cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

igen6_edac.c (31869B)


      1// SPDX-License-Identifier: GPL-2.0
      2/*
      3 * Driver for Intel client SoC with integrated memory controller using IBECC
      4 *
      5 * Copyright (C) 2020 Intel Corporation
      6 *
      7 * The In-Band ECC (IBECC) IP provides ECC protection to all or specific
      8 * regions of the physical memory space. It's used for memory controllers
      9 * that don't support the out-of-band ECC which often needs an additional
     10 * storage device to each channel for storing ECC data.
     11 */
     12
     13#include <linux/module.h>
     14#include <linux/init.h>
     15#include <linux/pci.h>
     16#include <linux/slab.h>
     17#include <linux/irq_work.h>
     18#include <linux/llist.h>
     19#include <linux/genalloc.h>
     20#include <linux/edac.h>
     21#include <linux/bits.h>
     22#include <linux/io.h>
     23#include <asm/mach_traps.h>
     24#include <asm/nmi.h>
     25#include <asm/mce.h>
     26
     27#include "edac_mc.h"
     28#include "edac_module.h"
     29
     30#define IGEN6_REVISION	"v2.5"
     31
     32#define EDAC_MOD_STR	"igen6_edac"
     33#define IGEN6_NMI_NAME	"igen6_ibecc"
     34
     35/* Debug macros */
     36#define igen6_printk(level, fmt, arg...)		\
     37	edac_printk(level, "igen6", fmt, ##arg)
     38
     39#define igen6_mc_printk(mci, level, fmt, arg...)	\
     40	edac_mc_chipset_printk(mci, level, "igen6", fmt, ##arg)
     41
     42#define GET_BITFIELD(v, lo, hi) (((v) & GENMASK_ULL(hi, lo)) >> (lo))
     43
     44#define NUM_IMC				2 /* Max memory controllers */
     45#define NUM_CHANNELS			2 /* Max channels */
     46#define NUM_DIMMS			2 /* Max DIMMs per channel */
     47
     48#define _4GB				BIT_ULL(32)
     49
     50/* Size of physical memory */
     51#define TOM_OFFSET			0xa0
     52/* Top of low usable DRAM */
     53#define TOLUD_OFFSET			0xbc
     54/* Capability register C */
     55#define CAPID_C_OFFSET			0xec
     56#define CAPID_C_IBECC			BIT(15)
     57
     58/* Capability register E */
     59#define CAPID_E_OFFSET			0xf0
     60#define CAPID_E_IBECC			BIT(12)
     61
     62/* Error Status */
     63#define ERRSTS_OFFSET			0xc8
     64#define ERRSTS_CE			BIT_ULL(6)
     65#define ERRSTS_UE			BIT_ULL(7)
     66
     67/* Error Command */
     68#define ERRCMD_OFFSET			0xca
     69#define ERRCMD_CE			BIT_ULL(6)
     70#define ERRCMD_UE			BIT_ULL(7)
     71
     72/* IBECC MMIO base address */
     73#define IBECC_BASE			(res_cfg->ibecc_base)
     74#define IBECC_ACTIVATE_OFFSET		IBECC_BASE
     75#define IBECC_ACTIVATE_EN		BIT(0)
     76
     77/* IBECC error log */
     78#define ECC_ERROR_LOG_OFFSET		(IBECC_BASE + res_cfg->ibecc_error_log_offset)
     79#define ECC_ERROR_LOG_CE		BIT_ULL(62)
     80#define ECC_ERROR_LOG_UE		BIT_ULL(63)
     81#define ECC_ERROR_LOG_ADDR_SHIFT	5
     82#define ECC_ERROR_LOG_ADDR(v)		GET_BITFIELD(v, 5, 38)
     83#define ECC_ERROR_LOG_SYND(v)		GET_BITFIELD(v, 46, 61)
     84
     85/* Host MMIO base address */
     86#define MCHBAR_OFFSET			0x48
     87#define MCHBAR_EN			BIT_ULL(0)
     88#define MCHBAR_BASE(v)			(GET_BITFIELD(v, 16, 38) << 16)
     89#define MCHBAR_SIZE			0x10000
     90
     91/* Parameters for the channel decode stage */
     92#define IMC_BASE			(res_cfg->imc_base)
     93#define MAD_INTER_CHANNEL_OFFSET	IMC_BASE
     94#define MAD_INTER_CHANNEL_DDR_TYPE(v)	GET_BITFIELD(v, 0, 2)
     95#define MAD_INTER_CHANNEL_ECHM(v)	GET_BITFIELD(v, 3, 3)
     96#define MAD_INTER_CHANNEL_CH_L_MAP(v)	GET_BITFIELD(v, 4, 4)
     97#define MAD_INTER_CHANNEL_CH_S_SIZE(v)	((u64)GET_BITFIELD(v, 12, 19) << 29)
     98
     99/* Parameters for DRAM decode stage */
    100#define MAD_INTRA_CH0_OFFSET		(IMC_BASE + 4)
    101#define MAD_INTRA_CH_DIMM_L_MAP(v)	GET_BITFIELD(v, 0, 0)
    102
    103/* DIMM characteristics */
    104#define MAD_DIMM_CH0_OFFSET		(IMC_BASE + 0xc)
    105#define MAD_DIMM_CH_DIMM_L_SIZE(v)	((u64)GET_BITFIELD(v, 0, 6) << 29)
    106#define MAD_DIMM_CH_DLW(v)		GET_BITFIELD(v, 7, 8)
    107#define MAD_DIMM_CH_DIMM_S_SIZE(v)	((u64)GET_BITFIELD(v, 16, 22) << 29)
    108#define MAD_DIMM_CH_DSW(v)		GET_BITFIELD(v, 24, 25)
    109
    110/* Hash for memory controller selection */
    111#define MAD_MC_HASH_OFFSET		(IMC_BASE + 0x1b8)
    112#define MAC_MC_HASH_LSB(v)		GET_BITFIELD(v, 1, 3)
    113
    114/* Hash for channel selection */
    115#define CHANNEL_HASH_OFFSET		(IMC_BASE + 0x24)
    116/* Hash for enhanced channel selection */
    117#define CHANNEL_EHASH_OFFSET		(IMC_BASE + 0x28)
    118#define CHANNEL_HASH_MASK(v)		(GET_BITFIELD(v, 6, 19) << 6)
    119#define CHANNEL_HASH_LSB_MASK_BIT(v)	GET_BITFIELD(v, 24, 26)
    120#define CHANNEL_HASH_MODE(v)		GET_BITFIELD(v, 28, 28)
    121
    122/* Parameters for memory slice decode stage */
    123#define MEM_SLICE_HASH_MASK(v)		(GET_BITFIELD(v, 6, 19) << 6)
    124#define MEM_SLICE_HASH_LSB_MASK_BIT(v)	GET_BITFIELD(v, 24, 26)
