cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

i7300_edac.c (35981B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 * Intel 7300 class Memory Controllers kernel module (Clarksboro)
      4 *
      5 * Copyright (c) 2010 by:
      6 *	 Mauro Carvalho Chehab
      7 *
      8 * Red Hat Inc. https://www.redhat.com
      9 *
     10 * Intel 7300 Chipset Memory Controller Hub (MCH) - Datasheet
     11 *	http://www.intel.com/Assets/PDF/datasheet/318082.pdf
     12 *
     13 * TODO: The chipset allow checking for PCI Express errors also. Currently,
     14 *	 the driver covers only memory error errors
     15 *
     16 * This driver uses "csrows" EDAC attribute to represent DIMM slot#
     17 */
     18
     19#include <linux/module.h>
     20#include <linux/init.h>
     21#include <linux/pci.h>
     22#include <linux/pci_ids.h>
     23#include <linux/slab.h>
     24#include <linux/edac.h>
     25#include <linux/mmzone.h>
     26
     27#include "edac_module.h"
     28
     29/*
     30 * Alter this version for the I7300 module when modifications are made
     31 */
     32#define I7300_REVISION    " Ver: 1.0.0"
     33
     34#define EDAC_MOD_STR      "i7300_edac"
     35
     36#define i7300_printk(level, fmt, arg...) \
     37	edac_printk(level, "i7300", fmt, ##arg)
     38
     39#define i7300_mc_printk(mci, level, fmt, arg...) \
     40	edac_mc_chipset_printk(mci, level, "i7300", fmt, ##arg)
     41
     42/***********************************************
     43 * i7300 Limit constants Structs and static vars
     44 ***********************************************/
     45
     46/*
     47 * Memory topology is organized as:
     48 *	Branch 0 - 2 channels: channels 0 and 1 (FDB0 PCI dev 21.0)
     49 *	Branch 1 - 2 channels: channels 2 and 3 (FDB1 PCI dev 22.0)
     50 * Each channel can have to 8 DIMM sets (called as SLOTS)
     51 * Slots should generally be filled in pairs
     52 *	Except on Single Channel mode of operation
     53 *		just slot 0/channel0 filled on this mode
     54 *	On normal operation mode, the two channels on a branch should be
     55 *		filled together for the same SLOT#
     56 * When in mirrored mode, Branch 1 replicate memory at Branch 0, so, the four
     57 *		channels on both branches should be filled
     58 */
     59
     60/* Limits for i7300 */
     61#define MAX_SLOTS		8
     62#define MAX_BRANCHES		2
     63#define MAX_CH_PER_BRANCH	2
     64#define MAX_CHANNELS		(MAX_CH_PER_BRANCH * MAX_BRANCHES)
     65#define MAX_MIR			3
     66
     67#define to_channel(ch, branch)	((((branch)) << 1) | (ch))
     68
     69#define to_csrow(slot, ch, branch)					\
     70		(to_channel(ch, branch) | ((slot) << 2))
     71
     72/* Device name and register DID (Device ID) */
     73struct i7300_dev_info {
     74	const char *ctl_name;	/* name for this device */
     75	u16 fsb_mapping_errors;	/* DID for the branchmap,control */
     76};
     77
     78/* Table of devices attributes supported by this driver */
     79static const struct i7300_dev_info i7300_devs[] = {
     80	{
     81		.ctl_name = "I7300",
     82		.fsb_mapping_errors = PCI_DEVICE_ID_INTEL_I7300_MCH_ERR,
     83	},
     84};
     85
     86struct i7300_dimm_info {
     87	int megabytes;		/* size, 0 means not present  */
     88};
     89
     90/* driver private data structure */
     91struct i7300_pvt {
     92	struct pci_dev *pci_dev_16_0_fsb_ctlr;		/* 16.0 */
     93	struct pci_dev *pci_dev_16_1_fsb_addr_map;	/* 16.1 */
     94	struct pci_dev *pci_dev_16_2_fsb_err_regs;	/* 16.2 */
     95	struct pci_dev *pci_dev_2x_0_fbd_branch[MAX_BRANCHES];	/* 21.0  and 22.0 */
     96
     97	u16 tolm;				/* top of low memory */
     98	u64 ambase;				/* AMB BAR */
     99
    100	u32 mc_settings;			/* Report several settings */
    101	u32 mc_settings_a;
    102
    103	u16 mir[MAX_MIR];			/* Memory Interleave Reg*/
    104
    105	u16 mtr[MAX_SLOTS][MAX_BRANCHES];	/* Memory Technlogy Reg */
    106	u16 ambpresent[MAX_CHANNELS];		/* AMB present regs */
    107
    108	/* DIMM information matrix, allocating architecture maximums */
    109	struct i7300_dimm_info dimm_info[MAX_SLOTS][MAX_CHANNELS];
    110
    111	/* Temporary buffer for use when preparing error messages */
    112	char *tmp_prt_buffer;
    113};
    114
    115/* FIXME: Why do we need to have this static? */
    116static struct edac_pci_ctl_info *i7300_pci;
    117
    118/***************************************************
    119 * i7300 Register definitions for memory enumeration
    120 ***************************************************/
    121
    122/*
    123 * Device 16,
    124 * Function 0: System Address (not documented)
    125 * Function 1: Memory Branch Map, Control, Errors Register
    126 */
    127
    128	/* OFFSETS for Function 0 */
    129#define AMBASE			0x48 /* AMB Mem Mapped Reg Region Base */
    130#define MAXCH			0x56 /* Max Channel Number */
    131#define MAXDIMMPERCH		0x57 /* Max DIMM PER Channel Number */
    132
    133	/* OFFSETS for Function 1 */
    134#define MC_SETTINGS		0x40
    135  #define IS_MIRRORED(mc)		((mc) & (1 << 16))
    136  #define IS_ECC_ENABLED(mc)		((mc) & (1 << 5))
    137  #define IS_RETRY_ENABLED(mc)		((mc) & (1 << 31))
    138  #define IS_SCRBALGO_ENHANCED(mc)	((mc) & (1 << 8))
    139
    140#define MC_SETTINGS_A		0x58
    141  #define IS_SINGLE_MODE(mca)		((mca) & (1 << 14))
    142
    143#define TOLM			0x6C
    144
    145#define MIR0			0x80
    146#define MIR1			0x84
    147#define MIR2			0x88
    148
    149/*
    150 * Note: Other Intel EDAC drivers use AMBPRESENT to identify if the available
    151 * memory. From datasheet item 7.3.1 (FB-DIMM technology & organization), it
    152 * seems that we cannot use this information directly for the same usage.
    153 * Each memory slot may have up to 2 AMB interfaces, one for income and another
    154 * for outcome interface to the next slot.
    155 * For now, the driver just stores the AMB present registers, but rely only at
    156 * the MTR info to detect memory.
    157 * Datasheet is also not clear about how to map each AMBPRESENT registers to
    158 * one of the 4 available channels.
