ppc4xx_edac.c (40067B)
1// SPDX-License-Identifier: GPL-2.0-only 2/* 3 * Copyright (c) 2008 Nuovation System Designs, LLC 4 * Grant Erickson <gerickson@nuovations.com> 5 */ 6 7#include <linux/edac.h> 8#include <linux/interrupt.h> 9#include <linux/irq.h> 10#include <linux/kernel.h> 11#include <linux/mm.h> 12#include <linux/module.h> 13#include <linux/of_device.h> 14#include <linux/of_platform.h> 15#include <linux/types.h> 16 17#include <asm/dcr.h> 18 19#include "edac_module.h" 20#include "ppc4xx_edac.h" 21 22/* 23 * This file implements a driver for monitoring and handling events 24 * associated with the IMB DDR2 ECC controller found in the AMCC/IBM 25 * 405EX[r], 440SP, 440SPe, 460EX, 460GT and 460SX. 26 * 27 * As realized in the 405EX[r], this controller features: 28 * 29 * - Support for registered- and non-registered DDR1 and DDR2 memory. 30 * - 32-bit or 16-bit memory interface with optional ECC. 31 * 32 * o ECC support includes: 33 * 34 * - 4-bit SEC/DED 35 * - Aligned-nibble error detect 36 * - Bypass mode 37 * 38 * - Two (2) memory banks/ranks. 39 * - Up to 1 GiB per bank/rank in 32-bit mode and up to 512 MiB per 40 * bank/rank in 16-bit mode. 41 * 42 * As realized in the 440SP and 440SPe, this controller changes/adds: 43 * 44 * - 64-bit or 32-bit memory interface with optional ECC. 45 * 46 * o ECC support includes: 47 * 48 * - 8-bit SEC/DED 49 * - Aligned-nibble error detect 50 * - Bypass mode 51 * 52 * - Up to 4 GiB per bank/rank in 64-bit mode and up to 2 GiB 53 * per bank/rank in 32-bit mode. 54 * 55 * As realized in the 460EX and 460GT, this controller changes/adds: 56 * 57 * - 64-bit or 32-bit memory interface with optional ECC. 58 * 59 * o ECC support includes: 60 * 61 * - 8-bit SEC/DED 62 * - Aligned-nibble error detect 63 * - Bypass mode 64 * 65 * - Four (4) memory banks/ranks. 66 * - Up to 16 GiB per bank/rank in 64-bit mode and up to 8 GiB 67 * per bank/rank in 32-bit mode. 68 * 69 * At present, this driver has ONLY been tested against the controller 70 * realization in the 405EX[r] on the AMCC Kilauea and Haleakala 71 * boards (256 MiB w/o ECC memory soldered onto the board) and a 72 * proprietary board based on those designs (128 MiB ECC memory, also 73 * soldered onto the board). 74 * 75 * Dynamic feature detection and handling needs to be added for the 76 * other realizations of this controller listed above. 77 * 78 * Eventually, this driver will likely be adapted to the above variant 79 * realizations of this controller as well as broken apart to handle 80 * the other known ECC-capable controllers prevalent in other 4xx 81 * processors: 82 * 83 * - IBM SDRAM (405GP, 405CR and 405EP) "ibm,sdram-4xx" 84 * - IBM DDR1 (440GP, 440GX, 440EP and 440GR) "ibm,sdram-4xx-ddr" 85 * - Denali DDR1/DDR2 (440EPX and 440GRX) "denali,sdram-4xx-ddr2" 86 * 87 * For this controller, unfortunately, correctable errors report 88 * nothing more than the beat/cycle and byte/lane the correction 89 * occurred on and the check bit group that covered the error. 90 * 91 * In contrast, uncorrectable errors also report the failing address, 92 * the bus master and the transaction direction (i.e. read or write) 93 * 94 * Regardless of whether the error is a CE or a UE, we report the 95 * following pieces of information in the driver-unique message to the 96 * EDAC subsystem: 97 * 98 * - Device tree path 99 * - Bank(s) 100 * - Check bit error group 101 * - Beat(s)/lane(s) 102 */ 103 104/* Preprocessor Definitions */ 105 106#define EDAC_OPSTATE_INT_STR "interrupt" 107#define EDAC_OPSTATE_POLL_STR "polled" 108#define EDAC_OPSTATE_UNKNOWN_STR "unknown" 109 110#define PPC4XX_EDAC_MODULE_NAME "ppc4xx_edac" 111#define PPC4XX_EDAC_MODULE_REVISION "v1.0.0" 112 113#define PPC4XX_EDAC_MESSAGE_SIZE 256 114 115/* 116 * Kernel logging without an EDAC instance 117 */ 118#define ppc4xx_edac_printk(level, fmt, arg...) \ 119 edac_printk(level, "PPC4xx MC", fmt, ##arg) 120 121/* 122 * Kernel logging with an EDAC instance 123 */ 124#define ppc4xx_edac_mc_printk(level, mci, fmt, arg...) \ 125 edac_mc_chipset_printk(mci, level, "PPC4xx", fmt, ##arg) 126 127/* 128 * Macros to convert bank configuration size enumerations into MiB and 129 * page values. 130 */ 131#define SDRAM_MBCF_SZ_MiB_MIN 4 132#define SDRAM_MBCF_SZ_TO_MiB(n) (SDRAM_MBCF_SZ_MiB_MIN \ 133 << (SDRAM_MBCF_SZ_DECODE(n))) 134#define SDRAM_MBCF_SZ_TO_PAGES(n) (SDRAM_MBCF_SZ_MiB_MIN \ 135 << (20 - PAGE_SHIFT + \ 136 SDRAM_MBCF_SZ_DECODE(n))) 137 138/* 139 * The ibm,sdram-4xx-ddr2 Device Control Registers (DCRs) are 140 * indirectly accessed and have a base and length defined by the 141 * device tree. The base can be anything; however, we expect the 142 * length to be precisely two registers, the first for the address 143 * window and the second for the data window. 144 */ 145#define SDRAM_DCR_RESOURCE_LEN 2 146#define SDRAM_DCR_ADDR_OFFSET 0 147#define SDRAM_DCR_DATA_OFFSET 1 148 149/* 150 * Device tree interrupt indices 151 */ 152#define INTMAP_ECCDED_INDEX 0 /* Double-bit Error Detect */ 153#define INTMAP_ECCSEC_INDEX 1 /* Single-bit Error Correct */ 154 155/* Type Definitions */ 156 157/* 158 * PPC4xx SDRAM memory controller private instance data 159 */ 160struct ppc4xx_edac_pdata { 161 dcr_host_t dcr_host; /* Indirect DCR address/data window mapping */ 162 struct { 163 int sec; /* Single-bit correctable error IRQ assigned */ 164 int ded; /* Double-bit detectable error IRQ assigned */ 165 } irqs; 166}; 167 168/* 169 * Various status data gathered and manipulated when checking and 170 * reporting ECC status. 