cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

core-card.c (20810B)


      1// SPDX-License-Identifier: GPL-2.0-or-later
      2/*
      3 * Copyright (C) 2005-2007  Kristian Hoegsberg <krh@bitplanet.net>
      4 */
      5
      6#include <linux/bug.h>
      7#include <linux/completion.h>
      8#include <linux/crc-itu-t.h>
      9#include <linux/device.h>
     10#include <linux/errno.h>
     11#include <linux/firewire.h>
     12#include <linux/firewire-constants.h>
     13#include <linux/jiffies.h>
     14#include <linux/kernel.h>
     15#include <linux/kref.h>
     16#include <linux/list.h>
     17#include <linux/module.h>
     18#include <linux/mutex.h>
     19#include <linux/spinlock.h>
     20#include <linux/workqueue.h>
     21
     22#include <linux/atomic.h>
     23#include <asm/byteorder.h>
     24
     25#include "core.h"
     26
     27#define define_fw_printk_level(func, kern_level)		\
     28void func(const struct fw_card *card, const char *fmt, ...)	\
     29{								\
     30	struct va_format vaf;					\
     31	va_list args;						\
     32								\
     33	va_start(args, fmt);					\
     34	vaf.fmt = fmt;						\
     35	vaf.va = &args;						\
     36	printk(kern_level KBUILD_MODNAME " %s: %pV",		\
     37	       dev_name(card->device), &vaf);			\
     38	va_end(args);						\
     39}
     40define_fw_printk_level(fw_err, KERN_ERR);
     41define_fw_printk_level(fw_notice, KERN_NOTICE);
     42
     43int fw_compute_block_crc(__be32 *block)
     44{
     45	int length;
     46	u16 crc;
     47
     48	length = (be32_to_cpu(block[0]) >> 16) & 0xff;
     49	crc = crc_itu_t(0, (u8 *)&block[1], length * 4);
     50	*block |= cpu_to_be32(crc);
     51
     52	return length;
     53}
     54
     55static DEFINE_MUTEX(card_mutex);
     56static LIST_HEAD(card_list);
     57
     58static LIST_HEAD(descriptor_list);
     59static int descriptor_count;
     60
     61static __be32 tmp_config_rom[256];
     62/* ROM header, bus info block, root dir header, capabilities = 7 quadlets */
     63static size_t config_rom_length = 1 + 4 + 1 + 1;
     64
     65#define BIB_CRC(v)		((v) <<  0)
     66#define BIB_CRC_LENGTH(v)	((v) << 16)
     67#define BIB_INFO_LENGTH(v)	((v) << 24)
     68#define BIB_BUS_NAME		0x31333934 /* "1394" */
     69#define BIB_LINK_SPEED(v)	((v) <<  0)
     70#define BIB_GENERATION(v)	((v) <<  4)
     71#define BIB_MAX_ROM(v)		((v) <<  8)
     72#define BIB_MAX_RECEIVE(v)	((v) << 12)
     73#define BIB_CYC_CLK_ACC(v)	((v) << 16)
     74#define BIB_PMC			((1) << 27)
     75#define BIB_BMC			((1) << 28)
     76#define BIB_ISC			((1) << 29)
     77#define BIB_CMC			((1) << 30)
     78#define BIB_IRMC		((1) << 31)
     79#define NODE_CAPABILITIES	0x0c0083c0 /* per IEEE 1394 clause 8.3.2.6.5.2 */
     80
     81/*
     82 * IEEE-1394 specifies a default SPLIT_TIMEOUT value of 800 cycles (100 ms),
     83 * but we have to make it longer because there are many devices whose firmware
     84 * is just too slow for that.
     85 */
     86#define DEFAULT_SPLIT_TIMEOUT	(2 * 8000)
     87
     88#define CANON_OUI		0x000085
     89
     90static void generate_config_rom(struct fw_card *card, __be32 *config_rom)
     91{
     92	struct fw_descriptor *desc;
     93	int i, j, k, length;
     94
     95	/*
     96	 * Initialize contents of config rom buffer.  On the OHCI
     97	 * controller, block reads to the config rom accesses the host
     98	 * memory, but quadlet read access the hardware bus info block
     99	 * registers.  That's just crack, but it means we should make
    100	 * sure the contents of bus info block in host memory matches
    101	 * the version stored in the OHCI registers.
