src, size_t len, unsigned long flags)
    909{
    910	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
    911	struct tegra_dma_sg_req *sg_req;
    912	struct tegra_dma_desc *dma_desc;
    913	unsigned int max_dma_count;
    914	u32 csr, mc_seq;
    915
    916	max_dma_count = tdc->tdma->chip_data->max_dma_count;
    917	if ((len & 3) || (src & 3) || (dest & 3) || len > max_dma_count) {
    918		dev_err(tdc2dev(tdc),
    919			"DMA length/memory address is not supported\n");
    920		return NULL;
    921	}
    922
    923	/* Set DMA mode to memory to memory transfer */
    924	csr = TEGRA_GPCDMA_CSR_DMA_MEM2MEM;
    925	/* Enable once or continuous mode */
    926	csr |= TEGRA_GPCDMA_CSR_ONCE;
    927	/* Enable IRQ mask */
    928	csr |= TEGRA_GPCDMA_CSR_IRQ_MASK;
    929	/* Enable the DMA interrupt */
    930	if (flags & DMA_PREP_INTERRUPT)
    931		csr |= TEGRA_GPCDMA_CSR_IE_EOC;
    932	/* Configure default priority weight for the channel */
    933	csr |= FIELD_PREP(TEGRA_GPCDMA_CSR_WEIGHT, 1);
    934
    935	mc_seq =  tdc_read(tdc, TEGRA_GPCDMA_CHAN_MCSEQ);
    936	/* retain stream-id and clean rest */
    937	mc_seq &= (TEGRA_GPCDMA_MCSEQ_STREAM_ID0_MASK) |
    938		  (TEGRA_GPCDMA_MCSEQ_STREAM_ID1_MASK);
    939
    940	/* Set the address wrapping */
    941	mc_seq |= FIELD_PREP(TEGRA_GPCDMA_MCSEQ_WRAP0,
    942			     TEGRA_GPCDMA_MCSEQ_WRAP_NONE);
    943	mc_seq |= FIELD_PREP(TEGRA_GPCDMA_MCSEQ_WRAP1,
    944			     TEGRA_GPCDMA_MCSEQ_WRAP_NONE);
    945
    946	/* Program outstanding MC requests */
    947	mc_seq |= FIELD_PREP(TEGRA_GPCDMA_MCSEQ_REQ_COUNT, 1);
    948	/* Set burst size */
    949	mc_seq |= TEGRA_GPCDMA_MCSEQ_BURST_16;
    950
    951	dma_desc = kzalloc(struct_size(dma_desc, sg_req, 1), GFP_NOWAIT);
    952	if (!dma_desc)
    953		return NULL;
    954
    955	dma_desc->bytes_req = len;
    956	dma_desc->sg_count = 1;
    957	sg_req = dma_desc->sg_req;
    958
    959	sg_req[0].ch_regs.src_ptr = src;
    960	sg_req[0].ch_regs.dst_ptr = dest;
    961	sg_req[0].ch_regs.high_addr_ptr =
    962		FIELD_PREP(TEGRA_GPCDMA_HIGH_ADDR_SRC_PTR, (src >> 32));
    963	sg_req[0].ch_regs.high_addr_ptr |=
    964		FIELD_PREP(TEGRA_GPCDMA_HIGH_ADDR_DST_PTR, (dest >> 32));
    965	/* Word count reg takes value as (N +1) words */
    966	sg_req[0].ch_regs.wcount = ((len - 4) >> 2);
    967	sg_req[0].ch_regs.csr = csr;
    968	sg_req[0].ch_regs.mmio_seq = 0;
    969	sg_req[0].ch_regs.mc_seq = mc_seq;
    970	sg_req[0].len = len;
    971
    972	dma_desc->cyclic = false;
    973	return vchan_tx_prep(&tdc->vc, &dma_desc->vd, flags);
    974}
    975
    976static struct dma_async_tx_descriptor *
    977tegra_dma_prep_slave_sg(struct dma_chan *dc, struct scatterlist *sgl,
    978			unsigned int sg_len, enum dma_transfer_direction direction,
    979			unsigned long flags, void *context)
    980{
    981	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
    982	unsigned int max_dma_count = tdc->tdma->chip_data->max_dma_count;
    983	enum dma_slave_buswidth slave_bw = DMA_SLAVE_BUSWIDTH_UNDEFINED;
    984	u32 csr, mc_seq, apb_ptr = 0, mmio_seq = 0;
    985	struct tegra_dma_sg_req *sg_req;
    986	struct tegra_dma_desc *dma_desc;
    987	struct scatterlist *sg;
    988	u32 burst_size;
    989	unsigned int i;
    990	int ret;
    991
    992	if (!tdc->config_init) {
