core-iso.c (9861B)
1// SPDX-License-Identifier: GPL-2.0-or-later 2/* 3 * Isochronous I/O functionality: 4 * - Isochronous DMA context management 5 * - Isochronous bus resource management (channels, bandwidth), client side 6 * 7 * Copyright (C) 2006 Kristian Hoegsberg <krh@bitplanet.net> 8 */ 9 10#include <linux/dma-mapping.h> 11#include <linux/errno.h> 12#include <linux/firewire.h> 13#include <linux/firewire-constants.h> 14#include <linux/kernel.h> 15#include <linux/mm.h> 16#include <linux/slab.h> 17#include <linux/spinlock.h> 18#include <linux/vmalloc.h> 19#include <linux/export.h> 20 21#include <asm/byteorder.h> 22 23#include "core.h" 24 25/* 26 * Isochronous DMA context management 27 */ 28 29int fw_iso_buffer_alloc(struct fw_iso_buffer *buffer, int page_count) 30{ 31 int i; 32 33 buffer->page_count = 0; 34 buffer->page_count_mapped = 0; 35 buffer->pages = kmalloc_array(page_count, sizeof(buffer->pages[0]), 36 GFP_KERNEL); 37 if (buffer->pages == NULL) 38 return -ENOMEM; 39 40 for (i = 0; i < page_count; i++) { 41 buffer->pages[i] = alloc_page(GFP_KERNEL | GFP_DMA32 | __GFP_ZERO); 42 if (buffer->pages[i] == NULL) 43 break; 44 } 45 buffer->page_count = i; 46 if (i < page_count) { 47 fw_iso_buffer_destroy(buffer, NULL); 48 return -ENOMEM; 49 } 50 51 return 0; 52} 53 54int fw_iso_buffer_map_dma(struct fw_iso_buffer *buffer, struct fw_card *card, 55 enum dma_data_direction direction) 56{ 57 dma_addr_t address; 58 int i; 59 60 buffer->direction = direction; 61 62 for (i = 0; i < buffer->page_count; i++) { 63 address = dma_map_page(card->device, buffer->pages[i], 64 0, PAGE_SIZE, direction); 65 if (dma_mapping_error(card->device, address)) 66 break; 67 68 set_page_private(buffer->pages[i], address); 69 } 70 buffer->page_count_mapped = i; 71 if (i < buffer->page_count) 72 return -ENOMEM; 73 74 return 0; 75} 76 77int fw_iso_buffer_init(struct fw_iso_buffer *buffer, struct fw_card *card, 78 int page_count, enum dma_data_direction direction) 79{ 80 int ret; 81 82 ret = fw_iso_buffer_alloc(buffer, page_count); 83 if (ret < 0) 84 return ret; 85 86 ret = fw_iso_buffer_map_dma(buffer, card, direction); 87 if (ret < 0) 88 fw_iso_buffer_destroy(buffer, card); 89 90 return ret; 91} 92EXPORT_SYMBOL(fw_iso_buffer_init); 93 94void fw_iso_buffer_destroy(struct fw_iso_buffer *buffer, 95 struct fw_card *card) 96{ 97 int i; 98 dma_addr_t address; 99 100 for (i = 0; i < buffer->page_count_mapped; i++) { 101 address = page_private(buffer->pages[i]); 102 dma_unmap_page(card->device, address, 103 PAGE_SIZE, buffer->direction); 104 } 105 for (i = 0; i < buffer->page_count; i++) 106 __free_page(buffer->pages[i]); 107 108 kfree(buffer->pages); 109 buffer->pages = NULL; 110 buffer->page_count = 0; 111 buffer->page_count_mapped = 0; 112} 113EXPORT_SYMBOL(fw_iso_buffer_destroy); 114 115/* Convert DMA address to offset into virtually contiguous buffer. */ 116size_t fw_iso_buffer_lookup(struct fw_iso_buffer *buffer, dma_addr_t completed) 117{ 118 size_t i; 119 dma_addr_t address; 120 ssize_t offset; 121 122 for (i = 0; i < buffer->page_count; i++) { 123 address = page_private(buffer->pages[i]); 124 offset = (ssize_t)completed - (ssize_t)address; 125 if (offset > 0 && offset <= PAGE_SIZE) 126 return (i << PAGE_SHIFT) + offset; 127 } 128 129 return 0; 130} 131 132struct fw_iso_context *fw_iso_context_create(struct fw_card *card, 