    102	 */
    103
    104	config_rom[0] = cpu_to_be32(
    105		BIB_CRC_LENGTH(4) | BIB_INFO_LENGTH(4) | BIB_CRC(0));
    106	config_rom[1] = cpu_to_be32(BIB_BUS_NAME);
    107	config_rom[2] = cpu_to_be32(
    108		BIB_LINK_SPEED(card->link_speed) |
    109		BIB_GENERATION(card->config_rom_generation++ % 14 + 2) |
    110		BIB_MAX_ROM(2) |
    111		BIB_MAX_RECEIVE(card->max_receive) |
    112		BIB_BMC | BIB_ISC | BIB_CMC | BIB_IRMC);
    113	config_rom[3] = cpu_to_be32(card->guid >> 32);
    114	config_rom[4] = cpu_to_be32(card->guid);
    115
    116	/* Generate root directory. */
    117	config_rom[6] = cpu_to_be32(NODE_CAPABILITIES);
    118	i = 7;
    119	j = 7 + descriptor_count;
    120
    121	/* Generate root directory entries for descriptors. */
    122	list_for_each_entry (desc, &descriptor_list, link) {
    123		if (desc->immediate > 0)
    124			config_rom[i++] = cpu_to_be32(desc->immediate);
    125		config_rom[i] = cpu_to_be32(desc->key | (j - i));
    126		i++;
    127		j += desc->length;
    128	}
    129
    130	/* Update root directory length. */
    131	config_rom[5] = cpu_to_be32((i - 5 - 1) << 16);
    132
    133	/* End of root directory, now copy in descriptors. */
    134	list_for_each_entry (desc, &descriptor_list, link) {
    135		for (k = 0; k < desc->length; k++)
    136			config_rom[i + k] = cpu_to_be32(desc->data[k]);
    137		i += desc->length;
    138	}
    139
    140	/* Calculate CRCs for all blocks in the config rom.  This
    141	 * assumes that CRC length and info length are identical for
    142	 * the bus info block, which is always the case for this
    143	 * implementation. */
    144	for (i = 0; i < j; i += length + 1)
    145		length = fw_compute_block_crc(config_rom + i);
    146
    147	WARN_ON(j != config_rom_length);
    148}
    149
    150static void update_config_roms(void)
    151{
    152	struct fw_card *card;
    153
    154	list_for_each_entry (card, &card_list, link) {
    155		generate_config_rom(card, tmp_config_rom);
    156		card->driver->set_config_rom(card, tmp_config_rom,
    157					     config_rom_length);
    158	}
    159}
    160
    161static size_t required_space(struct fw_descriptor *desc)
    162{
    163	/* descriptor + entry into root dir + optional immediate entry */
    164	return desc->length + 1 + (desc->immediate > 0 ? 1 : 0);
    165}
    166
    167int fw_core_add_descriptor(struct fw_descriptor *desc)
    168{
    169	size_t i;
    170	int ret;
    171
    172	/*
    173	 * Check descriptor is valid; the length of all blocks in the
    174	 * descriptor has to add up to exactly the length of the
    175	 * block.
