cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

i3000_edac.c (14045B)


      1/*
      2 * Intel 3000/3010 Memory Controller kernel module
      3 * Copyright (C) 2007 Akamai Technologies, Inc.
      4 * Shamelessly copied from:
      5 * 	Intel D82875P Memory Controller kernel module
      6 * 	(C) 2003 Linux Networx (http://lnxi.com)
      7 *
      8 * This file may be distributed under the terms of the
      9 * GNU General Public License.
     10 */
     11
     12#include <linux/module.h>
     13#include <linux/init.h>
     14#include <linux/pci.h>
     15#include <linux/pci_ids.h>
     16#include <linux/edac.h>
     17#include "edac_module.h"
     18
     19#define EDAC_MOD_STR		"i3000_edac"
     20
     21#define I3000_RANKS		8
     22#define I3000_RANKS_PER_CHANNEL	4
     23#define I3000_CHANNELS		2
     24
     25/* Intel 3000 register addresses - device 0 function 0 - DRAM Controller */
     26
     27#define I3000_MCHBAR		0x44	/* MCH Memory Mapped Register BAR */
     28#define I3000_MCHBAR_MASK	0xffffc000
     29#define I3000_MMR_WINDOW_SIZE	16384
     30
     31#define I3000_EDEAP	0x70	/* Extended DRAM Error Address Pointer (8b)
     32				 *
     33				 * 7:1   reserved
     34				 * 0     bit 32 of address
     35				 */
     36#define I3000_DEAP	0x58	/* DRAM Error Address Pointer (32b)
     37				 *
     38				 * 31:7  address
     39				 * 6:1   reserved
     40				 * 0     Error channel 0/1
     41				 */
     42#define I3000_DEAP_GRAIN 		(1 << 7)
     43
     44/*
     45 * Helper functions to decode the DEAP/EDEAP hardware registers.
     46 *
     47 * The type promotion here is deliberate; we're deriving an
     48 * unsigned long pfn and offset from hardware regs which are u8/u32.
     49 */
     50
     51static inline unsigned long deap_pfn(u8 edeap, u32 deap)
     52{
     53	deap >>= PAGE_SHIFT;
     54	deap |= (edeap & 1) << (32 - PAGE_SHIFT);
     55	return deap;
     56}
     57
     58static inline unsigned long deap_offset(u32 deap)
     59{
     60	return deap & ~(I3000_DEAP_GRAIN - 1) & ~PAGE_MASK;
     61}
     62
     63static inline int deap_channel(u32 deap)
     64{
     65	return deap & 1;
     66}
     67
     68#define I3000_DERRSYN	0x5c	/* DRAM Error Syndrome (8b)
     69				 *
     70				 *  7:0  DRAM ECC Syndrome
     71				 */
     72
     73#define I3000_ERRSTS	0xc8	/* Error Status Register (16b)
     74				 *
     75				 * 15:12 reserved
     76				 * 11    MCH Thermal Sensor Event
     77				 *         for SMI/SCI/SERR
     78				 * 10    reserved
     79				 *  9    LOCK to non-DRAM Memory Flag (LCKF)
     80				 *  8    Received Refresh Timeout Flag (RRTOF)
     81				 *  7:2  reserved
     82				 *  1    Multi-bit DRAM ECC Error Flag (DMERR)
     83				 *  0    Single-bit DRAM ECC Error Flag (DSERR)
     84				 */
     85#define I3000_ERRSTS_BITS	0x0b03	/* bits which indicate errors */
     86#define I3000_ERRSTS_UE		0x0002
     87#define I3000_ERRSTS_CE		0x0001
     88
     89#define I3000_ERRCMD	0xca	/* Error Command (16b)
     90				 *
     91				 * 15:12 reserved
     92				 * 11    SERR on MCH Thermal Sensor Event
     93				 *         (TSESERR)
     94				 * 10    reserved
     95				 *  9    SERR on LOCK to non-DRAM Memory
     96				 *         (LCKERR)
     97				 *  8    SERR on DRAM Refresh Timeout
     98				 *         (DRTOERR)
     99				 *  7:2  reserved
    100				 *  1    SERR Multi-Bit DRAM ECC Error
    101				 *         (DMERR)
    102				 *  0    SERR on Single-Bit ECC Error
    103				 *         (DSERR)
    104				 */
    105
    106/* Intel  MMIO register space - device 0 function 0 - MMR space */
    107
    108#define I3000_DRB_SHIFT 25	/* 32MiB grain */
    109