    125
    126static struct res_config {
    127	bool machine_check;
    128	int num_imc;
    129	u32 imc_base;
    130	u32 cmf_base;
    131	u32 cmf_size;
    132	u32 ms_hash_offset;
    133	u32 ibecc_base;
    134	u32 ibecc_error_log_offset;
    135	bool (*ibecc_available)(struct pci_dev *pdev);
    136	/* Convert error address logged in IBECC to system physical address */
    137	u64 (*err_addr_to_sys_addr)(u64 eaddr, int mc);
    138	/* Convert error address logged in IBECC to integrated memory controller address */
    139	u64 (*err_addr_to_imc_addr)(u64 eaddr, int mc);
    140} *res_cfg;
    141
    142struct igen6_imc {
    143	int mc;
    144	struct mem_ctl_info *mci;
    145	struct pci_dev *pdev;
    146	struct device dev;
    147	void __iomem *window;
    148	u64 size;
    149	u64 ch_s_size;
    150	int ch_l_map;
    151	u64 dimm_s_size[NUM_CHANNELS];
    152	u64 dimm_l_size[NUM_CHANNELS];
    153	int dimm_l_map[NUM_CHANNELS];
    154};
    155
    156static struct igen6_pvt {
    157	struct igen6_imc imc[NUM_IMC];
    158	u64 ms_hash;
    159	u64 ms_s_size;
    160	int ms_l_map;
    161} *igen6_pvt;
    162
    163/* The top of low usable DRAM */
    164static u32 igen6_tolud;
    165/* The size of physical memory */
    166static u64 igen6_tom;
    167
    168struct decoded_addr {
    169	int mc;
    170	u64 imc_addr;
    171	u64 sys_addr;
    172	int channel_idx;
    173	u64 channel_addr;
    174	int sub_channel_idx;
    175	u64 sub_channel_addr;
    176};
    177
    178struct ecclog_node {
    179	struct llist_node llnode;
    180	int mc;
    181	u64 ecclog;
    182};
    183
    184/*
    185 * In the NMI handler, the driver uses the lock-less memory allocator
    186 * to allocate memory to store the IBECC error logs and links the logs
    187 * to the lock-less list. Delay printk() and the work of error reporting
    188 * to EDAC core in a worker.
    189 */
    190#define ECCLOG_POOL_SIZE	PAGE_SIZE
    191static LLIST_HEAD(ecclog_llist);
    192static struct gen_pool *ecclog_pool;
    193static char ecclog_buf[ECCLOG_POOL_SIZE];
    194static struct irq_work ecclog_irq_work;
    195static struct work_struct ecclog_work;
    196
    197/* Compute die IDs for Elkhart Lake with IBECC */
    198#define DID_EHL_SKU5	0x4514
    199#define DID_EHL_SKU6	0x4528
    200#define DID_EHL_SKU7	0x452a
    201#define DID_EHL_SKU8	0x4516
    202#define DID_EHL_SKU9	0x452c
    203#define DID_EHL_SKU10	0x452e
    204#define DID_EHL_SKU11	0x4532
    205#define DID_EHL_SKU12	0x4518
    206#define DID_EHL_SKU13	0x451a
    207#define DID_EHL_SKU14	0x4534
    208#define DID_EHL_SKU15	0x4536
    209
    210/* Compute die IDs for ICL-NNPI with IBECC */
    211#define DID_ICL_SKU8	0x4581
    212#define DID_ICL_SKU10	0x4585
    213#define DID_ICL_SKU11	0x4589
    214#define DID_ICL_SKU12	0x458d
    215
    216/* Compute die IDs for Tiger Lake with IBECC */
    217#define DID_TGL_SKU	0x9a14
    218
    219/* Compute die IDs for Alder Lake with IBECC */
    220#define DID_ADL_SKU1	0x4601
    221#define DID_ADL_SKU2	0x4602
    222#define DID_ADL_SKU3	0x4621
    223#define DID_ADL_SKU4	0x4641
    224
    225static bool ehl_ibecc_available(struct pci_dev *pdev)
    226{
    227	u32 v;
    228
    229	if (pci_read_config_dword(pdev, CAPID_C_OFFSET, &v))
    230		return false;
    231
    232	return !!(CAPID_C_IBECC & v);
    233}
    234
    235static u64 ehl_err_addr_to_sys_addr(u64 eaddr, int mc)
    236{
    237	return eaddr;
    238}
    239
    240static u64 ehl_err_addr_to_imc_addr(u64 eaddr, int mc)
    241{
    242	if (eaddr < igen6_tolud)
    243		return eaddr;
    244
    245	if (igen6_tom <= _4GB)
    246		return eaddr + igen6_tolud - _4GB;
    247
    248	if (eaddr < _4GB)
    249		return eaddr + igen6_tolud - igen6_tom;
    250
    251	return eaddr;
    252}
    253
    254static bool icl_ibecc_available(struct pci_dev *pdev)
    255{
    256	u32 v;
    257
    258	if (pci_read_config_dword(pdev, CAPID_C_OFFSET, &v))
    259		return false;
    260
    261	return !(CAPID_C_IBECC & v) &&
    262		(boot_cpu_data.x86_stepping >= 1);
    263}
    264
    265static bool tgl_ibecc_available(struct pci_dev *pdev)
    266{
    267	u32 v;
    268
    269	if (pci_read_config_dword(pdev, CAPID_E_OFFSET, &v))
    270		return false;
    271
    272	return !(CAPID_E_IBECC & v);
    273}
    274
    275static u64 mem_addr_to_sys_addr(u64 maddr)
    276{
    277	if (maddr < igen6_tolud)
    278		return maddr;
    279
    280	if (igen6_tom <= _4GB)
    281		return maddr - igen6_tolud + _4GB;
    282
    283	if (maddr < _4GB)
    284		return maddr - igen6_tolud + igen6_tom;
    285
    286	return maddr;
    287}
    288
    289static u64 mem_slice_hash(u64 addr, u64 mask, u64 hash_init, int intlv_bit)
    290{
    291	u64 hash_addr = addr & mask, hash = hash_init;
    292	u64 intlv = (addr >> intlv_bit) & 1;
    293	int i;
    294
    295	for (i = 6; i < 20; i++)