    176	 */
    177	i = 0;
    178	while (i < desc->length)
    179		i += (desc->data[i] >> 16) + 1;
    180
    181	if (i != desc->length)
    182		return -EINVAL;
    183
    184	mutex_lock(&card_mutex);
    185
    186	if (config_rom_length + required_space(desc) > 256) {
    187		ret = -EBUSY;
    188	} else {
    189		list_add_tail(&desc->link, &descriptor_list);
    190		config_rom_length += required_space(desc);
    191		descriptor_count++;
    192		if (desc->immediate > 0)
    193			descriptor_count++;
    194		update_config_roms();
    195		ret = 0;
    196	}
    197
    198	mutex_unlock(&card_mutex);
    199
    200	return ret;
    201}
    202EXPORT_SYMBOL(fw_core_add_descriptor);
    203
    204void fw_core_remove_descriptor(struct fw_descriptor *desc)
    205{
    206	mutex_lock(&card_mutex);
    207
    208	list_del(&desc->link);
    209	config_rom_length -= required_space(desc);
    210	descriptor_count--;
    211	if (desc->immediate > 0)
    212		descriptor_count--;
    213	update_config_roms();
    214
    215	mutex_unlock(&card_mutex);
    216}
    217EXPORT_SYMBOL(fw_core_remove_descriptor);
    218
    219static int reset_bus(struct fw_card *card, bool short_reset)
    220{
    221	int reg = short_reset ? 5 : 1;
    222	int bit = short_reset ? PHY_BUS_SHORT_RESET : PHY_BUS_RESET;
    223
    224	return card->driver->update_phy_reg(card, reg, 0, bit);
    225}
    226
    227void fw_schedule_bus_reset(struct fw_card *card, bool delayed, bool short_reset)
    228{
    229	/* We don't try hard to sort out requests of long vs. short resets. */
    230	card->br_short = short_reset;
    231
    232	/* Use an arbitrary short delay to combine multiple reset requests. */
    233	fw_card_get(card);
    234	if (!queue_delayed_work(fw_workqueue, &card->br_work,
    235				delayed ? DIV_ROUND_UP(HZ, 100) : 0))
    236		fw_card_put(card);
    237}
    238EXPORT_SYMBOL(fw_schedule_bus_reset);
    239
    240static void br_work(struct work_struct *work)
    241{
    242	struct fw_card *card = container_of(work, struct fw_card, br_work.work);
    243
    244	/* Delay for 2s after last reset per IEEE 1394 clause 8.2.1. */
    245	if (card->reset_jiffies != 0 &&
    246	    time_before64(get_jiffies_64(), card->reset_jiffies + 2 * HZ)) {
    247		if (!queue_delayed_work(fw_workqueue, &card->br_work, 2 * HZ))
    248			fw_card_put(card);
    249		return;
    250	}
    251
    252	fw_send_phy_config(card, FW_PHY_CONFIG_NO_NODE_ID, card->generation,
    253			   FW_PHY_CONFIG_CURRENT_GAP_COUNT);
    254	reset_bus(card, card->br_short);
    255	fw_card_put(card);
    256}
    257
    258static void allocate_broadcast_channel(struct fw_card *card, int generation)
    259{
    260	int channel, bandwidth = 0;
    261
    262	if (!card->broadcast_channel_allocated) {
    263		fw_iso_resource_manage(card, generation, 1ULL << 31,
    264				       &channel, &bandwidth, true);
    265		if (channel != 31) {
    266			fw_notice(card, "failed to allocate broadcast channel\n");
    267			return;
    268		}
    269		card->broadcast_channel_allocated = true;
    270	}
    271
    272	device_for_each_child(card->device, (void *)(long)generation,
    273			      fw_device_set_broadcast_channel);
    274}
    275
    276static const char gap_count_table[] = {
    277	63, 5, 7, 8, 10, 13, 16, 18, 21, 24, 26, 29, 32, 35, 37, 40
    278};
    279
    280void fw_schedule_bm_work(struct fw_card *card, unsigned long delay)
    281{
    282	fw_card_get(card);
    283	if (!schedule_delayed_work(&card->bm_work, delay))
    284		fw_card_put(card);
    285}
    286
    287static void bm_work(struct work_struct *work)
    288{
    289	struct fw_card *card = container_of(work, struct fw_card, bm_work.work);
    290	struct fw_device *root_device, *irm_device;
    291	struct fw_node *root_node;
    292	int root_id, new_root_id, irm_id, bm_id, local_id;
    293	int gap_count, generation, grace, rcode;
    294	bool do_reset = false;
    295	bool root_device_is_running;
    296	bool root_device_is_cmc;
    297	bool irm_is_1394_1995_only;
    298	bool keep_this_irm;
