cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

sb_edac.c (96187B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/* Intel Sandy Bridge -EN/-EP/-EX Memory Controller kernel module
      3 *
      4 * This driver supports the memory controllers found on the Intel
      5 * processor family Sandy Bridge.
      6 *
      7 * Copyright (c) 2011 by:
      8 *	 Mauro Carvalho Chehab
      9 */
     10
     11#include <linux/module.h>
     12#include <linux/init.h>
     13#include <linux/pci.h>
     14#include <linux/pci_ids.h>
     15#include <linux/slab.h>
     16#include <linux/delay.h>
     17#include <linux/edac.h>
     18#include <linux/mmzone.h>
     19#include <linux/smp.h>
     20#include <linux/bitmap.h>
     21#include <linux/math64.h>
     22#include <linux/mod_devicetable.h>
     23#include <asm/cpu_device_id.h>
     24#include <asm/intel-family.h>
     25#include <asm/processor.h>
     26#include <asm/mce.h>
     27
     28#include "edac_module.h"
     29
     30/* Static vars */
     31static LIST_HEAD(sbridge_edac_list);
     32
     33/*
     34 * Alter this version for the module when modifications are made
     35 */
     36#define SBRIDGE_REVISION    " Ver: 1.1.2 "
     37#define EDAC_MOD_STR	    "sb_edac"
     38
     39/*
     40 * Debug macros
     41 */
     42#define sbridge_printk(level, fmt, arg...)			\
     43	edac_printk(level, "sbridge", fmt, ##arg)
     44
     45#define sbridge_mc_printk(mci, level, fmt, arg...)		\
     46	edac_mc_chipset_printk(mci, level, "sbridge", fmt, ##arg)
     47
     48/*
     49 * Get a bit field at register value <v>, from bit <lo> to bit <hi>
     50 */
     51#define GET_BITFIELD(v, lo, hi)	\
     52	(((v) & GENMASK_ULL(hi, lo)) >> (lo))
     53
     54/* Devices 12 Function 6, Offsets 0x80 to 0xcc */
     55static const u32 sbridge_dram_rule[] = {
     56	0x80, 0x88, 0x90, 0x98, 0xa0,
     57	0xa8, 0xb0, 0xb8, 0xc0, 0xc8,
     58};
     59
     60static const u32 ibridge_dram_rule[] = {
     61	0x60, 0x68, 0x70, 0x78, 0x80,
     62	0x88, 0x90, 0x98, 0xa0,	0xa8,
     63	0xb0, 0xb8, 0xc0, 0xc8, 0xd0,
     64	0xd8, 0xe0, 0xe8, 0xf0, 0xf8,
     65};
     66
     67static const u32 knl_dram_rule[] = {
     68	0x60, 0x68, 0x70, 0x78, 0x80, /* 0-4 */
     69	0x88, 0x90, 0x98, 0xa0, 0xa8, /* 5-9 */
     70	0xb0, 0xb8, 0xc0, 0xc8, 0xd0, /* 10-14 */
     71	0xd8, 0xe0, 0xe8, 0xf0, 0xf8, /* 15-19 */
     72	0x100, 0x108, 0x110, 0x118,   /* 20-23 */
     73};
     74
     75#define DRAM_RULE_ENABLE(reg)	GET_BITFIELD(reg, 0,  0)
     76#define A7MODE(reg)		GET_BITFIELD(reg, 26, 26)
     77
     78static char *show_dram_attr(u32 attr)
     79{
     80	switch (attr) {
     81		case 0:
     82			return "DRAM";
     83		case 1:
     84			return "MMCFG";
     85		case 2:
     86			return "NXM";
     87		default:
     88			return "unknown";
     89	}
     90}
     91
     92static const u32 sbridge_interleave_list[] = {
     93	0x84, 0x8c, 0x94, 0x9c, 0xa4,
     94	0xac, 0xb4, 0xbc, 0xc4, 0xcc,
     95};
     96
     97static const u32 ibridge_interleave_list[] = {
     98	0x64, 0x6c, 0x74, 0x7c, 0x84,
     99	0x8c, 0x94, 0x9c, 0xa4, 0xac,
    100	0xb4, 0xbc, 0xc4, 0xcc, 0xd4,
    101	0xdc, 0xe4, 0xec, 0xf4, 0xfc,
    102};
    103
    104static const u32 knl_interleave_list[] = {
    105	0x64, 0x6c, 0x74, 0x7c, 0x84, /* 0-4 */
    106	0x8c, 0x94, 0x9c, 0xa4, 0xac, /* 5-9 */
    107	0xb4, 0xbc, 0xc4, 0xcc, 0xd4, /* 10-14 */
    108	0xdc, 0xe4, 0xec, 0xf4, 0xfc, /* 15-19 */
    109	0x104, 0x10c, 0x114, 0x11c,   /* 20-23 */
    110};
    111#define MAX_INTERLEAVE							\
    112	(max_t(unsigned int, ARRAY_SIZE(sbridge_interleave_list),	\
    113	       max_t(unsigned int, ARRAY_SIZE(ibridge_interleave_list),	\
    114		     ARRAY_SIZE(knl_interleave_list))))
    115
    116struct interleave_pkg {
    117	unsigned char start;
    118	unsigned char end;
    119};
    120
    121static const struct interleave_pkg sbridge_interleave_pkg[] = {
    122	{ 0, 2 },
    123	{ 3, 5 },
    124	{ 8, 10 },
    125	{ 11, 13 },
    126	{ 16, 18 },
    127	{ 19, 21 },
    128	{ 24, 26 },
    129	{ 27, 29 },
    130};
    131
    132static const struct interleave_pkg ibridge_interleave_pkg[] = {
    133	{ 0, 3 },
    134	{ 4, 7 },
    135	{ 8, 11 },
    136	{ 12, 15 },
    137	{ 16, 19 },
    138	{ 20, 23 },
    139	{ 24, 27 },
    140	{ 28, 31 },
    141};
    142
    143static inline int sad_pkg(const struct interleave_pkg *table, u32 reg,
    144			  int interleave)
    145{
    146	return GET_BITFIELD(reg, table[interleave].start,
    147			    table[interleave].end);
    148}
    149
    150/* Devices 12 Function 7 */
    151
    152#define TOLM		0x80
    153#define TOHM		0x84
    154#define HASWELL_TOLM	0xd0
    155#define HASWELL_TOHM_0	0xd4
    156#define HASWELL_TOHM_1	0xd8
    157#define KNL_TOLM	0xd0
    158#define KNL_TOHM_0	0xd4
    159#define KNL_TOHM_1	0xd8
    160
    161#define GET_TOLM(reg)		((GET_BITFIELD(reg, 0,  3) << 28) | 0x3ffffff)
    162#define GET_TOHM(reg)		((GET_BITFIELD(reg, 0, 20) << 25) | 0x3ffffff)
    163
    164/* Device 13 Function 6 */
    165
    166#define SAD_TARGET	0xf0
    167
    168#define SOURCE_ID(reg)		GET_BITFIELD(reg, 9, 11)
    169
    170#define SOURCE_ID_KNL(reg)	GET_BITFIELD(reg, 12, 14)
    171
    172#define SAD_CONTROL	0xf4
    173
    174/* Device 14 function 0 */
    175
    176static const u32 tad_dram_rule[] = {
    177	0x40, 0x44, 0x48, 0x4c,
    178	0x50, 0x54, 0x58, 0x5c,
    179	0x60, 0x64, 0x68, 0x6c,
    180};
    181#define MAX_TAD	ARRAY_SIZE(tad_dram_rule)
    182
    183#define TAD_LIMIT(reg)		((GET_BITFIELD(reg, 12, 31) << 26) | 0x3ffffff)
    184#define TAD_SOCK(reg)		GET_BITFIELD(reg, 10, 11)
    185#define TAD_CH(reg)		GET_BITFIELD(reg,  8,  9)
    186#define TAD_TGT3(reg)		GET_BITFIELD(reg,  6,  7)
    187#define TAD_TGT2(reg)		GET_BITFIELD(reg,  4,  5)
    188#define TAD_TGT1(reg)		GET_BITFIELD(reg,  2,  3)
    189#define TAD_TGT0(reg)		GET_BITFIELD(reg,  0,  1)
    190
    191/* Device 15, function 0 */
    192
    193#define MCMTR			0x7c
    194#define KNL_MCMTR		0x624
    195
    196#define IS_ECC_ENABLED(mcmtr)		GET_BITFIELD(mcmtr, 2, 2)
    197#define IS_LOCKSTEP_ENABLED(mcmtr)	GET_BITFIELD(mcmtr, 1, 1)
    198#define IS_CLOSE_PG(mcmtr)		GET_BITFIELD(mcmtr, 0, 0)
    199
    200/* Device 15, function 1 */
    201
    202#define RASENABLES		0xac
    203#define IS_MIRROR_ENABLED(reg)		GET_BITFIELD(reg, 0, 0)
    204
    205/* Device 15, functions 2-5 */
    206
    207static const int mtr_regs[] = {
    208	0x80, 0x84, 0x88,
    209};
    210
    211static const int knl_mtr_reg = 0xb60;
    212
    213#define RANK_DISABLE(mtr)		GET_BITFIELD(mtr, 16, 19)
    214#define IS_DIMM_PRESENT(mtr)		GET_BITFIELD(mtr, 14, 14)
    215#define RANK_CNT_BITS(mtr)		GET_BITFIELD(mtr, 12, 13)
    216#define RANK_WIDTH_BITS(mtr)		GET_BITFIELD(mtr, 2, 4)
    217#define COL_WIDTH_BITS(mtr)		GET_BITFIELD(mtr, 0, 1)
    218
    219static const u32 tad_ch_nilv_offset[] = {
    220	0x90, 0x94, 0x98, 0x9c,
    221	0xa0, 0xa4, 0xa8, 0xac,
    222	0xb0, 0xb4, 0xb8, 0xbc,
    223};
    224#define CHN_IDX_OFFSET(reg)		GET_BITFIELD(reg, 28, 29)
    225#define TAD_OFFSET(reg)			(GET_BITFIELD(reg,  6, 25) << 26)
    226
    227static const u32 rir_way_limit[] = {
    228	0x108, 0x10c, 0x110, 0x114, 0x118,
    229};
    230#define MAX_RIR_RANGES ARRAY_SIZE(rir_way_limit)
    231
    232#define IS_RIR_VALID(reg)	GET_BITFIELD(reg, 31, 31)
    233#define RIR_WAY(reg)		GET_BITFIELD(reg, 28, 29)
    234
    235#define MAX_RIR_WAY	8
    236
    237static const u32 rir_offset[MAX_RIR_RANGES][MAX_RIR_WAY] = {
    238	{ 0x120, 0x124, 0x128, 0x12c, 0x130, 0x134, 0x138, 0x13c },
    239	{ 0x140, 0x144, 0x148, 0x14c, 0x150, 0x154, 0x158, 0x15c },
    240	{ 0x160, 0x164, 0x168, 0x16c, 0x170, 0x174, 0x178, 0x17c },
    241	{ 0x180, 0x184, 0x188, 0x18c, 0x190, 0x194, 0x198, 0x19c },
    242	{ 0x1a0, 0x1a4, 0x1a8, 0x1ac, 0x1b0, 0x1b4, 0x1b8, 0x1bc },
    243};
    244
    245#define RIR_RNK_TGT(type, reg) (((type) == BROADWELL) ? \
    246	GET_BITFIELD(reg, 20, 23) : GET_BITFIELD(reg, 16, 19))
    247
    248#define RIR_OFFSET(type, reg) (((type) == HASWELL || (type) == BROADWELL) ? \
    249	GET_BITFIELD(reg,  2, 15) : GET_BITFIELD(reg,  2, 14))
    250
    251/* Device 16, functions 2-7 */
    252
    253/*
    254 * FIXME: Implement the error count reads directly
    255 */
    256
    257#define RANK_ODD_OV(reg)		GET_BITFIELD(reg, 31, 31)
    258#define RANK_ODD_ERR_CNT(reg)		GET_BITFIELD(reg, 16, 30)
    259#define RANK_EVEN_OV(reg)		GET_BITFIELD(reg, 15, 15)
    260#define RANK_EVEN_ERR_CNT(reg)		GET_BITFIELD(reg,  0, 14)
    261
    262#if 0 /* Currently unused*/
    263static const u32 correrrcnt[] = {
    264	0x104, 0x108, 0x10c, 0x110,
    265};
    266
    267static const u32 correrrthrsld[] = {
    268	0x11c, 0x120, 0x124, 0x128,
    269};
    270#endif
    271
    272#define RANK_ODD_ERR_THRSLD(reg)	GET_BITFIELD(reg, 16, 30)
    273#define RANK_EVEN_ERR_THRSLD(reg)	GET_BITFIELD(reg,  0, 14)
    274
    275
    276/* Device 17, function 0 */
    277
    278#define SB_RANK_CFG_A		0x0328
    279
    280#define IB_RANK_CFG_A		0x0320
    281
    282/*
    283 * sbridge structs
    284 */
    285
    286#define NUM_CHANNELS		6	/* Max channels per MC */
    287#define MAX_DIMMS		3	/* Max DIMMS per channel */
    288#define KNL_MAX_CHAS		38	/* KNL max num. of Cache Home Agents */
    289#define KNL_MAX_CHANNELS	6	/* KNL max num. of PCI channels */
    290#define KNL_MAX_EDCS		8	/* Embedded DRAM controllers */
    291#define CHANNEL_UNSPECIFIED	0xf	/* Intel IA32 SDM 15-14 */
    292
    293enum type {
    294	SANDY_BRIDGE,
    295	IVY_BRIDGE,
    296	HASWELL,
    297	BROADWELL,
    298	KNIGHTS_LANDING,
    299};
    300
    301enum domain {
    302	IMC0 = 0,
    303	IMC1,
    304	SOCK,
    305};
    306
    307enum mirroring_mode {
    308	NON_MIRRORING,
    309	ADDR_RANGE_MIRRORING,
    310	FULL_MIRRORING,
    311};
    312
    313struct sbridge_pvt;
    314struct sbridge_info {
    315	enum type	type;
    316	u32		mcmtr;
    317	u32		rankcfgr;
    318	u64		(*get_tolm)(struct sbridge_pvt *pvt);
    319	u64		(*get_tohm)(struct sbridge_pvt *pvt);
    320	u64		(*rir_limit)(u32 reg);
    321	u64		(*sad_limit)(u32 reg);
    322	u32		(*interleave_mode)(u32 reg);
    323	u32		(*dram_attr)(u32 reg);
    324	const u32	*dram_rule;
    325	const u32	*interleave_list;
    326	const struct interleave_pkg *interleave_pkg;
    327	u8		max_sad;
    328	u8		(*get_node_id)(struct sbridge_pvt *pvt);
    329	u8		(*get_ha)(u8 bank);
    330	enum mem_type	(*get_memory_type)(struct sbridge_pvt *pvt);
    331	enum dev_type	(*get_width)(struct sbridge_pvt *pvt, u32 mtr);
    332	struct pci_dev	*pci_vtd;
    333};
    334
    335struct sbridge_channel {
    336	u32		ranks;
    337	u32		dimms;
    338};
    339
    340struct pci_id_descr {
    341	int			dev_id;
    342	int			optional;
    343	enum domain		dom;
    344};
    345
    346struct pci_id_table {
    347	const struct pci_id_descr	*descr;
    348	int				n_devs_per_imc;
    349	int				n_devs_per_sock;
    350	int				n_imcs_per_sock;
    351	enum type			type;
    352};
    353
    354struct sbridge_dev {
    355	struct list_head	list;
    356	int			seg;
    357	u8			bus, mc;
    358	u8			node_id, source_id;
    359	struct pci_dev		**pdev;
    360	enum domain		dom;
    361	int			n_devs;
    362	int			i_devs;
    363	struct mem_ctl_info	*mci;
    364};
    365
    366struct knl_pvt {
    367	struct pci_dev          *pci_cha[KNL_MAX_CHAS];
    368	struct pci_dev          *pci_channel[KNL_MAX_CHANNELS];
    369	struct pci_dev          *pci_mc0;
    370	struct pci_dev          *pci_mc1;
    371	struct pci_dev          *pci_mc0_misc;
    372	struct pci_dev          *pci_mc1_misc;
    373	struct pci_dev          *pci_mc_info; /* tolm, tohm */
    374};
    375
    376struct sbridge_pvt {
    377	/* Devices per socket */
    378	struct pci_dev		*pci_ddrio;
    379	struct pci_dev		*pci_sad0, *pci_sad1;
    380	struct pci_dev		*pci_br0, *pci_br1;
    381	/* Devices per memory controller */
    382	struct pci_dev		*pci_ha, *pci_ta, *pci_ras;
    383	struct pci_dev		*pci_tad[NUM_CHANNELS];
    384
    385	struct sbridge_dev	*sbridge_dev;
    386
    387	struct sbridge_info	info;
    388	struct sbridge_channel	channel[NUM_CHANNELS];
    389
    390	/* Memory type detection */
    391	bool			is_cur_addr_mirrored, is_lockstep, is_close_pg;
    392	bool			is_chan_hash;
    393	enum mirroring_mode	mirror_mode;
    394
    395	/* Memory description */
    396	u64			tolm, tohm;
    397	struct knl_pvt knl;
    398};
    399
    400#define PCI_DESCR(device_id, opt, domain)	\
    401	.dev_id = (device_id),		\
    402	.optional = opt,	\
    403	.dom = domain
    404
    405static const struct pci_id_descr pci_dev_descr_sbridge[] = {
    406		/* Processor Home Agent */
    407	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0,   0, IMC0) },
    408
    409		/* Memory controller */
    410	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA,    0, IMC0) },
    411	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS,   0, IMC0) },
    412	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0,  0, IMC0) },
    413	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1,  0, IMC0) },
    414	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2,  0, IMC0) },
    415	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3,  0, IMC0) },
    416	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO, 1, SOCK) },
    417
    418		/* System Address Decoder */
    419	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0,      0, SOCK) },
    420	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1,      0, SOCK) },
    421
    422		/* Broadcast Registers */
    423	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_BR,        0, SOCK) },
    424};
    425
    426#define PCI_ID_TABLE_ENTRY(A, N, M, T) {	\
    427	.descr = A,			\
    428	.n_devs_per_imc = N,	\
    429	.n_devs_per_sock = ARRAY_SIZE(A),	\
    430	.n_imcs_per_sock = M,	\
    431	.type = T			\
    432}
    433
    434static const struct pci_id_table pci_dev_descr_sbridge_table[] = {
    435	PCI_ID_TABLE_ENTRY(pci_dev_descr_sbridge, ARRAY_SIZE(pci_dev_descr_sbridge), 1, SANDY_BRIDGE),
    436	{0,}			/* 0 terminated list. */
    437};
    438
    439/* This changes depending if 1HA or 2HA:
    440 * 1HA:
    441 *	0x0eb8 (17.0) is DDRIO0
    442 * 2HA:
    443 *	0x0ebc (17.4) is DDRIO0
    444 */
    445#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0	0x0eb8
    446#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0	0x0ebc
    447
    448/* pci ids */
    449#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0		0x0ea0
    450#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA		0x0ea8
    451#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS		0x0e71
    452#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0	0x0eaa
    453#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1	0x0eab
    454#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2	0x0eac
    455#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3	0x0ead
    456#define PCI_DEVICE_ID_INTEL_IBRIDGE_SAD			0x0ec8
    457#define PCI_DEVICE_ID_INTEL_IBRIDGE_BR0			0x0ec9
    458#define PCI_DEVICE_ID_INTEL_IBRIDGE_BR1			0x0eca
    459#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1		0x0e60
    460#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA		0x0e68
    461#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS		0x0e79
    462#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0	0x0e6a
    463#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1	0x0e6b
    464#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2	0x0e6c
    465#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3	0x0e6d
    466
    467static const struct pci_id_descr pci_dev_descr_ibridge[] = {
    468		/* Processor Home Agent */
    469	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0,        0, IMC0) },
    470	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1,        1, IMC1) },
    471
    472		/* Memory controller */
    473	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA,     0, IMC0) },
    474	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS,    0, IMC0) },
    475	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0,   0, IMC0) },
    476	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1,   0, IMC0) },
    477	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2,   0, IMC0) },
    478	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3,   0, IMC0) },
    479
    480		/* Optional, mode 2HA */
    481	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA,     1, IMC1) },
    482	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS,    1, IMC1) },
    483	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0,   1, IMC1) },
    484	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1,   1, IMC1) },
    485	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2,   1, IMC1) },
    486	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3,   1, IMC1) },
    487
    488	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0, 1, SOCK) },
    489	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0, 1, SOCK) },
    490
    491		/* System Address Decoder */
    492	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_SAD,            0, SOCK) },
    493
    494		/* Broadcast Registers */
    495	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR0,            1, SOCK) },
    496	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR1,            0, SOCK) },
    497
    498};
    499
    500static const struct pci_id_table pci_dev_descr_ibridge_table[] = {
    501	PCI_ID_TABLE_ENTRY(pci_dev_descr_ibridge, 12, 2, IVY_BRIDGE),
    502	{0,}			/* 0 terminated list. */
    503};
    504
    505/* Haswell support */
    506/* EN processor:
    507 *	- 1 IMC
    508 *	- 3 DDR3 channels, 2 DPC per channel
    509 * EP processor:
    510 *	- 1 or 2 IMC
    511 *	- 4 DDR4 channels, 3 DPC per channel
    512 * EP 4S processor:
    513 *	- 2 IMC
    514 *	- 4 DDR4 channels, 3 DPC per channel
    515 * EX processor:
    516 *	- 2 IMC
    517 *	- each IMC interfaces with a SMI 2 channel
    518 *	- each SMI channel interfaces with a scalable memory buffer
    519 *	- each scalable memory buffer supports 4 DDR3/DDR4 channels, 3 DPC
    520 */
    521#define HASWELL_DDRCRCLKCONTROLS 0xa10 /* Ditto on Broadwell */