    296		hash ^= (hash_addr >> i) & 1;
    297
    298	return hash ^ intlv;
    299}
    300
    301static u64 tgl_err_addr_to_mem_addr(u64 eaddr, int mc)
    302{
    303	u64 maddr, hash, mask, ms_s_size;
    304	int intlv_bit;
    305	u32 ms_hash;
    306
    307	ms_s_size = igen6_pvt->ms_s_size;
    308	if (eaddr >= ms_s_size)
    309		return eaddr + ms_s_size;
    310
    311	ms_hash = igen6_pvt->ms_hash;
    312
    313	mask = MEM_SLICE_HASH_MASK(ms_hash);
    314	intlv_bit = MEM_SLICE_HASH_LSB_MASK_BIT(ms_hash) + 6;
    315
    316	maddr = GET_BITFIELD(eaddr, intlv_bit, 63) << (intlv_bit + 1) |
    317		GET_BITFIELD(eaddr, 0, intlv_bit - 1);
    318
    319	hash = mem_slice_hash(maddr, mask, mc, intlv_bit);
    320
    321	return maddr | (hash << intlv_bit);
    322}
    323
    324static u64 tgl_err_addr_to_sys_addr(u64 eaddr, int mc)
    325{
    326	u64 maddr = tgl_err_addr_to_mem_addr(eaddr, mc);
    327
    328	return mem_addr_to_sys_addr(maddr);
    329}
    330
    331static u64 tgl_err_addr_to_imc_addr(u64 eaddr, int mc)
    332{
    333	return eaddr;
    334}
    335
    336static u64 adl_err_addr_to_sys_addr(u64 eaddr, int mc)
    337{
    338	return mem_addr_to_sys_addr(eaddr);
    339}
    340
    341static u64 adl_err_addr_to_imc_addr(u64 eaddr, int mc)
    342{
    343	u64 imc_addr, ms_s_size = igen6_pvt->ms_s_size;
    344	struct igen6_imc *imc = &igen6_pvt->imc[mc];
    345	int intlv_bit;
    346	u32 mc_hash;
    347
    348	if (eaddr >= 2 * ms_s_size)
    349		return eaddr - ms_s_size;
    350
    351	mc_hash = readl(imc->window + MAD_MC_HASH_OFFSET);
    352
    353	intlv_bit = MAC_MC_HASH_LSB(mc_hash) + 6;
    354
    355	imc_addr = GET_BITFIELD(eaddr, intlv_bit + 1, 63) << intlv_bit |
    356		   GET_BITFIELD(eaddr, 0, intlv_bit - 1);
    357
    358	return imc_addr;
    359}
    360
    361static struct res_config ehl_cfg = {
    362	.num_imc		= 1,
    363	.imc_base		= 0x5000,
    364	.ibecc_base		= 0xdc00,
    365	.ibecc_available	= ehl_ibecc_available,
    366	.ibecc_error_log_offset	= 0x170,
    367	.err_addr_to_sys_addr	= ehl_err_addr_to_sys_addr,
    368	.err_addr_to_imc_addr	= ehl_err_addr_to_imc_addr,
    369};
    370
    371static struct res_config icl_cfg = {
    372	.num_imc		= 1,
    373	.imc_base		= 0x5000,
    374	.ibecc_base		= 0xd800,
    375	.ibecc_error_log_offset	= 0x170,
    376	.ibecc_available	= icl_ibecc_available,
    377	.err_addr_to_sys_addr	= ehl_err_addr_to_sys_addr,
    378	.err_addr_to_imc_addr	= ehl_err_addr_to_imc_addr,
    379};
    380
    381static struct res_config tgl_cfg = {
    382	.machine_check		= true,
    383	.num_imc		= 2,
    384	.imc_base		= 0x5000,
    385	.cmf_base		= 0x11000,
    386	.cmf_size		= 0x800,
    387	.ms_hash_offset		= 0xac,
    388	.ibecc_base		= 0xd400,
    389	.ibecc_error_log_offset	= 0x170,
    390	.ibecc_available	= tgl_ibecc_available,
    391	.err_addr_to_sys_addr	= tgl_err_addr_to_sys_addr,
    392	.err_addr_to_imc_addr	= tgl_err_addr_to_imc_addr,
    393};
    394
    395static struct res_config adl_cfg = {
    396	.machine_check		= true,
    397	.num_imc		= 2,
    398	.imc_base		= 0xd800,
    399	.ibecc_base		= 0xd400,
    400	.ibecc_error_log_offset	= 0x68,
    401	.ibecc_available	= tgl_ibecc_available,
    402	.err_addr_to_sys_addr	= adl_err_addr_to_sys_addr,
    403	.err_addr_to_imc_addr	= adl_err_addr_to_imc_addr,
    404};
    405
    406static const struct pci_device_id igen6_pci_tbl[] = {
    407	{ PCI_VDEVICE(INTEL, DID_EHL_SKU5), (kernel_ulong_t)&ehl_cfg },
    408	{ PCI_VDEVICE(INTEL, DID_EHL_SKU6), (kernel_ulong_t)&ehl_cfg },
    409	{ PCI_VDEVICE(INTEL, DID_EHL_SKU7), (kernel_ulong_t)&ehl_cfg },
    410	{ PCI_VDEVICE(INTEL, DID_EHL_SKU8), (kernel_ulong_t)&ehl_cfg },
    411	{ PCI_VDEVICE(INTEL, DID_EHL_SKU9), (kernel_ulong_t)&ehl_cfg },
    412	{ PCI_VDEVICE(INTEL, DID_EHL_SKU10), (kernel_ulong_t)&ehl_cfg },
    413	{ PCI_VDEVICE(INTEL, DID_EHL_SKU11), (kernel_ulong_t)&ehl_cfg },
    414	{ PCI_VDEVICE(INTEL, DID_EHL_SKU12), (kernel_ulong_t)&ehl_cfg },
    415	{ PCI_VDEVICE(INTEL, DID_EHL_SKU13), (kernel_ulong_t)&ehl_cfg },
    416	{ PCI_VDEVICE(INTEL, DID_EHL_SKU14), (kernel_ulong_t)&ehl_cfg },
    417	{ PCI_VDEVICE(INTEL, DID_EHL_SKU15), (kernel_ulong_t)&ehl_cfg },
    418	{ PCI_VDEVICE(INTEL, DID_ICL_SKU8), (kernel_ulong_t)&icl_cfg },
    419	{ PCI_VDEVICE(INTEL, DID_ICL_SKU10), (kernel_ulong_t)&icl_cfg },
    420	{ PCI_VDEVICE(INTEL, DID_ICL_SKU11), (kernel_ulong_t)&icl_cfg },
    421	{ PCI_VDEVICE(INTEL, DID_ICL_SKU12), (kernel_ulong_t)&icl_cfg },
    422	{ PCI_VDEVICE(INTEL, DID_TGL_SKU), (kernel_ulong_t)&tgl_cfg },
    423	{ PCI_VDEVICE(INTEL, DID_ADL_SKU1), (kernel_ulong_t)&adl_cfg },
    424	{ PCI_VDEVICE(INTEL, DID_ADL_SKU2), (kernel_ulong_t)&adl_cfg },
    425	{ PCI_VDEVICE(INTEL, DID_ADL_SKU3), (kernel_ulong_t)&adl_cfg },
    426	{ PCI_VDEVICE(INTEL, DID_ADL_SKU4), (kernel_ulong_t)&adl_cfg },
    427	{ },
    428};