    299	__be32 transaction_data[2];
    300
    301	spin_lock_irq(&card->lock);
    302
    303	if (card->local_node == NULL) {
    304		spin_unlock_irq(&card->lock);
    305		goto out_put_card;
    306	}
    307
    308	generation = card->generation;
    309
    310	root_node = card->root_node;
    311	fw_node_get(root_node);
    312	root_device = root_node->data;
    313	root_device_is_running = root_device &&
    314			atomic_read(&root_device->state) == FW_DEVICE_RUNNING;
    315	root_device_is_cmc = root_device && root_device->cmc;
    316
    317	irm_device = card->irm_node->data;
    318	irm_is_1394_1995_only = irm_device && irm_device->config_rom &&
    319			(irm_device->config_rom[2] & 0x000000f0) == 0;
    320
    321	/* Canon MV5i works unreliably if it is not root node. */
    322	keep_this_irm = irm_device && irm_device->config_rom &&
    323			irm_device->config_rom[3] >> 8 == CANON_OUI;
    324
    325	root_id  = root_node->node_id;
    326	irm_id   = card->irm_node->node_id;
    327	local_id = card->local_node->node_id;
    328
    329	grace = time_after64(get_jiffies_64(),
    330			     card->reset_jiffies + DIV_ROUND_UP(HZ, 8));
    331
    332	if ((is_next_generation(generation, card->bm_generation) &&
    333	     !card->bm_abdicate) ||
    334	    (card->bm_generation != generation && grace)) {
    335		/*
    336		 * This first step is to figure out who is IRM and
    337		 * then try to become bus manager.  If the IRM is not
    338		 * well defined (e.g. does not have an active link
    339		 * layer or does not responds to our lock request, we
    340		 * will have to do a little vigilante bus management.
    341		 * In that case, we do a goto into the gap count logic
    342		 * so that when we do the reset, we still optimize the
    343		 * gap count.  That could well save a reset in the
    344		 * next generation.
    345		 */
    346
    347		if (!card->irm_node->link_on) {
    348			new_root_id = local_id;
    349			fw_notice(card, "%s, making local node (%02x) root\n",
    350				  "IRM has link off", new_root_id);
    351			goto pick_me;
    352		}
    353
    354		if (irm_is_1394_1995_only && !keep_this_irm) {
    355			new_root_id = local_id;
    356			fw_notice(card, "%s, making local node (%02x) root\n",
    357				  "IRM is not 1394a compliant", new_root_id);
    358			goto pick_me;
    359		}
    360
    361		transaction_data[0] = cpu_to_be32(0x3f);
    362		transaction_data[1] = cpu_to_be32(local_id);
    363
    364		spin_unlock_irq(&card->lock);
    365
    366		rcode = fw_run_transaction(card, TCODE_LOCK_COMPARE_SWAP,
    367				irm_id, generation, SCODE_100,
    368				CSR_REGISTER_BASE + CSR_BUS_MANAGER_ID,
    369				transaction_data, 8);
    370
    371		if (rcode == RCODE_GENERATION)
    372			/* Another bus reset, BM work has been rescheduled. */
    373			goto out;
    374
    375		bm_id = be32_to_cpu(transaction_data[0]);
    376
    377		spin_lock_irq(&card->lock);
    378		if (rcode == RCODE_COMPLETE && generation == card->generation)
    379			card->bm_node_id =
    380			    bm_id == 0x3f ? local_id : 0xffc0 | bm_id;
    381		spin_unlock_irq(&card->lock);
    382
    383		if (rcode == RCODE_COMPLETE && bm_id != 0x3f) {
    384			/* Somebody else is BM.  Only act as IRM. */
    385			if (local_id == irm_id)
    386				allocate_broadcast_channel(card, generation);
    387
    388			goto out;
    389		}
    390
    391		if (rcode == RCODE_SEND_ERROR) {
    392			/*
    393			 * We have been unable to send the lock request due to
    394			 * some local problem.  Let's try again later and hope
    395			 * that the problem has gone away by then.
    396			 */
    397			fw_schedule_bm_work(card, DIV_ROUND_UP(HZ, 8));
    398			goto out;
    399		}
    400
    401		spin_lock_irq(&card->lock);
    402
    403		if (rcode != RCODE_COMPLETE && !keep_this_irm) {
    404			/*
    405			 * The lock request failed, maybe the IRM
    406			 * isn't really IRM capable after all. Let's
    407			 * do a bus reset and pick the local node as
    408			 * root, and thus, IRM.