    522#define HASWELL_HASYSDEFEATURE2 0x84
    523#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC 0x2f28
    524#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0	0x2fa0
    525#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1	0x2f60
    526#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA	0x2fa8
    527#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TM	0x2f71
    528#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA	0x2f68
    529#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TM	0x2f79
    530#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0 0x2ffc
    531#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1 0x2ffd
    532#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0 0x2faa
    533#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1 0x2fab
    534#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2 0x2fac
    535#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3 0x2fad
    536#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0 0x2f6a
    537#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1 0x2f6b
    538#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2 0x2f6c
    539#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3 0x2f6d
    540#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0 0x2fbd
    541#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1 0x2fbf
    542#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2 0x2fb9
    543#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3 0x2fbb
    544static const struct pci_id_descr pci_dev_descr_haswell[] = {
    545	/* first item must be the HA */
    546	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0,      0, IMC0) },
    547	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1,      1, IMC1) },
    548
    549	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA,   0, IMC0) },
    550	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TM,   0, IMC0) },
    551	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0, 0, IMC0) },
    552	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1, 0, IMC0) },
    553	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2, 1, IMC0) },
    554	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3, 1, IMC0) },
    555
    556	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA,   1, IMC1) },
    557	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TM,   1, IMC1) },
    558	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0, 1, IMC1) },
    559	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1, 1, IMC1) },
    560	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2, 1, IMC1) },
    561	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3, 1, IMC1) },
    562
    563	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0, 0, SOCK) },
    564	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1, 0, SOCK) },
    565	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0,   1, SOCK) },
    566	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1,   1, SOCK) },
    567	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2,   1, SOCK) },
    568	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3,   1, SOCK) },
    569};
    570
    571static const struct pci_id_table pci_dev_descr_haswell_table[] = {
    572	PCI_ID_TABLE_ENTRY(pci_dev_descr_haswell, 13, 2, HASWELL),
    573	{0,}			/* 0 terminated list. */
    574};
    575
    576/* Knight's Landing Support */
    577/*
    578 * KNL's memory channels are swizzled between memory controllers.
    579 * MC0 is mapped to CH3,4,5 and MC1 is mapped to CH0,1,2
    580 */
    581#define knl_channel_remap(mc, chan) ((mc) ? (chan) : (chan) + 3)
    582
    583/* Memory controller, TAD tables, error injection - 2-8-0, 2-9-0 (2 of these) */
    584#define PCI_DEVICE_ID_INTEL_KNL_IMC_MC       0x7840
    585/* DRAM channel stuff; bank addrs, dimmmtr, etc.. 2-8-2 - 2-9-4 (6 of these) */
    586#define PCI_DEVICE_ID_INTEL_KNL_IMC_CHAN     0x7843
    587/* kdrwdbu TAD limits/offsets, MCMTR - 2-10-1, 2-11-1 (2 of these) */
    588#define PCI_DEVICE_ID_INTEL_KNL_IMC_TA       0x7844
    589/* CHA broadcast registers, dram rules - 1-29-0 (1 of these) */
    590#define PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0     0x782a
    591/* SAD target - 1-29-1 (1 of these) */
    592#define PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1     0x782b
    593/* Caching / Home Agent */
    594#define PCI_DEVICE_ID_INTEL_KNL_IMC_CHA      0x782c
    595/* Device with TOLM and TOHM, 0-5-0 (1 of these) */
    596#define PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM    0x7810
    597
    598/*
    599 * KNL differs from SB, IB, and Haswell in that it has multiple
    600 * instances of the same device with the same device ID, so we handle that
    601 * by creating as many copies in the table as we expect to find.
    602 * (Like device ID must be grouped together.)
    603 */
    604
    605static const struct pci_id_descr pci_dev_descr_knl[] = {
    606	[0 ... 1]   = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_MC,    0, IMC0)},
    607	[2 ... 7]   = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_CHAN,  0, IMC0) },
    608	[8]	    = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_TA,    0, IMC0) },
    609	[9]	    = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM, 0, IMC0) },
    610	[10]	    = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0,  0, SOCK) },
    611	[11]	    = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1,  0, SOCK) },
    612	[12 ... 49] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_CHA,   0, SOCK) },
    613};
    614
    615static const struct pci_id_table pci_dev_descr_knl_table[] = {
    616	PCI_ID_TABLE_ENTRY(pci_dev_descr_knl, ARRAY_SIZE(pci_dev_descr_knl), 1, KNIGHTS_LANDING),
    617	{0,}
    618};
    619
    620/*
    621 * Broadwell support
    622 *
    623 * DE processor:
    624 *	- 1 IMC
    625 *	- 2 DDR3 channels, 2 DPC per channel
    626 * EP processor:
    627 *	- 1 or 2 IMC
    628 *	- 4 DDR4 channels, 3 DPC per channel
    629 * EP 4S processor:
    630 *	- 2 IMC
    631 *	- 4 DDR4 channels, 3 DPC per channel
    632 * EX processor:
    633 *	- 2 IMC
    634 *	- each IMC interfaces with a SMI 2 channel
    635 *	- each SMI channel interfaces with a scalable memory buffer
    636 *	- each scalable memory buffer supports 4 DDR3/DDR4 channels, 3 DPC
    637 */
    638#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_VTD_MISC 0x6f28
    639#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0	0x6fa0
    640#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1	0x6f60
    641#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA	0x6fa8
    642#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TM	0x6f71
    643#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA	0x6f68
    644#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TM	0x6f79
    645#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0 0x6ffc
    646#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1 0x6ffd
    647#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0 0x6faa
    648#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1 0x6fab
    649#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2 0x6fac
    650#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3 0x6fad
    651#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0 0x6f6a
    652#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1 0x6f6b
    653#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2 0x6f6c
    654#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3 0x6f6d
    655#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0 0x6faf
    656
    657static const struct pci_id_descr pci_dev_descr_broadwell[] = {
    658	/* first item must be the HA */
    659	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0,      0, IMC0) },
    660	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1,      1, IMC1) },
    661
    662	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA,   0, IMC0) },
    663	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TM,   0, IMC0) },
    664	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0, 0, IMC0) },
    665	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1, 0, IMC0) },
    666	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2, 1, IMC0) },
    667	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3, 1, IMC0) },
    668
    669	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA,   1, IMC1) },
    670	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TM,   1, IMC1) },
    671	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0, 1, IMC1) },
    672	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1, 1, IMC1) },
    673	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2, 1, IMC1) },
    674	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3, 1, IMC1) },
    675
    676	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0, 0, SOCK) },
    677	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1, 0, SOCK) },
    678	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0,   1, SOCK) },
    679};
    680
    681static const struct pci_id_table pci_dev_descr_broadwell_table[] = {
    682	PCI_ID_TABLE_ENTRY(pci_dev_descr_broadwell, 10, 2, BROADWELL),
    683	{0,}			/* 0 terminated list. */
    684};
    685
    686
    687/****************************************************************************
    688			Ancillary status routines
    689 ****************************************************************************/
    690
    691static inline int numrank(enum type type, u32 mtr)
    692{
    693	int ranks = (1 << RANK_CNT_BITS(mtr));
    694	int max = 4;
    695
    696	if (type == HASWELL || type == BROADWELL || type == KNIGHTS_LANDING)
    697		max = 8;
    698
    699	if (ranks > max) {
    700		edac_dbg(0, "Invalid number of ranks: %d (max = %i) raw value = %x (%04x)\n",
    701			 ranks, max, (unsigned int)RANK_CNT_BITS(mtr), mtr);
    702		return -EINVAL;
    703	}
    704
    705	return ranks;
    706}
    707
    708static inline int numrow(u32 mtr)
    709{
    710	int rows = (RANK_WIDTH_BITS(mtr) + 12);
    711
    712	if (rows < 13 || rows > 18) {
    713		edac_dbg(0, "Invalid number of rows: %d (should be between 14 and 17) raw value = %x (%04x)\n",
    714			 rows, (unsigned int)RANK_WIDTH_BITS(mtr), mtr);
    715		return -EINVAL;
    716	}
    717
    718	return 1 << rows;
    719}
    720
    721static inline int numcol(u32 mtr)
    722{
    723	int cols = (COL_WIDTH_BITS(mtr) + 10);
    724
    725	if (cols > 12) {
    726		edac_dbg(0, "Invalid number of cols: %d (max = 4) raw value = %x (%04x)\n",
    727			 cols, (unsigned int)COL_WIDTH_BITS(mtr), mtr);
    728		return -EINVAL;
    729	}
    730
    731	return 1 << cols;
    732}
    733
    734static struct sbridge_dev *get_sbridge_dev(int seg, u8 bus, enum domain dom,
    735					   int multi_bus,
    736					   struct sbridge_dev *prev)
    737{
    738	struct sbridge_dev *sbridge_dev;
    739
    740	/*
    741	 * If we have devices scattered across several busses that pertain
    742	 * to the same memory controller, we'll lump them all together.
    743	 */
    744	if (multi_bus) {
    745		return list_first_entry_or_null(&sbridge_edac_list,
    746				struct sbridge_dev, list);
    747	}
    748
    749	sbridge_dev = list_entry(prev ? prev->list.next
    750				      : sbridge_edac_list.next, struct sbridge_dev, list);
    751
    752	list_for_each_entry_from(sbridge_dev, &sbridge_edac_list, list) {
    753		if ((sbridge_dev->seg == seg) && (sbridge_dev->bus == bus) &&
    754				(dom == SOCK || dom == sbridge_dev->dom))
    755			return sbridge_dev;
    756	}
    757
    758	return NULL;
    759}
    760
    761static struct sbridge_dev *alloc_sbridge_dev(int seg, u8 bus, enum domain dom,
    762					     const struct pci_id_table *table)
    763{
    764	struct sbridge_dev *sbridge_dev;
    765
    766	sbridge_dev = kzalloc(sizeof(*sbridge_dev), GFP_KERNEL);
    767	if (!sbridge_dev)
    768		return NULL;
    769
    770	sbridge_dev->pdev = kcalloc(table->n_devs_per_imc,
    771				    sizeof(*sbridge_dev->pdev),
    772				    GFP_KERNEL);
    773	if (!sbridge_dev->pdev) {
    774		kfree(sbridge_dev);
    775		return NULL;
    776	}
    777
    778	sbridge_dev->seg = seg;
    779	sbridge_dev->bus = bus;
    780	sbridge_dev->dom = dom;
    781	sbridge_dev->n_devs = table->n_devs_per_imc;
    782	list_add_tail(&sbridge_dev->list, &sbridge_edac_list);
    783
    784	return sbridge_dev;
    785}
    786
    787static void free_sbridge_dev(struct sbridge_dev *sbridge_dev)
    788{
    789	list_del(&sbridge_dev->list);
    790	kfree(sbridge_dev->pdev);
    791	kfree(sbridge_dev);
    792}
    793
    794static u64 sbridge_get_tolm(struct sbridge_pvt *pvt)
    795{
    796	u32 reg;
    797
    798	/* Address range is 32:28 */
    799	pci_read_config_dword(pvt->pci_sad1, TOLM, &reg);
    800	return GET_TOLM(reg);
    801}
    802
    803static u64 sbridge_get_tohm(struct sbridge_pvt *pvt)
    804{
    805	u32 reg;
    806
    807	pci_read_config_dword(pvt->pci_sad1, TOHM, &reg);
    808	return GET_TOHM(reg);
    809}
    810
    811static u64 ibridge_get_tolm(struct sbridge_pvt *pvt)
    812{
    813	u32 reg;
    814
    815	pci_read_config_dword(pvt->pci_br1, TOLM, &reg);
    816
    817	return GET_TOLM(reg);
    818}
    819
    820static u64 ibridge_get_tohm(struct sbridge_pvt *pvt)
    821{
    822	u32 reg;
    823
    824	pci_read_config_dword(pvt->pci_br1, TOHM, &reg);
    825
    826	return GET_TOHM(reg);
    827}
    828
    829static u64 rir_limit(u32 reg)
    830{
    831	return ((u64)GET_BITFIELD(reg,  1, 10) << 29) | 0x1fffffff;
    832}
    833
    834static u64 sad_limit(u32 reg)
    835{
    836	return (GET_BITFIELD(reg, 6, 25) << 26) | 0x3ffffff;
    837}
    838
    839static u32 interleave_mode(u32 reg)
    840{
    841	return GET_BITFIELD(reg, 1, 1);
    842}
    843
    844static u32 dram_attr(u32 reg)
    845{
    846	return GET_BITFIELD(reg, 2, 3);
    847}
    848
    849static u64 knl_sad_limit(u32 reg)
    850{
    851	return (GET_BITFIELD(reg, 7, 26) << 26) | 0x3ffffff;
    852}
    853
    854static u32 knl_interleave_mode(u32 reg)
    855{
    856	return GET_BITFIELD(reg, 1, 2);
    857}
    858
    859static const char * const knl_intlv_mode[] = {
    860	"[8:6]", "[10:8]", "[14:12]", "[32:30]"
    861};
    862
    863static const char *get_intlv_mode_str(u32 reg, enum type t)
    864{
    865	if (t == KNIGHTS_LANDING)
    866		return knl_intlv_mode[knl_interleave_mode(reg)];
    867	else
    868		return interleave_mode(reg) ? "[8:6]" : "[8:6]XOR[18:16]";
    869}
    870
    871static u32 dram_attr_knl(u32 reg)
    872{
    873	return GET_BITFIELD(reg, 3, 4);
    874}
    875
    876
    877static enum mem_type get_memory_type(struct sbridge_pvt *pvt)
    878{
    879	u32 reg;
    880	enum mem_type mtype;
    881
    882	if (pvt->pci_ddrio) {
    883		pci_read_config_dword(pvt->pci_ddrio, pvt->info.rankcfgr,
    884				      &reg);
    885		if (GET_BITFIELD(reg, 11, 11))
    886			/* FIXME: Can also be LRDIMM */
    887			mtype = MEM_RDDR3;
    888		else
    889			mtype = MEM_DDR3;
    890	} else
    891		mtype = MEM_UNKNOWN;
    892
    893	return mtype;
    894}
    895
    896static enum mem_type haswell_get_memory_type(struct sbridge_pvt *pvt)
    897{
    898	u32 reg;
    899	bool registered = false;
    900	enum mem_type mtype = MEM_UNKNOWN;
    901
    902	if (!pvt->pci_ddrio)
    903		goto out;
    904
    905	pci_read_config_dword(pvt->pci_ddrio,
    906			      HASWELL_DDRCRCLKCONTROLS, &reg);
    907	/* Is_Rdimm */
    908	if (GET_BITFIELD(reg, 16, 16))
    909		registered = true;
    910
    911	pci_read_config_dword(pvt->pci_ta, MCMTR, &reg);
    912	if (GET_BITFIELD(reg, 14, 14)) {
    913		if (registered)
    914			mtype = MEM_RDDR4;
    915		else
    916			mtype = MEM_DDR4;
    917	} else {
    918		if (registered)
    919			mtype = MEM_RDDR3;
    920		else
    921			mtype = MEM_DDR3;
    922	}
    923
    924out:
    925	return mtype;
    926}
    927
    928static enum dev_type knl_get_width(struct sbridge_pvt *pvt, u32 mtr)
    929{
    930	/* for KNL value is fixed */
    931	return DEV_X16;
    932}
    933
    934static enum dev_type sbridge_get_width(struct sbridge_pvt *pvt, u32 mtr)
    935{
    936	/* there's no way to figure out */
    937	return DEV_UNKNOWN;
    938}
    939
    940static enum dev_type __ibridge_get_width(u32 mtr)
    941{
    942	enum dev_type type = DEV_UNKNOWN;
    943
    944	switch (mtr) {
    945	case 2:
    946		type = DEV_X16;
    947		break;
    948	case 1:
    949		type = DEV_X8;
    950		break;
    951	case 0:
    952		type = DEV_X4;
    953		break;
    954	}
    955
    956	return type;
    957}
    958
    959static enum dev_type ibridge_get_width(struct sbridge_pvt *pvt, u32 mtr)
    960{
    961	/*
    962	 * ddr3_width on the documentation but also valid for DDR4 on
    963	 * Haswell
    964	 */
    965	return __ibridge_get_width(GET_BITFIELD(mtr, 7, 8));
    966}
    967
    968static enum dev_type broadwell_get_width(struct sbridge_pvt *pvt, u32 mtr)
    969{
    970	/* ddr3_width on the documentation but also valid for DDR4 */
    971	return __ibridge_get_width(GET_BITFIELD(mtr, 8, 9));
    972}
    973
    974static enum mem_type knl_get_memory_type(struct sbridge_pvt *pvt)
    975{
    976	/* DDR4 RDIMMS and LRDIMMS are supported */
    977	return MEM_RDDR4;
    978}
    979
    980static u8 get_node_id(struct sbridge_pvt *pvt)
    981{
    982	u32 reg;
    983	pci_read_config_dword(pvt->pci_br0, SAD_CONTROL, &reg);
    984	return GET_BITFIELD(reg, 0, 2);
    985}
    986
    987static u8 haswell_get_node_id(struct sbridge_pvt *pvt)
    988{
    989	u32 reg;
    990
    991	pci_read_config_dword(pvt->pci_sad1, SAD_CONTROL, &reg);
    992	return GET_BITFIELD(reg, 0, 3);
    993}
    994
    995static u8 knl_get_node_id(struct sbridge_pvt *pvt)
    996{
    997	u32 reg;
    998
    999	pci_read_config_dword(pvt->pci_sad1, SAD_CONTROL, &reg);
   1000	return GET_BITFIELD(reg, 0, 2);
   1001}
   1002
   1003/*
   1004 * Use the reporting bank number to determine which memory
   1005 * controller (also known as "ha" for "home agent"). Sandy
   1006 * Bridge only has one memory controller per socket, so the
   1007 * answer is always zero.