171 */ 172struct ppc4xx_ecc_status { 173 u32 ecces; 174 u32 besr; 175 u32 bearh; 176 u32 bearl; 177 u32 wmirq; 178}; 179 180/* Function Prototypes */ 181 182static int ppc4xx_edac_probe(struct platform_device *device); 183static int ppc4xx_edac_remove(struct platform_device *device); 184 185/* Global Variables */ 186 187/* 188 * Device tree node type and compatible tuples this driver can match 189 * on. 190 */ 191static const struct of_device_id ppc4xx_edac_match[] = { 192 { 193 .compatible = "ibm,sdram-4xx-ddr2" 194 }, 195 { } 196}; 197MODULE_DEVICE_TABLE(of, ppc4xx_edac_match); 198 199static struct platform_driver ppc4xx_edac_driver = { 200 .probe = ppc4xx_edac_probe, 201 .remove = ppc4xx_edac_remove, 202 .driver = { 203 .name = PPC4XX_EDAC_MODULE_NAME, 204 .of_match_table = ppc4xx_edac_match, 205 }, 206}; 207 208/* 209 * TODO: The row and channel parameters likely need to be dynamically 210 * set based on the aforementioned variant controller realizations. 211 */ 212static const unsigned ppc4xx_edac_nr_csrows = 2; 213static const unsigned ppc4xx_edac_nr_chans = 1; 214 215/* 216 * Strings associated with PLB master IDs capable of being posted in 217 * SDRAM_BESR or SDRAM_WMIRQ on uncorrectable ECC errors. 218 */ 219static const char * const ppc4xx_plb_masters[9] = { 220 [SDRAM_PLB_M0ID_ICU] = "ICU", 221 [SDRAM_PLB_M0ID_PCIE0] = "PCI-E 0", 222 [SDRAM_PLB_M0ID_PCIE1] = "PCI-E 1", 223 [SDRAM_PLB_M0ID_DMA] = "DMA", 224 [SDRAM_PLB_M0ID_DCU] = "DCU", 225 [SDRAM_PLB_M0ID_OPB] = "OPB", 226 [SDRAM_PLB_M0ID_MAL] = "MAL", 227 [SDRAM_PLB_M0ID_SEC] = "SEC", 228 [SDRAM_PLB_M0ID_AHB] = "AHB" 229}; 230 231/** 232 * mfsdram - read and return controller register data 233 * @dcr_host: A pointer to the DCR mapping. 234 * @idcr_n: The indirect DCR register to read. 235 * 236 * This routine reads and returns the data associated with the 237 * controller's specified indirect DCR register. 238 * 239 * Returns the read data. 240 */ 241static inline u32 242mfsdram(const dcr_host_t *dcr_host, unsigned int idcr_n) 243{ 244 return __mfdcri(dcr_host->base + SDRAM_DCR_ADDR_OFFSET, 245 dcr_host->base + SDRAM_DCR_DATA_OFFSET, 246 idcr_n); 247} 248 249/** 250 * mtsdram - write controller register data 251 * @dcr_host: A pointer to the DCR mapping. 252 * @idcr_n: The indirect DCR register to write. 253 * @value: The data to write. 254 * 255 * This routine writes the provided data to the controller's specified 256 * indirect DCR register. 257 */ 258static inline void 259mtsdram(const dcr_host_t *dcr_host, unsigned int idcr_n, u32 value) 260{ 261 return __mtdcri(dcr_host->base + SDRAM_DCR_ADDR_OFFSET, 262 dcr_host->base + SDRAM_DCR_DATA_OFFSET, 263 idcr_n, 264 value); 265} 266 267/** 268 * ppc4xx_edac_check_bank_error - check a bank for an ECC bank error 269 * @status: A pointer to the ECC status structure to check for an 270 * ECC bank error. 271 * @bank: The bank to check for an ECC error. 272 * 273 * This routine determines whether the specified bank has an ECC 274 * error. 275 * 276 * Returns true if the specified bank has an ECC error; otherwise, 277 * false. 278 */ 279static bool 280ppc4xx_edac_check_bank_error(const struct ppc4xx_ecc_status *status, 281 unsigned int bank) 282{ 283 switch (bank) { 284 case 0: 285 return status->ecces & SDRAM_ECCES_BK0ER; 286 case 1: 287 return status->ecces & SDRAM_ECCES_BK1ER; 288 default: 289 return false; 290 } 291} 292 293/** 294 * ppc4xx_edac_generate_bank_message - generate interpretted bank status message 295 * @mci: A pointer to the EDAC memory controller instance associated 296 * with the bank message being generated. 297 * @status: A pointer to the ECC status structure to generate the 298 * message from. 299 * @buffer: A pointer to the buffer in which to generate the 300 * message. 301 * @size: The size, in bytes, of space available in buffer. 302 * 303 * This routine generates to the provided buffer the portion of the 304 * driver-unique report message associated with the ECCESS[BKNER] 305 * field of the specified ECC status. 306 * 307 * Returns the number of characters generated on success; otherwise, < 308 * 0 on error. 309 */ 310static int 311ppc4xx_edac_generate_bank_message(const struct mem_ctl_info *mci, 312 const struct ppc4xx_ecc_status *status, 313 char *buffer, 314 size_t size) 315{ 316 int n, total = 0; 317 unsigned int row, rows; 318 319 n = snprintf(buffer, size, "%s: Banks: ", mci->dev_name); 320 321 if (n < 0 || n >= size) 322 goto fail; 323 324 buffer += n; 325 size -= n; 326 total += n; 327 328 for (rows = 0, row = 0; row < mci->nr_csrows; row++) { 329 if (ppc4xx_edac_check_bank_error(status, row)) { 330 n = snprintf(buffer, size, "%s%u", 331 (rows++ ? ", " : ""), row); 332 333 if (n < 0 || n >= size) 334 goto fail; 335 336 buffer += n; 337 size -= n; 338 total += n; 339 } 340 } 341 342 n = snprintf(buffer, size, "%s; ", rows ? "" : "None"); 343 344 if (n < 0 || n >= size) 345 goto fail; 346 347 buffer += n; 348 size -= n; 349 total += n; 350 351 fail: 352 return total; 353} 354 355/** 356 * ppc4xx_edac_generate_checkbit_message - generate interpretted checkbit message 357 * @mci: A pointer to the EDAC memory controller instance associated 358 * with the checkbit message being generated. 