    409			 */
    410			new_root_id = local_id;
    411			fw_notice(card, "BM lock failed (%s), making local node (%02x) root\n",
    412				  fw_rcode_string(rcode), new_root_id);
    413			goto pick_me;
    414		}
    415	} else if (card->bm_generation != generation) {
    416		/*
    417		 * We weren't BM in the last generation, and the last
    418		 * bus reset is less than 125ms ago.  Reschedule this job.
    419		 */
    420		spin_unlock_irq(&card->lock);
    421		fw_schedule_bm_work(card, DIV_ROUND_UP(HZ, 8));
    422		goto out;
    423	}
    424
    425	/*
    426	 * We're bus manager for this generation, so next step is to
    427	 * make sure we have an active cycle master and do gap count
    428	 * optimization.
    429	 */
    430	card->bm_generation = generation;
    431
    432	if (root_device == NULL) {
    433		/*
    434		 * Either link_on is false, or we failed to read the
    435		 * config rom.  In either case, pick another root.
    436		 */
    437		new_root_id = local_id;
    438	} else if (!root_device_is_running) {
    439		/*
    440		 * If we haven't probed this device yet, bail out now
    441		 * and let's try again once that's done.
    442		 */
    443		spin_unlock_irq(&card->lock);
    444		goto out;
    445	} else if (root_device_is_cmc) {
    446		/*
    447		 * We will send out a force root packet for this
    448		 * node as part of the gap count optimization.
    449		 */
    450		new_root_id = root_id;
    451	} else {
    452		/*
    453		 * Current root has an active link layer and we
    454		 * successfully read the config rom, but it's not
    455		 * cycle master capable.
    456		 */
    457		new_root_id = local_id;
    458	}
    459
    460 pick_me:
    461	/*
    462	 * Pick a gap count from 1394a table E-1.  The table doesn't cover
    463	 * the typically much larger 1394b beta repeater delays though.
    464	 */
    465	if (!card->beta_repeaters_present &&
    466	    root_node->max_hops < ARRAY_SIZE(gap_count_table))
    467		gap_count = gap_count_table[root_node->max_hops];
    468	else
    469		gap_count = 63;
    470
    471	/*
    472	 * Finally, figure out if we should do a reset or not.  If we have
    473	 * done less than 5 resets with the same physical topology and we
    474	 * have either a new root or a new gap count setting, let's do it.
    475	 */
    476
    477	if (card->bm_retries++ < 5 &&
    478	    (card->gap_count != gap_count || new_root_id != root_id))
    479		do_reset = true;
    480
    481	spin_unlock_irq(&card->lock);
    482
    483	if (do_reset) {
    484		fw_notice(card, "phy config: new root=%x, gap_count=%d\n",
    485			  new_root_id, gap_count);
    486		fw_send_phy_config(card, new_root_id, generation, gap_count);
    487		reset_bus(card, true);
    488		/* Will allocate broadcast channel after the reset. */
    489		goto out;
    490	}
    491
    492	if (root_device_is_cmc) {
    493		/*
    494		 * Make sure that the cycle master sends cycle start packets.