    429MODULE_DEVICE_TABLE(pci, igen6_pci_tbl);
    430
    431static enum dev_type get_width(int dimm_l, u32 mad_dimm)
    432{
    433	u32 w = dimm_l ? MAD_DIMM_CH_DLW(mad_dimm) :
    434			 MAD_DIMM_CH_DSW(mad_dimm);
    435
    436	switch (w) {
    437	case 0:
    438		return DEV_X8;
    439	case 1:
    440		return DEV_X16;
    441	case 2:
    442		return DEV_X32;
    443	default:
    444		return DEV_UNKNOWN;
    445	}
    446}
    447
    448static enum mem_type get_memory_type(u32 mad_inter)
    449{
    450	u32 t = MAD_INTER_CHANNEL_DDR_TYPE(mad_inter);
    451
    452	switch (t) {
    453	case 0:
    454		return MEM_DDR4;
    455	case 1:
    456		return MEM_DDR3;
    457	case 2:
    458		return MEM_LPDDR3;
    459	case 3:
    460		return MEM_LPDDR4;
    461	case 4:
    462		return MEM_WIO2;
    463	default:
    464		return MEM_UNKNOWN;
    465	}
    466}
    467
    468static int decode_chan_idx(u64 addr, u64 mask, int intlv_bit)
    469{
    470	u64 hash_addr = addr & mask, hash = 0;
    471	u64 intlv = (addr >> intlv_bit) & 1;
    472	int i;
    473
    474	for (i = 6; i < 20; i++)
    475		hash ^= (hash_addr >> i) & 1;
    476
    477	return (int)hash ^ intlv;
    478}
    479
    480static u64 decode_channel_addr(u64 addr, int intlv_bit)
    481{
    482	u64 channel_addr;
    483
    484	/* Remove the interleave bit and shift upper part down to fill gap */
    485	channel_addr  = GET_BITFIELD(addr, intlv_bit + 1, 63) << intlv_bit;
    486	channel_addr |= GET_BITFIELD(addr, 0, intlv_bit - 1);
    487
    488	return channel_addr;
    489}
    490
    491static void decode_addr(u64 addr, u32 hash, u64 s_size, int l_map,
    492			int *idx, u64 *sub_addr)
    493{
    494	int intlv_bit = CHANNEL_HASH_LSB_MASK_BIT(hash) + 6;
    495
    496	if (addr > 2 * s_size) {
    497		*sub_addr = addr - s_size;
    498		*idx = l_map;
    499		return;
    500	}
    501
    502	if (CHANNEL_HASH_MODE(hash)) {
    503		*sub_addr = decode_channel_addr(addr, intlv_bit);
    504		*idx = decode_chan_idx(addr, CHANNEL_HASH_MASK(hash), intlv_bit);
    505	} else {
    506		*sub_addr = decode_channel_addr(addr, 6);
    507		*idx = GET_BITFIELD(addr, 6, 6);
    508	}
    509}
    510
    511static int igen6_decode(struct decoded_addr *res)
    512{
    513	struct igen6_imc *imc = &igen6_pvt->imc[res->mc];
    514	u64 addr = res->imc_addr, sub_addr, s_size;
    515	int idx, l_map;
    516	u32 hash;
    517
    518	if (addr >= igen6_tom) {
    519		edac_dbg(0, "Address 0x%llx out of range\n", addr);
    520		return -EINVAL;
    521	}
    522
    523	/* Decode channel */
    524	hash   = readl(imc->window + CHANNEL_HASH_OFFSET);
    525	s_size = imc->ch_s_size;
    526	l_map  = imc->ch_l_map;
    527	decode_addr(addr, hash, s_size, l_map, &idx, &sub_addr);
    528	res->channel_idx  = idx;
    529	res->channel_addr = sub_addr;
    530
    531	/* Decode sub-channel/DIMM */
    532	hash   = readl(imc->window + CHANNEL_EHASH_OFFSET);
    533	s_size = imc->dimm_s_size[idx];
    534	l_map  = imc->dimm_l_map[idx];
    535	decode_addr(res->channel_addr, hash, s_size, l_map, &idx, &sub_addr);
    536	res->sub_channel_idx  = idx;
    537	res->sub_channel_addr = sub_addr;
    538
    539	return 0;
    540}
    541
    542static void igen6_output_error(struct decoded_addr *res,
    543			       struct mem_ctl_info *mci, u64 ecclog)
    544{
    545	enum hw_event_mc_err_type type = ecclog & ECC_ERROR_LOG_UE ?
    546					 HW_EVENT_ERR_UNCORRECTED :
    547					 HW_EVENT_ERR_CORRECTED;
    548
    549	edac_mc_handle_error(type, mci, 1,
    550			     res->sys_addr >> PAGE_SHIFT,
    551			     res->sys_addr & ~PAGE_MASK,
    552			     ECC_ERROR_LOG_SYND(ecclog),
    553			     res->channel_idx, res->sub_channel_idx,
    554			     -1, "", "");
    555}
    556
    557static struct gen_pool *ecclog_gen_pool_create(void)
    558{
    559	struct gen_pool *pool;
    560
    561	pool = gen_pool_create(ilog2(sizeof(struct ecclog_node)), -1);
    562	if (!pool)
    563		return NULL;
    564
    565	if (gen_pool_add(pool, (unsigned long)ecclog_buf, ECCLOG_POOL_SIZE, -1)) {
    566		gen_pool_destroy(pool);
    567		return NULL;
    568	}
    569
    570	return pool;
    571}
    572
    573static int ecclog_gen_pool_add(int mc, u64 ecclog)
    574{
    575	struct ecclog_node *node;
    576
    577	node = (void *)gen_pool_alloc(ecclog_pool, sizeof(*node));
    578	if (!node)
    579		return -ENOMEM;
    580
    581	node->mc = mc;
    582	node->ecclog = ecclog;
    583	llist_add(&node->llnode, &ecclog_llist);
    584
    585	return 0;
    586}
    587
    588/*
    589 * Either the memory-mapped I/O status register ECC_ERROR_LOG or the PCI
    590 * configuration space status register ERRSTS can indicate whether a
    591 * correctable error or an uncorrectable error occurred. We only use the
    592 * ECC_ERROR_LOG register to check error type, but need to clear both
    593 * registers to enable future error events.