    159 */
    160#define AMBPRESENT_0	0x64
    161#define AMBPRESENT_1	0x66
    162
    163static const u16 mtr_regs[MAX_SLOTS] = {
    164	0x80, 0x84, 0x88, 0x8c,
    165	0x82, 0x86, 0x8a, 0x8e
    166};
    167
    168/*
    169 * Defines to extract the vaious fields from the
    170 *	MTRx - Memory Technology Registers
    171 */
    172#define MTR_DIMMS_PRESENT(mtr)		((mtr) & (1 << 8))
    173#define MTR_DIMMS_ETHROTTLE(mtr)	((mtr) & (1 << 7))
    174#define MTR_DRAM_WIDTH(mtr)		(((mtr) & (1 << 6)) ? 8 : 4)
    175#define MTR_DRAM_BANKS(mtr)		(((mtr) & (1 << 5)) ? 8 : 4)
    176#define MTR_DIMM_RANKS(mtr)		(((mtr) & (1 << 4)) ? 1 : 0)
    177#define MTR_DIMM_ROWS(mtr)		(((mtr) >> 2) & 0x3)
    178#define MTR_DRAM_BANKS_ADDR_BITS	2
    179#define MTR_DIMM_ROWS_ADDR_BITS(mtr)	(MTR_DIMM_ROWS(mtr) + 13)
    180#define MTR_DIMM_COLS(mtr)		((mtr) & 0x3)
    181#define MTR_DIMM_COLS_ADDR_BITS(mtr)	(MTR_DIMM_COLS(mtr) + 10)
    182
    183/************************************************
    184 * i7300 Register definitions for error detection
    185 ************************************************/
    186
    187/*
    188 * Device 16.1: FBD Error Registers
    189 */
    190#define FERR_FAT_FBD	0x98
    191static const char *ferr_fat_fbd_name[] = {
    192	[22] = "Non-Redundant Fast Reset Timeout",
    193	[2]  = ">Tmid Thermal event with intelligent throttling disabled",
    194	[1]  = "Memory or FBD configuration CRC read error",
    195	[0]  = "Memory Write error on non-redundant retry or "
    196	       "FBD configuration Write error on retry",
    197};
    198#define GET_FBD_FAT_IDX(fbderr)	(((fbderr) >> 28) & 3)
    199#define FERR_FAT_FBD_ERR_MASK ((1 << 0) | (1 << 1) | (1 << 2) | (1 << 22))
    200
    201#define FERR_NF_FBD	0xa0
    202static const char *ferr_nf_fbd_name[] = {
    203	[24] = "DIMM-Spare Copy Completed",
    204	[23] = "DIMM-Spare Copy Initiated",
    205	[22] = "Redundant Fast Reset Timeout",
    206	[21] = "Memory Write error on redundant retry",
    207	[18] = "SPD protocol Error",
    208	[17] = "FBD Northbound parity error on FBD Sync Status",
    209	[16] = "Correctable Patrol Data ECC",
    210	[15] = "Correctable Resilver- or Spare-Copy Data ECC",
    211	[14] = "Correctable Mirrored Demand Data ECC",
    212	[13] = "Correctable Non-Mirrored Demand Data ECC",
    213	[11] = "Memory or FBD configuration CRC read error",
    214	[10] = "FBD Configuration Write error on first attempt",
    215	[9]  = "Memory Write error on first attempt",
    216	[8]  = "Non-Aliased Uncorrectable Patrol Data ECC",
    217	[7]  = "Non-Aliased Uncorrectable Resilver- or Spare-Copy Data ECC",
    218	[6]  = "Non-Aliased Uncorrectable Mirrored Demand Data ECC",
    219	[5]  = "Non-Aliased Uncorrectable Non-Mirrored Demand Data ECC",
    220	[4]  = "Aliased Uncorrectable Patrol Data ECC",
    221	[3]  = "Aliased Uncorrectable Resilver- or Spare-Copy Data ECC",
    222	[2]  = "Aliased Uncorrectable Mirrored Demand Data ECC",
    223	[1]  = "Aliased Uncorrectable Non-Mirrored Demand Data ECC",
    224	[0]  = "Uncorrectable Data ECC on Replay",
    225};
    226#define GET_FBD_NF_IDX(fbderr)	(((fbderr) >> 28) & 3)
    227#define FERR_NF_FBD_ERR_MASK ((1 << 24) | (1 << 23) | (1 << 22) | (1 << 21) |\
    228			      (1 << 18) | (1 << 17) | (1 << 16) | (1 << 15) |\
    229			      (1 << 14) | (1 << 13) | (1 << 11) | (1 << 10) |\
    230			      (1 << 9)  | (1 << 8)  | (1 << 7)  | (1 << 6)  |\
    231			      (1 << 5)  | (1 << 4)  | (1 << 3)  | (1 << 2)  |\
    232			      (1 << 1)  | (1 << 0))
    233
    234#define EMASK_FBD	0xa8
    235#define EMASK_FBD_ERR_MASK ((1 << 27) | (1 << 26) | (1 << 25) | (1 << 24) |\
    236			    (1 << 22) | (1 << 21) | (1 << 20) | (1 << 19) |\
    237			    (1 << 18) | (1 << 17) | (1 << 16) | (1 << 14) |\
    238			    (1 << 13) | (1 << 12) | (1 << 11) | (1 << 10) |\
    239			    (1 << 9)  | (1 << 8)  | (1 << 7)  | (1 << 6)  |\
    240			    (1 << 5)  | (1 << 4)  | (1 << 3)  | (1 << 2)  |\
    241			    (1 << 1)  | (1 << 0))
    242
    243/*
    244 * Device 16.2: Global Error Registers
    245 */
    246
    247#define FERR_GLOBAL_HI	0x48
    248static const char *ferr_global_hi_name[] = {
    249	[3] = "FSB 3 Fatal Error",
    250	[2] = "FSB 2 Fatal Error",
    251	[1] = "FSB 1 Fatal Error",
    252	[0] = "FSB 0 Fatal Error",
    253};
    254#define ferr_global_hi_is_fatal(errno)	1
    255
    256#define FERR_GLOBAL_LO	0x40
    257static const char *ferr_global_lo_name[] = {
    258	[31] = "Internal MCH Fatal Error",
    259	[30] = "Intel QuickData Technology Device Fatal Error",
    260	[29] = "FSB1 Fatal Error",
    261	[28] = "FSB0 Fatal Error",
    262	[27] = "FBD Channel 3 Fatal Error",
    263	[26] = "FBD Channel 2 Fatal Error",
    264	[25] = "FBD Channel 1 Fatal Error",
    265	[24] = "FBD Channel 0 Fatal Error",
    266	[23] = "PCI Express Device 7Fatal Error",
    267	[22] = "PCI Express Device 6 Fatal Error",
    268	[21] = "PCI Express Device 5 Fatal Error",
    269	[20] = "PCI Express Device 4 Fatal Error",
    270	[19] = "PCI Express Device 3 Fatal Error",
    271	[18] = "PCI Express Device 2 Fatal Error",
    272	[17] = "PCI Express Device 1 Fatal Error",
    273	[16] = "ESI Fatal Error",
    274	[15] = "Internal MCH Non-Fatal Error",
    275	[14] = "Intel QuickData Technology Device Non Fatal Error",
    276	[13] = "FSB1 Non-Fatal Error",
    277	[12] = "FSB 0 Non-Fatal Error",
    278	[11] = "FBD Channel 3 Non-Fatal Error",
    279	[10] = "FBD Channel 2 Non-Fatal Error",
    280	[9]  = "FBD Channel 1 Non-Fatal Error",
    281	[8]  = "FBD Channel 0 Non-Fatal Error",