359 * @status: A pointer to the ECC status structure to generate the 360 * message from. 361 * @buffer: A pointer to the buffer in which to generate the 362 * message. 363 * @size: The size, in bytes, of space available in buffer. 364 * 365 * This routine generates to the provided buffer the portion of the 366 * driver-unique report message associated with the ECCESS[CKBER] 367 * field of the specified ECC status. 368 * 369 * Returns the number of characters generated on success; otherwise, < 370 * 0 on error. 371 */ 372static int 373ppc4xx_edac_generate_checkbit_message(const struct mem_ctl_info *mci, 374 const struct ppc4xx_ecc_status *status, 375 char *buffer, 376 size_t size) 377{ 378 const struct ppc4xx_edac_pdata *pdata = mci->pvt_info; 379 const char *ckber = NULL; 380 381 switch (status->ecces & SDRAM_ECCES_CKBER_MASK) { 382 case SDRAM_ECCES_CKBER_NONE: 383 ckber = "None"; 384 break; 385 case SDRAM_ECCES_CKBER_32_ECC_0_3: 386 ckber = "ECC0:3"; 387 break; 388 case SDRAM_ECCES_CKBER_32_ECC_4_8: 389 switch (mfsdram(&pdata->dcr_host, SDRAM_MCOPT1) & 390 SDRAM_MCOPT1_WDTH_MASK) { 391 case SDRAM_MCOPT1_WDTH_16: 392 ckber = "ECC0:3"; 393 break; 394 case SDRAM_MCOPT1_WDTH_32: 395 ckber = "ECC4:8"; 396 break; 397 default: 398 ckber = "Unknown"; 399 break; 400 } 401 break; 402 case SDRAM_ECCES_CKBER_32_ECC_0_8: 403 ckber = "ECC0:8"; 404 break; 405 default: 406 ckber = "Unknown"; 407 break; 408 } 409 410 return snprintf(buffer, size, "Checkbit Error: %s", ckber); 411} 412 413/** 414 * ppc4xx_edac_generate_lane_message - generate interpretted byte lane message 415 * @mci: A pointer to the EDAC memory controller instance associated 416 * with the byte lane message being generated. 417 * @status: A pointer to the ECC status structure to generate the 418 * message from. 419 * @buffer: A pointer to the buffer in which to generate the 420 * message. 421 * @size: The size, in bytes, of space available in buffer. 422 * 423 * This routine generates to the provided buffer the portion of the 424 * driver-unique report message associated with the ECCESS[BNCE] 425 * field of the specified ECC status. 426 * 427 * Returns the number of characters generated on success; otherwise, < 428 * 0 on error. 429 */ 430static int 431ppc4xx_edac_generate_lane_message(const struct mem_ctl_info *mci, 432 const struct ppc4xx_ecc_status *status, 433 char *buffer, 434 size_t size) 435{ 436 int n, total = 0; 437 unsigned int lane, lanes; 438 const unsigned int first_lane = 0; 439 const unsigned int lane_count = 16; 440 441 n = snprintf(buffer, size, "; Byte Lane Errors: "); 442 443 if (n < 0 || n >= size) 444 goto fail; 445 446 buffer += n; 447 size -= n; 448 total += n; 449 450 for (lanes = 0, lane = first_lane; lane < lane_count; lane++) { 451 if ((status->ecces & SDRAM_ECCES_BNCE_ENCODE(lane)) != 0) { 452 n = snprintf(buffer, size, 453 "%s%u", 454 (lanes++ ? ", " : ""), lane); 455 456 if (n < 0 || n >= size) 457 goto fail; 458 459 buffer += n; 460 size -= n; 461 total += n; 462 } 463 } 464 465 n = snprintf(buffer, size, "%s; ", lanes ? "" : "None"); 466 467 if (n < 0 || n >= size) 468 goto fail; 469 470 buffer += n; 471 size -= n; 472 total += n; 473 474 fail: 475 return total; 476} 477 478/** 479 * ppc4xx_edac_generate_ecc_message - generate interpretted ECC status message 480 * @mci: A pointer to the EDAC memory controller instance associated 481 * with the ECCES message being generated. 482 * @status: A pointer to the ECC status structure to generate the 483 * message from. 484 * @buffer: A pointer to the buffer in which to generate the 485 * message. 486 * @size: The size, in bytes, of space available in buffer. 487 * 488 * This routine generates to the provided buffer the portion of the 489 * driver-unique report message associated with the ECCESS register of 490 * the specified ECC status. 491 * 492 * Returns the number of characters generated on success; otherwise, < 493 * 0 on error. 494 */ 495static int 496ppc4xx_edac_generate_ecc_message(const struct mem_ctl_info *mci, 497 const struct ppc4xx_ecc_status *status, 498 char *buffer, 499 size_t size) 500{ 501 int n, total = 0; 502 503 n = ppc4xx_edac_generate_bank_message(mci, status, buffer, size); 504 505 if (n < 0 || n >= size) 506 goto fail; 507 508 buffer += n; 509 size -= n; 510 total += n; 511 512 n = ppc4xx_edac_generate_checkbit_message(mci, status, buffer, size); 513 514 if (n < 0 || n >= size) 515 goto fail; 516 517 buffer += n; 518 size -= n; 519 total += n; 520 521 n = ppc4xx_edac_generate_lane_message(mci, status, buffer, size); 522 523 if (n < 0 || n >= size) 524 goto fail; 525 526 buffer += n; 527 size -= n; 528 total += n; 529 530 fail: 531 return total; 532} 533 534/** 535 * ppc4xx_edac_generate_plb_message - generate interpretted PLB status message 536 * @mci: A pointer to the EDAC memory controller instance associated 537 * with the PLB message being generated. 538 * @status: A pointer to the ECC status structure to generate the 539 * message from. 540 * @buffer: A pointer to the buffer in which to generate the 541 * message. 542 * @size: The size, in bytes, of space available in buffer. 543 * 544 * This routine generates to the provided buffer the portion of the 545 * driver-unique report message associated with the PLB-related BESR 546 * and/or WMIRQ registers of the specified ECC status. 547 * 548 * Returns the number of characters generated on success; otherwise, < 549 * 0 on error. 