    993		dev_err(tdc2dev(tdc), "DMA channel is not configured\n");
    994		return NULL;
    995	}
    996	if (sg_len < 1) {
    997		dev_err(tdc2dev(tdc), "Invalid segment length %d\n", sg_len);
    998		return NULL;
    999	}
   1000
   1001	ret = tegra_dma_sid_reserve(tdc, direction);
   1002	if (ret)
   1003		return NULL;
   1004
   1005	ret = get_transfer_param(tdc, direction, &apb_ptr, &mmio_seq, &csr,
   1006				 &burst_size, &slave_bw);
   1007	if (ret < 0)
   1008		return NULL;
   1009
   1010	/* Enable once or continuous mode */
   1011	csr |= TEGRA_GPCDMA_CSR_ONCE;
   1012	/* Program the slave id in requestor select */
   1013	csr |= FIELD_PREP(TEGRA_GPCDMA_CSR_REQ_SEL_MASK, tdc->slave_id);
   1014	/* Enable IRQ mask */
   1015	csr |= TEGRA_GPCDMA_CSR_IRQ_MASK;
   1016	/* Configure default priority weight for the channel*/
   1017	csr |= FIELD_PREP(TEGRA_GPCDMA_CSR_WEIGHT, 1);
   1018
   1019	/* Enable the DMA interrupt */
   1020	if (flags & DMA_PREP_INTERRUPT)
   1021		csr |= TEGRA_GPCDMA_CSR_IE_EOC;
   1022
   1023	mc_seq =  tdc_read(tdc, TEGRA_GPCDMA_CHAN_MCSEQ);
   1024	/* retain stream-id and clean rest */
   1025	mc_seq &= TEGRA_GPCDMA_MCSEQ_STREAM_ID0_MASK;
   1026
   1027	/* Set the address wrapping on both MC and MMIO side */
   1028
   1029	mc_seq |= FIELD_PREP(TEGRA_GPCDMA_MCSEQ_WRAP0,
   1030			     TEGRA_GPCDMA_MCSEQ_WRAP_NONE);
   1031	mc_seq |= FIELD_PREP(TEGRA_GPCDMA_MCSEQ_WRAP1,
   1032			     TEGRA_GPCDMA_MCSEQ_WRAP_NONE);
   1033	mmio_seq |= FIELD_PREP(TEGRA_GPCDMA_MMIOSEQ_WRAP_WORD, 1);
   1034
   1035	/* Program 2 MC outstanding requests by default. */
   1036	mc_seq |= FIELD_PREP(TEGRA_GPCDMA_MCSEQ_REQ_COUNT, 1);
   1037
   1038	/* Setting MC burst size depending on MMIO burst size */
   1039	if (burst_size == 64)
   1040		mc_seq |= TEGRA_GPCDMA_MCSEQ_BURST_16;
   1041	else
   1042		mc_seq |= TEGRA_GPCDMA_MCSEQ_BURST_2;
   1043
   1044	dma_desc = kzalloc(struct_size(dma_desc, sg_req, sg_len), GFP_NOWAIT);
   1045	if (!dma_desc)
   1046		return NULL;
   1047
   1048	dma_desc->sg_count = sg_len;
   1049	sg_req = dma_desc->sg_req;
   1050
   1051	/* Make transfer requests */
   1052	for_each_sg(sgl, sg, sg_len, i) {
   1053		u32 len;
   1054		dma_addr_t mem;
   1055
   1056		mem = sg_dma_address(sg);
   1057		len = sg_dma_len(sg);
   1058
   1059		if ((len & 3) || (mem & 3) || len > max_dma_count) {
   1060			dev_err(tdc2dev(tdc),
   1061				"DMA length/memory address is not supported\n");
   1062			kfree(dma_desc);
   1063			return NULL;
   1064		}
   1065
   1066		mmio_seq |= get_burst_size(tdc, burst_size, slave_bw, len);
   1067		dma_desc->bytes_req += len;
   1068
   1069		if (direction == DMA_MEM_TO_DEV) {
   1070			sg_req[i].ch_regs.src_ptr = mem;
   1071			sg_req[i].ch_regs.dst_ptr = apb_ptr;
   1072			sg_req[i].ch_regs.high_addr_ptr =
   1073				FIELD_PREP(TEGRA_GPCDMA_HIGH_ADDR_SRC_PTR, (mem >> 32));
   1074		} else if (direction == DMA_DEV_TO_MEM) {
   1075			sg_req[i].ch_regs.src_ptr = apb_ptr;
   1076			sg_req[i].ch_regs.dst_ptr = mem;
   1077			sg_req[i].ch_regs.high_addr_ptr =
   1078				FIELD_PREP(TEGRA_GPCDMA_HIGH_ADDR_DST_PTR, (mem >> 32));
   1079		}
   1080
   1081		/*
   1082		 * Word count register takes input in words. Writing a value
   1083		 * of N into word count register means a req of (N+1) words.