    282	[7]  = "PCI Express Device 7 Non-Fatal Error",
    283	[6]  = "PCI Express Device 6 Non-Fatal Error",
    284	[5]  = "PCI Express Device 5 Non-Fatal Error",
    285	[4]  = "PCI Express Device 4 Non-Fatal Error",
    286	[3]  = "PCI Express Device 3 Non-Fatal Error",
    287	[2]  = "PCI Express Device 2 Non-Fatal Error",
    288	[1]  = "PCI Express Device 1 Non-Fatal Error",
    289	[0]  = "ESI Non-Fatal Error",
    290};
    291#define ferr_global_lo_is_fatal(errno)	((errno < 16) ? 0 : 1)
    292
    293#define NRECMEMA	0xbe
    294  #define NRECMEMA_BANK(v)	(((v) >> 12) & 7)
    295  #define NRECMEMA_RANK(v)	(((v) >> 8) & 15)
    296
    297#define NRECMEMB	0xc0
    298  #define NRECMEMB_IS_WR(v)	((v) & (1 << 31))
    299  #define NRECMEMB_CAS(v)	(((v) >> 16) & 0x1fff)
    300  #define NRECMEMB_RAS(v)	((v) & 0xffff)
    301
    302#define REDMEMA		0xdc
    303
    304#define REDMEMB		0x7c
    305
    306#define RECMEMA		0xe0
    307  #define RECMEMA_BANK(v)	(((v) >> 12) & 7)
    308  #define RECMEMA_RANK(v)	(((v) >> 8) & 15)
    309
    310#define RECMEMB		0xe4
    311  #define RECMEMB_IS_WR(v)	((v) & (1 << 31))
    312  #define RECMEMB_CAS(v)	(((v) >> 16) & 0x1fff)
    313  #define RECMEMB_RAS(v)	((v) & 0xffff)
    314
    315/********************************************
    316 * i7300 Functions related to error detection
    317 ********************************************/
    318
    319/**
    320 * get_err_from_table() - Gets the error message from a table
    321 * @table:	table name (array of char *)
    322 * @size:	number of elements at the table
    323 * @pos:	position of the element to be returned
    324 *
    325 * This is a small routine that gets the pos-th element of a table. If the
    326 * element doesn't exist (or it is empty), it returns "reserved".
    327 * Instead of calling it directly, the better is to call via the macro
    328 * GET_ERR_FROM_TABLE(), that automatically checks the table size via
    329 * ARRAY_SIZE() macro
    330 */
    331static const char *get_err_from_table(const char *table[], int size, int pos)
    332{
    333	if (unlikely(pos >= size))
    334		return "Reserved";
    335
    336	if (unlikely(!table[pos]))
    337		return "Reserved";
    338
    339	return table[pos];
    340}
    341
    342#define GET_ERR_FROM_TABLE(table, pos)				\
    343	get_err_from_table(table, ARRAY_SIZE(table), pos)
    344
    345/**
    346 * i7300_process_error_global() - Retrieve the hardware error information from
    347 *				  the hardware global error registers and
    348 *				  sends it to dmesg
    349 * @mci: struct mem_ctl_info pointer
    350 */
    351static void i7300_process_error_global(struct mem_ctl_info *mci)
    352{
    353	struct i7300_pvt *pvt;
    354	u32 errnum, error_reg;
    355	unsigned long errors;
    356	const char *specific;
    357	bool is_fatal;
    358
    359	pvt = mci->pvt_info;
    360
    361	/* read in the 1st FATAL error register */
    362	pci_read_config_dword(pvt->pci_dev_16_2_fsb_err_regs,
    363			      FERR_GLOBAL_HI, &error_reg);
    364	if (unlikely(error_reg)) {
    365		errors = error_reg;
    366		errnum = find_first_bit(&errors,
    367					ARRAY_SIZE(ferr_global_hi_name));
    368		specific = GET_ERR_FROM_TABLE(ferr_global_hi_name, errnum);
    369		is_fatal = ferr_global_hi_is_fatal(errnum);
    370
    371		/* Clear the error bit */
    372		pci_write_config_dword(pvt->pci_dev_16_2_fsb_err_regs,
    373				       FERR_GLOBAL_HI, error_reg);
    374
    375		goto error_global;
    376	}
    377
    378	pci_read_config_dword(pvt->pci_dev_16_2_fsb_err_regs,
    379			      FERR_GLOBAL_LO, &error_reg);
    380	if (unlikely(error_reg)) {
    381		errors = error_reg;
    382		errnum = find_first_bit(&errors,
    383					ARRAY_SIZE(ferr_global_lo_name));
    384		specific = GET_ERR_FROM_TABLE(ferr_global_lo_name, errnum);
    385		is_fatal = ferr_global_lo_is_fatal(errnum);
    386
    387		/* Clear the error bit */
    388		pci_write_config_dword(pvt->pci_dev_16_2_fsb_err_regs,
    389				       FERR_GLOBAL_LO, error_reg);
    390
    391		goto error_global;
    392	}
    393	return;
    394
    395error_global:
    396	i7300_mc_printk(mci, KERN_EMERG, "%s misc error: %s\n",
    397			is_fatal ? "Fatal" : "NOT fatal", specific);
    398}
    399
    400/**
    401 * i7300_process_fbd_error() - Retrieve the hardware error information from
    402 *			       the FBD error registers and sends it via
    403 *			       EDAC error API calls
    404 * @mci: struct mem_ctl_info pointer
    405 */
    406static void i7300_process_fbd_error(struct mem_ctl_info *mci)
    407{
    408	struct i7300_pvt *pvt;
    409	u32 errnum, value, error_reg;
    410	u16 val16;
    411	unsigned branch, channel, bank, rank, cas, ras;
    412	u32 syndrome;
    413
    414	unsigned long errors;
    415	const char *specific;
    416	bool is_wr;
    417
    418	pvt = mci->pvt_info;
    419
    420	/* read in the 1st FATAL error register */
    421	pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
    422			      FERR_FAT_FBD, &error_reg);
    423	if (unlikely(error_reg & FERR_FAT_FBD_ERR_MASK)) {
    424		errors = error_reg & FERR_FAT_FBD_ERR_MASK ;
    425		errnum = find_first_bit(&errors,
    426					ARRAY_SIZE(ferr_fat_fbd_name));
    427		specific = GET_ERR_FROM_TABLE(ferr_fat_fbd_name, errnum);
    428		branch = (GET_FBD_FAT_IDX(error_reg) == 2) ? 1 : 0;
    429
    430		pci_read_config_word(pvt->pci_dev_16_1_fsb_addr_map,
    431				     NRECMEMA, &val16);
    432		bank = NRECMEMA_BANK(val16);
    433		rank = NRECMEMA_RANK(val16);