550 */ 551static int 552ppc4xx_edac_generate_plb_message(const struct mem_ctl_info *mci, 553 const struct ppc4xx_ecc_status *status, 554 char *buffer, 555 size_t size) 556{ 557 unsigned int master; 558 bool read; 559 560 if ((status->besr & SDRAM_BESR_MASK) == 0) 561 return 0; 562 563 if ((status->besr & SDRAM_BESR_M0ET_MASK) == SDRAM_BESR_M0ET_NONE) 564 return 0; 565 566 read = ((status->besr & SDRAM_BESR_M0RW_MASK) == SDRAM_BESR_M0RW_READ); 567 568 master = SDRAM_BESR_M0ID_DECODE(status->besr); 569 570 return snprintf(buffer, size, 571 "%s error w/ PLB master %u \"%s\"; ", 572 (read ? "Read" : "Write"), 573 master, 574 (((master >= SDRAM_PLB_M0ID_FIRST) && 575 (master <= SDRAM_PLB_M0ID_LAST)) ? 576 ppc4xx_plb_masters[master] : "UNKNOWN")); 577} 578 579/** 580 * ppc4xx_edac_generate_message - generate interpretted status message 581 * @mci: A pointer to the EDAC memory controller instance associated 582 * with the driver-unique message being generated. 583 * @status: A pointer to the ECC status structure to generate the 584 * message from. 585 * @buffer: A pointer to the buffer in which to generate the 586 * message. 587 * @size: The size, in bytes, of space available in buffer. 588 * 589 * This routine generates to the provided buffer the driver-unique 590 * EDAC report message from the specified ECC status. 591 */ 592static void 593ppc4xx_edac_generate_message(const struct mem_ctl_info *mci, 594 const struct ppc4xx_ecc_status *status, 595 char *buffer, 596 size_t size) 597{ 598 int n; 599 600 if (buffer == NULL || size == 0) 601 return; 602 603 n = ppc4xx_edac_generate_ecc_message(mci, status, buffer, size); 604 605 if (n < 0 || n >= size) 606 return; 607 608 buffer += n; 609 size -= n; 610 611 ppc4xx_edac_generate_plb_message(mci, status, buffer, size); 612} 613 614#ifdef DEBUG 615/** 616 * ppc4xx_ecc_dump_status - dump controller ECC status registers 617 * @mci: A pointer to the EDAC memory controller instance 618 * associated with the status being dumped. 619 * @status: A pointer to the ECC status structure to generate the 620 * dump from. 621 * 622 * This routine dumps to the kernel log buffer the raw and 623 * interpretted specified ECC status. 624 */ 625static void 626ppc4xx_ecc_dump_status(const struct mem_ctl_info *mci, 627 const struct ppc4xx_ecc_status *status) 628{ 629 char message[PPC4XX_EDAC_MESSAGE_SIZE]; 630 631 ppc4xx_edac_generate_message(mci, status, message, sizeof(message)); 632 633 ppc4xx_edac_mc_printk(KERN_INFO, mci, 634 "\n" 635 "\tECCES: 0x%08x\n" 636 "\tWMIRQ: 0x%08x\n" 637 "\tBESR: 0x%08x\n" 638 "\tBEAR: 0x%08x%08x\n" 639 "\t%s\n", 640 status->ecces, 641 status->wmirq, 642 status->besr, 643 status->bearh, 644 status->bearl, 645 message); 646} 647#endif /* DEBUG */ 648 649/** 650 * ppc4xx_ecc_get_status - get controller ECC status 651 * @mci: A pointer to the EDAC memory controller instance 652 * associated with the status being retrieved. 653 * @status: A pointer to the ECC status structure to populate the 654 * ECC status with. 655 * 656 * This routine reads and masks, as appropriate, all the relevant 657 * status registers that deal with ibm,sdram-4xx-ddr2 ECC errors. 658 * While we read all of them, for correctable errors, we only expect 659 * to deal with ECCES. For uncorrectable errors, we expect to deal 660 * with all of them. 661 */ 662static void 663ppc4xx_ecc_get_status(const struct mem_ctl_info *mci, 664 struct ppc4xx_ecc_status *status) 665{ 666 const struct ppc4xx_edac_pdata *pdata = mci->pvt_info; 667 const dcr_host_t *dcr_host = &pdata->dcr_host; 668 669 status->ecces = mfsdram(dcr_host, SDRAM_ECCES) & SDRAM_ECCES_MASK; 670 status->wmirq = mfsdram(dcr_host, SDRAM_WMIRQ) & SDRAM_WMIRQ_MASK; 671 status->besr = mfsdram(dcr_host, SDRAM_BESR) & SDRAM_BESR_MASK; 672 status->bearl = mfsdram(dcr_host, SDRAM_BEARL); 673 status->bearh = mfsdram(dcr_host, SDRAM_BEARH); 674} 675 676/** 677 * ppc4xx_ecc_clear_status - clear controller ECC status 678 * @mci: A pointer to the EDAC memory controller instance 679 * associated with the status being cleared. 680 * @status: A pointer to the ECC status structure containing the 681 * values to write to clear the ECC status. 682 * 683 * This routine clears--by writing the masked (as appropriate) status 684 * values back to--the status registers that deal with 685 * ibm,sdram-4xx-ddr2 ECC errors. 686 */ 687static void 688ppc4xx_ecc_clear_status(const struct mem_ctl_info *mci, 689 const struct ppc4xx_ecc_status *status) 690{ 691 const struct ppc4xx_edac_pdata *pdata = mci->pvt_info; 692 const dcr_host_t *dcr_host = &pdata->dcr_host; 693 694 mtsdram(dcr_host, SDRAM_ECCES, status->ecces & SDRAM_ECCES_MASK); 695 mtsdram(dcr_host, SDRAM_WMIRQ, status->wmirq & SDRAM_WMIRQ_MASK); 696 mtsdram(dcr_host, SDRAM_BESR, status->besr & SDRAM_BESR_MASK); 697 mtsdram(dcr_host, SDRAM_BEARL, 0); 698 mtsdram(dcr_host, SDRAM_BEARH, 0); 699} 700 701/** 702 * ppc4xx_edac_handle_ce - handle controller correctable ECC error (CE) 703 * @mci: A pointer to the EDAC memory controller instance 704 * associated with the correctable error being handled and reported. 705 * @status: A pointer to the ECC status structure associated with 706 * the correctable error being handled and reported. 707 * 708 * This routine handles an ibm,sdram-4xx-ddr2 controller ECC 709 * correctable error. Per the aforementioned discussion, there's not 710 * enough status available to use the full EDAC correctable error 711 * interface, so we just pass driver-unique message to the "no info" 712 * interface. 