   1084		 */
   1085		sg_req[i].ch_regs.wcount = ((len - 4) >> 2);
   1086		sg_req[i].ch_regs.csr = csr;
   1087		sg_req[i].ch_regs.mmio_seq = mmio_seq;
   1088		sg_req[i].ch_regs.mc_seq = mc_seq;
   1089		sg_req[i].len = len;
   1090	}
   1091
   1092	dma_desc->cyclic = false;
   1093	return vchan_tx_prep(&tdc->vc, &dma_desc->vd, flags);
   1094}
   1095
   1096static struct dma_async_tx_descriptor *
   1097tegra_dma_prep_dma_cyclic(struct dma_chan *dc, dma_addr_t buf_addr, size_t buf_len,
   1098			  size_t period_len, enum dma_transfer_direction direction,
   1099			  unsigned long flags)
   1100{
   1101	enum dma_slave_buswidth slave_bw = DMA_SLAVE_BUSWIDTH_UNDEFINED;
   1102	u32 csr, mc_seq, apb_ptr = 0, mmio_seq = 0, burst_size;
   1103	unsigned int max_dma_count, len, period_count, i;
   1104	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
   1105	struct tegra_dma_desc *dma_desc;
   1106	struct tegra_dma_sg_req *sg_req;
   1107	dma_addr_t mem = buf_addr;
   1108	int ret;
   1109
   1110	if (!buf_len || !period_len) {
   1111		dev_err(tdc2dev(tdc), "Invalid buffer/period len\n");
   1112		return NULL;
   1113	}
   1114
   1115	if (!tdc->config_init) {
   1116		dev_err(tdc2dev(tdc), "DMA slave is not configured\n");
   1117		return NULL;
   1118	}
   1119
   1120	ret = tegra_dma_sid_reserve(tdc, direction);
   1121	if (ret)
   1122		return NULL;
   1123
   1124	/*
   1125	 * We only support cycle transfer when buf_len is multiple of
   1126	 * period_len.