    434
    435		pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
    436				NRECMEMB, &value);
    437		is_wr = NRECMEMB_IS_WR(value);
    438		cas = NRECMEMB_CAS(value);
    439		ras = NRECMEMB_RAS(value);
    440
    441		/* Clean the error register */
    442		pci_write_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
    443				FERR_FAT_FBD, error_reg);
    444
    445		snprintf(pvt->tmp_prt_buffer, PAGE_SIZE,
    446			 "Bank=%d RAS=%d CAS=%d Err=0x%lx (%s))",
    447			 bank, ras, cas, errors, specific);
    448
    449		edac_mc_handle_error(HW_EVENT_ERR_FATAL, mci, 1, 0, 0, 0,
    450				     branch, -1, rank,
    451				     is_wr ? "Write error" : "Read error",
    452				     pvt->tmp_prt_buffer);
    453
    454	}
    455
    456	/* read in the 1st NON-FATAL error register */
    457	pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
    458			      FERR_NF_FBD, &error_reg);
    459	if (unlikely(error_reg & FERR_NF_FBD_ERR_MASK)) {
    460		errors = error_reg & FERR_NF_FBD_ERR_MASK;
    461		errnum = find_first_bit(&errors,
    462					ARRAY_SIZE(ferr_nf_fbd_name));
    463		specific = GET_ERR_FROM_TABLE(ferr_nf_fbd_name, errnum);
    464		branch = (GET_FBD_NF_IDX(error_reg) == 2) ? 1 : 0;
    465
    466		pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
    467			REDMEMA, &syndrome);
    468
    469		pci_read_config_word(pvt->pci_dev_16_1_fsb_addr_map,
    470				     RECMEMA, &val16);
    471		bank = RECMEMA_BANK(val16);
    472		rank = RECMEMA_RANK(val16);
    473
    474		pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
    475				RECMEMB, &value);
    476		is_wr = RECMEMB_IS_WR(value);
    477		cas = RECMEMB_CAS(value);
    478		ras = RECMEMB_RAS(value);
    479
    480		pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
    481				     REDMEMB, &value);
    482		channel = (branch << 1);
    483
    484		/* Second channel ? */
    485		channel += !!(value & BIT(17));
    486
    487		/* Clear the error bit */
    488		pci_write_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
    489				FERR_NF_FBD, error_reg);
    490
    491		/* Form out message */
    492		snprintf(pvt->tmp_prt_buffer, PAGE_SIZE,
    493			 "DRAM-Bank=%d RAS=%d CAS=%d, Err=0x%lx (%s))",
    494			 bank, ras, cas, errors, specific);
    495
    496		edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1, 0, 0,
    497				     syndrome,
    498				     branch >> 1, channel % 2, rank,
    499				     is_wr ? "Write error" : "Read error",
    500				     pvt->tmp_prt_buffer);
    501	}
    502	return;
    503}
    504
    505/**
    506 * i7300_check_error() - Calls the error checking subroutines
    507 * @mci: struct mem_ctl_info pointer
    508 */
    509static void i7300_check_error(struct mem_ctl_info *mci)
    510{
    511	i7300_process_error_global(mci);
    512	i7300_process_fbd_error(mci);
    513};
    514
    515/**
    516 * i7300_clear_error() - Clears the error registers
    517 * @mci: struct mem_ctl_info pointer
    518 */
    519static void i7300_clear_error(struct mem_ctl_info *mci)
    520{
    521	struct i7300_pvt *pvt = mci->pvt_info;
    522	u32 value;
    523	/*
    524	 * All error values are RWC - we need to read and write 1 to the
    525	 * bit that we want to cleanup
    526	 */
    527
    528	/* Clear global error registers */
    529	pci_read_config_dword(pvt->pci_dev_16_2_fsb_err_regs,
    530			      FERR_GLOBAL_HI, &value);
    531	pci_write_config_dword(pvt->pci_dev_16_2_fsb_err_regs,
    532			      FERR_GLOBAL_HI, value);
    533
    534	pci_read_config_dword(pvt->pci_dev_16_2_fsb_err_regs,
    535			      FERR_GLOBAL_LO, &value);
    536	pci_write_config_dword(pvt->pci_dev_16_2_fsb_err_regs,
    537			      FERR_GLOBAL_LO, value);
    538
    539	/* Clear FBD error registers */
    540	pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
    541			      FERR_FAT_FBD, &value);
    542	pci_write_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
    543			      FERR_FAT_FBD, value);
    544
    545	pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
    546			      FERR_NF_FBD, &value);
    547	pci_write_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
    548			      FERR_NF_FBD, value);
    549}
    550
    551/**
    552 * i7300_enable_error_reporting() - Enable the memory reporting logic at the
    553 *				    hardware
    554 * @mci: struct mem_ctl_info pointer
    555 */
    556static void i7300_enable_error_reporting(struct mem_ctl_info *mci)
    557{
    558	struct i7300_pvt *pvt = mci->pvt_info;
    559	u32 fbd_error_mask;
    560
    561	/* Read the FBD Error Mask Register */
    562	pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
    563			      EMASK_FBD, &fbd_error_mask);
    564
    565	/* Enable with a '0' */
    566	fbd_error_mask &= ~(EMASK_FBD_ERR_MASK);
    567
    568	pci_write_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
    569			       EMASK_FBD, fbd_error_mask);
    570}
    571
    572/************************************************
    573 * i7300 Functions related to memory enumberation
    574 ************************************************/
    575
    576/**
    577 * decode_mtr() - Decodes the MTR descriptor, filling the edac structs
    578 * @pvt: pointer to the private data struct used by i7300 driver
    579 * @slot: DIMM slot (0 to 7)
    580 * @ch: Channel number within the branch (0 or 1)
    581 * @branch: Branch number (0 or 1)
    582 * @dinfo: Pointer to DIMM info where dimm size is stored
    583 * @dimm: Pointer to the struct dimm_info that corresponds to that element