713 */ 714static void 715ppc4xx_edac_handle_ce(struct mem_ctl_info *mci, 716 const struct ppc4xx_ecc_status *status) 717{ 718 int row; 719 char message[PPC4XX_EDAC_MESSAGE_SIZE]; 720 721 ppc4xx_edac_generate_message(mci, status, message, sizeof(message)); 722 723 for (row = 0; row < mci->nr_csrows; row++) 724 if (ppc4xx_edac_check_bank_error(status, row)) 725 edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1, 726 0, 0, 0, 727 row, 0, -1, 728 message, ""); 729} 730 731/** 732 * ppc4xx_edac_handle_ue - handle controller uncorrectable ECC error (UE) 733 * @mci: A pointer to the EDAC memory controller instance 734 * associated with the uncorrectable error being handled and 735 * reported. 736 * @status: A pointer to the ECC status structure associated with 737 * the uncorrectable error being handled and reported. 738 * 739 * This routine handles an ibm,sdram-4xx-ddr2 controller ECC 740 * uncorrectable error. 741 */ 742static void 743ppc4xx_edac_handle_ue(struct mem_ctl_info *mci, 744 const struct ppc4xx_ecc_status *status) 745{ 746 const u64 bear = ((u64)status->bearh << 32 | status->bearl); 747 const unsigned long page = bear >> PAGE_SHIFT; 748 const unsigned long offset = bear & ~PAGE_MASK; 749 int row; 750 char message[PPC4XX_EDAC_MESSAGE_SIZE]; 751 752 ppc4xx_edac_generate_message(mci, status, message, sizeof(message)); 753 754 for (row = 0; row < mci->nr_csrows; row++) 755 if (ppc4xx_edac_check_bank_error(status, row)) 756 edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci, 1, 757 page, offset, 0, 758 row, 0, -1, 759 message, ""); 760} 761 762/** 763 * ppc4xx_edac_check - check controller for ECC errors 764 * @mci: A pointer to the EDAC memory controller instance 765 * associated with the ibm,sdram-4xx-ddr2 controller being 766 * checked. 767 * 768 * This routine is used to check and post ECC errors and is called by 769 * both the EDAC polling thread and this driver's CE and UE interrupt 770 * handler. 771 */ 772static void 773ppc4xx_edac_check(struct mem_ctl_info *mci) 774{ 775#ifdef DEBUG 776 static unsigned int count; 777#endif 778 struct ppc4xx_ecc_status status; 779 780 ppc4xx_ecc_get_status(mci, &status); 781 782#ifdef DEBUG 783 if (count++ % 30 == 0) 784 ppc4xx_ecc_dump_status(mci, &status); 785#endif 786 787 if (status.ecces & SDRAM_ECCES_UE) 788 ppc4xx_edac_handle_ue(mci, &status); 789 790 if (status.ecces & SDRAM_ECCES_CE) 791 ppc4xx_edac_handle_ce(mci, &status); 792 793 ppc4xx_ecc_clear_status(mci, &status); 794} 795 796/** 797 * ppc4xx_edac_isr - SEC (CE) and DED (UE) interrupt service routine 798 * @irq: The virtual interrupt number being serviced. 799 * @dev_id: A pointer to the EDAC memory controller instance 800 * associated with the interrupt being handled. 801 * 802 * This routine implements the interrupt handler for both correctable 803 * (CE) and uncorrectable (UE) ECC errors for the ibm,sdram-4xx-ddr2 804 * controller. It simply calls through to the same routine used during 805 * polling to check, report and clear the ECC status. 806 * 807 * Unconditionally returns IRQ_HANDLED. 808 */ 809static irqreturn_t 810ppc4xx_edac_isr(int irq, void *dev_id) 811{ 812 struct mem_ctl_info *mci = dev_id; 813 814 ppc4xx_edac_check(mci); 815 816 return IRQ_HANDLED; 817} 818 819/** 820 * ppc4xx_edac_get_dtype - return the controller memory width 821 * @mcopt1: The 32-bit Memory Controller Option 1 register value 822 * currently set for the controller, from which the width 823 * is derived. 824 * 825 * This routine returns the EDAC device type width appropriate for the 826 * current controller configuration. 827 * 828 * TODO: This needs to be conditioned dynamically through feature 829 * flags or some such when other controller variants are supported as 830 * the 405EX[r] is 16-/32-bit and the others are 32-/64-bit with the 831 * 16- and 64-bit field definition/value/enumeration (b1) overloaded 832 * among them. 833 * 834 * Returns a device type width enumeration. 835 */ 836static enum dev_type ppc4xx_edac_get_dtype(u32 mcopt1) 837{ 838 switch (mcopt1 & SDRAM_MCOPT1_WDTH_MASK) { 839 case SDRAM_MCOPT1_WDTH_16: 840 return DEV_X2; 841 case SDRAM_MCOPT1_WDTH_32: 842 return DEV_X4; 843 default: 844 return DEV_UNKNOWN; 845 } 846} 847 848/** 849 * ppc4xx_edac_get_mtype - return controller memory type 850 * @mcopt1: The 32-bit Memory Controller Option 1 register value 851 * currently set for the controller, from which the memory type 852 * is derived. 853 * 854 * This routine returns the EDAC memory type appropriate for the 855 * current controller configuration. 856 * 857 * Returns a memory type enumeration. 858 */ 859static enum mem_type ppc4xx_edac_get_mtype(u32 mcopt1) 860{ 861 bool rden = ((mcopt1 & SDRAM_MCOPT1_RDEN_MASK) == SDRAM_MCOPT1_RDEN); 862 863 switch (mcopt1 & SDRAM_MCOPT1_DDR_TYPE_MASK) { 864 case SDRAM_MCOPT1_DDR2_TYPE: 865 return rden ? MEM_RDDR2 : MEM_DDR2; 866 case SDRAM_MCOPT1_DDR1_TYPE: 867 return rden ? MEM_RDDR : MEM_DDR; 868 default: 869 return MEM_UNKNOWN; 870 } 871} 872 873/** 874 * ppc4xx_edac_init_csrows - initialize driver instance rows 875 * @mci: A pointer to the EDAC memory controller instance 876 * associated with the ibm,sdram-4xx-ddr2 controller for which 877 * the csrows (i.e. banks/ranks) are being initialized. 