    594 */
    595static u64 ecclog_read_and_clear(struct igen6_imc *imc)
    596{
    597	u64 ecclog = readq(imc->window + ECC_ERROR_LOG_OFFSET);
    598
    599	if (ecclog & (ECC_ERROR_LOG_CE | ECC_ERROR_LOG_UE)) {
    600		/* Clear CE/UE bits by writing 1s */
    601		writeq(ecclog, imc->window + ECC_ERROR_LOG_OFFSET);
    602		return ecclog;
    603	}
    604
    605	return 0;
    606}
    607
    608static void errsts_clear(struct igen6_imc *imc)
    609{
    610	u16 errsts;
    611
    612	if (pci_read_config_word(imc->pdev, ERRSTS_OFFSET, &errsts)) {
    613		igen6_printk(KERN_ERR, "Failed to read ERRSTS\n");
    614		return;
    615	}
    616
    617	/* Clear CE/UE bits by writing 1s */
    618	if (errsts & (ERRSTS_CE | ERRSTS_UE))
    619		pci_write_config_word(imc->pdev, ERRSTS_OFFSET, errsts);
    620}
    621
    622static int errcmd_enable_error_reporting(bool enable)
    623{
    624	struct igen6_imc *imc = &igen6_pvt->imc[0];
    625	u16 errcmd;
    626	int rc;
    627
    628	rc = pci_read_config_word(imc->pdev, ERRCMD_OFFSET, &errcmd);
    629	if (rc)
    630		return rc;
    631
    632	if (enable)
    633		errcmd |= ERRCMD_CE | ERRSTS_UE;
    634	else
    635		errcmd &= ~(ERRCMD_CE | ERRSTS_UE);
    636
    637	rc = pci_write_config_word(imc->pdev, ERRCMD_OFFSET, errcmd);
    638	if (rc)
    639		return rc;
    640
    641	return 0;
    642}
    643
    644static int ecclog_handler(void)
    645{
    646	struct igen6_imc *imc;
    647	int i, n = 0;
    648	u64 ecclog;
    649
    650	for (i = 0; i < res_cfg->num_imc; i++) {
    651		imc = &igen6_pvt->imc[i];
    652
    653		/* errsts_clear() isn't NMI-safe. Delay it in the IRQ context */
    654
    655		ecclog = ecclog_read_and_clear(imc);
    656		if (!ecclog)
    657			continue;
    658
    659		if (!ecclog_gen_pool_add(i, ecclog))
    660			irq_work_queue(&ecclog_irq_work);
    661
    662		n++;
    663	}
    664
    665	return n;
    666}
    667
    668static void ecclog_work_cb(struct work_struct *work)
    669{
    670	struct ecclog_node *node, *tmp;
    671	struct mem_ctl_info *mci;
    672	struct llist_node *head;
    673	struct decoded_addr res;
    674	u64 eaddr;
    675
    676	head = llist_del_all(&ecclog_llist);
    677	if (!head)
    678		return;
    679
    680	llist_for_each_entry_safe(node, tmp, head, llnode) {
    681		memset(&res, 0, sizeof(res));
    682		eaddr = ECC_ERROR_LOG_ADDR(node->ecclog) <<
    683			ECC_ERROR_LOG_ADDR_SHIFT;
    684		res.mc	     = node->mc;
    685		res.sys_addr = res_cfg->err_addr_to_sys_addr(eaddr, res.mc);
    686		res.imc_addr = res_cfg->err_addr_to_imc_addr(eaddr, res.mc);
    687
    688		mci = igen6_pvt->imc[res.mc].mci;
    689
    690		edac_dbg(2, "MC %d, ecclog = 0x%llx\n", node->mc, node->ecclog);
    691		igen6_mc_printk(mci, KERN_DEBUG, "HANDLING IBECC MEMORY ERROR\n");
    692		igen6_mc_printk(mci, KERN_DEBUG, "ADDR 0x%llx ", res.sys_addr);
    693
    694		if (!igen6_decode(&res))
    695			igen6_output_error(&res, mci, node->ecclog);
    696
    697		gen_pool_free(ecclog_pool, (unsigned long)node, sizeof(*node));
    698	}
    699}
    700
    701static void ecclog_irq_work_cb(struct irq_work *irq_work)
    702{
    703	int i;
    704
    705	for (i = 0; i < res_cfg->num_imc; i++)
    706		errsts_clear(&igen6_pvt->imc[i]);
    707
    708	if (!llist_empty(&ecclog_llist))
    709		schedule_work(&ecclog_work);
    710}
    711
    712static int ecclog_nmi_handler(unsigned int cmd, struct pt_regs *regs)
    713{
    714	unsigned char reason;
    715
    716	if (!ecclog_handler())
    717		return NMI_DONE;
    718
    719	/*
    720	 * Both In-Band ECC correctable error and uncorrectable error are
    721	 * reported by SERR# NMI. The NMI generic code (see pci_serr_error())
    722	 * doesn't clear the bit NMI_REASON_CLEAR_SERR (in port 0x61) to
    723	 * re-enable the SERR# NMI after NMI handling. So clear this bit here
    724	 * to re-enable SERR# NMI for receiving future In-Band ECC errors.
    725	 */
    726	reason  = x86_platform.get_nmi_reason() & NMI_REASON_CLEAR_MASK;
    727	reason |= NMI_REASON_CLEAR_SERR;
    728	outb(reason, NMI_REASON_PORT);
    729	reason &= ~NMI_REASON_CLEAR_SERR;
    730	outb(reason, NMI_REASON_PORT);
    731
    732	return NMI_HANDLED;
    733}
    734
    735static int ecclog_mce_handler(struct notifier_block *nb, unsigned long val,
    736			      void *data)
    737{
    738	struct mce *mce = (struct mce *)data;
    739	char *type;
    740
    741	if (mce->kflags & MCE_HANDLED_CEC)
    742		return NOTIFY_DONE;
    743
    744	/*
    745	 * Ignore unless this is a memory related error.
    746	 * We don't check the bit MCI_STATUS_ADDRV of MCi_STATUS here,
    747	 * since this bit isn't set on some CPU (e.g., Tiger Lake UP3).
    748	 */
    749	if ((mce->status & 0xefff) >> 7 != 1)
    750		return NOTIFY_DONE;
    751
    752	if (mce->mcgstatus & MCG_STATUS_MCIP)
    753		type = "Exception";
    754	else
    755		type = "Event";
    756
    757	edac_dbg(0, "CPU %d: Machine Check %s: 0x%llx Bank %d: 0x%llx\n",
    758		 mce->extcpu, type, mce->mcgstatus,
    759		 mce->bank, mce->status);
    760	edac_dbg(0, "TSC 0x%llx\n", mce->tsc);
    761	edac_dbg(0, "ADDR 0x%llx\n", mce->addr);
    762	edac_dbg(0, "MISC 0x%llx\n", mce->misc);
    763	edac_dbg(0, "PROCESSOR %u:0x%x TIME %llu SOCKET %u APIC 0x%x\n",
    764		 mce->cpuvendor, mce->cpuid, mce->time,
    765		 mce->socketid, mce->apicid);
    766	/*
    767	 * We just use the Machine Check for the memory error notification.
    768	 * Each memory controller is associated with an IBECC instance.
    769	 * Directly read and clear the error information(error address and
    770	 * error type) on all the IBECC instances so that we know on which
    771	 * memory controller the memory error(s) occurred.