    584 */
    585static int decode_mtr(struct i7300_pvt *pvt,
    586		      int slot, int ch, int branch,
    587		      struct i7300_dimm_info *dinfo,
    588		      struct dimm_info *dimm)
    589{
    590	int mtr, ans, addrBits, channel;
    591
    592	channel = to_channel(ch, branch);
    593
    594	mtr = pvt->mtr[slot][branch];
    595	ans = MTR_DIMMS_PRESENT(mtr) ? 1 : 0;
    596
    597	edac_dbg(2, "\tMTR%d CH%d: DIMMs are %sPresent (mtr)\n",
    598		 slot, channel, ans ? "" : "NOT ");
    599
    600	/* Determine if there is a DIMM present in this DIMM slot */
    601	if (!ans)
    602		return 0;
    603
    604	/* Start with the number of bits for a Bank
    605	* on the DRAM */
    606	addrBits = MTR_DRAM_BANKS_ADDR_BITS;
    607	/* Add thenumber of ROW bits */
    608	addrBits += MTR_DIMM_ROWS_ADDR_BITS(mtr);
    609	/* add the number of COLUMN bits */
    610	addrBits += MTR_DIMM_COLS_ADDR_BITS(mtr);
    611	/* add the number of RANK bits */
    612	addrBits += MTR_DIMM_RANKS(mtr);
    613
    614	addrBits += 6;	/* add 64 bits per DIMM */
    615	addrBits -= 20;	/* divide by 2^^20 */
    616	addrBits -= 3;	/* 8 bits per bytes */
    617
    618	dinfo->megabytes = 1 << addrBits;
    619
    620	edac_dbg(2, "\t\tWIDTH: x%d\n", MTR_DRAM_WIDTH(mtr));
    621
    622	edac_dbg(2, "\t\tELECTRICAL THROTTLING is %s\n",
    623		 MTR_DIMMS_ETHROTTLE(mtr) ? "enabled" : "disabled");
    624
    625	edac_dbg(2, "\t\tNUMBANK: %d bank(s)\n", MTR_DRAM_BANKS(mtr));
    626	edac_dbg(2, "\t\tNUMRANK: %s\n",
    627		 MTR_DIMM_RANKS(mtr) ? "double" : "single");
    628	edac_dbg(2, "\t\tNUMROW: %s\n",
    629		 MTR_DIMM_ROWS(mtr) == 0 ? "8,192 - 13 rows" :
    630		 MTR_DIMM_ROWS(mtr) == 1 ? "16,384 - 14 rows" :
    631		 MTR_DIMM_ROWS(mtr) == 2 ? "32,768 - 15 rows" :
    632		 "65,536 - 16 rows");
    633	edac_dbg(2, "\t\tNUMCOL: %s\n",
    634		 MTR_DIMM_COLS(mtr) == 0 ? "1,024 - 10 columns" :
    635		 MTR_DIMM_COLS(mtr) == 1 ? "2,048 - 11 columns" :
    636		 MTR_DIMM_COLS(mtr) == 2 ? "4,096 - 12 columns" :
    637		 "reserved");
    638	edac_dbg(2, "\t\tSIZE: %d MB\n", dinfo->megabytes);
    639
    640	/*
    641	 * The type of error detection actually depends of the
    642	 * mode of operation. When it is just one single memory chip, at
    643	 * socket 0, channel 0, it uses 8-byte-over-32-byte SECDED+ code.
    644	 * In normal or mirrored mode, it uses Lockstep mode,
    645	 * with the possibility of using an extended algorithm for x8 memories
    646	 * See datasheet Sections 7.3.6 to 7.3.8
    647	 */
    648
    649	dimm->nr_pages = MiB_TO_PAGES(dinfo->megabytes);
    650	dimm->grain = 8;
    651	dimm->mtype = MEM_FB_DDR2;
    652	if (IS_SINGLE_MODE(pvt->mc_settings_a)) {
    653		dimm->edac_mode = EDAC_SECDED;
    654		edac_dbg(2, "\t\tECC code is 8-byte-over-32-byte SECDED+ code\n");
    655	} else {
    656		edac_dbg(2, "\t\tECC code is on Lockstep mode\n");
    657		if (MTR_DRAM_WIDTH(mtr) == 8)
    658			dimm->edac_mode = EDAC_S8ECD8ED;
    659		else
    660			dimm->edac_mode = EDAC_S4ECD4ED;
    661	}
    662
    663	/* ask what device type on this row */
    664	if (MTR_DRAM_WIDTH(mtr) == 8) {
    665		edac_dbg(2, "\t\tScrub algorithm for x8 is on %s mode\n",
    666			 IS_SCRBALGO_ENHANCED(pvt->mc_settings) ?
    667			 "enhanced" : "normal");
    668
    669		dimm->dtype = DEV_X8;
    670	} else
    671		dimm->dtype = DEV_X4;
    672
    673	return mtr;
    674}
    675
    676/**
    677 * print_dimm_size() - Prints dump of the memory organization
    678 * @pvt: pointer to the private data struct used by i7300 driver
    679 *
    680 * Useful for debug. If debug is disabled, this routine do nothing
    681 */
    682static void print_dimm_size(struct i7300_pvt *pvt)
    683{
    684#ifdef CONFIG_EDAC_DEBUG
    685	struct i7300_dimm_info *dinfo;
    686	char *p;
    687	int space, n;
    688	int channel, slot;
    689
    690	space = PAGE_SIZE;
    691	p = pvt->tmp_prt_buffer;
    692
    693	n = snprintf(p, space, "              ");
    694	p += n;
    695	space -= n;
    696	for (channel = 0; channel < MAX_CHANNELS; channel++) {
    697		n = snprintf(p, space, "channel %d | ", channel);
    698		p += n;
    699		space -= n;
    700	}
    701	edac_dbg(2, "%s\n", pvt->tmp_prt_buffer);
    702	p = pvt->tmp_prt_buffer;
    703	space = PAGE_SIZE;
    704	n = snprintf(p, space, "-------------------------------"
    705			       "------------------------------");
    706	p += n;
    707	space -= n;
    708	edac_dbg(2, "%s\n", pvt->tmp_prt_buffer);
    709	p = pvt->tmp_prt_buffer;
    710	space = PAGE_SIZE;
    711
    712	for (slot = 0; slot < MAX_SLOTS; slot++) {
    713		n = snprintf(p, space, "csrow/SLOT %d  ", slot);
    714		p += n;
    715		space -= n;
    716
    717		for (channel = 0; channel < MAX_CHANNELS; channel++) {
    718			dinfo = &pvt->dimm_info[slot][channel];
    719			n = snprintf(p, space, "%4d MB   | ", dinfo->megabytes);
    720			p += n;
    721			space -= n;
    722		}
    723
    724		edac_dbg(2, "%s\n", pvt->tmp_prt_buffer);
    725		p = pvt->tmp_prt_buffer;
    726		space = PAGE_SIZE;
    727	}
    728
    729	n = snprintf(p, space, "-------------------------------"
    730			       "------------------------------");
    731	p += n;
    732	space -= n;
    733	edac_dbg(2, "%s\n", pvt->tmp_prt_buffer);
    734	p = pvt->tmp_prt_buffer;
    735	space = PAGE_SIZE;
    736#endif
    737}
    738
    739/**
    740 * i7300_init_csrows() - Initialize the 'csrows' table within
    741 *			 the mci control structure with the
    742 *			 addressing of memory.