878 * @mcopt1: The 32-bit Memory Controller Option 1 register value 879 * currently set for the controller, from which bank width 880 * and memory typ information is derived. 881 * 882 * This routine initializes the virtual "chip select rows" associated 883 * with the EDAC memory controller instance. An ibm,sdram-4xx-ddr2 884 * controller bank/rank is mapped to a row. 885 * 886 * Returns 0 if OK; otherwise, -EINVAL if the memory bank size 887 * configuration cannot be determined. 888 */ 889static int ppc4xx_edac_init_csrows(struct mem_ctl_info *mci, u32 mcopt1) 890{ 891 const struct ppc4xx_edac_pdata *pdata = mci->pvt_info; 892 int status = 0; 893 enum mem_type mtype; 894 enum dev_type dtype; 895 enum edac_type edac_mode; 896 int row, j; 897 u32 mbxcf, size, nr_pages; 898 899 /* Establish the memory type and width */ 900 901 mtype = ppc4xx_edac_get_mtype(mcopt1); 902 dtype = ppc4xx_edac_get_dtype(mcopt1); 903 904 /* Establish EDAC mode */ 905 906 if (mci->edac_cap & EDAC_FLAG_SECDED) 907 edac_mode = EDAC_SECDED; 908 else if (mci->edac_cap & EDAC_FLAG_EC) 909 edac_mode = EDAC_EC; 910 else 911 edac_mode = EDAC_NONE; 912 913 /* 914 * Initialize each chip select row structure which correspond 915 * 1:1 with a controller bank/rank. 916 */ 917 918 for (row = 0; row < mci->nr_csrows; row++) { 919 struct csrow_info *csi = mci->csrows[row]; 920 921 /* 922 * Get the configuration settings for this 923 * row/bank/rank and skip disabled banks. 924 */ 925 926 mbxcf = mfsdram(&pdata->dcr_host, SDRAM_MBXCF(row)); 927 928 if ((mbxcf & SDRAM_MBCF_BE_MASK) != SDRAM_MBCF_BE_ENABLE) 929 continue; 930 931 /* Map the bank configuration size setting to pages. */ 932 933 size = mbxcf & SDRAM_MBCF_SZ_MASK; 934 935 switch (size) { 936 case SDRAM_MBCF_SZ_4MB: 937 case SDRAM_MBCF_SZ_8MB: 938 case SDRAM_MBCF_SZ_16MB: 939 case SDRAM_MBCF_SZ_32MB: 940 case SDRAM_MBCF_SZ_64MB: 941 case SDRAM_MBCF_SZ_128MB: 942 case SDRAM_MBCF_SZ_256MB: 943 case SDRAM_MBCF_SZ_512MB: 944 case SDRAM_MBCF_SZ_1GB: 945 case SDRAM_MBCF_SZ_2GB: 946 case SDRAM_MBCF_SZ_4GB: 947 case SDRAM_MBCF_SZ_8GB: 948 nr_pages = SDRAM_MBCF_SZ_TO_PAGES(size); 949 break; 950 default: 951 ppc4xx_edac_mc_printk(KERN_ERR, mci, 952 "Unrecognized memory bank %d " 953 "size 0x%08x\n", 954 row, SDRAM_MBCF_SZ_DECODE(size)); 955 status = -EINVAL; 956 goto done; 957 } 958 959 /* 960 * It's unclear exactly what grain should be set to 961 * here. The SDRAM_ECCES register allows resolution of 962 * an error down to a nibble which would potentially 963 * argue for a grain of '1' byte, even though we only 964 * know the associated address for uncorrectable 965 * errors. This value is not used at present for 966 * anything other than error reporting so getting it 967 * wrong should be of little consequence. Other 968 * possible values would be the PLB width (16), the 969 * page size (PAGE_SIZE) or the memory width (2 or 4). 970 */ 971 for (j = 0; j < csi->nr_channels; j++) { 972 struct dimm_info *dimm = csi->channels[j]->dimm; 973 974 dimm->nr_pages = nr_pages / csi->nr_channels; 975 dimm->grain = 1; 976 977 dimm->mtype = mtype; 978 dimm->dtype = dtype; 979 980 dimm->edac_mode = edac_mode; 981 } 982 } 983 984 done: 985 return status; 986} 987 988/** 989 * ppc4xx_edac_mc_init - initialize driver instance 990 * @mci: A pointer to the EDAC memory controller instance being 991 * initialized. 992 * @op: A pointer to the OpenFirmware device tree node associated 993 * with the controller this EDAC instance is bound to. 994 * @dcr_host: A pointer to the DCR data containing the DCR mapping 995 * for this controller instance. 996 * @mcopt1: The 32-bit Memory Controller Option 1 register value 997 * currently set for the controller, from which ECC capabilities 998 * and scrub mode are derived. 999 * 1000 * This routine performs initialization of the EDAC memory controller 1001 * instance and related driver-private data associated with the 1002 * ibm,sdram-4xx-ddr2 memory controller the instance is bound to. 1003 * 1004 * Returns 0 if OK; otherwise, < 0 on error. 1005 */ 1006static int ppc4xx_edac_mc_init(struct mem_ctl_info *mci, 1007 struct platform_device *op, 1008 const dcr_host_t *dcr_host, u32 mcopt1) 1009{ 1010 int status = 0; 1011 const u32 memcheck = (mcopt1 & SDRAM_MCOPT1_MCHK_MASK); 1012 struct ppc4xx_edac_pdata *pdata = NULL; 1013 const struct device_node *np = op->dev.of_node; 1014 1015 if (of_match_device(ppc4xx_edac_match, &op->dev) == NULL) 1016 return -EINVAL; 1017 1018 /* Initial driver pointers and private data */ 1019 1020 mci->pdev = &op->dev; 1021 1022 dev_set_drvdata(mci->pdev, mci); 1023 1024 pdata = mci->pvt_info; 1025 1026 pdata->dcr_host = *dcr_host; 1027 1028 /* Initialize controller capabilities and configuration */ 1029 1030 mci->mtype_cap = (MEM_FLAG_DDR | MEM_FLAG_RDDR | 1031 MEM_FLAG_DDR2 | MEM_FLAG_RDDR2); 1032 1033 mci->edac_ctl_cap = (EDAC_FLAG_NONE | 1034 EDAC_FLAG_EC | 1035 EDAC_FLAG_SECDED); 1036 1037 mci->scrub_cap = SCRUB_NONE; 1038 mci->scrub_mode = SCRUB_NONE; 1039 1040 /* 1041 * Update the actual capabilites based on the MCOPT1[MCHK] 1042 * settings. Scrubbing is only useful if reporting is enabled. 