   1008 */
   1009static u8 sbridge_get_ha(u8 bank)
   1010{
   1011	return 0;
   1012}
   1013
   1014/*
   1015 * On Ivy Bridge, Haswell and Broadwell the error may be in a
   1016 * home agent bank (7, 8), or one of the per-channel memory
   1017 * controller banks (9 .. 16).
   1018 */
   1019static u8 ibridge_get_ha(u8 bank)
   1020{
   1021	switch (bank) {
   1022	case 7 ... 8:
   1023		return bank - 7;
   1024	case 9 ... 16:
   1025		return (bank - 9) / 4;
   1026	default:
   1027		return 0xff;
   1028	}
   1029}
   1030
   1031/* Not used, but included for safety/symmetry */
   1032static u8 knl_get_ha(u8 bank)
   1033{
   1034	return 0xff;
   1035}
   1036
   1037static u64 haswell_get_tolm(struct sbridge_pvt *pvt)
   1038{
   1039	u32 reg;
   1040
   1041	pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOLM, &reg);
   1042	return (GET_BITFIELD(reg, 26, 31) << 26) | 0x3ffffff;
   1043}
   1044
   1045static u64 haswell_get_tohm(struct sbridge_pvt *pvt)
   1046{
   1047	u64 rc;
   1048	u32 reg;
   1049
   1050	pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOHM_0, &reg);
   1051	rc = GET_BITFIELD(reg, 26, 31);
   1052	pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOHM_1, &reg);
   1053	rc = ((reg << 6) | rc) << 26;
   1054
   1055	return rc | 0x3ffffff;
   1056}
   1057
   1058static u64 knl_get_tolm(struct sbridge_pvt *pvt)
   1059{
   1060	u32 reg;
   1061
   1062	pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOLM, &reg);
   1063	return (GET_BITFIELD(reg, 26, 31) << 26) | 0x3ffffff;
   1064}
   1065
   1066static u64 knl_get_tohm(struct sbridge_pvt *pvt)
   1067{
   1068	u64 rc;
   1069	u32 reg_lo, reg_hi;
   1070
   1071	pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOHM_0, &reg_lo);
   1072	pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOHM_1, &reg_hi);
   1073	rc = ((u64)reg_hi << 32) | reg_lo;
   1074	return rc | 0x3ffffff;
   1075}
   1076
   1077
   1078static u64 haswell_rir_limit(u32 reg)
   1079{
   1080	return (((u64)GET_BITFIELD(reg,  1, 11) + 1) << 29) - 1;
   1081}
   1082
   1083static inline u8 sad_pkg_socket(u8 pkg)
   1084{
   1085	/* on Ivy Bridge, nodeID is SASS, where A is HA and S is node id */
   1086	return ((pkg >> 3) << 2) | (pkg & 0x3);
   1087}
   1088
   1089static inline u8 sad_pkg_ha(u8 pkg)
   1090{
   1091	return (pkg >> 2) & 0x1;
   1092}
   1093
   1094static int haswell_chan_hash(int idx, u64 addr)
   1095{
   1096	int i;
   1097
   1098	/*
   1099	 * XOR even bits from 12:26 to bit0 of idx,
   1100	 *     odd bits from 13:27 to bit1
   1101	 */
   1102	for (i = 12; i < 28; i += 2)
   1103		idx ^= (addr >> i) & 3;
   1104
   1105	return idx;
   1106}
   1107
   1108/* Low bits of TAD limit, and some metadata. */
   1109static const u32 knl_tad_dram_limit_lo[] = {
   1110	0x400, 0x500, 0x600, 0x700,
   1111	0x800, 0x900, 0xa00, 0xb00,
   1112};
   1113
   1114/* Low bits of TAD offset. */
   1115static const u32 knl_tad_dram_offset_lo[] = {
   1116	0x404, 0x504, 0x604, 0x704,
   1117	0x804, 0x904, 0xa04, 0xb04,
   1118};
   1119
   1120/* High 16 bits of TAD limit and offset. */
   1121static const u32 knl_tad_dram_hi[] = {
   1122	0x408, 0x508, 0x608, 0x708,
   1123	0x808, 0x908, 0xa08, 0xb08,
   1124};
   1125
   1126/* Number of ways a tad entry is interleaved. */
   1127static const u32 knl_tad_ways[] = {
   1128	8, 6, 4, 3, 2, 1,
   1129};
   1130
   1131/*
   1132 * Retrieve the n'th Target Address Decode table entry
   1133 * from the memory controller's TAD table.
   1134 *
   1135 * @pvt:	driver private data
   1136 * @entry:	which entry you want to retrieve
   1137 * @mc:		which memory controller (0 or 1)
   1138 * @offset:	output tad range offset
   1139 * @limit:	output address of first byte above tad range
   1140 * @ways:	output number of interleave ways
   1141 *
   1142 * The offset value has curious semantics.  It's a sort of running total
   1143 * of the sizes of all the memory regions that aren't mapped in this
   1144 * tad table.
   1145 */
   1146static int knl_get_tad(const struct sbridge_pvt *pvt,
   1147		const int entry,
   1148		const int mc,
   1149		u64 *offset,
   1150		u64 *limit,
   1151		int *ways)
   1152{
   1153	u32 reg_limit_lo, reg_offset_lo, reg_hi;
   1154	struct pci_dev *pci_mc;
   1155	int way_id;
   1156
   1157	switch (mc) {
   1158	case 0:
   1159		pci_mc = pvt->knl.pci_mc0;
   1160		break;
   1161	case 1:
   1162		pci_mc = pvt->knl.pci_mc1;
   1163		break;
   1164	default:
   1165		WARN_ON(1);
   1166		return -EINVAL;
   1167	}
   1168
   1169	pci_read_config_dword(pci_mc,
   1170			knl_tad_dram_limit_lo[entry], &reg_limit_lo);
   1171	pci_read_config_dword(pci_mc,
   1172			knl_tad_dram_offset_lo[entry], &reg_offset_lo);
   1173	pci_read_config_dword(pci_mc,
   1174			knl_tad_dram_hi[entry], &reg_hi);
   1175
   1176	/* Is this TAD entry enabled? */
   1177	if (!GET_BITFIELD(reg_limit_lo, 0, 0))
   1178		return -ENODEV;
   1179
   1180	way_id = GET_BITFIELD(reg_limit_lo, 3, 5);
   1181
   1182	if (way_id < ARRAY_SIZE(knl_tad_ways)) {
   1183		*ways = knl_tad_ways[way_id];
   1184	} else {
   1185		*ways = 0;
   1186		sbridge_printk(KERN_ERR,
   1187				"Unexpected value %d in mc_tad_limit_lo wayness field\n",
   1188				way_id);
   1189		return -ENODEV;
   1190	}
   1191
   1192	/*
   1193	 * The least significant 6 bits of base and limit are truncated.
   1194	 * For limit, we fill the missing bits with 1s.
   1195	 */
   1196	*offset = ((u64) GET_BITFIELD(reg_offset_lo, 6, 31) << 6) |
   1197				((u64) GET_BITFIELD(reg_hi, 0,  15) << 32);
   1198	*limit = ((u64) GET_BITFIELD(reg_limit_lo,  6, 31) << 6) | 63 |
   1199				((u64) GET_BITFIELD(reg_hi, 16, 31) << 32);
   1200
   1201	return 0;
   1202}
   1203
   1204/* Determine which memory controller is responsible for a given channel. */
   1205static int knl_channel_mc(int channel)
   1206{
   1207	WARN_ON(channel < 0 || channel >= 6);
   1208
   1209	return channel < 3 ? 1 : 0;
   1210}
   1211
   1212/*
   1213 * Get the Nth entry from EDC_ROUTE_TABLE register.
   1214 * (This is the per-tile mapping of logical interleave targets to
   1215 *  physical EDC modules.)
   1216 *
   1217 * entry 0: 0:2
   1218 *       1: 3:5
   1219 *       2: 6:8
   1220 *       3: 9:11
   1221 *       4: 12:14
   1222 *       5: 15:17
   1223 *       6: 18:20
   1224 *       7: 21:23
   1225 * reserved: 24:31
   1226 */
   1227static u32 knl_get_edc_route(int entry, u32 reg)
   1228{
   1229	WARN_ON(entry >= KNL_MAX_EDCS);
   1230	return GET_BITFIELD(reg, entry*3, (entry*3)+2);
   1231}
   1232
   1233/*
   1234 * Get the Nth entry from MC_ROUTE_TABLE register.
   1235 * (This is the per-tile mapping of logical interleave targets to
   1236 *  physical DRAM channels modules.)
   1237 *
   1238 * entry 0: mc 0:2   channel 18:19
   1239 *       1: mc 3:5   channel 20:21
   1240 *       2: mc 6:8   channel 22:23
   1241 *       3: mc 9:11  channel 24:25
   1242 *       4: mc 12:14 channel 26:27
   1243 *       5: mc 15:17 channel 28:29
   1244 * reserved: 30:31
   1245 *
   1246 * Though we have 3 bits to identify the MC, we should only see
   1247 * the values 0 or 1.
   1248 */
   1249
   1250static u32 knl_get_mc_route(int entry, u32 reg)
   1251{
   1252	int mc, chan;
   1253
   1254	WARN_ON(entry >= KNL_MAX_CHANNELS);
   1255
   1256	mc = GET_BITFIELD(reg, entry*3, (entry*3)+2);
   1257	chan = GET_BITFIELD(reg, (entry*2) + 18, (entry*2) + 18 + 1);
   1258
   1259	return knl_channel_remap(mc, chan);
   1260}
   1261
   1262/*
   1263 * Render the EDC_ROUTE register in human-readable form.
   1264 * Output string s should be at least KNL_MAX_EDCS*2 bytes.
   1265 */
   1266static void knl_show_edc_route(u32 reg, char *s)
   1267{
   1268	int i;
   1269
   1270	for (i = 0; i < KNL_MAX_EDCS; i++) {
   1271		s[i*2] = knl_get_edc_route(i, reg) + '0';
   1272		s[i*2+1] = '-';
   1273	}
   1274
   1275	s[KNL_MAX_EDCS*2 - 1] = '\0';
   1276}
   1277
   1278/*
   1279 * Render the MC_ROUTE register in human-readable form.
   1280 * Output string s should be at least KNL_MAX_CHANNELS*2 bytes.
   1281 */
   1282static void knl_show_mc_route(u32 reg, char *s)
   1283{
   1284	int i;
   1285
   1286	for (i = 0; i < KNL_MAX_CHANNELS; i++) {
   1287		s[i*2] = knl_get_mc_route(i, reg) + '0';
   1288		s[i*2+1] = '-';
   1289	}
   1290
   1291	s[KNL_MAX_CHANNELS*2 - 1] = '\0';
   1292}
   1293
   1294#define KNL_EDC_ROUTE 0xb8
   1295#define KNL_MC_ROUTE 0xb4
   1296
   1297/* Is this dram rule backed by regular DRAM in flat mode? */
   1298#define KNL_EDRAM(reg) GET_BITFIELD(reg, 29, 29)
   1299
   1300/* Is this dram rule cached? */
   1301#define KNL_CACHEABLE(reg) GET_BITFIELD(reg, 28, 28)
   1302
   1303/* Is this rule backed by edc ? */
   1304#define KNL_EDRAM_ONLY(reg) GET_BITFIELD(reg, 29, 29)
   1305
   1306/* Is this rule backed by DRAM, cacheable in EDRAM? */
   1307#define KNL_CACHEABLE(reg) GET_BITFIELD(reg, 28, 28)
   1308
   1309/* Is this rule mod3? */
   1310#define KNL_MOD3(reg) GET_BITFIELD(reg, 27, 27)
   1311
   1312/*
   1313 * Figure out how big our RAM modules are.
   1314 *
   1315 * The DIMMMTR register in KNL doesn't tell us the size of the DIMMs, so we
   1316 * have to figure this out from the SAD rules, interleave lists, route tables,
   1317 * and TAD rules.
   1318 *
   1319 * SAD rules can have holes in them (e.g. the 3G-4G hole), so we have to
   1320 * inspect the TAD rules to figure out how large the SAD regions really are.
   1321 *
   1322 * When we know the real size of a SAD region and how many ways it's
   1323 * interleaved, we know the individual contribution of each channel to
   1324 * TAD is size/ways.
   1325 *
   1326 * Finally, we have to check whether each channel participates in each SAD
   1327 * region.
   1328 *
   1329 * Fortunately, KNL only supports one DIMM per channel, so once we know how
   1330 * much memory the channel uses, we know the DIMM is at least that large.
   1331 * (The BIOS might possibly choose not to map all available memory, in which
   1332 * case we will underreport the size of the DIMM.)
   1333 *
   1334 * In theory, we could try to determine the EDC sizes as well, but that would
   1335 * only work in flat mode, not in cache mode.