    110#define I3000_C0DRB	0x100	/* Channel 0 DRAM Rank Boundary (8b x 4)
    111				 *
    112				 * 7:0   Channel 0 DRAM Rank Boundary Address
    113				 */
    114#define I3000_C1DRB	0x180	/* Channel 1 DRAM Rank Boundary (8b x 4)
    115				 *
    116				 * 7:0   Channel 1 DRAM Rank Boundary Address
    117				 */
    118
    119#define I3000_C0DRA	0x108	/* Channel 0 DRAM Rank Attribute (8b x 2)
    120				 *
    121				 * 7     reserved
    122				 * 6:4   DRAM odd Rank Attribute
    123				 * 3     reserved
    124				 * 2:0   DRAM even Rank Attribute
    125				 *
    126				 * Each attribute defines the page
    127				 * size of the corresponding rank:
    128				 *     000: unpopulated
    129				 *     001: reserved
    130				 *     010: 4 KB
    131				 *     011: 8 KB
    132				 *     100: 16 KB
    133				 *     Others: reserved
    134				 */
    135#define I3000_C1DRA	0x188	/* Channel 1 DRAM Rank Attribute (8b x 2) */
    136
    137static inline unsigned char odd_rank_attrib(unsigned char dra)
    138{
    139	return (dra & 0x70) >> 4;
    140}
    141
    142static inline unsigned char even_rank_attrib(unsigned char dra)
    143{
    144	return dra & 0x07;
    145}
    146
    147#define I3000_C0DRC0	0x120	/* DRAM Controller Mode 0 (32b)
    148				 *
    149				 * 31:30 reserved
    150				 * 29    Initialization Complete (IC)
    151				 * 28:11 reserved
    152				 * 10:8  Refresh Mode Select (RMS)
    153				 * 7     reserved
    154				 * 6:4   Mode Select (SMS)
    155				 * 3:2   reserved
    156				 * 1:0   DRAM Type (DT)
    157				 */
    158
    159#define I3000_C0DRC1	0x124	/* DRAM Controller Mode 1 (32b)
    160				 *
    161				 * 31    Enhanced Addressing Enable (ENHADE)
    162				 * 30:0  reserved
    163				 */
    164
    165enum i3000p_chips {
    166	I3000 = 0,
    167};
    168
    169struct i3000_dev_info {
    170	const char *ctl_name;
    171};
    172
    173struct i3000_error_info {
    174	u16 errsts;
    175	u8 derrsyn;
    176	u8 edeap;
    177	u32 deap;
    178	u16 errsts2;
    179};
    180
    181static const struct i3000_dev_info i3000_devs[] = {
    182	[I3000] = {
    183		.ctl_name = "i3000"},
    184};
    185
    186static struct pci_dev *mci_pdev;
    187static int i3000_registered = 1;
    188static struct edac_pci_ctl_info *i3000_pci;
    189
    190static void i3000_get_error_info(struct mem_ctl_info *mci,
    191				 struct i3000_error_info *info)
    192{
    193	struct pci_dev *pdev;
    194
    195	pdev = to_pci_dev(mci->pdev);
    196
    197	/*
    198	 * This is a mess because there is no atomic way to read all the
    199	 * registers at once and the registers can transition from CE being
    200	 * overwritten by UE.
    201	 */
    202	pci_read_config_word(pdev, I3000_ERRSTS, &info->errsts);
    203	if (!(info->errsts & I3000_ERRSTS_BITS))
    204		return;
    205	pci_read_config_byte(pdev, I3000_EDEAP, &info->edeap);
    206	pci_read_config_dword(pdev, I3000_DEAP, &info->deap);
    207	pci_read_config_byte(pdev, I3000_DERRSYN, &info->derrsyn);
    208	pci_read_config_word(pdev, I3000_ERRSTS, &info->errsts2);
    209
    210	/*
    211	 * If the error is the same for both reads then the first set
    212	 * of reads is valid.  If there is a change then there is a CE
    213	 * with no info and the second set of reads is valid and
    214	 * should be UE info.
    215	 */
    216	if ((info->errsts ^ info->errsts2) & I3000_ERRSTS_BITS) {
    217		pci_read_config_byte(pdev, I3000_EDEAP, &info->edeap);
    218		pci_read_config_dword(pdev, I3000_DEAP, &info->deap);
    219		pci_read_config_byte(pdev, I3000_DERRSYN, &info->derrsyn);
    220	}
    221
    222	/*
    223	 * Clear any error bits.