    743 * @mci: struct mem_ctl_info pointer
    744 */
    745static int i7300_init_csrows(struct mem_ctl_info *mci)
    746{
    747	struct i7300_pvt *pvt;
    748	struct i7300_dimm_info *dinfo;
    749	int rc = -ENODEV;
    750	int mtr;
    751	int ch, branch, slot, channel, max_channel, max_branch;
    752	struct dimm_info *dimm;
    753
    754	pvt = mci->pvt_info;
    755
    756	edac_dbg(2, "Memory Technology Registers:\n");
    757
    758	if (IS_SINGLE_MODE(pvt->mc_settings_a)) {
    759		max_branch = 1;
    760		max_channel = 1;
    761	} else {
    762		max_branch = MAX_BRANCHES;
    763		max_channel = MAX_CH_PER_BRANCH;
    764	}
    765
    766	/* Get the AMB present registers for the four channels */
    767	for (branch = 0; branch < max_branch; branch++) {
    768		/* Read and dump branch 0's MTRs */
    769		channel = to_channel(0, branch);
    770		pci_read_config_word(pvt->pci_dev_2x_0_fbd_branch[branch],
    771				     AMBPRESENT_0,
    772				&pvt->ambpresent[channel]);
    773		edac_dbg(2, "\t\tAMB-present CH%d = 0x%x:\n",
    774			 channel, pvt->ambpresent[channel]);
    775
    776		if (max_channel == 1)
    777			continue;
    778
    779		channel = to_channel(1, branch);
    780		pci_read_config_word(pvt->pci_dev_2x_0_fbd_branch[branch],
    781				     AMBPRESENT_1,
    782				&pvt->ambpresent[channel]);
    783		edac_dbg(2, "\t\tAMB-present CH%d = 0x%x:\n",
    784			 channel, pvt->ambpresent[channel]);
    785	}
    786
    787	/* Get the set of MTR[0-7] regs by each branch */
    788	for (slot = 0; slot < MAX_SLOTS; slot++) {
    789		int where = mtr_regs[slot];
    790		for (branch = 0; branch < max_branch; branch++) {
    791			pci_read_config_word(pvt->pci_dev_2x_0_fbd_branch[branch],
    792					where,
    793					&pvt->mtr[slot][branch]);
    794			for (ch = 0; ch < max_channel; ch++) {
    795				int channel = to_channel(ch, branch);
    796
    797				dimm = edac_get_dimm(mci, branch, ch, slot);
    798
    799				dinfo = &pvt->dimm_info[slot][channel];
    800
    801				mtr = decode_mtr(pvt, slot, ch, branch,
    802						 dinfo, dimm);
    803
    804				/* if no DIMMS on this row, continue */
    805				if (!MTR_DIMMS_PRESENT(mtr))
    806					continue;
    807
    808				rc = 0;
    809
    810			}
    811		}
    812	}
    813
    814	return rc;
    815}
    816
    817/**
    818 * decode_mir() - Decodes Memory Interleave Register (MIR) info
    819 * @mir_no: number of the MIR register to decode
    820 * @mir: array with the MIR data cached on the driver
    821 */
    822static void decode_mir(int mir_no, u16 mir[MAX_MIR])
    823{
    824	if (mir[mir_no] & 3)
    825		edac_dbg(2, "MIR%d: limit= 0x%x Branch(es) that participate: %s %s\n",
    826			 mir_no,
    827			 (mir[mir_no] >> 4) & 0xfff,
    828			 (mir[mir_no] & 1) ? "B0" : "",
    829			 (mir[mir_no] & 2) ? "B1" : "");
    830}
    831
    832/**
    833 * i7300_get_mc_regs() - Get the contents of the MC enumeration registers
    834 * @mci: struct mem_ctl_info pointer
    835 *
    836 * Data read is cached internally for its usage when needed
    837 */
    838static int i7300_get_mc_regs(struct mem_ctl_info *mci)
    839{
    840	struct i7300_pvt *pvt;
    841	u32 actual_tolm;
    842	int i, rc;
    843
    844	pvt = mci->pvt_info;
    845
    846	pci_read_config_dword(pvt->pci_dev_16_0_fsb_ctlr, AMBASE,
    847			(u32 *) &pvt->ambase);
    848
    849	edac_dbg(2, "AMBASE= 0x%lx\n", (long unsigned int)pvt->ambase);
    850
    851	/* Get the Branch Map regs */
    852	pci_read_config_word(pvt->pci_dev_16_1_fsb_addr_map, TOLM, &pvt->tolm);
    853	pvt->tolm >>= 12;
    854	edac_dbg(2, "TOLM (number of 256M regions) =%u (0x%x)\n",
    855		 pvt->tolm, pvt->tolm);
    856
    857	actual_tolm = (u32) ((1000l * pvt->tolm) >> (30 - 28));
    858	edac_dbg(2, "Actual TOLM byte addr=%u.%03u GB (0x%x)\n",
    859		 actual_tolm/1000, actual_tolm % 1000, pvt->tolm << 28);
    860
    861	/* Get memory controller settings */
    862	pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map, MC_SETTINGS,
    863			     &pvt->mc_settings);
    864	pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map, MC_SETTINGS_A,
    865			     &pvt->mc_settings_a);
    866
    867	if (IS_SINGLE_MODE(pvt->mc_settings_a))
    868		edac_dbg(0, "Memory controller operating on single mode\n");
    869	else
    870		edac_dbg(0, "Memory controller operating on %smirrored mode\n",
    871			 IS_MIRRORED(pvt->mc_settings) ? "" : "non-");
    872
    873	edac_dbg(0, "Error detection is %s\n",
    874		 IS_ECC_ENABLED(pvt->mc_settings) ? "enabled" : "disabled");
    875	edac_dbg(0, "Retry is %s\n",
    876		 IS_RETRY_ENABLED(pvt->mc_settings) ? "enabled" : "disabled");
    877
    878	/* Get Memory Interleave Range registers */
    879	pci_read_config_word(pvt->pci_dev_16_1_fsb_addr_map, MIR0,
    880			     &pvt->mir[0]);
    881	pci_read_config_word(pvt->pci_dev_16_1_fsb_addr_map, MIR1,
    882			     &pvt->mir[1]);
    883	pci_read_config_word(pvt->pci_dev_16_1_fsb_addr_map, MIR2,
    884			     &pvt->mir[2]);
    885
    886	/* Decode the MIR regs */
    887	for (i = 0; i < MAX_MIR; i++)
    888		decode_mir(i, pvt->mir);
    889
    890	rc = i7300_init_csrows(mci);
    891	if (rc < 0)
    892		return rc;
    893
    894	/* Go and determine the size of each DIMM and place in an