   1336 *
   1337 * @mc_sizes: Output sizes of channels (must have space for KNL_MAX_CHANNELS
   1338 *            elements)
   1339 */
   1340static int knl_get_dimm_capacity(struct sbridge_pvt *pvt, u64 *mc_sizes)
   1341{
   1342	u64 sad_base, sad_limit = 0;
   1343	u64 tad_base, tad_size, tad_limit, tad_deadspace, tad_livespace;
   1344	int sad_rule = 0;
   1345	int tad_rule = 0;
   1346	int intrlv_ways, tad_ways;
   1347	u32 first_pkg, pkg;
   1348	int i;
   1349	u64 sad_actual_size[2]; /* sad size accounting for holes, per mc */
   1350	u32 dram_rule, interleave_reg;
   1351	u32 mc_route_reg[KNL_MAX_CHAS];
   1352	u32 edc_route_reg[KNL_MAX_CHAS];
   1353	int edram_only;
   1354	char edc_route_string[KNL_MAX_EDCS*2];
   1355	char mc_route_string[KNL_MAX_CHANNELS*2];
   1356	int cur_reg_start;
   1357	int mc;
   1358	int channel;
   1359	int participants[KNL_MAX_CHANNELS];
   1360
   1361	for (i = 0; i < KNL_MAX_CHANNELS; i++)
   1362		mc_sizes[i] = 0;
   1363
   1364	/* Read the EDC route table in each CHA. */
   1365	cur_reg_start = 0;
   1366	for (i = 0; i < KNL_MAX_CHAS; i++) {
   1367		pci_read_config_dword(pvt->knl.pci_cha[i],
   1368				KNL_EDC_ROUTE, &edc_route_reg[i]);
   1369
   1370		if (i > 0 && edc_route_reg[i] != edc_route_reg[i-1]) {
   1371			knl_show_edc_route(edc_route_reg[i-1],
   1372					edc_route_string);
   1373			if (cur_reg_start == i-1)
   1374				edac_dbg(0, "edc route table for CHA %d: %s\n",
   1375					cur_reg_start, edc_route_string);
   1376			else
   1377				edac_dbg(0, "edc route table for CHA %d-%d: %s\n",
   1378					cur_reg_start, i-1, edc_route_string);
   1379			cur_reg_start = i;
   1380		}
   1381	}
   1382	knl_show_edc_route(edc_route_reg[i-1], edc_route_string);
   1383	if (cur_reg_start == i-1)
   1384		edac_dbg(0, "edc route table for CHA %d: %s\n",
   1385			cur_reg_start, edc_route_string);
   1386	else
   1387		edac_dbg(0, "edc route table for CHA %d-%d: %s\n",
   1388			cur_reg_start, i-1, edc_route_string);
   1389
   1390	/* Read the MC route table in each CHA. */
   1391	cur_reg_start = 0;
   1392	for (i = 0; i < KNL_MAX_CHAS; i++) {
   1393		pci_read_config_dword(pvt->knl.pci_cha[i],
   1394			KNL_MC_ROUTE, &mc_route_reg[i]);
   1395
   1396		if (i > 0 && mc_route_reg[i] != mc_route_reg[i-1]) {
   1397			knl_show_mc_route(mc_route_reg[i-1], mc_route_string);
   1398			if (cur_reg_start == i-1)
   1399				edac_dbg(0, "mc route table for CHA %d: %s\n",
   1400					cur_reg_start, mc_route_string);
   1401			else
   1402				edac_dbg(0, "mc route table for CHA %d-%d: %s\n",
   1403					cur_reg_start, i-1, mc_route_string);
   1404			cur_reg_start = i;
   1405		}
   1406	}
   1407	knl_show_mc_route(mc_route_reg[i-1], mc_route_string);
   1408	if (cur_reg_start == i-1)
   1409		edac_dbg(0, "mc route table for CHA %d: %s\n",
   1410			cur_reg_start, mc_route_string);
   1411	else
   1412		edac_dbg(0, "mc route table for CHA %d-%d: %s\n",
   1413			cur_reg_start, i-1, mc_route_string);
   1414
   1415	/* Process DRAM rules */
   1416	for (sad_rule = 0; sad_rule < pvt->info.max_sad; sad_rule++) {
   1417		/* previous limit becomes the new base */
   1418		sad_base = sad_limit;
   1419
   1420		pci_read_config_dword(pvt->pci_sad0,
   1421			pvt->info.dram_rule[sad_rule], &dram_rule);
   1422
   1423		if (!DRAM_RULE_ENABLE(dram_rule))
   1424			break;
   1425
   1426		edram_only = KNL_EDRAM_ONLY(dram_rule);
   1427
   1428		sad_limit = pvt->info.sad_limit(dram_rule)+1;
   1429
   1430		pci_read_config_dword(pvt->pci_sad0,
   1431			pvt->info.interleave_list[sad_rule], &interleave_reg);
   1432
   1433		/*
   1434		 * Find out how many ways this dram rule is interleaved.
   1435		 * We stop when we see the first channel again.
   1436		 */
   1437		first_pkg = sad_pkg(pvt->info.interleave_pkg,
   1438						interleave_reg, 0);
   1439		for (intrlv_ways = 1; intrlv_ways < 8; intrlv_ways++) {
   1440			pkg = sad_pkg(pvt->info.interleave_pkg,
   1441						interleave_reg, intrlv_ways);
   1442
   1443			if ((pkg & 0x8) == 0) {
   1444				/*
   1445				 * 0 bit means memory is non-local,
   1446				 * which KNL doesn't support
   1447				 */
   1448				edac_dbg(0, "Unexpected interleave target %d\n",
   1449					pkg);
   1450				return -1;
   1451			}
   1452
   1453			if (pkg == first_pkg)
   1454				break;
   1455		}
   1456		if (KNL_MOD3(dram_rule))
   1457			intrlv_ways *= 3;
   1458
   1459		edac_dbg(3, "dram rule %d (base 0x%llx, limit 0x%llx), %d way interleave%s\n",
   1460			sad_rule,
   1461			sad_base,
   1462			sad_limit,
   1463			intrlv_ways,
   1464			edram_only ? ", EDRAM" : "");
   1465
   1466		/*
   1467		 * Find out how big the SAD region really is by iterating
   1468		 * over TAD tables (SAD regions may contain holes).
   1469		 * Each memory controller might have a different TAD table, so
   1470		 * we have to look at both.
   1471		 *
   1472		 * Livespace is the memory that's mapped in this TAD table,
   1473		 * deadspace is the holes (this could be the MMIO hole, or it
   1474		 * could be memory that's mapped by the other TAD table but
   1475		 * not this one).
   1476		 */
   1477		for (mc = 0; mc < 2; mc++) {
   1478			sad_actual_size[mc] = 0;
   1479			tad_livespace = 0;
   1480			for (tad_rule = 0;
   1481					tad_rule < ARRAY_SIZE(
   1482						knl_tad_dram_limit_lo);
   1483					tad_rule++) {
   1484				if (knl_get_tad(pvt,
   1485						tad_rule,
   1486						mc,
   1487						&tad_deadspace,
   1488						&tad_limit,
   1489						&tad_ways))
   1490					break;
   1491
   1492				tad_size = (tad_limit+1) -
   1493					(tad_livespace + tad_deadspace);
   1494				tad_livespace += tad_size;
   1495				tad_base = (tad_limit+1) - tad_size;
   1496
   1497				if (tad_base < sad_base) {
   1498					if (tad_limit > sad_base)
   1499						edac_dbg(0, "TAD region overlaps lower SAD boundary -- TAD tables may be configured incorrectly.\n");
   1500				} else if (tad_base < sad_limit) {
   1501					if (tad_limit+1 > sad_limit) {
   1502						edac_dbg(0, "TAD region overlaps upper SAD boundary -- TAD tables may be configured incorrectly.\n");
   1503					} else {
   1504						/* TAD region is completely inside SAD region */
   1505						edac_dbg(3, "TAD region %d 0x%llx - 0x%llx (%lld bytes) table%d\n",
   1506							tad_rule, tad_base,
   1507							tad_limit, tad_size,
   1508							mc);
   1509						sad_actual_size[mc] += tad_size;
   1510					}
   1511				}
   1512			}
   1513		}
   1514
   1515		for (mc = 0; mc < 2; mc++) {
   1516			edac_dbg(3, " total TAD DRAM footprint in table%d : 0x%llx (%lld bytes)\n",
   1517				mc, sad_actual_size[mc], sad_actual_size[mc]);
   1518		}
   1519
   1520		/* Ignore EDRAM rule */
   1521		if (edram_only)
   1522			continue;
   1523
   1524		/* Figure out which channels participate in interleave. */
   1525		for (channel = 0; channel < KNL_MAX_CHANNELS; channel++)
   1526			participants[channel] = 0;
   1527
   1528		/* For each channel, does at least one CHA have
   1529		 * this channel mapped to the given target?
   1530		 */
   1531		for (channel = 0; channel < KNL_MAX_CHANNELS; channel++) {
   1532			int target;
   1533			int cha;
   1534
   1535			for (target = 0; target < KNL_MAX_CHANNELS; target++) {
   1536				for (cha = 0; cha < KNL_MAX_CHAS; cha++) {
   1537					if (knl_get_mc_route(target,
   1538						mc_route_reg[cha]) == channel
   1539						&& !participants[channel]) {
   1540						participants[channel] = 1;
   1541						break;
   1542					}
   1543				}
   1544			}
   1545		}
   1546
   1547		for (channel = 0; channel < KNL_MAX_CHANNELS; channel++) {
   1548			mc = knl_channel_mc(channel);
   1549			if (participants[channel]) {
   1550				edac_dbg(4, "mc channel %d contributes %lld bytes via sad entry %d\n",
   1551					channel,
   1552					sad_actual_size[mc]/intrlv_ways,
   1553					sad_rule);
   1554				mc_sizes[channel] +=
   1555					sad_actual_size[mc]/intrlv_ways;
   1556			}
   1557		}
   1558	}
   1559
   1560	return 0;
   1561}
   1562
   1563static void get_source_id(struct mem_ctl_info *mci)
   1564{
   1565	struct sbridge_pvt *pvt = mci->pvt_info;
   1566	u32 reg;
   1567
   1568	if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL ||
   1569	    pvt->info.type == KNIGHTS_LANDING)
   1570		pci_read_config_dword(pvt->pci_sad1, SAD_TARGET, &reg);
   1571	else
   1572		pci_read_config_dword(pvt->pci_br0, SAD_TARGET, &reg);
   1573
   1574	if (pvt->info.type == KNIGHTS_LANDING)
   1575		pvt->sbridge_dev->source_id = SOURCE_ID_KNL(reg);
   1576	else
   1577		pvt->sbridge_dev->source_id = SOURCE_ID(reg);
   1578}
   1579
   1580static int __populate_dimms(struct mem_ctl_info *mci,
   1581			    u64 knl_mc_sizes[KNL_MAX_CHANNELS],
   1582			    enum edac_type mode)
   1583{
   1584	struct sbridge_pvt *pvt = mci->pvt_info;
   1585	int channels = pvt->info.type == KNIGHTS_LANDING ? KNL_MAX_CHANNELS
   1586							 : NUM_CHANNELS;
   1587	unsigned int i, j, banks, ranks, rows, cols, npages;
   1588	struct dimm_info *dimm;
   1589	enum mem_type mtype;
   1590	u64 size;
   1591
   1592	mtype = pvt->info.get_memory_type(pvt);
   1593	if (mtype == MEM_RDDR3 || mtype == MEM_RDDR4)
   1594		edac_dbg(0, "Memory is registered\n");
   1595	else if (mtype == MEM_UNKNOWN)
   1596		edac_dbg(0, "Cannot determine memory type\n");
   1597	else
   1598		edac_dbg(0, "Memory is unregistered\n");
   1599
   1600	if (mtype == MEM_DDR4 || mtype == MEM_RDDR4)
   1601		banks = 16;
   1602	else
   1603		banks = 8;
   1604
   1605	for (i = 0; i < channels; i++) {
   1606		u32 mtr;
   1607
   1608		int max_dimms_per_channel;
   1609
   1610		if (pvt->info.type == KNIGHTS_LANDING) {
   1611			max_dimms_per_channel = 1;
   1612			if (!pvt->knl.pci_channel[i])
   1613				continue;
   1614		} else {
   1615			max_dimms_per_channel = ARRAY_SIZE(mtr_regs);
   1616			if (!pvt->pci_tad[i])
   1617				continue;
   1618		}
   1619
   1620		for (j = 0; j < max_dimms_per_channel; j++) {
   1621			dimm = edac_get_dimm(mci, i, j, 0);
   1622			if (pvt->info.type == KNIGHTS_LANDING) {
   1623				pci_read_config_dword(pvt->knl.pci_channel[i],
   1624					knl_mtr_reg, &mtr);
   1625			} else {
   1626				pci_read_config_dword(pvt->pci_tad[i],
   1627					mtr_regs[j], &mtr);
   1628			}
   1629			edac_dbg(4, "Channel #%d  MTR%d = %x\n", i, j, mtr);
   1630			if (IS_DIMM_PRESENT(mtr)) {
   1631				if (!IS_ECC_ENABLED(pvt->info.mcmtr)) {
   1632					sbridge_printk(KERN_ERR, "CPU SrcID #%d, Ha #%d, Channel #%d has DIMMs, but ECC is disabled\n",
   1633						       pvt->sbridge_dev->source_id,
   1634						       pvt->sbridge_dev->dom, i);
   1635					return -ENODEV;
   1636				}
   1637				pvt->channel[i].dimms++;
   1638
   1639				ranks = numrank(pvt->info.type, mtr);
   1640
   1641				if (pvt->info.type == KNIGHTS_LANDING) {
   1642					/* For DDR4, this is fixed. */
   1643					cols = 1 << 10;
   1644					rows = knl_mc_sizes[i] /
   1645						((u64) cols * ranks * banks * 8);
   1646				} else {
   1647					rows = numrow(mtr);
   1648					cols = numcol(mtr);
   1649				}
   1650
   1651				size = ((u64)rows * cols * banks * ranks) >> (20 - 3);
   1652				npages = MiB_TO_PAGES(size);
   1653
   1654				edac_dbg(0, "mc#%d: ha %d channel %d, dimm %d, %lld MiB (%d pages) bank: %d, rank: %d, row: %#x, col: %#x\n",
   1655					 pvt->sbridge_dev->mc, pvt->sbridge_dev->dom, i, j,
   1656					 size, npages,
   1657					 banks, ranks, rows, cols);
   1658
   1659				dimm->nr_pages = npages;
   1660				dimm->grain = 32;
   1661				dimm->dtype = pvt->info.get_width(pvt, mtr);
   1662				dimm->mtype = mtype;
   1663				dimm->edac_mode = mode;
   1664				snprintf(dimm->label, sizeof(dimm->label),
   1665						 "CPU_SrcID#%u_Ha#%u_Chan#%u_DIMM#%u",
   1666						 pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom, i, j);
   1667			}
   1668		}
   1669	}
   1670
   1671	return 0;
   1672}
   1673
   1674static int get_dimm_config(struct mem_ctl_info *mci)
   1675{
   1676	struct sbridge_pvt *pvt = mci->pvt_info;
   1677	u64 knl_mc_sizes[KNL_MAX_CHANNELS];
   1678	enum edac_type mode;
   1679	u32 reg;
   1680
   1681	pvt->sbridge_dev->node_id = pvt->info.get_node_id(pvt);
   1682	edac_dbg(0, "mc#%d: Node ID: %d, source ID: %d\n",
   1683		 pvt->sbridge_dev->mc,
   1684		 pvt->sbridge_dev->node_id,
   1685		 pvt->sbridge_dev->source_id);
   1686
   1687	/* KNL doesn't support mirroring or lockstep,
   1688	 * and is always closed page
   1689	 */
   1690	if (pvt->info.type == KNIGHTS_LANDING) {
   1691		mode = EDAC_S4ECD4ED;
   1692		pvt->mirror_mode = NON_MIRRORING;
   1693		pvt->is_cur_addr_mirrored = false;
   1694
   1695		if (knl_get_dimm_capacity(pvt, knl_mc_sizes) != 0)
   1696			return -1;
   1697		if (pci_read_config_dword(pvt->pci_ta, KNL_MCMTR, &pvt->info.mcmtr)) {
   1698			edac_dbg(0, "Failed to read KNL_MCMTR register\n");
   1699			return -ENODEV;
   1700		}
   1701	} else {
   1702		if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL) {
   1703			if (pci_read_config_dword(pvt->pci_ha, HASWELL_HASYSDEFEATURE2, &reg)) {
   1704				edac_dbg(0, "Failed to read HASWELL_HASYSDEFEATURE2 register\n");
   1705				return -ENODEV;
   1706			}
   1707			pvt->is_chan_hash = GET_BITFIELD(reg, 21, 21);
   1708			if (GET_BITFIELD(reg, 28, 28)) {
   1709				pvt->mirror_mode = ADDR_RANGE_MIRRORING;
   1710				edac_dbg(0, "Address range partial memory mirroring is enabled\n");
   1711				goto next;
   1712			}
   1713		}
   1714		if (pci_read_config_dword(pvt->pci_ras, RASENABLES, &reg)) {
   1715			edac_dbg(0, "Failed to read RASENABLES register\n");
   1716			return -ENODEV;
   1717		}
   1718		if (IS_MIRROR_ENABLED(reg)) {
   1719			pvt->mirror_mode = FULL_MIRRORING;
   1720			edac_dbg(0, "Full memory mirroring is enabled\n");
   1721		} else {
   1722			pvt->mirror_mode = NON_MIRRORING;
   1723			edac_dbg(0, "Memory mirroring is disabled\n");
   1724		}
   1725
   1726next:
   1727		if (pci_read_config_dword(pvt->pci_ta, MCMTR, &pvt->info.mcmtr)) {
   1728			edac_dbg(0, "Failed to read MCMTR register\n");
   1729			return -ENODEV;
   1730		}
   1731		if (IS_LOCKSTEP_ENABLED(pvt->info.mcmtr)) {
   1732			edac_dbg(0, "Lockstep is enabled\n");
   1733			mode = EDAC_S8ECD8ED;
   1734			pvt->is_lockstep = true;
   1735		} else {
   1736			edac_dbg(0, "Lockstep is disabled\n");
   1737			mode = EDAC_S4ECD4ED;
   1738			pvt->is_lockstep = false;
   1739		}
   1740		if (IS_CLOSE_PG(pvt->info.mcmtr)) {
   1741			edac_dbg(0, "address map is on closed page mode\n");
   1742			pvt->is_close_pg = true;
   1743		} else {
   1744			edac_dbg(0, "address map is on open page mode\n");
   1745			pvt->is_close_pg = false;
   1746		}
   1747	}
   1748
   1749	return __populate_dimms(mci, knl_mc_sizes, mode);
   1750}
   1751
   1752static void get_memory_layout(const struct mem_ctl_info *mci)
   1753{
   1754	struct sbridge_pvt *pvt = mci->pvt_info;
   1755	int i, j, k, n_sads, n_tads, sad_interl;
   1756	u32 reg;
   1757	u64 limit, prv = 0;
   1758	u64 tmp_mb;
   1759	u32 gb, mb;
   1760	u32 rir_way;
   1761
   1762	/*
   1763	 * Step 1) Get TOLM/TOHM ranges
   1764	 */
   1765
   1766	pvt->tolm = pvt->info.get_tolm(pvt);
   1767	tmp_mb = (1 + pvt->tolm) >> 20;
   1768
   1769	gb = div_u64_rem(tmp_mb, 1024, &mb);
   1770	edac_dbg(0, "TOLM: %u.%03u GB (0x%016Lx)\n",
   1771		gb, (mb*1000)/1024, (u64)pvt->tolm);
   1772
   1773	/* Address range is already 45:25 */
   1774	pvt->tohm = pvt->info.get_tohm(pvt);
   1775	tmp_mb = (1 + pvt->tohm) >> 20;
   1776
   1777	gb = div_u64_rem(tmp_mb, 1024, &mb);
   1778	edac_dbg(0, "TOHM: %u.%03u GB (0x%016Lx)\n",
   1779		gb, (mb*1000)/1024, (u64)pvt->tohm);
   1780
   1781	/*
   1782	 * Step 2) Get SAD range and SAD Interleave list
   1783	 * TAD registers contain the interleave wayness. However, it
   1784	 * seems simpler to just discover it indirectly, with the
   1785	 * algorithm bellow.