    224	 * (Yes, we really clear bits by writing 1 to them.)
    225	 */
    226	pci_write_bits16(pdev, I3000_ERRSTS, I3000_ERRSTS_BITS,
    227			 I3000_ERRSTS_BITS);
    228}
    229
    230static int i3000_process_error_info(struct mem_ctl_info *mci,
    231				struct i3000_error_info *info,
    232				int handle_errors)
    233{
    234	int row, multi_chan, channel;
    235	unsigned long pfn, offset;
    236
    237	multi_chan = mci->csrows[0]->nr_channels - 1;
    238
    239	if (!(info->errsts & I3000_ERRSTS_BITS))
    240		return 0;
    241
    242	if (!handle_errors)
    243		return 1;
    244
    245	if ((info->errsts ^ info->errsts2) & I3000_ERRSTS_BITS) {
    246		edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci, 1, 0, 0, 0,
    247				     -1, -1, -1,
    248				     "UE overwrote CE", "");
    249		info->errsts = info->errsts2;
    250	}
    251
    252	pfn = deap_pfn(info->edeap, info->deap);
    253	offset = deap_offset(info->deap);
    254	channel = deap_channel(info->deap);
    255
    256	row = edac_mc_find_csrow_by_page(mci, pfn);
    257
    258	if (info->errsts & I3000_ERRSTS_UE)
    259		edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci, 1,
    260				     pfn, offset, 0,
    261				     row, -1, -1,
    262				     "i3000 UE", "");
    263	else
    264		edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1,
    265				     pfn, offset, info->derrsyn,
    266				     row, multi_chan ? channel : 0, -1,
    267				     "i3000 CE", "");
    268
    269	return 1;
    270}
    271
    272static void i3000_check(struct mem_ctl_info *mci)
    273{
    274	struct i3000_error_info info;
    275
    276	i3000_get_error_info(mci, &info);
    277	i3000_process_error_info(mci, &info, 1);
    278}
    279
    280static int i3000_is_interleaved(const unsigned char *c0dra,
    281				const unsigned char *c1dra,
    282				const unsigned char *c0drb,
    283				const unsigned char *c1drb)
    284{
    285	int i;
    286
    287	/*
    288	 * If the channels aren't populated identically then
    289	 * we're not interleaved.
    290	 */
    291	for (i = 0; i < I3000_RANKS_PER_CHANNEL / 2; i++)
    292		if (odd_rank_attrib(c0dra[i]) != odd_rank_attrib(c1dra[i]) ||
    293			even_rank_attrib(c0dra[i]) !=
    294						even_rank_attrib(c1dra[i]))
    295			return 0;
    296
    297	/*
    298	 * If the rank boundaries for the two channels are different
    299	 * then we're not interleaved.
    300	 */
    301	for (i = 0; i < I3000_RANKS_PER_CHANNEL; i++)
    302		if (c0drb[i] != c1drb[i])
    303			return 0;
    304
    305	return 1;
    306}
    307
    308static int i3000_probe1(struct pci_dev *pdev, int dev_idx)
    309{
    310	int rc;
    311	int i, j;
    312	struct mem_ctl_info *mci = NULL;
    313	struct edac_mc_layer layers[2];
    314	unsigned long last_cumul_size, nr_pages;
    315	int interleaved, nr_channels;
    316	unsigned char dra[I3000_RANKS / 2], drb[I3000_RANKS];
    317	unsigned char *c0dra = dra, *c1dra = &dra[I3000_RANKS_PER_CHANNEL / 2];
    318	unsigned char *c0drb = drb, *c1drb = &drb[I3000_RANKS_PER_CHANNEL];
    319	unsigned long mchbar;
    320	void __iomem *window;
    321
    322	edac_dbg(0, "MC:\n");
    323
    324	pci_read_config_dword(pdev, I3000_MCHBAR, (u32 *) & mchbar);
    325	mchbar &= I3000_MCHBAR_MASK;
    326	window = ioremap(mchbar, I3000_MMR_WINDOW_SIZE);
    327	if (!window) {
    328		printk(KERN_ERR "i3000: cannot map mmio space at 0x%lx\n",
    329			mchbar);
    330		return -ENODEV;
    331	}
    332
    333	c0dra[0] = readb(window + I3000_C0DRA + 0);	/* ranks 0,1 */
    334	c0dra[1] = readb(window + I3000_C0DRA + 1);	/* ranks 2,3 */
    335	c1dra[0] = readb(window + I3000_C1DRA + 0);	/* ranks 0,1 */
    336	c1dra[1] = readb(window + I3000_C1DRA + 1);	/* ranks 2,3 */
    337
    338	for (i = 0; i < I3000_RANKS_PER_CHANNEL; i++) {
    339		c0drb[i] = readb(window + I3000_C0DRB + i);
    340		c1drb[i] = readb(window + I3000_C1DRB + i);
    341	}
    342
    343	iounmap(window);
    344
    345	/*
    346	 * Figure out how many channels we have.