    772	 */
    773	if (!ecclog_handler())
    774		return NOTIFY_DONE;
    775
    776	mce->kflags |= MCE_HANDLED_EDAC;
    777
    778	return NOTIFY_DONE;
    779}
    780
    781static struct notifier_block ecclog_mce_dec = {
    782	.notifier_call	= ecclog_mce_handler,
    783	.priority	= MCE_PRIO_EDAC,
    784};
    785
    786static bool igen6_check_ecc(struct igen6_imc *imc)
    787{
    788	u32 activate = readl(imc->window + IBECC_ACTIVATE_OFFSET);
    789
    790	return !!(activate & IBECC_ACTIVATE_EN);
    791}
    792
    793static int igen6_get_dimm_config(struct mem_ctl_info *mci)
    794{
    795	struct igen6_imc *imc = mci->pvt_info;
    796	u32 mad_inter, mad_intra, mad_dimm;
    797	int i, j, ndimms, mc = imc->mc;
    798	struct dimm_info *dimm;
    799	enum mem_type mtype;
    800	enum dev_type dtype;
    801	u64 dsize;
    802	bool ecc;
    803
    804	edac_dbg(2, "\n");
    805
    806	mad_inter = readl(imc->window + MAD_INTER_CHANNEL_OFFSET);
    807	mtype = get_memory_type(mad_inter);
    808	ecc = igen6_check_ecc(imc);
    809	imc->ch_s_size = MAD_INTER_CHANNEL_CH_S_SIZE(mad_inter);
    810	imc->ch_l_map  = MAD_INTER_CHANNEL_CH_L_MAP(mad_inter);
    811
    812	for (i = 0; i < NUM_CHANNELS; i++) {
    813		mad_intra = readl(imc->window + MAD_INTRA_CH0_OFFSET + i * 4);
    814		mad_dimm  = readl(imc->window + MAD_DIMM_CH0_OFFSET + i * 4);
    815
    816		imc->dimm_l_size[i] = MAD_DIMM_CH_DIMM_L_SIZE(mad_dimm);
    817		imc->dimm_s_size[i] = MAD_DIMM_CH_DIMM_S_SIZE(mad_dimm);
    818		imc->dimm_l_map[i]  = MAD_INTRA_CH_DIMM_L_MAP(mad_intra);
    819		imc->size += imc->dimm_s_size[i];
    820		imc->size += imc->dimm_l_size[i];
    821		ndimms = 0;
    822
    823		for (j = 0; j < NUM_DIMMS; j++) {
    824			dimm = edac_get_dimm(mci, i, j, 0);
    825
    826			if (j ^ imc->dimm_l_map[i]) {
    827				dtype = get_width(0, mad_dimm);
    828				dsize = imc->dimm_s_size[i];
    829			} else {
    830				dtype = get_width(1, mad_dimm);
    831				dsize = imc->dimm_l_size[i];
    832			}
    833
    834			if (!dsize)
    835				continue;
    836
    837			dimm->grain = 64;
    838			dimm->mtype = mtype;
    839			dimm->dtype = dtype;
    840			dimm->nr_pages  = MiB_TO_PAGES(dsize >> 20);
    841			dimm->edac_mode = EDAC_SECDED;
    842			snprintf(dimm->label, sizeof(dimm->label),
    843				 "MC#%d_Chan#%d_DIMM#%d", mc, i, j);
    844			edac_dbg(0, "MC %d, Channel %d, DIMM %d, Size %llu MiB (%u pages)\n",
    845				 mc, i, j, dsize >> 20, dimm->nr_pages);
    846
    847			ndimms++;
    848		}
    849
    850		if (ndimms && !ecc) {
    851			igen6_printk(KERN_ERR, "MC%d In-Band ECC is disabled\n", mc);
    852			return -ENODEV;
    853		}
    854	}
    855
    856	edac_dbg(0, "MC %d, total size %llu MiB\n", mc, imc->size >> 20);
    857
    858	return 0;
    859}
    860
    861#ifdef CONFIG_EDAC_DEBUG
    862/* Top of upper usable DRAM */
    863static u64 igen6_touud;
    864#define TOUUD_OFFSET	0xa8
    865
    866static void igen6_reg_dump(struct igen6_imc *imc)
    867{
    868	int i;
    869
    870	edac_dbg(2, "CHANNEL_HASH     : 0x%x\n",
    871		 readl(imc->window + CHANNEL_HASH_OFFSET));
    872	edac_dbg(2, "CHANNEL_EHASH    : 0x%x\n",
    873		 readl(imc->window + CHANNEL_EHASH_OFFSET));
    874	edac_dbg(2, "MAD_INTER_CHANNEL: 0x%x\n",
    875		 readl(imc->window + MAD_INTER_CHANNEL_OFFSET));
    876	edac_dbg(2, "ECC_ERROR_LOG    : 0x%llx\n",
    877		 readq(imc->window + ECC_ERROR_LOG_OFFSET));
    878
    879	for (i = 0; i < NUM_CHANNELS; i++) {
    880		edac_dbg(2, "MAD_INTRA_CH%d    : 0x%x\n", i,
    881			 readl(imc->window + MAD_INTRA_CH0_OFFSET + i * 4));
    882		edac_dbg(2, "MAD_DIMM_CH%d     : 0x%x\n", i,
    883			 readl(imc->window + MAD_DIMM_CH0_OFFSET + i * 4));
    884	}
    885	edac_dbg(2, "TOLUD            : 0x%x", igen6_tolud);
    886	edac_dbg(2, "TOUUD            : 0x%llx", igen6_touud);
    887	edac_dbg(2, "TOM              : 0x%llx", igen6_tom);
    888}
    889
    890static struct dentry *igen6_test;
    891
    892static int debugfs_u64_set(void *data, u64 val)
    893{
    894	u64 ecclog;
    895
    896	if ((val >= igen6_tolud && val < _4GB) || val >= igen6_touud) {
    897		edac_dbg(0, "Address 0x%llx out of range\n", val);
    898		return 0;
    899	}
    900
    901	pr_warn_once("Fake error to 0x%llx injected via debugfs\n", val);
    902
    903	val  >>= ECC_ERROR_LOG_ADDR_SHIFT;
    904	ecclog = (val << ECC_ERROR_LOG_ADDR_SHIFT) | ECC_ERROR_LOG_CE;
    905
    906	if (!ecclog_gen_pool_add(0, ecclog))
    907		irq_work_queue(&ecclog_irq_work);
    908