   1127	 */
   1128	if (buf_len % period_len) {
   1129		dev_err(tdc2dev(tdc), "buf_len is not multiple of period_len\n");
   1130		return NULL;
   1131	}
   1132
   1133	len = period_len;
   1134	max_dma_count = tdc->tdma->chip_data->max_dma_count;
   1135	if ((len & 3) || (buf_addr & 3) || len > max_dma_count) {
   1136		dev_err(tdc2dev(tdc), "Req len/mem address is not correct\n");
   1137		return NULL;
   1138	}
   1139
   1140	ret = get_transfer_param(tdc, direction, &apb_ptr, &mmio_seq, &csr,
   1141				 &burst_size, &slave_bw);
   1142	if (ret < 0)
   1143		return NULL;
   1144
   1145	/* Enable once or continuous mode */
   1146	csr &= ~TEGRA_GPCDMA_CSR_ONCE;
   1147	/* Program the slave id in requestor select */
   1148	csr |= FIELD_PREP(TEGRA_GPCDMA_CSR_REQ_SEL_MASK, tdc->slave_id);
   1149	/* Enable IRQ mask */
   1150	csr |= TEGRA_GPCDMA_CSR_IRQ_MASK;
   1151	/* Configure default priority weight for the channel*/
   1152	csr |= FIELD_PREP(TEGRA_GPCDMA_CSR_WEIGHT, 1);
   1153
   1154	/* Enable the DMA interrupt */
   1155	if (flags & DMA_PREP_INTERRUPT)
   1156		csr |= TEGRA_GPCDMA_CSR_IE_EOC;
   1157
   1158	mmio_seq |= FIELD_PREP(TEGRA_GPCDMA_MMIOSEQ_WRAP_WORD, 1);
   1159
   1160	mc_seq =  tdc_read(tdc, TEGRA_GPCDMA_CHAN_MCSEQ);
   1161	/* retain stream-id and clean rest */
   1162	mc_seq &= TEGRA_GPCDMA_MCSEQ_STREAM_ID0_MASK;
   1163
   1164	/* Set the address wrapping on both MC and MMIO side */
   1165	mc_seq |= FIELD_PREP(TEGRA_GPCDMA_MCSEQ_WRAP0,
   1166			     TEGRA_GPCDMA_MCSEQ_WRAP_NONE);
   1167	mc_seq |= FIELD_PREP(TEGRA_GPCDMA_MCSEQ_WRAP1,
   1168			     TEGRA_GPCDMA_MCSEQ_WRAP_NONE);
   1169
   1170	/* Program 2 MC outstanding requests by default. */
   1171	mc_seq |= FIELD_PREP(TEGRA_GPCDMA_MCSEQ_REQ_COUNT, 1);
   1172	/* Setting MC burst size depending on MMIO burst size */
   1173	if (burst_size == 64)
   1174		mc_seq |= TEGRA_GPCDMA_MCSEQ_BURST_16;
   1175	else
   1176		mc_seq |= TEGRA_GPCDMA_MCSEQ_BURST_2;
   1177
   1178	period_count = buf_len / period_len;
   1179	dma_desc = kzalloc(struct_size(dma_desc, sg_req, period_count),
   1180			   GFP_NOWAIT);
   1181	if (!dma_desc)
   1182		return NULL;
   1183
   1184	dma_desc->bytes_req = buf_len;
   1185	dma_desc->sg_count = period_count;
   1186	sg_req = dma_desc->sg_req;
   1187
   1188	/* Split transfer equal to period size */
   1189	for (i = 0; i < period_count; i++) {
   1190		mmio_seq |= get_burst_size(tdc, burst_size, slave_bw, len);
   1191		if (direction == DMA_MEM_TO_DEV) {
   1192			sg_req[i].ch_regs.src_ptr = mem;
   1193			sg_req[i].ch_regs.dst_ptr = apb_ptr;
   1194			sg_req[i].ch_regs.high_addr_ptr =
   1195				FIELD_PREP(TEGRA_GPCDMA_HIGH_ADDR_SRC_PTR, (mem >> 32));
   1196		} else if (direction == DMA_DEV_TO_MEM) {
   1197			sg_req[i].ch_regs.src_ptr = apb_ptr;
   1198			sg_req[i].ch_regs.dst_ptr = mem;
   1199			sg_req[i].ch_regs.high_addr_ptr =
   1200				FIELD_PREP(TEGRA_GPCDMA_HIGH_ADDR_DST_PTR, (mem >> 32));
   1201		}
   1202		/*
   1203		 * Word count register takes input in words. Writing a value
   1204		 * of N into word count register means a req of (N+1) words.