    895	 * orderly matrix */
    896	print_dimm_size(pvt);
    897
    898	return 0;
    899}
    900
    901/*************************************************
    902 * i7300 Functions related to device probe/release
    903 *************************************************/
    904
    905/**
    906 * i7300_put_devices() - Release the PCI devices
    907 * @mci: struct mem_ctl_info pointer
    908 */
    909static void i7300_put_devices(struct mem_ctl_info *mci)
    910{
    911	struct i7300_pvt *pvt;
    912	int branch;
    913
    914	pvt = mci->pvt_info;
    915
    916	/* Decrement usage count for devices */
    917	for (branch = 0; branch < MAX_CH_PER_BRANCH; branch++)
    918		pci_dev_put(pvt->pci_dev_2x_0_fbd_branch[branch]);
    919	pci_dev_put(pvt->pci_dev_16_2_fsb_err_regs);
    920	pci_dev_put(pvt->pci_dev_16_1_fsb_addr_map);
    921}
    922
    923/**
    924 * i7300_get_devices() - Find and perform 'get' operation on the MCH's
    925 *			 device/functions we want to reference for this driver
    926 * @mci: struct mem_ctl_info pointer
    927 *
    928 * Access and prepare the several devices for usage:
    929 * I7300 devices used by this driver:
    930 *    Device 16, functions 0,1 and 2:	PCI_DEVICE_ID_INTEL_I7300_MCH_ERR
    931 *    Device 21 function 0:		PCI_DEVICE_ID_INTEL_I7300_MCH_FB0
    932 *    Device 22 function 0:		PCI_DEVICE_ID_INTEL_I7300_MCH_FB1
    933 */
    934static int i7300_get_devices(struct mem_ctl_info *mci)
    935{
    936	struct i7300_pvt *pvt;
    937	struct pci_dev *pdev;
    938
    939	pvt = mci->pvt_info;
    940
    941	/* Attempt to 'get' the MCH register we want */
    942	pdev = NULL;
    943	while ((pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
    944				      PCI_DEVICE_ID_INTEL_I7300_MCH_ERR,
    945				      pdev))) {
    946		/* Store device 16 funcs 1 and 2 */
    947		switch (PCI_FUNC(pdev->devfn)) {
    948		case 1:
    949			if (!pvt->pci_dev_16_1_fsb_addr_map)
    950				pvt->pci_dev_16_1_fsb_addr_map =
    951							pci_dev_get(pdev);
    952			break;
    953		case 2:
    954			if (!pvt->pci_dev_16_2_fsb_err_regs)
    955				pvt->pci_dev_16_2_fsb_err_regs =
    956							pci_dev_get(pdev);
    957			break;
    958		}
    959	}
    960
    961	if (!pvt->pci_dev_16_1_fsb_addr_map ||
    962	    !pvt->pci_dev_16_2_fsb_err_regs) {
    963		/* At least one device was not found */
    964		i7300_printk(KERN_ERR,
    965			"'system address,Process Bus' device not found:"
    966			"vendor 0x%x device 0x%x ERR funcs (broken BIOS?)\n",
    967			PCI_VENDOR_ID_INTEL,
    968			PCI_DEVICE_ID_INTEL_I7300_MCH_ERR);
    969		goto error;
    970	}
    971
    972	edac_dbg(1, "System Address, processor bus- PCI Bus ID: %s  %x:%x\n",
    973		 pci_name(pvt->pci_dev_16_0_fsb_ctlr),
    974		 pvt->pci_dev_16_0_fsb_ctlr->vendor,
    975		 pvt->pci_dev_16_0_fsb_ctlr->device);
    976	edac_dbg(1, "Branchmap, control and errors - PCI Bus ID: %s  %x:%x\n",
    977		 pci_name(pvt->pci_dev_16_1_fsb_addr_map),
    978		 pvt->pci_dev_16_1_fsb_addr_map->vendor,
    979		 pvt->pci_dev_16_1_fsb_addr_map->device);
    980	edac_dbg(1, "FSB Error Regs - PCI Bus ID: %s  %x:%x\n",
    981		 pci_name(pvt->pci_dev_16_2_fsb_err_regs),
    982		 pvt->pci_dev_16_2_fsb_err_regs->vendor,
    983		 pvt->pci_dev_16_2_fsb_err_regs->device);
    984
    985	pvt->pci_dev_2x_0_fbd_branch[0] = pci_get_device(PCI_VENDOR_ID_INTEL,
    986					    PCI_DEVICE_ID_INTEL_I7300_MCH_FB0,
    987					    NULL);
    988	if (!pvt->pci_dev_2x_0_fbd_branch[0]) {
    989		i7300_printk(KERN_ERR,
    990			"MC: 'BRANCH 0' device not found:"
    991			"vendor 0x%x device 0x%x Func 0 (broken BIOS?)\n",
    992			PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I7300_MCH_FB0);
    993		goto error;
    994	}
    995
    996	pvt->pci_dev_2x_0_fbd_branch[1] = pci_get_device(PCI_VENDOR_ID_INTEL,
    997					    PCI_DEVICE_ID_INTEL_I7300_MCH_FB1,
    998					    NULL);
    999	if (!pvt->pci_dev_2x_0_fbd_branch[1]) {
   1000		i7300_printk(KERN_ERR,
   1001			"MC: 'BRANCH 1' device not found:"
   1002			"vendor 0x%x device 0x%x Func 0 "
   1003			"(broken BIOS?)\n",
   1004			PCI_VENDOR_ID_INTEL,
   1005			PCI_DEVICE_ID_INTEL_I7300_MCH_FB1);
   1006		goto error;
   1007	}
   1008
   1009	return 0;
   1010
   1011error:
   1012	i7300_put_devices(mci);
   1013	return -ENODEV;
   1014}
   1015
   1016/**
   1017 * i7300_init_one() - Probe for one instance of the device
   1018 * @pdev: struct pci_dev pointer
   1019 * @id: struct pci_device_id pointer - currently unused
   1020 */
   1021static int i7300_init_one(struct pci_dev *pdev, const struct pci_device_id *id)
   1022{
   1023	struct mem_ctl_info *mci;
   1024	struct edac_mc_layer layers[3];
   1025	struct i7300_pvt *pvt;
   1026	int rc;
   1027
   1028	/* wake up device */
   1029	rc = pci_enable_device(pdev);
   1030	if (rc == -EIO)
   1031		return rc;
   1032
   1033	edac_dbg(0, "MC: pdev bus %u dev=0x%x fn=0x%x\n",
   1034		 pdev->bus->number,
   1035		 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
   1036
   1037	/* We only are looking for func 0 of the set */
   1038	if (PCI_FUNC(pdev->devfn) != 0)
   1039		return -ENODEV;
   1040
   1041	/* allocate a new MC control structure */
   1042	layers[0].type = EDAC_MC_LAYER_BRANCH;
   1043	layers[0].size = MAX_BRANCHES;