    909	return 0;
    910}
    911DEFINE_SIMPLE_ATTRIBUTE(fops_u64_wo, NULL, debugfs_u64_set, "%llu\n");
    912
    913static void igen6_debug_setup(void)
    914{
    915	igen6_test = edac_debugfs_create_dir("igen6_test");
    916	if (!igen6_test)
    917		return;
    918
    919	if (!edac_debugfs_create_file("addr", 0200, igen6_test,
    920				      NULL, &fops_u64_wo)) {
    921		debugfs_remove(igen6_test);
    922		igen6_test = NULL;
    923	}
    924}
    925
    926static void igen6_debug_teardown(void)
    927{
    928	debugfs_remove_recursive(igen6_test);
    929}
    930#else
    931static void igen6_reg_dump(struct igen6_imc *imc) {}
    932static void igen6_debug_setup(void) {}
    933static void igen6_debug_teardown(void) {}
    934#endif
    935
    936static int igen6_pci_setup(struct pci_dev *pdev, u64 *mchbar)
    937{
    938	union  {
    939		u64 v;
    940		struct {
    941			u32 v_lo;
    942			u32 v_hi;
    943		};
    944	} u;
    945
    946	edac_dbg(2, "\n");
    947
    948	if (!res_cfg->ibecc_available(pdev)) {
    949		edac_dbg(2, "No In-Band ECC IP\n");
    950		goto fail;
    951	}
    952
    953	if (pci_read_config_dword(pdev, TOLUD_OFFSET, &igen6_tolud)) {
    954		igen6_printk(KERN_ERR, "Failed to read TOLUD\n");
    955		goto fail;
    956	}
    957
    958	igen6_tolud &= GENMASK(31, 20);
    959
    960	if (pci_read_config_dword(pdev, TOM_OFFSET, &u.v_lo)) {
    961		igen6_printk(KERN_ERR, "Failed to read lower TOM\n");
    962		goto fail;
    963	}
    964
    965	if (pci_read_config_dword(pdev, TOM_OFFSET + 4, &u.v_hi)) {
    966		igen6_printk(KERN_ERR, "Failed to read upper TOM\n");
    967		goto fail;
    968	}
    969
    970	igen6_tom = u.v & GENMASK_ULL(38, 20);
    971
    972	if (pci_read_config_dword(pdev, MCHBAR_OFFSET, &u.v_lo)) {
    973		igen6_printk(KERN_ERR, "Failed to read lower MCHBAR\n");
    974		goto fail;
    975	}
    976
    977	if (pci_read_config_dword(pdev, MCHBAR_OFFSET + 4, &u.v_hi)) {
    978		igen6_printk(KERN_ERR, "Failed to read upper MCHBAR\n");
    979		goto fail;
    980	}
    981
    982	if (!(u.v & MCHBAR_EN)) {
    983		igen6_printk(KERN_ERR, "MCHBAR is disabled\n");
    984		goto fail;
    985	}
    986
    987	*mchbar = MCHBAR_BASE(u.v);
    988
    989#ifdef CONFIG_EDAC_DEBUG
    990	if (pci_read_config_dword(pdev, TOUUD_OFFSET, &u.v_lo))
    991		edac_dbg(2, "Failed to read lower TOUUD\n");
    992	else if (pci_read_config_dword(pdev, TOUUD_OFFSET + 4, &u.v_hi))
    993		edac_dbg(2, "Failed to read upper TOUUD\n");
    994	else
    995		igen6_touud = u.v & GENMASK_ULL(38, 20);
    996#endif
    997
    998	return 0;
    999fail:
   1000	return -ENODEV;
   1001}
   1002
   1003static int igen6_register_mci(int mc, u64 mchbar, struct pci_dev *pdev)
   1004{
   1005	struct edac_mc_layer layers[2];
   1006	struct mem_ctl_info *mci;
   1007	struct igen6_imc *imc;
   1008	void __iomem *window;
   1009	int rc;
   1010
   1011	edac_dbg(2, "\n");
   1012
   1013	mchbar += mc * MCHBAR_SIZE;
   1014	window = ioremap(mchbar, MCHBAR_SIZE);
   1015	if (!window) {
   1016		igen6_printk(KERN_ERR, "Failed to ioremap 0x%llx\n", mchbar);
   1017		return -ENODEV;
   1018	}
   1019
   1020	layers[0].type = EDAC_MC_LAYER_CHANNEL;
   1021	layers[0].size = NUM_CHANNELS;
   1022	layers[0].is_virt_csrow = false;
   1023	layers[1].type = EDAC_MC_LAYER_SLOT;
   1024	layers[1].size = NUM_DIMMS;
   1025	layers[1].is_virt_csrow = true;
   1026
   1027	mci = edac_mc_alloc(mc, ARRAY_SIZE(layers), layers, 0);
   1028	if (!mci) {
   1029		rc = -ENOMEM;
   1030		goto fail;
   1031	}
   1032
   1033	mci->ctl_name = kasprintf(GFP_KERNEL, "Intel_client_SoC MC#%d", mc);
   1034	if (!mci->ctl_name) {
   1035		rc = -ENOMEM;
   1036		goto fail2;
   1037	}
   1038
   1039	mci->mtype_cap = MEM_FLAG_LPDDR4 | MEM_FLAG_DDR4;
   1040	mci->edac_ctl_cap = EDAC_FLAG_SECDED;
   1041	mci->edac_cap = EDAC_FLAG_SECDED;
   1042	mci->mod_name = EDAC_MOD_STR;
   1043	mci->dev_name = pci_name(pdev);
   1044	mci->pvt_info = &igen6_pvt->imc[mc];
   1045
   1046	imc = mci->pvt_info;
   1047	device_initialize(&imc->dev);
   1048	/*
   1049	 * EDAC core uses mci->pdev(pointer of structure device) as
   1050	 * memory controller ID. The client SoCs attach one or more
   1051	 * memory controllers to single pci_dev (single pci_dev->dev
   1052	 * can be for multiple memory controllers).
   1053	 *
   1054	 * To make mci->pdev unique, assign pci_dev->dev to mci->pdev
   1055	 * for the first memory controller and assign a unique imc->dev
   1056	 * to mci->pdev for each non-first memory controller.