   1205		 */
   1206		sg_req[i].ch_regs.wcount = ((len - 4) >> 2);
   1207		sg_req[i].ch_regs.csr = csr;
   1208		sg_req[i].ch_regs.mmio_seq = mmio_seq;
   1209		sg_req[i].ch_regs.mc_seq = mc_seq;
   1210		sg_req[i].len = len;
   1211
   1212		mem += len;
   1213	}
   1214
   1215	dma_desc->cyclic = true;
   1216
   1217	return vchan_tx_prep(&tdc->vc, &dma_desc->vd, flags);
   1218}
   1219
   1220static int tegra_dma_alloc_chan_resources(struct dma_chan *dc)
   1221{
   1222	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
   1223	int ret;
   1224
   1225	ret = request_irq(tdc->irq, tegra_dma_isr, 0, tdc->name, tdc);
   1226	if (ret) {
   1227		dev_err(tdc2dev(tdc), "request_irq failed for %s\n", tdc->name);
   1228		return ret;
   1229	}
   1230
   1231	dma_cookie_init(&tdc->vc.chan);
   1232	tdc->config_init = false;
   1233	return 0;
   1234}
   1235
   1236static void tegra_dma_chan_synchronize(struct dma_chan *dc)
   1237{
   1238	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
   1239
   1240	synchronize_irq(tdc->irq);
   1241	vchan_synchronize(&tdc->vc);
   1242}
   1243
   1244static void tegra_dma_free_chan_resources(struct dma_chan *dc)
   1245{
   1246	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
   1247
   1248	dev_dbg(tdc2dev(tdc), "Freeing channel %d\n", tdc->id);
   1249
   1250	tegra_dma_terminate_all(dc);
   1251	synchronize_irq(tdc->irq);
   1252
   1253	tasklet_kill(&tdc->vc.task);
   1254	tdc->config_init = false;
   1255	tdc->slave_id = -1;
   1256	tdc->sid_dir = DMA_TRANS_NONE;
   1257	free_irq(tdc->irq, tdc);
   1258
   1259	vchan_free_chan_resources(&tdc->vc);
   1260}
   1261
   1262static struct dma_chan *tegra_dma_of_xlate(struct of_phandle_args *dma_spec,
   1263					   struct of_dma *ofdma)
   1264{
   1265	struct tegra_dma *tdma = ofdma->of_dma_data;
   1266	struct tegra_dma_channel *tdc;
   1267	struct dma_chan *chan;
   1268
   1269	chan = dma_get_any_slave_channel(&tdma->dma_dev);
   1270	if (!chan)
   1271		return NULL;
   1272
   1273	tdc = to_tegra_dma_chan(chan);
   1274	tdc->slave_id = dma_spec->args[0];
   1275
   1276	return chan;
   1277}
   1278
   1279static const struct tegra_dma_chip_data tegra186_dma_chip_data = {
   1280	.nr_channels = 31,
   1281	.channel_reg_size = SZ_64K,
   1282	.max_dma_count = SZ_1G,
   1283	.hw_support_pause = false,
   1284	.terminate = tegra_dma_stop_client,
   1285};
   1286
   1287static const struct tegra_dma_chip_data tegra194_dma_chip_data = {
   1288	.nr_channels = 31,
   1289	.channel_reg_size = SZ_64K,
   1290	.max_dma_count = SZ_1G,
   1291	.hw_support_pause = true,
   1292	.terminate = tegra_dma_pause,
   1293};
   1294
   1295static const struct of_device_id tegra_dma_of_match[] = {
   1296	{
   1297		.compatible = "nvidia,tegra186-gpcdma",
   1298		.data = &tegra186_dma_chip_data,
   1299	}, {
   1300		.compatible = "nvidia,tegra194-gpcdma",
   1301		.data = &tegra194_dma_chip_data,
   1302	}, {
   1303	},
   1304};
   1305MODULE_DEVICE_TABLE(of, tegra_dma_of_match);
   1306