1043 */ 1044 1045 switch (memcheck) { 1046 case SDRAM_MCOPT1_MCHK_CHK: 1047 mci->edac_cap = EDAC_FLAG_EC; 1048 break; 1049 case SDRAM_MCOPT1_MCHK_CHK_REP: 1050 mci->edac_cap = (EDAC_FLAG_EC | EDAC_FLAG_SECDED); 1051 mci->scrub_mode = SCRUB_SW_SRC; 1052 break; 1053 default: 1054 mci->edac_cap = EDAC_FLAG_NONE; 1055 break; 1056 } 1057 1058 /* Initialize strings */ 1059 1060 mci->mod_name = PPC4XX_EDAC_MODULE_NAME; 1061 mci->ctl_name = ppc4xx_edac_match->compatible; 1062 mci->dev_name = np->full_name; 1063 1064 /* Initialize callbacks */ 1065 1066 mci->edac_check = ppc4xx_edac_check; 1067 mci->ctl_page_to_phys = NULL; 1068 1069 /* Initialize chip select rows */ 1070 1071 status = ppc4xx_edac_init_csrows(mci, mcopt1); 1072 1073 if (status) 1074 ppc4xx_edac_mc_printk(KERN_ERR, mci, 1075 "Failed to initialize rows!\n"); 1076 1077 return status; 1078} 1079 1080/** 1081 * ppc4xx_edac_register_irq - setup and register controller interrupts 1082 * @op: A pointer to the OpenFirmware device tree node associated 1083 * with the controller this EDAC instance is bound to. 1084 * @mci: A pointer to the EDAC memory controller instance 1085 * associated with the ibm,sdram-4xx-ddr2 controller for which 1086 * interrupts are being registered. 1087 * 1088 * This routine parses the correctable (CE) and uncorrectable error (UE) 1089 * interrupts from the device tree node and maps and assigns them to 1090 * the associated EDAC memory controller instance. 1091 * 1092 * Returns 0 if OK; otherwise, -ENODEV if the interrupts could not be 1093 * mapped and assigned. 1094 */ 1095static int ppc4xx_edac_register_irq(struct platform_device *op, 1096 struct mem_ctl_info *mci) 1097{ 1098 int status = 0; 1099 int ded_irq, sec_irq; 1100 struct ppc4xx_edac_pdata *pdata = mci->pvt_info; 1101 struct device_node *np = op->dev.of_node; 1102 1103 ded_irq = irq_of_parse_and_map(np, INTMAP_ECCDED_INDEX); 1104 sec_irq = irq_of_parse_and_map(np, INTMAP_ECCSEC_INDEX); 1105 1106 if (!ded_irq || !sec_irq) { 1107 ppc4xx_edac_mc_printk(KERN_ERR, mci, 1108 "Unable to map interrupts.\n"); 1109 status = -ENODEV; 1110 goto fail; 1111 } 1112 1113 status = request_irq(ded_irq, 1114 ppc4xx_edac_isr, 1115 0, 1116 "[EDAC] MC ECCDED", 1117 mci); 1118 1119 if (status < 0) { 1120 ppc4xx_edac_mc_printk(KERN_ERR, mci, 1121 "Unable to request irq %d for ECC DED", 1122 ded_irq); 1123 status = -ENODEV; 1124 goto fail1; 1125 } 1126 1127 status = request_irq(sec_irq, 1128 ppc4xx_edac_isr, 1129 0, 1130 "[EDAC] MC ECCSEC", 1131 mci); 1132 1133 if (status < 0) { 1134 ppc4xx_edac_mc_printk(KERN_ERR, mci, 1135 "Unable to request irq %d for ECC SEC", 1136 sec_irq); 1137 status = -ENODEV; 1138 goto fail2; 1139 } 1140 1141 ppc4xx_edac_mc_printk(KERN_INFO, mci, "ECCDED irq is %d\n", ded_irq); 1142 ppc4xx_edac_mc_printk(KERN_INFO, mci, "ECCSEC irq is %d\n", sec_irq); 1143 1144 pdata->irqs.ded = ded_irq; 1145 pdata->irqs.sec = sec_irq; 1146 1147 return 0; 1148 1149 fail2: 1150 free_irq(sec_irq, mci); 1151 1152 fail1: 1153 free_irq(ded_irq, mci); 1154 1155 fail: 1156 return status; 1157} 1158 1159/** 1160 * ppc4xx_edac_map_dcrs - locate and map controller registers 1161 * @np: A pointer to the device tree node containing the DCR 1162 * resources to map. 1163 * @dcr_host: A pointer to the DCR data to populate with the 1164 * DCR mapping. 1165 * 1166 * This routine attempts to locate in the device tree and map the DCR 1167 * register resources associated with the controller's indirect DCR 1168 * address and data windows. 1169 * 1170 * Returns 0 if the DCRs were successfully mapped; otherwise, < 0 on 1171 * error. 1172 */ 1173static int ppc4xx_edac_map_dcrs(const struct device_node *np, 1174 dcr_host_t *dcr_host) 1175{ 1176 unsigned int dcr_base, dcr_len; 1177 1178 if (np == NULL || dcr_host == NULL) 1179 return -EINVAL; 1180 1181 /* Get the DCR resource extent and sanity check the values. */ 1182 1183 dcr_base = dcr_resource_start(np, 0); 1184 dcr_len = dcr_resource_len(np, 0); 1185 1186 if (dcr_base == 0 || dcr_len == 0) { 1187 ppc4xx_edac_printk(KERN_ERR, 1188 "Failed to obtain DCR property.\n"); 1189 return -ENODEV; 1190 } 1191 1192 if (dcr_len != SDRAM_DCR_RESOURCE_LEN) { 1193 ppc4xx_edac_printk(KERN_ERR, 1194 "Unexpected DCR length %d, expected %d.\n", 1195 dcr_len, SDRAM_DCR_RESOURCE_LEN); 1196 return -ENODEV; 1197 } 1198 1199 /* Attempt to map the DCR extent. */ 1200 1201 *dcr_host = dcr_map(np, dcr_base, dcr_len); 1202 1203 if (!DCR_MAP_OK(*dcr_host)) { 1204 ppc4xx_edac_printk(KERN_INFO, "Failed to map DCRs.\n"); 1205 return -ENODEV; 1206 } 1207 1208 return 0; 1209} 1210 1211/** 1212 * ppc4xx_edac_probe - check controller and bind driver 1213 * @op: A pointer to the OpenFirmware device tree node associated 1214 * with the controller being probed for driver binding. 1215 * 1216 * This routine probes a specific ibm,sdram-4xx-ddr2 controller 1217 * instance for binding with the driver. 1218 * 1219 * Returns 0 if the controller instance was successfully bound to the 1220 * driver; otherwise, < 0 on error. 1221 */ 1222static int ppc4xx_edac_probe(struct platform_device *op) 1223{ 1224 int status = 0; 1225 u32 mcopt1, memcheck; 1226 dcr_host_t dcr_host; 1227 const struct device_node *np = op->dev.of_node; 1228 struct mem_ctl_info *mci = NULL; 1229 struct edac_mc_layer layers[2]; 1230 static int ppc4xx_edac_instance; 1231 1232 /* 1233 * At this point, we only support the controller realized on 1234 * the AMCC PPC 405EX[r]. Reject anything else. 1235 */ 1236 1237 if (!of_device_is_compatible(np, "ibm,sdram-405ex") && 1238 !of_device_is_compatible(np, "ibm,sdram-405exr")) { 1239 ppc4xx_edac_printk(KERN_NOTICE, 1240 "Only the PPC405EX[r] is supported.\n"); 1241 return -ENODEV; 1242 } 1243 1244 /* 1245 * Next, get the DCR property and attempt to map it so that we 1246 * can probe the controller. 