   1057	 */
   1058	mci->pdev = mc ? &imc->dev : &pdev->dev;
   1059	imc->mc	= mc;
   1060	imc->pdev = pdev;
   1061	imc->window = window;
   1062
   1063	igen6_reg_dump(imc);
   1064
   1065	rc = igen6_get_dimm_config(mci);
   1066	if (rc)
   1067		goto fail3;
   1068
   1069	rc = edac_mc_add_mc(mci);
   1070	if (rc) {
   1071		igen6_printk(KERN_ERR, "Failed to register mci#%d\n", mc);
   1072		goto fail3;
   1073	}
   1074
   1075	imc->mci = mci;
   1076	return 0;
   1077fail3:
   1078	kfree(mci->ctl_name);
   1079fail2:
   1080	edac_mc_free(mci);
   1081fail:
   1082	iounmap(window);
   1083	return rc;
   1084}
   1085
   1086static void igen6_unregister_mcis(void)
   1087{
   1088	struct mem_ctl_info *mci;
   1089	struct igen6_imc *imc;
   1090	int i;
   1091
   1092	edac_dbg(2, "\n");
   1093
   1094	for (i = 0; i < res_cfg->num_imc; i++) {
   1095		imc = &igen6_pvt->imc[i];
   1096		mci = imc->mci;
   1097		if (!mci)
   1098			continue;
   1099
   1100		edac_mc_del_mc(mci->pdev);
   1101		kfree(mci->ctl_name);
   1102		edac_mc_free(mci);
   1103		iounmap(imc->window);
   1104	}
   1105}
   1106
   1107static int igen6_mem_slice_setup(u64 mchbar)
   1108{
   1109	struct igen6_imc *imc = &igen6_pvt->imc[0];
   1110	u64 base = mchbar + res_cfg->cmf_base;
   1111	u32 offset = res_cfg->ms_hash_offset;
   1112	u32 size = res_cfg->cmf_size;
   1113	u64 ms_s_size, ms_hash;
   1114	void __iomem *cmf;
   1115	int ms_l_map;
   1116
   1117	edac_dbg(2, "\n");
   1118
   1119	if (imc[0].size < imc[1].size) {
   1120		ms_s_size = imc[0].size;
   1121		ms_l_map  = 1;
   1122	} else {
   1123		ms_s_size = imc[1].size;
   1124		ms_l_map  = 0;
   1125	}
   1126
   1127	igen6_pvt->ms_s_size = ms_s_size;
   1128	igen6_pvt->ms_l_map  = ms_l_map;
   1129
   1130	edac_dbg(0, "ms_s_size: %llu MiB, ms_l_map %d\n",
   1131		 ms_s_size >> 20, ms_l_map);
   1132
   1133	if (!size)
   1134		return 0;
   1135
   1136	cmf = ioremap(base, size);
   1137	if (!cmf) {
   1138		igen6_printk(KERN_ERR, "Failed to ioremap cmf 0x%llx\n", base);
   1139		return -ENODEV;
   1140	}
   1141
   1142	ms_hash = readq(cmf + offset);
   1143	igen6_pvt->ms_hash = ms_hash;
   1144
   1145	edac_dbg(0, "MEM_SLICE_HASH: 0x%llx\n", ms_hash);
   1146
   1147	iounmap(cmf);
   1148
   1149	return 0;
   1150}
   1151
   1152static int register_err_handler(void)
   1153{
   1154	int rc;
   1155
   1156	if (res_cfg->machine_check) {
   1157		mce_register_decode_chain(&ecclog_mce_dec);
   1158		return 0;
   1159	}
   1160
   1161	rc = register_nmi_handler(NMI_SERR, ecclog_nmi_handler,
   1162				  0, IGEN6_NMI_NAME);
   1163	if (rc) {
   1164		igen6_printk(KERN_ERR, "Failed to register NMI handler\n");
   1165		return rc;
   1166	}
   1167
   1168	return 0;
   1169}
   1170
   1171static void unregister_err_handler(void)
   1172{
   1173	if (res_cfg->machine_check) {
   1174		mce_unregister_decode_chain(&ecclog_mce_dec);
   1175		return;
   1176	}
   1177
   1178	unregister_nmi_handler(NMI_SERR, IGEN6_NMI_NAME);
   1179}
   1180
   1181static int igen6_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
   1182{
   1183	u64 mchbar;
   1184	int i, rc;
   1185
   1186	edac_dbg(2, "\n");
   1187
   1188	igen6_pvt = kzalloc(sizeof(*igen6_pvt), GFP_KERNEL);
   1189	if (!igen6_pvt)
   1190		return -ENOMEM;
   1191
   1192	res_cfg = (struct res_config *)ent->driver_data;
   1193
   1194	rc = igen6_pci_setup(pdev, &mchbar);
   1195	if (rc)
   1196		goto fail;
   1197
   1198	for (i = 0; i < res_cfg->num_imc; i++) {
   1199		rc = igen6_register_mci(i, mchbar, pdev);
   1200		if (rc)
   1201			goto fail2;
   1202	}
   1203
   1204	if (res_cfg->num_imc > 1) {
   1205		rc = igen6_mem_slice_setup(mchbar);
   1206		if (rc)
   1207			goto fail2;
   1208	}
   1209
   1210	ecclog_pool = ecclog_gen_pool_create();
   1211	if (!ecclog_pool) {
   1212		rc = -ENOMEM;
   1213		goto fail2;
   1214	}
   1215
   1216	INIT_WORK(&ecclog_work, ecclog_work_cb);
   1217	init_irq_work(&ecclog_irq_work, ecclog_irq_work_cb);
   1218
   1219	/* Check if any pending errors before registering the NMI handler */
   1220	ecclog_handler();
   1221
   1222	rc = register_err_handler();
   1223	if (rc)
   1224		goto fail3;
   1225
   1226	/* Enable error reporting */
   1227	rc = errcmd_enable_error_reporting(true);
   1228	if (rc) {
   1229		igen6_printk(KERN_ERR, "Failed to enable error reporting\n");
   1230		goto fail4;
   1231	}
   1232
   1233	igen6_debug_setup();
   1234	return 0;
   1235fail4:
   1236	unregister_nmi_handler(NMI_SERR, IGEN6_NMI_NAME);
   1237fail3:
   1238	gen_pool_destroy(ecclog_pool);
   1239fail2:
   1240	igen6_unregister_mcis();
   1241fail:
   1242	kfree(igen6_pvt);
   1243	return rc;
   1244}
   1245
   1246static void igen6_remove(struct pci_dev *pdev)
   1247{
   1248	edac_dbg(2, "\n");
   1249
   1250	igen6_debug_teardown();
   1251	errcmd_enable_error_reporting(false);
   1252	unregister_err_handler();
   1253	irq_work_sync(&ecclog_irq_work);
   1254	flush_work(&ecclog_work);
   1255	gen_pool_destroy(ecclog_pool);
   1256	igen6_unregister_mcis();
   1257	kfree(igen6_pvt);
   1258}
   1259
   1260static struct pci_driver igen6_driver = {
   1261	.name     = EDAC_MOD_STR,
   1262	.probe    = igen6_probe,
   1263	.remove   = igen6_remove,
   1264	.id_table = igen6_pci_tbl,
   1265};
   1266
   1267static int __init igen6_init(void)
   1268{
   1269	const char *owner;
   1270	int rc;
   1271
   1272	edac_dbg(2, "\n");
   1273
   1274	owner = edac_get_owner();
   1275	if (owner && strncmp(owner, EDAC_MOD_STR, sizeof(EDAC_MOD_STR)))
   1276		return -ENODEV;
   1277
   1278	edac_op_state = EDAC_OPSTATE_NMI;
   1279
   1280	rc = pci_register_driver(&igen6_driver);
   1281	if (rc)
   1282		return rc;
   1283
   1284	igen6_printk(KERN_INFO, "%s\n", IGEN6_REVISION);
   1285
   1286	return 0;
   1287}
   1288
   1289static void __exit igen6_exit(void)
   1290{
   1291	edac_dbg(2, "\n");
   1292
   1293	pci_unregister_driver(&igen6_driver);
   1294}
   1295
   1296module_init(igen6_init);
   1297module_exit(igen6_exit);
   1298
   1299MODULE_LICENSE("GPL v2");
   1300MODULE_AUTHOR("Qiuxu Zhuo");
   1301MODULE_DESCRIPTION("MC Driver for Intel client SoC using In-Band ECC");