   1786	 */
   1787	prv = 0;
   1788	for (n_sads = 0; n_sads < pvt->info.max_sad; n_sads++) {
   1789		/* SAD_LIMIT Address range is 45:26 */
   1790		pci_read_config_dword(pvt->pci_sad0, pvt->info.dram_rule[n_sads],
   1791				      &reg);
   1792		limit = pvt->info.sad_limit(reg);
   1793
   1794		if (!DRAM_RULE_ENABLE(reg))
   1795			continue;
   1796
   1797		if (limit <= prv)
   1798			break;
   1799
   1800		tmp_mb = (limit + 1) >> 20;
   1801		gb = div_u64_rem(tmp_mb, 1024, &mb);
   1802		edac_dbg(0, "SAD#%d %s up to %u.%03u GB (0x%016Lx) Interleave: %s reg=0x%08x\n",
   1803			 n_sads,
   1804			 show_dram_attr(pvt->info.dram_attr(reg)),
   1805			 gb, (mb*1000)/1024,
   1806			 ((u64)tmp_mb) << 20L,
   1807			 get_intlv_mode_str(reg, pvt->info.type),
   1808			 reg);
   1809		prv = limit;
   1810
   1811		pci_read_config_dword(pvt->pci_sad0, pvt->info.interleave_list[n_sads],
   1812				      &reg);
   1813		sad_interl = sad_pkg(pvt->info.interleave_pkg, reg, 0);
   1814		for (j = 0; j < 8; j++) {
   1815			u32 pkg = sad_pkg(pvt->info.interleave_pkg, reg, j);
   1816			if (j > 0 && sad_interl == pkg)
   1817				break;
   1818
   1819			edac_dbg(0, "SAD#%d, interleave #%d: %d\n",
   1820				 n_sads, j, pkg);
   1821		}
   1822	}
   1823
   1824	if (pvt->info.type == KNIGHTS_LANDING)
   1825		return;
   1826
   1827	/*
   1828	 * Step 3) Get TAD range
   1829	 */
   1830	prv = 0;
   1831	for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
   1832		pci_read_config_dword(pvt->pci_ha, tad_dram_rule[n_tads], &reg);
   1833		limit = TAD_LIMIT(reg);
   1834		if (limit <= prv)
   1835			break;
   1836		tmp_mb = (limit + 1) >> 20;
   1837
   1838		gb = div_u64_rem(tmp_mb, 1024, &mb);
   1839		edac_dbg(0, "TAD#%d: up to %u.%03u GB (0x%016Lx), socket interleave %d, memory interleave %d, TGT: %d, %d, %d, %d, reg=0x%08x\n",
   1840			 n_tads, gb, (mb*1000)/1024,
   1841			 ((u64)tmp_mb) << 20L,
   1842			 (u32)(1 << TAD_SOCK(reg)),
   1843			 (u32)TAD_CH(reg) + 1,
   1844			 (u32)TAD_TGT0(reg),
   1845			 (u32)TAD_TGT1(reg),
   1846			 (u32)TAD_TGT2(reg),
   1847			 (u32)TAD_TGT3(reg),
   1848			 reg);
   1849		prv = limit;
   1850	}
   1851
   1852	/*
   1853	 * Step 4) Get TAD offsets, per each channel
   1854	 */
   1855	for (i = 0; i < NUM_CHANNELS; i++) {
   1856		if (!pvt->channel[i].dimms)
   1857			continue;
   1858		for (j = 0; j < n_tads; j++) {
   1859			pci_read_config_dword(pvt->pci_tad[i],
   1860					      tad_ch_nilv_offset[j],
   1861					      &reg);
   1862			tmp_mb = TAD_OFFSET(reg) >> 20;
   1863			gb = div_u64_rem(tmp_mb, 1024, &mb);
   1864			edac_dbg(0, "TAD CH#%d, offset #%d: %u.%03u GB (0x%016Lx), reg=0x%08x\n",
   1865				 i, j,
   1866				 gb, (mb*1000)/1024,
   1867				 ((u64)tmp_mb) << 20L,
   1868				 reg);
   1869		}
   1870	}
   1871
   1872	/*
   1873	 * Step 6) Get RIR Wayness/Limit, per each channel
   1874	 */
   1875	for (i = 0; i < NUM_CHANNELS; i++) {
   1876		if (!pvt->channel[i].dimms)
   1877			continue;
   1878		for (j = 0; j < MAX_RIR_RANGES; j++) {
   1879			pci_read_config_dword(pvt->pci_tad[i],
   1880					      rir_way_limit[j],
   1881					      &reg);
   1882
   1883			if (!IS_RIR_VALID(reg))
   1884				continue;
   1885
   1886			tmp_mb = pvt->info.rir_limit(reg) >> 20;
   1887			rir_way = 1 << RIR_WAY(reg);
   1888			gb = div_u64_rem(tmp_mb, 1024, &mb);
   1889			edac_dbg(0, "CH#%d RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d, reg=0x%08x\n",
   1890				 i, j,
   1891				 gb, (mb*1000)/1024,
   1892				 ((u64)tmp_mb) << 20L,
   1893				 rir_way,
   1894				 reg);
   1895
   1896			for (k = 0; k < rir_way; k++) {
   1897				pci_read_config_dword(pvt->pci_tad[i],
   1898						      rir_offset[j][k],
   1899						      &reg);
   1900				tmp_mb = RIR_OFFSET(pvt->info.type, reg) << 6;
   1901
   1902				gb = div_u64_rem(tmp_mb, 1024, &mb);
   1903				edac_dbg(0, "CH#%d RIR#%d INTL#%d, offset %u.%03u GB (0x%016Lx), tgt: %d, reg=0x%08x\n",
   1904					 i, j, k,
   1905					 gb, (mb*1000)/1024,
   1906					 ((u64)tmp_mb) << 20L,
   1907					 (u32)RIR_RNK_TGT(pvt->info.type, reg),
   1908					 reg);
   1909			}
   1910		}
   1911	}
   1912}
   1913
   1914static struct mem_ctl_info *get_mci_for_node_id(u8 node_id, u8 ha)
   1915{
   1916	struct sbridge_dev *sbridge_dev;
   1917
   1918	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
   1919		if (sbridge_dev->node_id == node_id && sbridge_dev->dom == ha)
   1920			return sbridge_dev->mci;
   1921	}
   1922	return NULL;
   1923}
   1924
   1925static int get_memory_error_data(struct mem_ctl_info *mci,
   1926				 u64 addr,
   1927				 u8 *socket, u8 *ha,
   1928				 long *channel_mask,
   1929				 u8 *rank,
   1930				 char **area_type, char *msg)
   1931{
   1932	struct mem_ctl_info	*new_mci;
   1933	struct sbridge_pvt *pvt = mci->pvt_info;
   1934	struct pci_dev		*pci_ha;
   1935	int			n_rir, n_sads, n_tads, sad_way, sck_xch;
   1936	int			sad_interl, idx, base_ch;
   1937	int			interleave_mode, shiftup = 0;
   1938	unsigned int		sad_interleave[MAX_INTERLEAVE];
   1939	u32			reg, dram_rule;
   1940	u8			ch_way, sck_way, pkg, sad_ha = 0;
   1941	u32			tad_offset;
   1942	u32			rir_way;
   1943	u32			mb, gb;
   1944	u64			ch_addr, offset, limit = 0, prv = 0;
   1945
   1946
   1947	/*
   1948	 * Step 0) Check if the address is at special memory ranges
   1949	 * The check bellow is probably enough to fill all cases where
   1950	 * the error is not inside a memory, except for the legacy
   1951	 * range (e. g. VGA addresses). It is unlikely, however, that the
   1952	 * memory controller would generate an error on that range.
   1953	 */
   1954	if ((addr > (u64) pvt->tolm) && (addr < (1LL << 32))) {
   1955		sprintf(msg, "Error at TOLM area, on addr 0x%08Lx", addr);
   1956		return -EINVAL;
   1957	}
   1958	if (addr >= (u64)pvt->tohm) {
   1959		sprintf(msg, "Error at MMIOH area, on addr 0x%016Lx", addr);
   1960		return -EINVAL;
   1961	}
   1962
   1963	/*
   1964	 * Step 1) Get socket
   1965	 */
   1966	for (n_sads = 0; n_sads < pvt->info.max_sad; n_sads++) {
   1967		pci_read_config_dword(pvt->pci_sad0, pvt->info.dram_rule[n_sads],
   1968				      &reg);
   1969
   1970		if (!DRAM_RULE_ENABLE(reg))
   1971			continue;
   1972
   1973		limit = pvt->info.sad_limit(reg);
   1974		if (limit <= prv) {
   1975			sprintf(msg, "Can't discover the memory socket");
   1976			return -EINVAL;
   1977		}
   1978		if  (addr <= limit)
   1979			break;
   1980		prv = limit;
   1981	}
   1982	if (n_sads == pvt->info.max_sad) {
   1983		sprintf(msg, "Can't discover the memory socket");
   1984		return -EINVAL;
   1985	}
   1986	dram_rule = reg;
   1987	*area_type = show_dram_attr(pvt->info.dram_attr(dram_rule));
   1988	interleave_mode = pvt->info.interleave_mode(dram_rule);
   1989
   1990	pci_read_config_dword(pvt->pci_sad0, pvt->info.interleave_list[n_sads],
   1991			      &reg);
   1992
   1993	if (pvt->info.type == SANDY_BRIDGE) {
   1994		sad_interl = sad_pkg(pvt->info.interleave_pkg, reg, 0);
   1995		for (sad_way = 0; sad_way < 8; sad_way++) {
   1996			u32 pkg = sad_pkg(pvt->info.interleave_pkg, reg, sad_way);
   1997			if (sad_way > 0 && sad_interl == pkg)
   1998				break;
   1999			sad_interleave[sad_way] = pkg;
   2000			edac_dbg(0, "SAD interleave #%d: %d\n",
   2001				 sad_way, sad_interleave[sad_way]);
   2002		}
   2003		edac_dbg(0, "mc#%d: Error detected on SAD#%d: address 0x%016Lx < 0x%016Lx, Interleave [%d:6]%s\n",
   2004			 pvt->sbridge_dev->mc,
   2005			 n_sads,
   2006			 addr,
   2007			 limit,
   2008			 sad_way + 7,
   2009			 !interleave_mode ? "" : "XOR[18:16]");
   2010		if (interleave_mode)
   2011			idx = ((addr >> 6) ^ (addr >> 16)) & 7;
   2012		else
   2013			idx = (addr >> 6) & 7;
   2014		switch (sad_way) {
   2015		case 1:
   2016			idx = 0;
   2017			break;
   2018		case 2:
   2019			idx = idx & 1;
   2020			break;
   2021		case 4:
   2022			idx = idx & 3;
   2023			break;
   2024		case 8:
   2025			break;
   2026		default:
   2027			sprintf(msg, "Can't discover socket interleave");
   2028			return -EINVAL;
   2029		}
   2030		*socket = sad_interleave[idx];
   2031		edac_dbg(0, "SAD interleave index: %d (wayness %d) = CPU socket %d\n",
   2032			 idx, sad_way, *socket);
   2033	} else if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL) {
   2034		int bits, a7mode = A7MODE(dram_rule);
   2035
   2036		if (a7mode) {
   2037			/* A7 mode swaps P9 with P6 */
   2038			bits = GET_BITFIELD(addr, 7, 8) << 1;
   2039			bits |= GET_BITFIELD(addr, 9, 9);
   2040		} else
   2041			bits = GET_BITFIELD(addr, 6, 8);
   2042
   2043		if (interleave_mode == 0) {
   2044			/* interleave mode will XOR {8,7,6} with {18,17,16} */
   2045			idx = GET_BITFIELD(addr, 16, 18);
   2046			idx ^= bits;
   2047		} else
   2048			idx = bits;
   2049
   2050		pkg = sad_pkg(pvt->info.interleave_pkg, reg, idx);
   2051		*socket = sad_pkg_socket(pkg);
   2052		sad_ha = sad_pkg_ha(pkg);
   2053
   2054		if (a7mode) {
   2055			/* MCChanShiftUpEnable */
   2056			pci_read_config_dword(pvt->pci_ha, HASWELL_HASYSDEFEATURE2, &reg);
   2057			shiftup = GET_BITFIELD(reg, 22, 22);
   2058		}
   2059
   2060		edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %i, shiftup: %i\n",
   2061			 idx, *socket, sad_ha, shiftup);
   2062	} else {
   2063		/* Ivy Bridge's SAD mode doesn't support XOR interleave mode */
   2064		idx = (addr >> 6) & 7;
   2065		pkg = sad_pkg(pvt->info.interleave_pkg, reg, idx);
   2066		*socket = sad_pkg_socket(pkg);
   2067		sad_ha = sad_pkg_ha(pkg);
   2068		edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %d\n",
   2069			 idx, *socket, sad_ha);
   2070	}
   2071
   2072	*ha = sad_ha;
   2073
   2074	/*
   2075	 * Move to the proper node structure, in order to access the
   2076	 * right PCI registers
   2077	 */
   2078	new_mci = get_mci_for_node_id(*socket, sad_ha);
   2079	if (!new_mci) {
   2080		sprintf(msg, "Struct for socket #%u wasn't initialized",
   2081			*socket);
   2082		return -EINVAL;
   2083	}
   2084	mci = new_mci;
   2085	pvt = mci->pvt_info;
   2086
   2087	/*
   2088	 * Step 2) Get memory channel
   2089	 */
   2090	prv = 0;
   2091	pci_ha = pvt->pci_ha;
   2092	for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
   2093		pci_read_config_dword(pci_ha, tad_dram_rule[n_tads], &reg);
   2094		limit = TAD_LIMIT(reg);
   2095		if (limit <= prv) {
   2096			sprintf(msg, "Can't discover the memory channel");
   2097			return -EINVAL;
   2098		}
   2099		if  (addr <= limit)
   2100			break;
   2101		prv = limit;
   2102	}
   2103	if (n_tads == MAX_TAD) {
   2104		sprintf(msg, "Can't discover the memory channel");
   2105		return -EINVAL;
   2106	}
   2107
   2108	ch_way = TAD_CH(reg) + 1;
   2109	sck_way = TAD_SOCK(reg);
   2110
   2111	if (ch_way == 3)
   2112		idx = addr >> 6;
   2113	else {
   2114		idx = (addr >> (6 + sck_way + shiftup)) & 0x3;
   2115		if (pvt->is_chan_hash)
   2116			idx = haswell_chan_hash(idx, addr);
   2117	}
   2118	idx = idx % ch_way;
   2119
   2120	/*
   2121	 * FIXME: Shouldn't we use CHN_IDX_OFFSET() here, when ch_way == 3 ???