    347	 *
    348	 * If we have what the datasheet calls "asymmetric channels"
    349	 * (essentially the same as what was called "virtual single
    350	 * channel mode" in the i82875) then it's a single channel as
    351	 * far as EDAC is concerned.
    352	 */
    353	interleaved = i3000_is_interleaved(c0dra, c1dra, c0drb, c1drb);
    354	nr_channels = interleaved ? 2 : 1;
    355
    356	layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
    357	layers[0].size = I3000_RANKS / nr_channels;
    358	layers[0].is_virt_csrow = true;
    359	layers[1].type = EDAC_MC_LAYER_CHANNEL;
    360	layers[1].size = nr_channels;
    361	layers[1].is_virt_csrow = false;
    362	mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers, 0);
    363	if (!mci)
    364		return -ENOMEM;
    365
    366	edac_dbg(3, "MC: init mci\n");
    367
    368	mci->pdev = &pdev->dev;
    369	mci->mtype_cap = MEM_FLAG_DDR2;
    370
    371	mci->edac_ctl_cap = EDAC_FLAG_SECDED;
    372	mci->edac_cap = EDAC_FLAG_SECDED;
    373
    374	mci->mod_name = EDAC_MOD_STR;
    375	mci->ctl_name = i3000_devs[dev_idx].ctl_name;
    376	mci->dev_name = pci_name(pdev);
    377	mci->edac_check = i3000_check;
    378	mci->ctl_page_to_phys = NULL;
    379
    380	/*
    381	 * The dram rank boundary (DRB) reg values are boundary addresses
    382	 * for each DRAM rank with a granularity of 32MB.  DRB regs are
    383	 * cumulative; the last one will contain the total memory
    384	 * contained in all ranks.
    385	 *
    386	 * If we're in interleaved mode then we're only walking through
    387	 * the ranks of controller 0, so we double all the values we see.
    388	 */
    389	for (last_cumul_size = i = 0; i < mci->nr_csrows; i++) {
    390		u8 value;
    391		u32 cumul_size;
    392		struct csrow_info *csrow = mci->csrows[i];
    393
    394		value = drb[i];
    395		cumul_size = value << (I3000_DRB_SHIFT - PAGE_SHIFT);
    396		if (interleaved)
    397			cumul_size <<= 1;
    398		edac_dbg(3, "MC: (%d) cumul_size 0x%x\n", i, cumul_size);
    399		if (cumul_size == last_cumul_size)
    400			continue;
    401
    402		csrow->first_page = last_cumul_size;
    403		csrow->last_page = cumul_size - 1;
    404		nr_pages = cumul_size - last_cumul_size;
    405		last_cumul_size = cumul_size;
    406
    407		for (j = 0; j < nr_channels; j++) {
    408			struct dimm_info *dimm = csrow->channels[j]->dimm;
    409
    410			dimm->nr_pages = nr_pages / nr_channels;
    411			dimm->grain = I3000_DEAP_GRAIN;
    412			dimm->mtype = MEM_DDR2;
    413			dimm->dtype = DEV_UNKNOWN;
    414			dimm->edac_mode = EDAC_UNKNOWN;
    415		}
    416	}
    417
    418	/*
    419	 * Clear any error bits.
    420	 * (Yes, we really clear bits by writing 1 to them.)