    495		 */
    496		transaction_data[0] = cpu_to_be32(CSR_STATE_BIT_CMSTR);
    497		rcode = fw_run_transaction(card, TCODE_WRITE_QUADLET_REQUEST,
    498				root_id, generation, SCODE_100,
    499				CSR_REGISTER_BASE + CSR_STATE_SET,
    500				transaction_data, 4);
    501		if (rcode == RCODE_GENERATION)
    502			goto out;
    503	}
    504
    505	if (local_id == irm_id)
    506		allocate_broadcast_channel(card, generation);
    507
    508 out:
    509	fw_node_put(root_node);
    510 out_put_card:
    511	fw_card_put(card);
    512}
    513
    514void fw_card_initialize(struct fw_card *card,
    515			const struct fw_card_driver *driver,
    516			struct device *device)
    517{
    518	static atomic_t index = ATOMIC_INIT(-1);
    519
    520	card->index = atomic_inc_return(&index);
    521	card->driver = driver;
    522	card->device = device;
    523	card->current_tlabel = 0;
    524	card->tlabel_mask = 0;
    525	card->split_timeout_hi = DEFAULT_SPLIT_TIMEOUT / 8000;
    526	card->split_timeout_lo = (DEFAULT_SPLIT_TIMEOUT % 8000) << 19;
    527	card->split_timeout_cycles = DEFAULT_SPLIT_TIMEOUT;
    528	card->split_timeout_jiffies =
    529			DIV_ROUND_UP(DEFAULT_SPLIT_TIMEOUT * HZ, 8000);
    530	card->color = 0;
    531	card->broadcast_channel = BROADCAST_CHANNEL_INITIAL;
    532
    533	kref_init(&card->kref);
    534	init_completion(&card->done);
    535	INIT_LIST_HEAD(&card->transaction_list);
    536	INIT_LIST_HEAD(&card->phy_receiver_list);
    537	spin_lock_init(&card->lock);
    538
    539	card->local_node = NULL;
    540
    541	INIT_DELAYED_WORK(&card->br_work, br_work);
    542	INIT_DELAYED_WORK(&card->bm_work, bm_work);
    543}
    544EXPORT_SYMBOL(fw_card_initialize);
    545
    546int fw_card_add(struct fw_card *card,
    547		u32 max_receive, u32 link_speed, u64 guid)
    548{
    549	int ret;
    550
    551	card->max_receive = max_receive;
    552	card->link_speed = link_speed;
    553	card->guid = guid;
    554
    555	mutex_lock(&card_mutex);
    556
    557	generate_config_rom(card, tmp_config_rom);
    558	ret = card->driver->enable(card, tmp_config_rom, config_rom_length);
    559	if (ret == 0)
    560		list_add_tail(&card->link, &card_list);
    561
    562	mutex_unlock(&card_mutex);
    563
    564	return ret;
    565}
    566EXPORT_SYMBOL(fw_card_add);
    567
    568/*
    569 * The next few functions implement a dummy driver that is used once a card
    570 * driver shuts down an fw_card.  This allows the driver to cleanly unload,
    571 * as all IO to the card will be handled (and failed) by the dummy driver
    572 * instead of calling into the module.  Only functions for iso context
    573 * shutdown still need to be provided by the card driver.
    574 *
    575 * .read/write_csr() should never be called anymore after the dummy driver
    576 * was bound since they are only used within request handler context.
    577 * .set_config_rom() is never called since the card is taken out of card_list
    578 * before switching to the dummy driver.
    579 */
    580
    581static int dummy_read_phy_reg(struct fw_card *card, int address)
    582{
    583	return -ENODEV;
    584}
    585
    586static int dummy_update_phy_reg(struct fw_card *card, int address,
    587				int clear_bits, int set_bits)
    588{
    589	return -ENODEV;
    590}
    591
    592static void dummy_send_request(struct fw_card *card, struct fw_packet *packet)
    593{
    594	packet->callback(packet, card, RCODE_CANCELLED);
    595}
    596
    597static void dummy_send_response(struct fw_card *card, struct fw_packet *packet)
    598{
    599	packet->callback(packet, card, RCODE_CANCELLED);
    600}
    601
    602static int dummy_cancel_packet(struct fw_card *card, struct fw_packet *packet)
    603{
    604	return -ENOENT;
    605}
    606
    607static int dummy_enable_phys_dma(struct fw_card *card,
    608				 int node_id, int generation)
    609{
    610	return -ENODEV;
    611}
    612
    613static struct fw_iso_context *dummy_allocate_iso_context(struct fw_card *card,
    614				int type, int channel, size_t header_size)
    615{
    616	return ERR_PTR(-ENODEV);
    617}
    618
    619static u32 dummy_read_csr(struct fw_card *card, int csr_offset)
    620{