   2122	 */
   2123	switch (idx) {
   2124	case 0:
   2125		base_ch = TAD_TGT0(reg);
   2126		break;
   2127	case 1:
   2128		base_ch = TAD_TGT1(reg);
   2129		break;
   2130	case 2:
   2131		base_ch = TAD_TGT2(reg);
   2132		break;
   2133	case 3:
   2134		base_ch = TAD_TGT3(reg);
   2135		break;
   2136	default:
   2137		sprintf(msg, "Can't discover the TAD target");
   2138		return -EINVAL;
   2139	}
   2140	*channel_mask = 1 << base_ch;
   2141
   2142	pci_read_config_dword(pvt->pci_tad[base_ch], tad_ch_nilv_offset[n_tads], &tad_offset);
   2143
   2144	if (pvt->mirror_mode == FULL_MIRRORING ||
   2145	    (pvt->mirror_mode == ADDR_RANGE_MIRRORING && n_tads == 0)) {
   2146		*channel_mask |= 1 << ((base_ch + 2) % 4);
   2147		switch(ch_way) {
   2148		case 2:
   2149		case 4:
   2150			sck_xch = (1 << sck_way) * (ch_way >> 1);
   2151			break;
   2152		default:
   2153			sprintf(msg, "Invalid mirror set. Can't decode addr");
   2154			return -EINVAL;
   2155		}
   2156
   2157		pvt->is_cur_addr_mirrored = true;
   2158	} else {
   2159		sck_xch = (1 << sck_way) * ch_way;
   2160		pvt->is_cur_addr_mirrored = false;
   2161	}
   2162
   2163	if (pvt->is_lockstep)
   2164		*channel_mask |= 1 << ((base_ch + 1) % 4);
   2165
   2166	offset = TAD_OFFSET(tad_offset);
   2167
   2168	edac_dbg(0, "TAD#%d: address 0x%016Lx < 0x%016Lx, socket interleave %d, channel interleave %d (offset 0x%08Lx), index %d, base ch: %d, ch mask: 0x%02lx\n",
   2169		 n_tads,
   2170		 addr,
   2171		 limit,
   2172		 sck_way,
   2173		 ch_way,
   2174		 offset,
   2175		 idx,
   2176		 base_ch,
   2177		 *channel_mask);
   2178
   2179	/* Calculate channel address */
   2180	/* Remove the TAD offset */
   2181
   2182	if (offset > addr) {
   2183		sprintf(msg, "Can't calculate ch addr: TAD offset 0x%08Lx is too high for addr 0x%08Lx!",
   2184			offset, addr);
   2185		return -EINVAL;
   2186	}
   2187
   2188	ch_addr = addr - offset;
   2189	ch_addr >>= (6 + shiftup);
   2190	ch_addr /= sck_xch;
   2191	ch_addr <<= (6 + shiftup);
   2192	ch_addr |= addr & ((1 << (6 + shiftup)) - 1);
   2193
   2194	/*
   2195	 * Step 3) Decode rank
   2196	 */
   2197	for (n_rir = 0; n_rir < MAX_RIR_RANGES; n_rir++) {
   2198		pci_read_config_dword(pvt->pci_tad[base_ch], rir_way_limit[n_rir], &reg);
   2199
   2200		if (!IS_RIR_VALID(reg))
   2201			continue;
   2202
   2203		limit = pvt->info.rir_limit(reg);
   2204		gb = div_u64_rem(limit >> 20, 1024, &mb);
   2205		edac_dbg(0, "RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d\n",
   2206			 n_rir,
   2207			 gb, (mb*1000)/1024,
   2208			 limit,
   2209			 1 << RIR_WAY(reg));
   2210		if  (ch_addr <= limit)
   2211			break;
   2212	}
   2213	if (n_rir == MAX_RIR_RANGES) {
   2214		sprintf(msg, "Can't discover the memory rank for ch addr 0x%08Lx",
   2215			ch_addr);
   2216		return -EINVAL;
   2217	}
   2218	rir_way = RIR_WAY(reg);
   2219
   2220	if (pvt->is_close_pg)
   2221		idx = (ch_addr >> 6);
   2222	else
   2223		idx = (ch_addr >> 13);	/* FIXME: Datasheet says to shift by 15 */
   2224	idx %= 1 << rir_way;
   2225
   2226	pci_read_config_dword(pvt->pci_tad[base_ch], rir_offset[n_rir][idx], &reg);
   2227	*rank = RIR_RNK_TGT(pvt->info.type, reg);
   2228
   2229	edac_dbg(0, "RIR#%d: channel address 0x%08Lx < 0x%08Lx, RIR interleave %d, index %d\n",
   2230		 n_rir,
   2231		 ch_addr,
   2232		 limit,
   2233		 rir_way,
   2234		 idx);
   2235
   2236	return 0;
   2237}
   2238
   2239static int get_memory_error_data_from_mce(struct mem_ctl_info *mci,
   2240					  const struct mce *m, u8 *socket,
   2241					  u8 *ha, long *channel_mask,
   2242					  char *msg)
   2243{
   2244	u32 reg, channel = GET_BITFIELD(m->status, 0, 3);
   2245	struct mem_ctl_info *new_mci;
   2246	struct sbridge_pvt *pvt;
   2247	struct pci_dev *pci_ha;
   2248	bool tad0;
   2249
   2250	if (channel >= NUM_CHANNELS) {
   2251		sprintf(msg, "Invalid channel 0x%x", channel);
   2252		return -EINVAL;
   2253	}
   2254
   2255	pvt = mci->pvt_info;
   2256	if (!pvt->info.get_ha) {
   2257		sprintf(msg, "No get_ha()");
   2258		return -EINVAL;
   2259	}
   2260	*ha = pvt->info.get_ha(m->bank);
   2261	if (*ha != 0 && *ha != 1) {
   2262		sprintf(msg, "Impossible bank %d", m->bank);
   2263		return -EINVAL;
   2264	}
   2265
   2266	*socket = m->socketid;
   2267	new_mci = get_mci_for_node_id(*socket, *ha);
   2268	if (!new_mci) {
   2269		strcpy(msg, "mci socket got corrupted!");
   2270		return -EINVAL;
   2271	}
   2272
   2273	pvt = new_mci->pvt_info;
   2274	pci_ha = pvt->pci_ha;
   2275	pci_read_config_dword(pci_ha, tad_dram_rule[0], &reg);
   2276	tad0 = m->addr <= TAD_LIMIT(reg);
   2277
   2278	*channel_mask = 1 << channel;
   2279	if (pvt->mirror_mode == FULL_MIRRORING ||
   2280	    (pvt->mirror_mode == ADDR_RANGE_MIRRORING && tad0)) {
   2281		*channel_mask |= 1 << ((channel + 2) % 4);
   2282		pvt->is_cur_addr_mirrored = true;
   2283	} else {
   2284		pvt->is_cur_addr_mirrored = false;
   2285	}
   2286
   2287	if (pvt->is_lockstep)
   2288		*channel_mask |= 1 << ((channel + 1) % 4);
   2289
   2290	return 0;
   2291}
   2292
   2293/****************************************************************************
   2294	Device initialization routines: put/get, init/exit
   2295 ****************************************************************************/
   2296
   2297/*
   2298 *	sbridge_put_all_devices	'put' all the devices that we have
   2299 *				reserved via 'get'
   2300 */
   2301static void sbridge_put_devices(struct sbridge_dev *sbridge_dev)
   2302{
   2303	int i;
   2304
   2305	edac_dbg(0, "\n");
   2306	for (i = 0; i < sbridge_dev->n_devs; i++) {
   2307		struct pci_dev *pdev = sbridge_dev->pdev[i];
   2308		if (!pdev)
   2309			continue;
   2310		edac_dbg(0, "Removing dev %02x:%02x.%d\n",
   2311			 pdev->bus->number,
   2312			 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
   2313		pci_dev_put(pdev);
   2314	}
   2315}
   2316
   2317static void sbridge_put_all_devices(void)
   2318{
   2319	struct sbridge_dev *sbridge_dev, *tmp;
   2320
   2321	list_for_each_entry_safe(sbridge_dev, tmp, &sbridge_edac_list, list) {
   2322		sbridge_put_devices(sbridge_dev);
   2323		free_sbridge_dev(sbridge_dev);
   2324	}
   2325}
   2326
   2327static int sbridge_get_onedevice(struct pci_dev **prev,
   2328				 u8 *num_mc,
   2329				 const struct pci_id_table *table,
   2330				 const unsigned devno,
   2331				 const int multi_bus)
   2332{
   2333	struct sbridge_dev *sbridge_dev = NULL;
   2334	const struct pci_id_descr *dev_descr = &table->descr[devno];
   2335	struct pci_dev *pdev = NULL;
   2336	int seg = 0;
   2337	u8 bus = 0;
   2338	int i = 0;
   2339
   2340	sbridge_printk(KERN_DEBUG,
   2341		"Seeking for: PCI ID %04x:%04x\n",
   2342		PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
   2343
   2344	pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
   2345			      dev_descr->dev_id, *prev);
   2346
   2347	if (!pdev) {
   2348		if (*prev) {
   2349			*prev = pdev;
   2350			return 0;
   2351		}
   2352
   2353		if (dev_descr->optional)
   2354			return 0;
   2355
   2356		/* if the HA wasn't found */
   2357		if (devno == 0)
   2358			return -ENODEV;
   2359
   2360		sbridge_printk(KERN_INFO,
   2361			"Device not found: %04x:%04x\n",
   2362			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
   2363
   2364		/* End of list, leave */
   2365		return -ENODEV;
   2366	}
   2367	seg = pci_domain_nr(pdev->bus);
   2368	bus = pdev->bus->number;
   2369
   2370next_imc:
   2371	sbridge_dev = get_sbridge_dev(seg, bus, dev_descr->dom,
   2372				      multi_bus, sbridge_dev);
   2373	if (!sbridge_dev) {
   2374		/* If the HA1 wasn't found, don't create EDAC second memory controller */
   2375		if (dev_descr->dom == IMC1 && devno != 1) {
   2376			edac_dbg(0, "Skip IMC1: %04x:%04x (since HA1 was absent)\n",
   2377				 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
   2378			pci_dev_put(pdev);
   2379			return 0;
   2380		}
   2381
   2382		if (dev_descr->dom == SOCK)
   2383			goto out_imc;
   2384
   2385		sbridge_dev = alloc_sbridge_dev(seg, bus, dev_descr->dom, table);
   2386		if (!sbridge_dev) {
   2387			pci_dev_put(pdev);
   2388			return -ENOMEM;
   2389		}
   2390		(*num_mc)++;
   2391	}
   2392
   2393	if (sbridge_dev->pdev[sbridge_dev->i_devs]) {
   2394		sbridge_printk(KERN_ERR,
   2395			"Duplicated device for %04x:%04x\n",
   2396			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
   2397		pci_dev_put(pdev);
   2398		return -ENODEV;
   2399	}
   2400
   2401	sbridge_dev->pdev[sbridge_dev->i_devs++] = pdev;
   2402
   2403	/* pdev belongs to more than one IMC, do extra gets */
   2404	if (++i > 1)
   2405		pci_dev_get(pdev);
   2406
   2407	if (dev_descr->dom == SOCK && i < table->n_imcs_per_sock)
   2408		goto next_imc;
   2409
   2410out_imc:
   2411	/* Be sure that the device is enabled */
   2412	if (unlikely(pci_enable_device(pdev) < 0)) {
   2413		sbridge_printk(KERN_ERR,
   2414			"Couldn't enable %04x:%04x\n",
   2415			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
   2416		return -ENODEV;
   2417	}
   2418
   2419	edac_dbg(0, "Detected %04x:%04x\n",
   2420		 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
   2421
   2422	/*
   2423	 * As stated on drivers/pci/search.c, the reference count for
   2424	 * @from is always decremented if it is not %NULL. So, as we need
   2425	 * to get all devices up to null, we need to do a get for the device
   2426	 */
   2427	pci_dev_get(pdev);
   2428
   2429	*prev = pdev;
   2430
   2431	return 0;
   2432}
   2433
   2434/*
   2435 * sbridge_get_all_devices - Find and perform 'get' operation on the MCH's
   2436 *			     devices we want to reference for this driver.
   2437 * @num_mc: pointer to the memory controllers count, to be incremented in case
   2438 *	    of success.
   2439 * @table: model specific table
   2440 *
   2441 * returns 0 in case of success or error code
   2442 */
   2443static int sbridge_get_all_devices(u8 *num_mc,
   2444					const struct pci_id_table *table)
   2445{
   2446	int i, rc;
   2447	struct pci_dev *pdev = NULL;
   2448	int allow_dups = 0;
   2449	int multi_bus = 0;
   2450
   2451	if (table->type == KNIGHTS_LANDING)
   2452		allow_dups = multi_bus = 1;
   2453	while (table && table->descr) {
   2454		for (i = 0; i < table->n_devs_per_sock; i++) {
   2455			if (!allow_dups || i == 0 ||
   2456					table->descr[i].dev_id !=
   2457						table->descr[i-1].dev_id) {
   2458				pdev = NULL;
   2459			}
   2460			do {
   2461				rc = sbridge_get_onedevice(&pdev, num_mc,
   2462							   table, i, multi_bus);
   2463				if (rc < 0) {
   2464					if (i == 0) {
   2465						i = table->n_devs_per_sock;
   2466						break;
   2467					}
   2468					sbridge_put_all_devices();
   2469					return -ENODEV;
   2470				}
   2471			} while (pdev && !allow_dups);
   2472		}
   2473		table++;
   2474	}
   2475
   2476	return 0;
   2477}
   2478
   2479/*
   2480 * Device IDs for {SBRIDGE,IBRIDGE,HASWELL,BROADWELL}_IMC_HA0_TAD0 are in
   2481 * the format: XXXa. So we can convert from a device to the corresponding
   2482 * channel like this
   2483 */
   2484#define TAD_DEV_TO_CHAN(dev) (((dev) & 0xf) - 0xa)
   2485
   2486static int sbridge_mci_bind_devs(struct mem_ctl_info *mci,
   2487				 struct sbridge_dev *sbridge_dev)
   2488{
   2489	struct sbridge_pvt *pvt = mci->pvt_info;
   2490	struct pci_dev *pdev;
   2491	u8 saw_chan_mask = 0;
   2492	int i;
   2493
   2494	for (i = 0; i < sbridge_dev->n_devs; i++) {
   2495		pdev = sbridge_dev->pdev[i];
   2496		if (!pdev)
   2497			continue;
   2498
   2499		switch (pdev->device) {
   2500		case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0:
   2501			pvt->pci_sad0 = pdev;
   2502			break;
   2503		case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1:
   2504			pvt->pci_sad1 = pdev;
   2505			break;
   2506		case PCI_DEVICE_ID_INTEL_SBRIDGE_BR:
   2507			pvt->pci_br0 = pdev;
   2508			break;
   2509		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0:
   2510			pvt->pci_ha = pdev;
   2511			break;
   2512		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA:
   2513			pvt->pci_ta = pdev;
   2514			break;
   2515		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS:
   2516			pvt->pci_ras = pdev;
   2517			break;
   2518		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0:
   2519		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1:
   2520		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2:
   2521		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3:
   2522		{
   2523			int id = TAD_DEV_TO_CHAN(pdev->device);
   2524			pvt->pci_tad[id] = pdev;
   2525			saw_chan_mask |= 1 << id;
   2526		}
   2527			break;
   2528		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO:
   2529			pvt->pci_ddrio = pdev;
   2530			break;
   2531		default:
   2532			goto error;
   2533		}
   2534
   2535		edac_dbg(0, "Associated PCI %02x:%02x, bus %d with dev = %p\n",
   2536			 pdev->vendor, pdev->device,
   2537			 sbridge_dev->bus,
   2538			 pdev);
   2539	}
   2540
   2541	/* Check if everything were registered */
   2542	if (!pvt->pci_sad0 || !pvt->pci_sad1 || !pvt->pci_ha ||
   2543	    !pvt->pci_ras || !pvt->pci_ta)
   2544		goto enodev;
   2545
   2546	if (saw_chan_mask != 0x0f)
   2547		goto enodev;
   2548	return 0;
   2549
   2550enodev:
   2551	sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
   2552	return -ENODEV;
   2553
   2554error:
   2555	sbridge_printk(KERN_ERR, "Unexpected device %02x:%02x\n",
   2556		       PCI_VENDOR_ID_INTEL, pdev->device);
   2557	return -EINVAL;
   2558}
   2559
   2560static int ibridge_mci_bind_devs(struct mem_ctl_info *mci,
   2561				 struct sbridge_dev *sbridge_dev)
   2562{
   2563	struct sbridge_pvt *pvt = mci->pvt_info;
   2564	struct pci_dev *pdev;
   2565	u8 saw_chan_mask = 0;
   2566	int i;
   2567
   2568	for (i = 0; i < sbridge_dev->n_devs; i++) {
   2569		pdev = sbridge_dev->pdev[i];
   2570		if (!pdev)
   2571			continue;
   2572
   2573		switch (pdev->device) {
   2574		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0:
   2575		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1:
   2576			pvt->pci_ha = pdev;
   2577			break;
   2578		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA:
   2579		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA:
   2580			pvt->pci_ta = pdev;
   2581			break;
   2582		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS:
   2583		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS:
   2584			pvt->pci_ras = pdev;
   2585			break;
   2586		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0:
   2587		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1:
   2588		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2:
   2589		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3:
   2590		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0:
   2591		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1:
   2592		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2:
   2593		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3:
   2594		{
   2595			int id = TAD_DEV_TO_CHAN(pdev->device);
   2596			pvt->pci_tad[id] = pdev;
   2597			saw_chan_mask |= 1 << id;
   2598		}
   2599			break;
   2600		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0:
   2601			pvt->pci_ddrio = pdev;
   2602			break;
   2603		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0:
   2604			pvt->pci_ddrio = pdev;
   2605			break;
   2606		case PCI_DEVICE_ID_INTEL_IBRIDGE_SAD:
   2607			pvt->pci_sad0 = pdev;
   2608			break;
   2609		case PCI_DEVICE_ID_INTEL_IBRIDGE_BR0:
   2610			pvt->pci_br0 = pdev;
   2611			break;
   2612		case PCI_DEVICE_ID_INTEL_IBRIDGE_BR1:
   2613			pvt->pci_br1 = pdev;
   2614			break;
   2615		default:
   2616			goto error;
   2617		}
   2618
   2619		edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
   2620			 sbridge_dev->bus,
   2621			 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
   2622			 pdev);
   2623	}
   2624
   2625	/* Check if everything were registered */
   2626	if (!pvt->pci_sad0 || !pvt->pci_ha || !pvt->pci_br0 ||
   2627	    !pvt->pci_br1 || !pvt->pci_ras || !pvt->pci_ta)
   2628		goto enodev;
   2629
   2630	if (saw_chan_mask != 0x0f && /* -EN/-EX */
   2631	    saw_chan_mask != 0x03)   /* -EP */
   2632		goto enodev;
   2633	return 0;
   2634
   2635enodev:
   2636	sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
   2637	return -ENODEV;
   2638
   2639error:
   2640	sbridge_printk(KERN_ERR,
   2641		       "Unexpected device %02x:%02x\n", PCI_VENDOR_ID_INTEL,
   2642			pdev->device);
   2643	return -EINVAL;
   2644}
   2645
   2646static int haswell_mci_bind_devs(struct mem_ctl_info *mci,
   2647				 struct sbridge_dev *sbridge_dev)
   2648{