1247 */ 1248 1249 status = ppc4xx_edac_map_dcrs(np, &dcr_host); 1250 1251 if (status) 1252 return status; 1253 1254 /* 1255 * First determine whether ECC is enabled at all. If not, 1256 * there is no useful checking or monitoring that can be done 1257 * for this controller. 1258 */ 1259 1260 mcopt1 = mfsdram(&dcr_host, SDRAM_MCOPT1); 1261 memcheck = (mcopt1 & SDRAM_MCOPT1_MCHK_MASK); 1262 1263 if (memcheck == SDRAM_MCOPT1_MCHK_NON) { 1264 ppc4xx_edac_printk(KERN_INFO, "%pOF: No ECC memory detected or " 1265 "ECC is disabled.\n", np); 1266 status = -ENODEV; 1267 goto done; 1268 } 1269 1270 /* 1271 * At this point, we know ECC is enabled, allocate an EDAC 1272 * controller instance and perform the appropriate 1273 * initialization. 1274 */ 1275 layers[0].type = EDAC_MC_LAYER_CHIP_SELECT; 1276 layers[0].size = ppc4xx_edac_nr_csrows; 1277 layers[0].is_virt_csrow = true; 1278 layers[1].type = EDAC_MC_LAYER_CHANNEL; 1279 layers[1].size = ppc4xx_edac_nr_chans; 1280 layers[1].is_virt_csrow = false; 1281 mci = edac_mc_alloc(ppc4xx_edac_instance, ARRAY_SIZE(layers), layers, 1282 sizeof(struct ppc4xx_edac_pdata)); 1283 if (mci == NULL) { 1284 ppc4xx_edac_printk(KERN_ERR, "%pOF: " 1285 "Failed to allocate EDAC MC instance!\n", 1286 np); 1287 status = -ENOMEM; 1288 goto done; 1289 } 1290 1291 status = ppc4xx_edac_mc_init(mci, op, &dcr_host, mcopt1); 1292 1293 if (status) { 1294 ppc4xx_edac_mc_printk(KERN_ERR, mci, 1295 "Failed to initialize instance!\n"); 1296 goto fail; 1297 } 1298 1299 /* 1300 * We have a valid, initialized EDAC instance bound to the 1301 * controller. Attempt to register it with the EDAC subsystem 1302 * and, if necessary, register interrupts. 1303 */ 1304 1305 if (edac_mc_add_mc(mci)) { 1306 ppc4xx_edac_mc_printk(KERN_ERR, mci, 1307 "Failed to add instance!\n"); 1308 status = -ENODEV; 1309 goto fail; 1310 } 1311 1312 if (edac_op_state == EDAC_OPSTATE_INT) { 1313 status = ppc4xx_edac_register_irq(op, mci); 1314 1315 if (status) 1316 goto fail1; 1317 } 1318 1319 ppc4xx_edac_instance++; 1320 1321 return 0; 1322 1323 fail1: 1324 edac_mc_del_mc(mci->pdev); 1325 1326 fail: 1327 edac_mc_free(mci); 1328 1329 done: 1330 return status; 1331} 1332 1333/** 1334 * ppc4xx_edac_remove - unbind driver from controller 1335 * @op: A pointer to the OpenFirmware device tree node associated 1336 * with the controller this EDAC instance is to be unbound/removed 1337 * from. 1338 * 1339 * This routine unbinds the EDAC memory controller instance associated 1340 * with the specified ibm,sdram-4xx-ddr2 controller described by the 1341 * OpenFirmware device tree node passed as a parameter. 1342 * 1343 * Unconditionally returns 0. 1344 */ 1345static int 1346ppc4xx_edac_remove(struct platform_device *op) 1347{ 1348 struct mem_ctl_info *mci = dev_get_drvdata(&op->dev); 1349 struct ppc4xx_edac_pdata *pdata = mci->pvt_info; 1350 1351 if (edac_op_state == EDAC_OPSTATE_INT) { 1352 free_irq(pdata->irqs.sec, mci); 1353 free_irq(pdata->irqs.ded, mci); 1354 } 1355 1356 dcr_unmap(pdata->dcr_host, SDRAM_DCR_RESOURCE_LEN); 1357 1358 edac_mc_del_mc(mci->pdev); 1359 edac_mc_free(mci); 1360 1361 return 0; 1362} 1363 1364/** 1365 * ppc4xx_edac_opstate_init - initialize EDAC reporting method 1366 * 1367 * This routine ensures that the EDAC memory controller reporting 1368 * method is mapped to a sane value as the EDAC core defines the value 1369 * to EDAC_OPSTATE_INVAL by default. We don't call the global 1370 * opstate_init as that defaults to polling and we want interrupt as 1371 * the default. 1372 */ 1373static inline void __init 1374ppc4xx_edac_opstate_init(void) 1375{ 1376 switch (edac_op_state) { 1377 case EDAC_OPSTATE_POLL: 1378 case EDAC_OPSTATE_INT: 1379 break; 1380 default: 1381 edac_op_state = EDAC_OPSTATE_INT; 1382 break; 1383 } 1384 1385 ppc4xx_edac_printk(KERN_INFO, "Reporting type: %s\n", 1386 ((edac_op_state == EDAC_OPSTATE_POLL) ? 1387 EDAC_OPSTATE_POLL_STR : 1388 ((edac_op_state == EDAC_OPSTATE_INT) ? 1389 EDAC_OPSTATE_INT_STR : 1390 EDAC_OPSTATE_UNKNOWN_STR))); 1391} 1392 1393/** 1394 * ppc4xx_edac_init - driver/module insertion entry point 1395 * 1396 * This routine is the driver/module insertion entry point. It 1397 * initializes the EDAC memory controller reporting state and 1398 * registers the driver as an OpenFirmware device tree platform 1399 * driver. 1400 */ 1401static int __init 1402ppc4xx_edac_init(void) 1403{ 1404 ppc4xx_edac_printk(KERN_INFO, PPC4XX_EDAC_MODULE_REVISION "\n"); 1405 1406 ppc4xx_edac_opstate_init(); 1407 1408 return platform_driver_register(&ppc4xx_edac_driver); 1409} 1410 1411/** 1412 * ppc4xx_edac_exit - driver/module removal entry point 1413 * 1414 * This routine is the driver/module removal entry point. It 1415 * unregisters the driver as an OpenFirmware device tree platform 1416 * driver. 1417 */ 1418static void __exit 1419ppc4xx_edac_exit(void) 1420{ 1421 platform_driver_unregister(&ppc4xx_edac_driver); 1422} 1423 1424module_init(ppc4xx_edac_init); 1425module_exit(ppc4xx_edac_exit); 1426 1427MODULE_LICENSE("GPL v2"); 1428MODULE_AUTHOR("Grant Erickson <gerickson@nuovations.com>"); 1429MODULE_DESCRIPTION("EDAC MC Driver for the PPC4xx IBM DDR2 Memory Controller"); 1430module_param(edac_op_state, int, 0444); 1431MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting State: " 1432 "0=" EDAC_OPSTATE_POLL_STR ", 2=" EDAC_OPSTATE_INT_STR);