   1307static int tegra_dma_program_sid(struct tegra_dma_channel *tdc, int stream_id)
   1308{
   1309	unsigned int reg_val =  tdc_read(tdc, TEGRA_GPCDMA_CHAN_MCSEQ);
   1310
   1311	reg_val &= ~(TEGRA_GPCDMA_MCSEQ_STREAM_ID0_MASK);
   1312	reg_val &= ~(TEGRA_GPCDMA_MCSEQ_STREAM_ID1_MASK);
   1313
   1314	reg_val |= FIELD_PREP(TEGRA_GPCDMA_MCSEQ_STREAM_ID0_MASK, stream_id);
   1315	reg_val |= FIELD_PREP(TEGRA_GPCDMA_MCSEQ_STREAM_ID1_MASK, stream_id);
   1316
   1317	tdc_write(tdc, TEGRA_GPCDMA_CHAN_MCSEQ, reg_val);
   1318	return 0;
   1319}
   1320
   1321static int tegra_dma_probe(struct platform_device *pdev)
   1322{
   1323	const struct tegra_dma_chip_data *cdata = NULL;
   1324	struct iommu_fwspec *iommu_spec;
   1325	unsigned int stream_id, i;
   1326	struct tegra_dma *tdma;
   1327	int ret;
   1328
   1329	cdata = of_device_get_match_data(&pdev->dev);
   1330
   1331	tdma = devm_kzalloc(&pdev->dev,
   1332			    struct_size(tdma, channels, cdata->nr_channels),
   1333			    GFP_KERNEL);
   1334	if (!tdma)
   1335		return -ENOMEM;
   1336
   1337	tdma->dev = &pdev->dev;
   1338	tdma->chip_data = cdata;
   1339	platform_set_drvdata(pdev, tdma);
   1340
   1341	tdma->base_addr = devm_platform_ioremap_resource(pdev, 0);
   1342	if (IS_ERR(tdma->base_addr))
   1343		return PTR_ERR(tdma->base_addr);
   1344
   1345	tdma->rst = devm_reset_control_get_exclusive(&pdev->dev, "gpcdma");
   1346	if (IS_ERR(tdma->rst)) {
   1347		return dev_err_probe(&pdev->dev, PTR_ERR(tdma->rst),
   1348			      "Missing controller reset\n");
   1349	}
   1350	reset_control_reset(tdma->rst);
   1351
   1352	tdma->dma_dev.dev = &pdev->dev;
   1353
   1354	iommu_spec = dev_iommu_fwspec_get(&pdev->dev);
   1355	if (!iommu_spec) {
   1356		dev_err(&pdev->dev, "Missing iommu stream-id\n");
   1357		return -EINVAL;
   1358	}
   1359	stream_id = iommu_spec->ids[0] & 0xffff;
   1360
   1361	INIT_LIST_HEAD(&tdma->dma_dev.channels);
   1362	for (i = 0; i < cdata->nr_channels; i++) {
   1363		struct tegra_dma_channel *tdc = &tdma->channels[i];
   1364
   1365		tdc->irq = platform_get_irq(pdev, i);
   1366		if (tdc->irq < 0)
   1367			return tdc->irq;
   1368
   1369		tdc->chan_base_offset = TEGRA_GPCDMA_CHANNEL_BASE_ADD_OFFSET +
   1370					i * cdata->channel_reg_size;
   1371		snprintf(tdc->name, sizeof(tdc->name), "gpcdma.%d", i);
   1372		tdc->tdma = tdma;
   1373		tdc->id = i;
   1374		tdc->slave_id = -1;
   1375
   1376		vchan_init(&tdc->vc, &tdma->dma_dev);
   1377		tdc->vc.desc_free = tegra_dma_desc_free;
   1378
   1379		/* program stream-id for this channel */
   1380		tegra_dma_program_sid(tdc, stream_id);
   1381		tdc->stream_id = stream_id;
   1382	}
   1383
   1384	dma_cap_set(DMA_SLAVE, tdma->dma_dev.cap_mask);
   1385	dma_cap_set(DMA_PRIVATE, tdma->dma_dev.cap_mask);
   1386	dma_cap_set(DMA_MEMCPY, tdma->dma_dev.cap_mask);
   1387	dma_cap_set(DMA_MEMSET, tdma->dma_dev.cap_mask);
   1388	dma_cap_set(DMA_CYCLIC, tdma->dma_dev.cap_mask);
   1389
   1390	/*
   1391	 * Only word aligned transfers are supported. Set the copy
   1392	 * alignment shift.