   2649	struct sbridge_pvt *pvt = mci->pvt_info;
   2650	struct pci_dev *pdev;
   2651	u8 saw_chan_mask = 0;
   2652	int i;
   2653
   2654	/* there's only one device per system; not tied to any bus */
   2655	if (pvt->info.pci_vtd == NULL)
   2656		/* result will be checked later */
   2657		pvt->info.pci_vtd = pci_get_device(PCI_VENDOR_ID_INTEL,
   2658						   PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC,
   2659						   NULL);
   2660
   2661	for (i = 0; i < sbridge_dev->n_devs; i++) {
   2662		pdev = sbridge_dev->pdev[i];
   2663		if (!pdev)
   2664			continue;
   2665
   2666		switch (pdev->device) {
   2667		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0:
   2668			pvt->pci_sad0 = pdev;
   2669			break;
   2670		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1:
   2671			pvt->pci_sad1 = pdev;
   2672			break;
   2673		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0:
   2674		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1:
   2675			pvt->pci_ha = pdev;
   2676			break;
   2677		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA:
   2678		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA:
   2679			pvt->pci_ta = pdev;
   2680			break;
   2681		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TM:
   2682		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TM:
   2683			pvt->pci_ras = pdev;
   2684			break;
   2685		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0:
   2686		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1:
   2687		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2:
   2688		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3:
   2689		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0:
   2690		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1:
   2691		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2:
   2692		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3:
   2693		{
   2694			int id = TAD_DEV_TO_CHAN(pdev->device);
   2695			pvt->pci_tad[id] = pdev;
   2696			saw_chan_mask |= 1 << id;
   2697		}
   2698			break;
   2699		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0:
   2700		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1:
   2701		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2:
   2702		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3:
   2703			if (!pvt->pci_ddrio)
   2704				pvt->pci_ddrio = pdev;
   2705			break;
   2706		default:
   2707			break;
   2708		}
   2709
   2710		edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
   2711			 sbridge_dev->bus,
   2712			 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
   2713			 pdev);
   2714	}
   2715
   2716	/* Check if everything were registered */
   2717	if (!pvt->pci_sad0 || !pvt->pci_ha || !pvt->pci_sad1 ||
   2718	    !pvt->pci_ras  || !pvt->pci_ta || !pvt->info.pci_vtd)
   2719		goto enodev;
   2720
   2721	if (saw_chan_mask != 0x0f && /* -EN/-EX */
   2722	    saw_chan_mask != 0x03)   /* -EP */
   2723		goto enodev;
   2724	return 0;
   2725
   2726enodev:
   2727	sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
   2728	return -ENODEV;
   2729}
   2730
   2731static int broadwell_mci_bind_devs(struct mem_ctl_info *mci,
   2732				 struct sbridge_dev *sbridge_dev)
   2733{
   2734	struct sbridge_pvt *pvt = mci->pvt_info;
   2735	struct pci_dev *pdev;
   2736	u8 saw_chan_mask = 0;
   2737	int i;
   2738
   2739	/* there's only one device per system; not tied to any bus */
   2740	if (pvt->info.pci_vtd == NULL)
   2741		/* result will be checked later */
   2742		pvt->info.pci_vtd = pci_get_device(PCI_VENDOR_ID_INTEL,
   2743						   PCI_DEVICE_ID_INTEL_BROADWELL_IMC_VTD_MISC,
   2744						   NULL);
   2745
   2746	for (i = 0; i < sbridge_dev->n_devs; i++) {
   2747		pdev = sbridge_dev->pdev[i];
   2748		if (!pdev)
   2749			continue;
   2750
   2751		switch (pdev->device) {
   2752		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0:
   2753			pvt->pci_sad0 = pdev;
   2754			break;
   2755		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1:
   2756			pvt->pci_sad1 = pdev;
   2757			break;
   2758		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0:
   2759		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1:
   2760			pvt->pci_ha = pdev;
   2761			break;
   2762		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA:
   2763		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA:
   2764			pvt->pci_ta = pdev;
   2765			break;
   2766		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TM:
   2767		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TM:
   2768			pvt->pci_ras = pdev;
   2769			break;
   2770		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0:
   2771		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1:
   2772		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2:
   2773		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3:
   2774		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0:
   2775		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1:
   2776		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2:
   2777		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3:
   2778		{
   2779			int id = TAD_DEV_TO_CHAN(pdev->device);
   2780			pvt->pci_tad[id] = pdev;
   2781			saw_chan_mask |= 1 << id;
   2782		}
   2783			break;
   2784		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0:
   2785			pvt->pci_ddrio = pdev;
   2786			break;
   2787		default:
   2788			break;
   2789		}
   2790
   2791		edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
   2792			 sbridge_dev->bus,
   2793			 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
   2794			 pdev);
   2795	}
   2796
   2797	/* Check if everything were registered */
   2798	if (!pvt->pci_sad0 || !pvt->pci_ha || !pvt->pci_sad1 ||
   2799	    !pvt->pci_ras  || !pvt->pci_ta || !pvt->info.pci_vtd)
   2800		goto enodev;
   2801
   2802	if (saw_chan_mask != 0x0f && /* -EN/-EX */
   2803	    saw_chan_mask != 0x03)   /* -EP */
   2804		goto enodev;
   2805	return 0;
   2806
   2807enodev:
   2808	sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
   2809	return -ENODEV;
   2810}
   2811
   2812static int knl_mci_bind_devs(struct mem_ctl_info *mci,
   2813			struct sbridge_dev *sbridge_dev)
   2814{
   2815	struct sbridge_pvt *pvt = mci->pvt_info;
   2816	struct pci_dev *pdev;
   2817	int dev, func;
   2818
   2819	int i;
   2820	int devidx;
   2821
   2822	for (i = 0; i < sbridge_dev->n_devs; i++) {
   2823		pdev = sbridge_dev->pdev[i];
   2824		if (!pdev)
   2825			continue;
   2826
   2827		/* Extract PCI device and function. */
   2828		dev = (pdev->devfn >> 3) & 0x1f;
   2829		func = pdev->devfn & 0x7;
   2830
   2831		switch (pdev->device) {
   2832		case PCI_DEVICE_ID_INTEL_KNL_IMC_MC:
   2833			if (dev == 8)
   2834				pvt->knl.pci_mc0 = pdev;
   2835			else if (dev == 9)
   2836				pvt->knl.pci_mc1 = pdev;
   2837			else {
   2838				sbridge_printk(KERN_ERR,
   2839					"Memory controller in unexpected place! (dev %d, fn %d)\n",
   2840					dev, func);
   2841				continue;
   2842			}
   2843			break;
   2844
   2845		case PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0:
   2846			pvt->pci_sad0 = pdev;
   2847			break;
   2848
   2849		case PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1:
   2850			pvt->pci_sad1 = pdev;
   2851			break;
   2852
   2853		case PCI_DEVICE_ID_INTEL_KNL_IMC_CHA:
   2854			/* There are one of these per tile, and range from
   2855			 * 1.14.0 to 1.18.5.
   2856			 */
   2857			devidx = ((dev-14)*8)+func;
   2858
   2859			if (devidx < 0 || devidx >= KNL_MAX_CHAS) {
   2860				sbridge_printk(KERN_ERR,
   2861					"Caching and Home Agent in unexpected place! (dev %d, fn %d)\n",
   2862					dev, func);
   2863				continue;
   2864			}
   2865
   2866			WARN_ON(pvt->knl.pci_cha[devidx] != NULL);
   2867
   2868			pvt->knl.pci_cha[devidx] = pdev;
   2869			break;
   2870
   2871		case PCI_DEVICE_ID_INTEL_KNL_IMC_CHAN:
   2872			devidx = -1;
   2873
   2874			/*
   2875			 *  MC0 channels 0-2 are device 9 function 2-4,
   2876			 *  MC1 channels 3-5 are device 8 function 2-4.
   2877			 */
   2878
   2879			if (dev == 9)
   2880				devidx = func-2;
   2881			else if (dev == 8)
   2882				devidx = 3 + (func-2);
   2883
   2884			if (devidx < 0 || devidx >= KNL_MAX_CHANNELS) {
   2885				sbridge_printk(KERN_ERR,
   2886					"DRAM Channel Registers in unexpected place! (dev %d, fn %d)\n",
   2887					dev, func);
   2888				continue;
   2889			}
   2890
   2891			WARN_ON(pvt->knl.pci_channel[devidx] != NULL);
   2892			pvt->knl.pci_channel[devidx] = pdev;
   2893			break;
   2894
   2895		case PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM:
   2896			pvt->knl.pci_mc_info = pdev;
   2897			break;
   2898
   2899		case PCI_DEVICE_ID_INTEL_KNL_IMC_TA:
   2900			pvt->pci_ta = pdev;
   2901			break;
   2902
   2903		default:
   2904			sbridge_printk(KERN_ERR, "Unexpected device %d\n",
   2905				pdev->device);
   2906			break;
   2907		}
   2908	}
   2909
   2910	if (!pvt->knl.pci_mc0  || !pvt->knl.pci_mc1 ||
   2911	    !pvt->pci_sad0     || !pvt->pci_sad1    ||
   2912	    !pvt->pci_ta) {
   2913		goto enodev;
   2914	}
   2915
   2916	for (i = 0; i < KNL_MAX_CHANNELS; i++) {
   2917		if (!pvt->knl.pci_channel[i]) {
   2918			sbridge_printk(KERN_ERR, "Missing channel %d\n", i);
   2919			goto enodev;
   2920		}
   2921	}
   2922
   2923	for (i = 0; i < KNL_MAX_CHAS; i++) {
   2924		if (!pvt->knl.pci_cha[i]) {
   2925			sbridge_printk(KERN_ERR, "Missing CHA %d\n", i);
   2926			goto enodev;
   2927		}
   2928	}
   2929
   2930	return 0;
   2931
   2932enodev:
   2933	sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
   2934	return -ENODEV;
   2935}
   2936
   2937/****************************************************************************
   2938			Error check routines
   2939 ****************************************************************************/
   2940
   2941/*
   2942 * While Sandy Bridge has error count registers, SMI BIOS read values from
   2943 * and resets the counters. So, they are not reliable for the OS to read
   2944 * from them. So, we have no option but to just trust on whatever MCE is
   2945 * telling us about the errors.
   2946 */
   2947static void sbridge_mce_output_error(struct mem_ctl_info *mci,
   2948				    const struct mce *m)
   2949{
   2950	struct mem_ctl_info *new_mci;
   2951	struct sbridge_pvt *pvt = mci->pvt_info;
   2952	enum hw_event_mc_err_type tp_event;
   2953	char *optype, msg[256];
   2954	bool ripv = GET_BITFIELD(m->mcgstatus, 0, 0);
   2955	bool overflow = GET_BITFIELD(m->status, 62, 62);
   2956	bool uncorrected_error = GET_BITFIELD(m->status, 61, 61);
   2957	bool recoverable;
   2958	u32 core_err_cnt = GET_BITFIELD(m->status, 38, 52);
   2959	u32 mscod = GET_BITFIELD(m->status, 16, 31);
   2960	u32 errcode = GET_BITFIELD(m->status, 0, 15);
   2961	u32 channel = GET_BITFIELD(m->status, 0, 3);
   2962	u32 optypenum = GET_BITFIELD(m->status, 4, 6);
   2963	/*
   2964	 * Bits 5-0 of MCi_MISC give the least significant bit that is valid.
   2965	 * A value 6 is for cache line aligned address, a value 12 is for page
   2966	 * aligned address reported by patrol scrubber.
   2967	 */
   2968	u32 lsb = GET_BITFIELD(m->misc, 0, 5);
   2969	long channel_mask, first_channel;
   2970	u8  rank = 0xff, socket, ha;
   2971	int rc, dimm;
   2972	char *area_type = "DRAM";
   2973
   2974	if (pvt->info.type != SANDY_BRIDGE)
   2975		recoverable = true;
   2976	else
   2977		recoverable = GET_BITFIELD(m->status, 56, 56);
   2978
   2979	if (uncorrected_error) {
   2980		core_err_cnt = 1;
   2981		if (ripv) {
   2982			tp_event = HW_EVENT_ERR_UNCORRECTED;
   2983		} else {
   2984			tp_event = HW_EVENT_ERR_FATAL;
   2985		}
   2986	} else {
   2987		tp_event = HW_EVENT_ERR_CORRECTED;
   2988	}
   2989
   2990	/*
   2991	 * According with Table 15-9 of the Intel Architecture spec vol 3A,
   2992	 * memory errors should fit in this mask:
   2993	 *	000f 0000 1mmm cccc (binary)
   2994	 * where:
   2995	 *	f = Correction Report Filtering Bit. If 1, subsequent errors
   2996	 *	    won't be shown
   2997	 *	mmm = error type
   2998	 *	cccc = channel
   2999	 * If the mask doesn't match, report an error to the parsing logic
   3000	 */
   3001	switch (optypenum) {
   3002	case 0:
   3003		optype = "generic undef request error";
   3004		break;
   3005	case 1:
   3006		optype = "memory read error";
   3007		break;
   3008	case 2:
   3009		optype = "memory write error";
   3010		break;
   3011	case 3:
   3012		optype = "addr/cmd error";
   3013		break;
   3014	case 4:
   3015		optype = "memory scrubbing error";
   3016		break;
   3017	default:
   3018		optype = "reserved";
   3019		break;
   3020	}
   3021
   3022	if (pvt->info.type == KNIGHTS_LANDING) {
   3023		if (channel == 14) {
   3024			edac_dbg(0, "%s%s err_code:%04x:%04x EDRAM bank %d\n",
   3025				overflow ? " OVERFLOW" : "",
   3026				(uncorrected_error && recoverable)
   3027				? " recoverable" : "",
   3028				mscod, errcode,
   3029				m->bank);
   3030		} else {
   3031			char A = *("A");
   3032
   3033			/*
   3034			 * Reported channel is in range 0-2, so we can't map it
   3035			 * back to mc. To figure out mc we check machine check
   3036			 * bank register that reported this error.
   3037			 * bank15 means mc0 and bank16 means mc1.
   3038			 */
   3039			channel = knl_channel_remap(m->bank == 16, channel);
   3040			channel_mask = 1 << channel;
   3041
   3042			snprintf(msg, sizeof(msg),
   3043				"%s%s err_code:%04x:%04x channel:%d (DIMM_%c)",
   3044				overflow ? " OVERFLOW" : "",
   3045				(uncorrected_error && recoverable)
   3046				? " recoverable" : " ",
   3047				mscod, errcode, channel, A + channel);
   3048			edac_mc_handle_error(tp_event, mci, core_err_cnt,
   3049				m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0,
   3050				channel, 0, -1,
   3051				optype, msg);
   3052		}
   3053		return;
   3054	} else if (lsb < 12) {
   3055		rc = get_memory_error_data(mci, m->addr, &socket, &ha,
   3056					   &channel_mask, &rank,
   3057					   &area_type, msg);
   3058	} else {
   3059		rc = get_memory_error_data_from_mce(mci, m, &socket, &ha,
   3060						    &channel_mask, msg);
   3061	}
   3062
   3063	if (rc < 0)
   3064		goto err_parsing;
   3065	new_mci = get_mci_for_node_id(socket, ha);
   3066	if (!new_mci) {
   3067		strcpy(msg, "Error: socket got corrupted!");
   3068		goto err_parsing;
   3069	}
   3070	mci = new_mci;
   3071	pvt = mci->pvt_info;
   3072
   3073	first_channel = find_first_bit(&channel_mask, NUM_CHANNELS);
   3074
   3075	if (rank == 0xff)
   3076		dimm = -1;
   3077	else if (rank < 4)
   3078		dimm = 0;
   3079	else if (rank < 8)
   3080		dimm = 1;
   3081	else
   3082		dimm = 2;
   3083
   3084	/*
   3085	 * FIXME: On some memory configurations (mirror, lockstep), the
   3086	 * Memory Controller can't point the error to a single DIMM. The
   3087	 * EDAC core should be handling the channel mask, in order to point
   3088	 * to the group of dimm's where the error may be happening.
   3089	 */
   3090	if (!pvt->is_lockstep && !pvt->is_cur_addr_mirrored && !pvt->is_close_pg)
   3091		channel = first_channel;
   3092
   3093	snprintf(msg, sizeof(msg),
   3094		 "%s%s area:%s err_code:%04x:%04x socket:%d ha:%d channel_mask:%ld rank:%d",
   3095		 overflow ? " OVERFLOW" : "",
   3096		 (uncorrected_error && recoverable) ? " recoverable" : "",
   3097		 area_type,
   3098		 mscod, errcode,
   3099		 socket, ha,
   3100		 channel_mask,
   3101		 rank);
   3102
   3103	edac_dbg(0, "%s\n", msg);
   3104
   3105	/* FIXME: need support for channel mask */
   3106
   3107	if (channel == CHANNEL_UNSPECIFIED)
   3108		channel = -1;
   3109
   3110	/* Call the helper to output message */
   3111	edac_mc_handle_error(tp_event, mci, core_err_cnt,
   3112			     m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0,
   3113			     channel, dimm, -1,
   3114			     optype, msg);
   3115	return;
   3116err_parsing:
   3117	edac_mc_handle_error(tp_event, mci, core_err_cnt, 0, 0, 0,
   3118			     -1, -1, -1,
   3119			     msg, "");
   3120
   3121}
   3122
   3123/*
   3124 * Check that logging is enabled and that this is the right type
   3125 * of error for us to handle.
   3126 */
   3127static int sbridge_mce_check_error(struct notifier_block *nb, unsigned long val,
   3128				   void *data)
   3129{
   3130	struct mce *mce = (struct mce *)data;
   3131	struct mem_ctl_info *mci;
   3132	char *type;
   3133
   3134	if (mce->kflags & MCE_HANDLED_CEC)
   3135		return NOTIFY_DONE;
   3136
   3137	/*
   3138	 * Just let mcelog handle it if the error is
   3139	 * outside the memory controller. A memory error
   3140	 * is indicated by bit 7 = 1 and bits = 8-11,13-15 = 0.
   3141	 * bit 12 has an special meaning.