    621	return 0;
    622}
    623
    624static void dummy_write_csr(struct fw_card *card, int csr_offset, u32 value)
    625{
    626}
    627
    628static int dummy_start_iso(struct fw_iso_context *ctx,
    629			   s32 cycle, u32 sync, u32 tags)
    630{
    631	return -ENODEV;
    632}
    633
    634static int dummy_set_iso_channels(struct fw_iso_context *ctx, u64 *channels)
    635{
    636	return -ENODEV;
    637}
    638
    639static int dummy_queue_iso(struct fw_iso_context *ctx, struct fw_iso_packet *p,
    640			   struct fw_iso_buffer *buffer, unsigned long payload)
    641{
    642	return -ENODEV;
    643}
    644
    645static void dummy_flush_queue_iso(struct fw_iso_context *ctx)
    646{
    647}
    648
    649static int dummy_flush_iso_completions(struct fw_iso_context *ctx)
    650{
    651	return -ENODEV;
    652}
    653
    654static const struct fw_card_driver dummy_driver_template = {
    655	.read_phy_reg		= dummy_read_phy_reg,
    656	.update_phy_reg		= dummy_update_phy_reg,
    657	.send_request		= dummy_send_request,
    658	.send_response		= dummy_send_response,
    659	.cancel_packet		= dummy_cancel_packet,
    660	.enable_phys_dma	= dummy_enable_phys_dma,
    661	.read_csr		= dummy_read_csr,
    662	.write_csr		= dummy_write_csr,
    663	.allocate_iso_context	= dummy_allocate_iso_context,
    664	.start_iso		= dummy_start_iso,
    665	.set_iso_channels	= dummy_set_iso_channels,
    666	.queue_iso		= dummy_queue_iso,
    667	.flush_queue_iso	= dummy_flush_queue_iso,
    668	.flush_iso_completions	= dummy_flush_iso_completions,
    669};
    670
    671void fw_card_release(struct kref *kref)
    672{
    673	struct fw_card *card = container_of(kref, struct fw_card, kref);
    674
    675	complete(&card->done);
    676}
    677EXPORT_SYMBOL_GPL(fw_card_release);
    678
    679void fw_core_remove_card(struct fw_card *card)
    680{
    681	struct fw_card_driver dummy_driver = dummy_driver_template;
    682	unsigned long flags;
    683
    684	card->driver->update_phy_reg(card, 4,
    685				     PHY_LINK_ACTIVE | PHY_CONTENDER, 0);
    686	fw_schedule_bus_reset(card, false, true);
    687
    688	mutex_lock(&card_mutex);
    689	list_del_init(&card->link);
    690	mutex_unlock(&card_mutex);
    691
    692	/* Switch off most of the card driver interface. */
    693	dummy_driver.free_iso_context	= card->driver->free_iso_context;
    694	dummy_driver.stop_iso		= card->driver->stop_iso;
    695	card->driver = &dummy_driver;
    696
    697	spin_lock_irqsave(&card->lock, flags);
    698	fw_destroy_nodes(card);
    699	spin_unlock_irqrestore(&card->lock, flags);
    700
    701	/* Wait for all users, especially device workqueue jobs, to finish. */
    702	fw_card_put(card);
    703	wait_for_completion(&card->done);
    704
    705	WARN_ON(!list_empty(&card->transaction_list));
    706}
    707EXPORT_SYMBOL(fw_core_remove_card);
    708
    709/**
    710 * fw_card_read_cycle_time: read from Isochronous Cycle Timer Register of 1394 OHCI in MMIO region
    711 *			    for controller card.
    712 * @card: The instance of card for 1394 OHCI controller.
    713 * @cycle_time: The mutual reference to value of cycle time for the read operation.
    714 *
    715 * Read value from Isochronous Cycle Timer Register of 1394 OHCI in MMIO region for the given
    716 * controller card. This function accesses the region without any lock primitives or IRQ mask.
    717 * When returning successfully, the content of @value argument has value aligned to host endianness,
    718 * formetted by CYCLE_TIME CSR Register of IEEE 1394 std.
    719 *
    720 * Context: Any context.
    721 * Return:
    722 * * 0 - Read successfully.
    723 * * -ENODEV - The controller is unavailable due to being removed or unbound.
    724 */
    725int fw_card_read_cycle_time(struct fw_card *card, u32 *cycle_time)
    726{
    727	if (card->driver->read_csr == dummy_read_csr)
    728		return -ENODEV;
    729
    730	// It's possible to switch to dummy driver between the above and the below. This is the best
    731	// effort to return -ENODEV.
    732	*cycle_time = card->driver->read_csr(card, CSR_CYCLE_TIME);
    733	return 0;
    734}
    735EXPORT_SYMBOL_GPL(fw_card_read_cycle_time);