   1393	 */
   1394	tdma->dma_dev.copy_align = 2;
   1395	tdma->dma_dev.fill_align = 2;
   1396	tdma->dma_dev.device_alloc_chan_resources =
   1397					tegra_dma_alloc_chan_resources;
   1398	tdma->dma_dev.device_free_chan_resources =
   1399					tegra_dma_free_chan_resources;
   1400	tdma->dma_dev.device_prep_slave_sg = tegra_dma_prep_slave_sg;
   1401	tdma->dma_dev.device_prep_dma_memcpy = tegra_dma_prep_dma_memcpy;
   1402	tdma->dma_dev.device_prep_dma_memset = tegra_dma_prep_dma_memset;
   1403	tdma->dma_dev.device_prep_dma_cyclic = tegra_dma_prep_dma_cyclic;
   1404	tdma->dma_dev.device_config = tegra_dma_slave_config;
   1405	tdma->dma_dev.device_terminate_all = tegra_dma_terminate_all;
   1406	tdma->dma_dev.device_tx_status = tegra_dma_tx_status;
   1407	tdma->dma_dev.device_issue_pending = tegra_dma_issue_pending;
   1408	tdma->dma_dev.device_pause = tegra_dma_device_pause;
   1409	tdma->dma_dev.device_resume = tegra_dma_device_resume;
   1410	tdma->dma_dev.device_synchronize = tegra_dma_chan_synchronize;
   1411	tdma->dma_dev.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
   1412
   1413	ret = dma_async_device_register(&tdma->dma_dev);
   1414	if (ret < 0) {
   1415		dev_err_probe(&pdev->dev, ret,
   1416			      "GPC DMA driver registration failed\n");
   1417		return ret;
   1418	}
   1419
   1420	ret = of_dma_controller_register(pdev->dev.of_node,
   1421					 tegra_dma_of_xlate, tdma);
   1422	if (ret < 0) {
   1423		dev_err_probe(&pdev->dev, ret,
   1424			      "GPC DMA OF registration failed\n");
   1425
   1426		dma_async_device_unregister(&tdma->dma_dev);
   1427		return ret;
   1428	}
   1429
   1430	dev_info(&pdev->dev, "GPC DMA driver register %d channels\n",
   1431		 cdata->nr_channels);
   1432
   1433	return 0;
   1434}
   1435
   1436static int tegra_dma_remove(struct platform_device *pdev)
   1437{
   1438	struct tegra_dma *tdma = platform_get_drvdata(pdev);
   1439
   1440	of_dma_controller_free(pdev->dev.of_node);
   1441	dma_async_device_unregister(&tdma->dma_dev);
   1442
   1443	return 0;
   1444}
   1445
   1446static int __maybe_unused tegra_dma_pm_suspend(struct device *dev)
   1447{
   1448	struct tegra_dma *tdma = dev_get_drvdata(dev);
   1449	unsigned int i;
   1450
   1451	for (i = 0; i < tdma->chip_data->nr_channels; i++) {
   1452		struct tegra_dma_channel *tdc = &tdma->channels[i];
   1453
   1454		if (tdc->dma_desc) {
   1455			dev_err(tdma->dev, "channel %u busy\n", i);
   1456			return -EBUSY;
   1457		}
   1458	}
   1459
   1460	return 0;
   1461}
   1462
   1463static int __maybe_unused tegra_dma_pm_resume(struct device *dev)
   1464{
   1465	struct tegra_dma *tdma = dev_get_drvdata(dev);
   1466	unsigned int i;
   1467
   1468	reset_control_reset(tdma->rst);
   1469
   1470	for (i = 0; i < tdma->chip_data->nr_channels; i++) {
   1471		struct tegra_dma_channel *tdc = &tdma->channels[i];
   1472
   1473		tegra_dma_program_sid(tdc, tdc->stream_id);
   1474	}
   1475
   1476	return 0;
   1477}
   1478
   1479static const struct dev_pm_ops tegra_dma_dev_pm_ops = {
   1480	SET_SYSTEM_SLEEP_PM_OPS(tegra_dma_pm_suspend, tegra_dma_pm_resume)
   1481};
   1482
   1483static struct platform_driver tegra_dma_driver = {
   1484	.driver = {
   1485		.name	= "tegra-gpcdma",
   1486		.pm	= &tegra_dma_dev_pm_ops,
   1487		.of_match_table = tegra_dma_of_match,
   1488	},
   1489	.probe		= tegra_dma_probe,
   1490	.remove		= tegra_dma_remove,
   1491};
   1492
   1493module_platform_driver(tegra_dma_driver);
   1494
   1495MODULE_DESCRIPTION("NVIDIA Tegra GPC DMA Controller driver");
   1496MODULE_AUTHOR("Pavan Kunapuli <pkunapuli@nvidia.com>");
   1497MODULE_AUTHOR("Rajesh Gumasta <rgumasta@nvidia.com>");
   1498MODULE_LICENSE("GPL");