   3142	 */
   3143	if ((mce->status & 0xefff) >> 7 != 1)
   3144		return NOTIFY_DONE;
   3145
   3146	/* Check ADDRV bit in STATUS */
   3147	if (!GET_BITFIELD(mce->status, 58, 58))
   3148		return NOTIFY_DONE;
   3149
   3150	/* Check MISCV bit in STATUS */
   3151	if (!GET_BITFIELD(mce->status, 59, 59))
   3152		return NOTIFY_DONE;
   3153
   3154	/* Check address type in MISC (physical address only) */
   3155	if (GET_BITFIELD(mce->misc, 6, 8) != 2)
   3156		return NOTIFY_DONE;
   3157
   3158	mci = get_mci_for_node_id(mce->socketid, IMC0);
   3159	if (!mci)
   3160		return NOTIFY_DONE;
   3161
   3162	if (mce->mcgstatus & MCG_STATUS_MCIP)
   3163		type = "Exception";
   3164	else
   3165		type = "Event";
   3166
   3167	sbridge_mc_printk(mci, KERN_DEBUG, "HANDLING MCE MEMORY ERROR\n");
   3168
   3169	sbridge_mc_printk(mci, KERN_DEBUG, "CPU %d: Machine Check %s: %Lx "
   3170			  "Bank %d: %016Lx\n", mce->extcpu, type,
   3171			  mce->mcgstatus, mce->bank, mce->status);
   3172	sbridge_mc_printk(mci, KERN_DEBUG, "TSC %llx ", mce->tsc);
   3173	sbridge_mc_printk(mci, KERN_DEBUG, "ADDR %llx ", mce->addr);
   3174	sbridge_mc_printk(mci, KERN_DEBUG, "MISC %llx ", mce->misc);
   3175
   3176	sbridge_mc_printk(mci, KERN_DEBUG, "PROCESSOR %u:%x TIME %llu SOCKET "
   3177			  "%u APIC %x\n", mce->cpuvendor, mce->cpuid,
   3178			  mce->time, mce->socketid, mce->apicid);
   3179
   3180	sbridge_mce_output_error(mci, mce);
   3181
   3182	/* Advice mcelog that the error were handled */
   3183	mce->kflags |= MCE_HANDLED_EDAC;
   3184	return NOTIFY_OK;
   3185}
   3186
   3187static struct notifier_block sbridge_mce_dec = {
   3188	.notifier_call	= sbridge_mce_check_error,
   3189	.priority	= MCE_PRIO_EDAC,
   3190};
   3191
   3192/****************************************************************************
   3193			EDAC register/unregister logic
   3194 ****************************************************************************/
   3195
   3196static void sbridge_unregister_mci(struct sbridge_dev *sbridge_dev)
   3197{
   3198	struct mem_ctl_info *mci = sbridge_dev->mci;
   3199
   3200	if (unlikely(!mci || !mci->pvt_info)) {
   3201		edac_dbg(0, "MC: dev = %p\n", &sbridge_dev->pdev[0]->dev);
   3202
   3203		sbridge_printk(KERN_ERR, "Couldn't find mci handler\n");
   3204		return;
   3205	}
   3206
   3207	edac_dbg(0, "MC: mci = %p, dev = %p\n",
   3208		 mci, &sbridge_dev->pdev[0]->dev);
   3209
   3210	/* Remove MC sysfs nodes */
   3211	edac_mc_del_mc(mci->pdev);
   3212
   3213	edac_dbg(1, "%s: free mci struct\n", mci->ctl_name);
   3214	kfree(mci->ctl_name);
   3215	edac_mc_free(mci);
   3216	sbridge_dev->mci = NULL;
   3217}
   3218
   3219static int sbridge_register_mci(struct sbridge_dev *sbridge_dev, enum type type)
   3220{
   3221	struct mem_ctl_info *mci;
   3222	struct edac_mc_layer layers[2];
   3223	struct sbridge_pvt *pvt;
   3224	struct pci_dev *pdev = sbridge_dev->pdev[0];
   3225	int rc;
   3226
   3227	/* allocate a new MC control structure */
   3228	layers[0].type = EDAC_MC_LAYER_CHANNEL;
   3229	layers[0].size = type == KNIGHTS_LANDING ?
   3230		KNL_MAX_CHANNELS : NUM_CHANNELS;
   3231	layers[0].is_virt_csrow = false;
   3232	layers[1].type = EDAC_MC_LAYER_SLOT;
   3233	layers[1].size = type == KNIGHTS_LANDING ? 1 : MAX_DIMMS;
   3234	layers[1].is_virt_csrow = true;
   3235	mci = edac_mc_alloc(sbridge_dev->mc, ARRAY_SIZE(layers), layers,
   3236			    sizeof(*pvt));
   3237
   3238	if (unlikely(!mci))
   3239		return -ENOMEM;
   3240
   3241	edac_dbg(0, "MC: mci = %p, dev = %p\n",
   3242		 mci, &pdev->dev);
   3243
   3244	pvt = mci->pvt_info;
   3245	memset(pvt, 0, sizeof(*pvt));
   3246
   3247	/* Associate sbridge_dev and mci for future usage */
   3248	pvt->sbridge_dev = sbridge_dev;
   3249	sbridge_dev->mci = mci;
   3250
   3251	mci->mtype_cap = type == KNIGHTS_LANDING ?
   3252		MEM_FLAG_DDR4 : MEM_FLAG_DDR3;
   3253	mci->edac_ctl_cap = EDAC_FLAG_NONE;
   3254	mci->edac_cap = EDAC_FLAG_NONE;
   3255	mci->mod_name = EDAC_MOD_STR;
   3256	mci->dev_name = pci_name(pdev);
   3257	mci->ctl_page_to_phys = NULL;
   3258
   3259	pvt->info.type = type;
   3260	switch (type) {
   3261	case IVY_BRIDGE:
   3262		pvt->info.rankcfgr = IB_RANK_CFG_A;
   3263		pvt->info.get_tolm = ibridge_get_tolm;
   3264		pvt->info.get_tohm = ibridge_get_tohm;
   3265		pvt->info.dram_rule = ibridge_dram_rule;
   3266		pvt->info.get_memory_type = get_memory_type;
   3267		pvt->info.get_node_id = get_node_id;
   3268		pvt->info.get_ha = ibridge_get_ha;
   3269		pvt->info.rir_limit = rir_limit;
   3270		pvt->info.sad_limit = sad_limit;
   3271		pvt->info.interleave_mode = interleave_mode;
   3272		pvt->info.dram_attr = dram_attr;
   3273		pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
   3274		pvt->info.interleave_list = ibridge_interleave_list;
   3275		pvt->info.interleave_pkg = ibridge_interleave_pkg;
   3276		pvt->info.get_width = ibridge_get_width;
   3277
   3278		/* Store pci devices at mci for faster access */
   3279		rc = ibridge_mci_bind_devs(mci, sbridge_dev);
   3280		if (unlikely(rc < 0))
   3281			goto fail0;
   3282		get_source_id(mci);
   3283		mci->ctl_name = kasprintf(GFP_KERNEL, "Ivy Bridge SrcID#%d_Ha#%d",
   3284			pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
   3285		break;
   3286	case SANDY_BRIDGE:
   3287		pvt->info.rankcfgr = SB_RANK_CFG_A;
   3288		pvt->info.get_tolm = sbridge_get_tolm;
   3289		pvt->info.get_tohm = sbridge_get_tohm;
   3290		pvt->info.dram_rule = sbridge_dram_rule;
   3291		pvt->info.get_memory_type = get_memory_type;
   3292		pvt->info.get_node_id = get_node_id;
   3293		pvt->info.get_ha = sbridge_get_ha;
   3294		pvt->info.rir_limit = rir_limit;
   3295		pvt->info.sad_limit = sad_limit;
   3296		pvt->info.interleave_mode = interleave_mode;
   3297		pvt->info.dram_attr = dram_attr;
   3298		pvt->info.max_sad = ARRAY_SIZE(sbridge_dram_rule);
   3299		pvt->info.interleave_list = sbridge_interleave_list;
   3300		pvt->info.interleave_pkg = sbridge_interleave_pkg;
   3301		pvt->info.get_width = sbridge_get_width;
   3302
   3303		/* Store pci devices at mci for faster access */
   3304		rc = sbridge_mci_bind_devs(mci, sbridge_dev);
   3305		if (unlikely(rc < 0))
   3306			goto fail0;
   3307		get_source_id(mci);
   3308		mci->ctl_name = kasprintf(GFP_KERNEL, "Sandy Bridge SrcID#%d_Ha#%d",
   3309			pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
   3310		break;
   3311	case HASWELL:
   3312		/* rankcfgr isn't used */
   3313		pvt->info.get_tolm = haswell_get_tolm;
   3314		pvt->info.get_tohm = haswell_get_tohm;
   3315		pvt->info.dram_rule = ibridge_dram_rule;
   3316		pvt->info.get_memory_type = haswell_get_memory_type;
   3317		pvt->info.get_node_id = haswell_get_node_id;
   3318		pvt->info.get_ha = ibridge_get_ha;
   3319		pvt->info.rir_limit = haswell_rir_limit;
   3320		pvt->info.sad_limit = sad_limit;
   3321		pvt->info.interleave_mode = interleave_mode;
   3322		pvt->info.dram_attr = dram_attr;
   3323		pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
   3324		pvt->info.interleave_list = ibridge_interleave_list;
   3325		pvt->info.interleave_pkg = ibridge_interleave_pkg;
   3326		pvt->info.get_width = ibridge_get_width;
   3327
   3328		/* Store pci devices at mci for faster access */
   3329		rc = haswell_mci_bind_devs(mci, sbridge_dev);
   3330		if (unlikely(rc < 0))
   3331			goto fail0;
   3332		get_source_id(mci);
   3333		mci->ctl_name = kasprintf(GFP_KERNEL, "Haswell SrcID#%d_Ha#%d",
   3334			pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
   3335		break;
   3336	case BROADWELL:
   3337		/* rankcfgr isn't used */
   3338		pvt->info.get_tolm = haswell_get_tolm;
   3339		pvt->info.get_tohm = haswell_get_tohm;
   3340		pvt->info.dram_rule = ibridge_dram_rule;
   3341		pvt->info.get_memory_type = haswell_get_memory_type;
   3342		pvt->info.get_node_id = haswell_get_node_id;
   3343		pvt->info.get_ha = ibridge_get_ha;
   3344		pvt->info.rir_limit = haswell_rir_limit;
   3345		pvt->info.sad_limit = sad_limit;
   3346		pvt->info.interleave_mode = interleave_mode;
   3347		pvt->info.dram_attr = dram_attr;
   3348		pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
   3349		pvt->info.interleave_list = ibridge_interleave_list;
   3350		pvt->info.interleave_pkg = ibridge_interleave_pkg;
   3351		pvt->info.get_width = broadwell_get_width;
   3352
   3353		/* Store pci devices at mci for faster access */
   3354		rc = broadwell_mci_bind_devs(mci, sbridge_dev);
   3355		if (unlikely(rc < 0))
   3356			goto fail0;
   3357		get_source_id(mci);
   3358		mci->ctl_name = kasprintf(GFP_KERNEL, "Broadwell SrcID#%d_Ha#%d",
   3359			pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
   3360		break;
   3361	case KNIGHTS_LANDING:
   3362		/* pvt->info.rankcfgr == ??? */
   3363		pvt->info.get_tolm = knl_get_tolm;
   3364		pvt->info.get_tohm = knl_get_tohm;
   3365		pvt->info.dram_rule = knl_dram_rule;
   3366		pvt->info.get_memory_type = knl_get_memory_type;
   3367		pvt->info.get_node_id = knl_get_node_id;
   3368		pvt->info.get_ha = knl_get_ha;
   3369		pvt->info.rir_limit = NULL;
   3370		pvt->info.sad_limit = knl_sad_limit;
   3371		pvt->info.interleave_mode = knl_interleave_mode;
   3372		pvt->info.dram_attr = dram_attr_knl;
   3373		pvt->info.max_sad = ARRAY_SIZE(knl_dram_rule);
   3374		pvt->info.interleave_list = knl_interleave_list;
   3375		pvt->info.interleave_pkg = ibridge_interleave_pkg;
   3376		pvt->info.get_width = knl_get_width;
   3377
   3378		rc = knl_mci_bind_devs(mci, sbridge_dev);
   3379		if (unlikely(rc < 0))
   3380			goto fail0;
   3381		get_source_id(mci);
   3382		mci->ctl_name = kasprintf(GFP_KERNEL, "Knights Landing SrcID#%d_Ha#%d",
   3383			pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
   3384		break;
   3385	}
   3386
   3387	if (!mci->ctl_name) {
   3388		rc = -ENOMEM;
   3389		goto fail0;
   3390	}
   3391
   3392	/* Get dimm basic config and the memory layout */
   3393	rc = get_dimm_config(mci);
   3394	if (rc < 0) {
   3395		edac_dbg(0, "MC: failed to get_dimm_config()\n");
   3396		goto fail;
   3397	}
   3398	get_memory_layout(mci);
   3399
   3400	/* record ptr to the generic device */
   3401	mci->pdev = &pdev->dev;
   3402
   3403	/* add this new MC control structure to EDAC's list of MCs */
   3404	if (unlikely(edac_mc_add_mc(mci))) {
   3405		edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
   3406		rc = -EINVAL;
   3407		goto fail;
   3408	}
   3409
   3410	return 0;
   3411
   3412fail:
   3413	kfree(mci->ctl_name);
   3414fail0:
   3415	edac_mc_free(mci);
   3416	sbridge_dev->mci = NULL;
   3417	return rc;
   3418}
   3419
   3420static const struct x86_cpu_id sbridge_cpuids[] = {
   3421	X86_MATCH_INTEL_FAM6_MODEL(SANDYBRIDGE_X, &pci_dev_descr_sbridge_table),
   3422	X86_MATCH_INTEL_FAM6_MODEL(IVYBRIDGE_X,	  &pci_dev_descr_ibridge_table),
   3423	X86_MATCH_INTEL_FAM6_MODEL(HASWELL_X,	  &pci_dev_descr_haswell_table),
   3424	X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_X,	  &pci_dev_descr_broadwell_table),
   3425	X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_D,	  &pci_dev_descr_broadwell_table),
   3426	X86_MATCH_INTEL_FAM6_MODEL(XEON_PHI_KNL,  &pci_dev_descr_knl_table),
   3427	X86_MATCH_INTEL_FAM6_MODEL(XEON_PHI_KNM,  &pci_dev_descr_knl_table),
   3428	{ }
   3429};
   3430MODULE_DEVICE_TABLE(x86cpu, sbridge_cpuids);
   3431
   3432/*
   3433 *	sbridge_probe	Get all devices and register memory controllers
   3434 *			present.
   3435 *	return:
   3436 *		0 for FOUND a device
   3437 *		< 0 for error code
   3438 */
   3439
   3440static int sbridge_probe(const struct x86_cpu_id *id)
   3441{
   3442	int rc;
   3443	u8 mc, num_mc = 0;
   3444	struct sbridge_dev *sbridge_dev;
   3445	struct pci_id_table *ptable = (struct pci_id_table *)id->driver_data;
   3446
   3447	/* get the pci devices we want to reserve for our use */
   3448	rc = sbridge_get_all_devices(&num_mc, ptable);
   3449
   3450	if (unlikely(rc < 0)) {
   3451		edac_dbg(0, "couldn't get all devices\n");
   3452		goto fail0;
   3453	}
   3454
   3455	mc = 0;
   3456
   3457	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
   3458		edac_dbg(0, "Registering MC#%d (%d of %d)\n",
   3459			 mc, mc + 1, num_mc);
   3460
   3461		sbridge_dev->mc = mc++;
   3462		rc = sbridge_register_mci(sbridge_dev, ptable->type);
   3463		if (unlikely(rc < 0))
   3464			goto fail1;
   3465	}
   3466
   3467	sbridge_printk(KERN_INFO, "%s\n", SBRIDGE_REVISION);
   3468
   3469	return 0;
   3470
   3471fail1:
   3472	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
   3473		sbridge_unregister_mci(sbridge_dev);
   3474
   3475	sbridge_put_all_devices();
   3476fail0:
   3477	return rc;
   3478}
   3479
   3480/*
   3481 *	sbridge_remove	cleanup
   3482 *
   3483 */
   3484static void sbridge_remove(void)
   3485{
   3486	struct sbridge_dev *sbridge_dev;
   3487
   3488	edac_dbg(0, "\n");
   3489
   3490	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
   3491		sbridge_unregister_mci(sbridge_dev);
   3492
   3493	/* Release PCI resources */
   3494	sbridge_put_all_devices();
   3495}
   3496
   3497/*
   3498 *	sbridge_init		Module entry function
   3499 *			Try to initialize this module for its devices
   3500 */
   3501static int __init sbridge_init(void)
   3502{
   3503	const struct x86_cpu_id *id;
   3504	const char *owner;
   3505	int rc;
   3506
   3507	edac_dbg(2, "\n");
   3508
   3509	owner = edac_get_owner();
   3510	if (owner && strncmp(owner, EDAC_MOD_STR, sizeof(EDAC_MOD_STR)))
   3511		return -EBUSY;
   3512
   3513	if (cpu_feature_enabled(X86_FEATURE_HYPERVISOR))
   3514		return -ENODEV;
   3515
   3516	id = x86_match_cpu(sbridge_cpuids);
   3517	if (!id)
   3518		return -ENODEV;
   3519
   3520	/* Ensure that the OPSTATE is set correctly for POLL or NMI */
   3521	opstate_init();
   3522
   3523	rc = sbridge_probe(id);
   3524
   3525	if (rc >= 0) {
   3526		mce_register_decode_chain(&sbridge_mce_dec);
   3527		return 0;
   3528	}
   3529
   3530	sbridge_printk(KERN_ERR, "Failed to register device with error %d.\n",
   3531		      rc);
   3532
   3533	return rc;
   3534}
   3535
   3536/*
   3537 *	sbridge_exit()	Module exit function
   3538 *			Unregister the driver
   3539 */
   3540static void __exit sbridge_exit(void)
   3541{
   3542	edac_dbg(2, "\n");
   3543	sbridge_remove();
   3544	mce_unregister_decode_chain(&sbridge_mce_dec);
   3545}
   3546
   3547module_init(sbridge_init);
   3548module_exit(sbridge_exit);
   3549
   3550module_param(edac_op_state, int, 0444);
   3551MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
   3552
   3553MODULE_LICENSE("GPL");
   3554MODULE_AUTHOR("Mauro Carvalho Chehab");
   3555MODULE_AUTHOR("Red Hat Inc. (https://www.redhat.com)");
   3556MODULE_DESCRIPTION("MC Driver for Intel Sandy Bridge and Ivy Bridge memory controllers - "
   3557		   SBRIDGE_REVISION);