    421	 */
    422	pci_write_bits16(pdev, I3000_ERRSTS, I3000_ERRSTS_BITS,
    423			 I3000_ERRSTS_BITS);
    424
    425	rc = -ENODEV;
    426	if (edac_mc_add_mc(mci)) {
    427		edac_dbg(3, "MC: failed edac_mc_add_mc()\n");
    428		goto fail;
    429	}
    430
    431	/* allocating generic PCI control info */
    432	i3000_pci = edac_pci_create_generic_ctl(&pdev->dev, EDAC_MOD_STR);
    433	if (!i3000_pci) {
    434		printk(KERN_WARNING
    435			"%s(): Unable to create PCI control\n",
    436			__func__);
    437		printk(KERN_WARNING
    438			"%s(): PCI error report via EDAC not setup\n",
    439			__func__);
    440	}
    441
    442	/* get this far and it's successful */
    443	edac_dbg(3, "MC: success\n");
    444	return 0;
    445
    446fail:
    447	if (mci)
    448		edac_mc_free(mci);
    449
    450	return rc;
    451}
    452
    453/* returns count (>= 0), or negative on error */
    454static int i3000_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
    455{
    456	int rc;
    457
    458	edac_dbg(0, "MC:\n");
    459
    460	if (pci_enable_device(pdev) < 0)
    461		return -EIO;
    462
    463	rc = i3000_probe1(pdev, ent->driver_data);
    464	if (!mci_pdev)
    465		mci_pdev = pci_dev_get(pdev);
    466
    467	return rc;
    468}
    469
    470static void i3000_remove_one(struct pci_dev *pdev)
    471{
    472	struct mem_ctl_info *mci;
    473
    474	edac_dbg(0, "\n");
    475
    476	if (i3000_pci)
    477		edac_pci_release_generic_ctl(i3000_pci);
    478
    479	mci = edac_mc_del_mc(&pdev->dev);
    480	if (!mci)
    481		return;
    482
    483	edac_mc_free(mci);
    484}
    485
    486static const struct pci_device_id i3000_pci_tbl[] = {
    487	{
    488	 PCI_VEND_DEV(INTEL, 3000_HB), PCI_ANY_ID, PCI_ANY_ID, 0, 0,
    489	 I3000},
    490	{
    491	 0,
    492	 }			/* 0 terminated list. */
    493};
    494
    495MODULE_DEVICE_TABLE(pci, i3000_pci_tbl);
    496
    497static struct pci_driver i3000_driver = {
    498	.name = EDAC_MOD_STR,
    499	.probe = i3000_init_one,
    500	.remove = i3000_remove_one,
    501	.id_table = i3000_pci_tbl,
    502};
    503
    504static int __init i3000_init(void)
    505{
    506	int pci_rc;
    507
    508	edac_dbg(3, "MC:\n");
    509
    510	/* Ensure that the OPSTATE is set correctly for POLL or NMI */
    511	opstate_init();
    512
    513	pci_rc = pci_register_driver(&i3000_driver);
    514	if (pci_rc < 0)
    515		goto fail0;
    516
    517	if (!mci_pdev) {
    518		i3000_registered = 0;
    519		mci_pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
    520					PCI_DEVICE_ID_INTEL_3000_HB, NULL);
    521		if (!mci_pdev) {
    522			edac_dbg(0, "i3000 pci_get_device fail\n");
    523			pci_rc = -ENODEV;
    524			goto fail1;
    525		}
    526
    527		pci_rc = i3000_init_one(mci_pdev, i3000_pci_tbl);
    528		if (pci_rc < 0) {
    529			edac_dbg(0, "i3000 init fail\n");
    530			pci_rc = -ENODEV;
    531			goto fail1;
    532		}
    533	}
    534
    535	return 0;
    536
    537fail1:
    538	pci_unregister_driver(&i3000_driver);
    539
    540fail0:
    541	pci_dev_put(mci_pdev);
    542
    543	return pci_rc;
    544}
    545
    546static void __exit i3000_exit(void)
    547{
    548	edac_dbg(3, "MC:\n");
    549
    550	pci_unregister_driver(&i3000_driver);
    551	if (!i3000_registered) {
    552		i3000_remove_one(mci_pdev);
    553		pci_dev_put(mci_pdev);
    554	}
    555}
    556
    557module_init(i3000_init);
    558module_exit(i3000_exit);
    559
    560MODULE_LICENSE("GPL");
    561MODULE_AUTHOR("Akamai Technologies Arthur Ulfeldt/Jason Uhlenkott");
    562MODULE_DESCRIPTION("MC support for Intel 3000 memory hub controllers");
    563
    564module_param(edac_op_state, int, 0444);
    565MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");