   1044	layers[0].is_virt_csrow = false;
   1045	layers[1].type = EDAC_MC_LAYER_CHANNEL;
   1046	layers[1].size = MAX_CH_PER_BRANCH;
   1047	layers[1].is_virt_csrow = true;
   1048	layers[2].type = EDAC_MC_LAYER_SLOT;
   1049	layers[2].size = MAX_SLOTS;
   1050	layers[2].is_virt_csrow = true;
   1051	mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers, sizeof(*pvt));
   1052	if (mci == NULL)
   1053		return -ENOMEM;
   1054
   1055	edac_dbg(0, "MC: mci = %p\n", mci);
   1056
   1057	mci->pdev = &pdev->dev;	/* record ptr  to the generic device */
   1058
   1059	pvt = mci->pvt_info;
   1060	pvt->pci_dev_16_0_fsb_ctlr = pdev;	/* Record this device in our private */
   1061
   1062	pvt->tmp_prt_buffer = kmalloc(PAGE_SIZE, GFP_KERNEL);
   1063	if (!pvt->tmp_prt_buffer) {
   1064		edac_mc_free(mci);
   1065		return -ENOMEM;
   1066	}
   1067
   1068	/* 'get' the pci devices we want to reserve for our use */
   1069	if (i7300_get_devices(mci))
   1070		goto fail0;
   1071
   1072	mci->mc_idx = 0;
   1073	mci->mtype_cap = MEM_FLAG_FB_DDR2;
   1074	mci->edac_ctl_cap = EDAC_FLAG_NONE;
   1075	mci->edac_cap = EDAC_FLAG_NONE;
   1076	mci->mod_name = "i7300_edac.c";
   1077	mci->ctl_name = i7300_devs[0].ctl_name;
   1078	mci->dev_name = pci_name(pdev);
   1079	mci->ctl_page_to_phys = NULL;
   1080
   1081	/* Set the function pointer to an actual operation function */
   1082	mci->edac_check = i7300_check_error;
   1083
   1084	/* initialize the MC control structure 'csrows' table
   1085	 * with the mapping and control information */
   1086	if (i7300_get_mc_regs(mci)) {
   1087		edac_dbg(0, "MC: Setting mci->edac_cap to EDAC_FLAG_NONE because i7300_init_csrows() returned nonzero value\n");
   1088		mci->edac_cap = EDAC_FLAG_NONE;	/* no csrows found */
   1089	} else {
   1090		edac_dbg(1, "MC: Enable error reporting now\n");
   1091		i7300_enable_error_reporting(mci);
   1092	}
   1093
   1094	/* add this new MC control structure to EDAC's list of MCs */
   1095	if (edac_mc_add_mc(mci)) {
   1096		edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
   1097		/* FIXME: perhaps some code should go here that disables error
   1098		 * reporting if we just enabled it
   1099		 */
   1100		goto fail1;
   1101	}
   1102
   1103	i7300_clear_error(mci);
   1104
   1105	/* allocating generic PCI control info */
   1106	i7300_pci = edac_pci_create_generic_ctl(&pdev->dev, EDAC_MOD_STR);
   1107	if (!i7300_pci) {
   1108		printk(KERN_WARNING
   1109			"%s(): Unable to create PCI control\n",
   1110			__func__);
   1111		printk(KERN_WARNING
   1112			"%s(): PCI error report via EDAC not setup\n",
   1113			__func__);
   1114	}
   1115
   1116	return 0;
   1117
   1118	/* Error exit unwinding stack */
   1119fail1:
   1120
   1121	i7300_put_devices(mci);
   1122
   1123fail0:
   1124	kfree(pvt->tmp_prt_buffer);
   1125	edac_mc_free(mci);
   1126	return -ENODEV;
   1127}
   1128
   1129/**
   1130 * i7300_remove_one() - Remove the driver
   1131 * @pdev: struct pci_dev pointer
   1132 */
   1133static void i7300_remove_one(struct pci_dev *pdev)
   1134{
   1135	struct mem_ctl_info *mci;
   1136	char *tmp;
   1137
   1138	edac_dbg(0, "\n");
   1139
   1140	if (i7300_pci)
   1141		edac_pci_release_generic_ctl(i7300_pci);
   1142
   1143	mci = edac_mc_del_mc(&pdev->dev);
   1144	if (!mci)
   1145		return;
   1146
   1147	tmp = ((struct i7300_pvt *)mci->pvt_info)->tmp_prt_buffer;
   1148
   1149	/* retrieve references to resources, and free those resources */
   1150	i7300_put_devices(mci);
   1151
   1152	kfree(tmp);
   1153	edac_mc_free(mci);
   1154}
   1155
   1156/*
   1157 * pci_device_id: table for which devices we are looking for
   1158 *
   1159 * Has only 8086:360c PCI ID
   1160 */
   1161static const struct pci_device_id i7300_pci_tbl[] = {
   1162	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I7300_MCH_ERR)},
   1163	{0,}			/* 0 terminated list. */
   1164};
   1165
   1166MODULE_DEVICE_TABLE(pci, i7300_pci_tbl);
   1167
   1168/*
   1169 * i7300_driver: pci_driver structure for this module
   1170 */
   1171static struct pci_driver i7300_driver = {
   1172	.name = "i7300_edac",
   1173	.probe = i7300_init_one,
   1174	.remove = i7300_remove_one,
   1175	.id_table = i7300_pci_tbl,
   1176};
   1177
   1178/**
   1179 * i7300_init() - Registers the driver
   1180 */
   1181static int __init i7300_init(void)
   1182{
   1183	int pci_rc;
   1184
   1185	edac_dbg(2, "\n");
   1186
   1187	/* Ensure that the OPSTATE is set correctly for POLL or NMI */
   1188	opstate_init();
   1189
   1190	pci_rc = pci_register_driver(&i7300_driver);
   1191
   1192	return (pci_rc < 0) ? pci_rc : 0;
   1193}
   1194
   1195/**
   1196 * i7300_init() - Unregisters the driver
   1197 */
   1198static void __exit i7300_exit(void)
   1199{
   1200	edac_dbg(2, "\n");
   1201	pci_unregister_driver(&i7300_driver);
   1202}
   1203
   1204module_init(i7300_init);
   1205module_exit(i7300_exit);
   1206
   1207MODULE_LICENSE("GPL");
   1208MODULE_AUTHOR("Mauro Carvalho Chehab");
   1209MODULE_AUTHOR("Red Hat Inc. (https://www.redhat.com)");
   1210MODULE_DESCRIPTION("MC Driver for Intel I7300 memory controllers - "
   1211		   I7300_REVISION);
   1212
   1213module_param(edac_op_state, int, 0444);
   1214MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");