133 int type, int channel, int speed, size_t header_size, 134 fw_iso_callback_t callback, void *callback_data) 135{ 136 struct fw_iso_context *ctx; 137 138 ctx = card->driver->allocate_iso_context(card, 139 type, channel, header_size); 140 if (IS_ERR(ctx)) 141 return ctx; 142 143 ctx->card = card; 144 ctx->type = type; 145 ctx->channel = channel; 146 ctx->speed = speed; 147 ctx->header_size = header_size; 148 ctx->callback.sc = callback; 149 ctx->callback_data = callback_data; 150 151 return ctx; 152} 153EXPORT_SYMBOL(fw_iso_context_create); 154 155void fw_iso_context_destroy(struct fw_iso_context *ctx) 156{ 157 ctx->card->driver->free_iso_context(ctx); 158} 159EXPORT_SYMBOL(fw_iso_context_destroy); 160 161int fw_iso_context_start(struct fw_iso_context *ctx, 162 int cycle, int sync, int tags) 163{ 164 return ctx->card->driver->start_iso(ctx, cycle, sync, tags); 165} 166EXPORT_SYMBOL(fw_iso_context_start); 167 168int fw_iso_context_set_channels(struct fw_iso_context *ctx, u64 *channels) 169{ 170 return ctx->card->driver->set_iso_channels(ctx, channels); 171} 172 173int fw_iso_context_queue(struct fw_iso_context *ctx, 174 struct fw_iso_packet *packet, 175 struct fw_iso_buffer *buffer, 176 unsigned long payload) 177{ 178 return ctx->card->driver->queue_iso(ctx, packet, buffer, payload); 179} 180EXPORT_SYMBOL(fw_iso_context_queue); 181 182void fw_iso_context_queue_flush(struct fw_iso_context *ctx) 183{ 184 ctx->card->driver->flush_queue_iso(ctx); 185} 186EXPORT_SYMBOL(fw_iso_context_queue_flush); 187 188int fw_iso_context_flush_completions(struct fw_iso_context *ctx) 189{ 190 return ctx->card->driver->flush_iso_completions(ctx); 191} 192EXPORT_SYMBOL(fw_iso_context_flush_completions); 193 194int fw_iso_context_stop(struct fw_iso_context *ctx) 195{ 196 return ctx->card->driver->stop_iso(ctx); 197} 198EXPORT_SYMBOL(fw_iso_context_stop); 199 200/* 201 * Isochronous bus resource management (channels, bandwidth), client side 202 */ 203 204static int manage_bandwidth(struct fw_card *card, int irm_id, int generation, 205 int bandwidth, bool allocate) 206{ 207 int try, new, old = allocate ? BANDWIDTH_AVAILABLE_INITIAL : 0; 208 __be32 data[2]; 209 210 /* 211 * On a 1394a IRM with low contention, try < 1 is enough. 212 * On a 1394-1995 IRM, we need at least try < 2. 213 * Let's just do try < 5. 214 */ 215 for (try = 0; try < 5; try++) { 216 new = allocate ? old - bandwidth : old + bandwidth; 217 if (new < 0 || new > BANDWIDTH_AVAILABLE_INITIAL) 218 return -EBUSY; 219 220 data[0] = cpu_to_be32(old); 221 data[1] = cpu_to_be32(new); 222 switch (fw_run_transaction(card, TCODE_LOCK_COMPARE_SWAP, 223 irm_id, generation, SCODE_100, 224 CSR_REGISTER_BASE + CSR_BANDWIDTH_AVAILABLE, 225 data, 8)) { 226 case RCODE_GENERATION: 227 /* A generation change frees all bandwidth. */ 228 return allocate ? -EAGAIN : bandwidth; 229 230 case RCODE_COMPLETE: 231 if (be32_to_cpup(data) == old) 232 return bandwidth; 233 234 old = be32_to_cpup(data); 235 /* Fall through. */ 236 } 237 } 238 239 return -EIO; 240} 241 242static int manage_channel(struct fw_card *card, int irm_id, int generation, 243 u32 channels_mask, u64 offset, bool allocate) 244{ 245 __be32 bit, all, old; 246 __be32 data[2]; 247 int channel, ret = -EIO, retry = 5; 248 249 old = all = allocate ? cpu_to_be32(~0) : 0; 250 251 for (channel = 0; channel < 32; channel++) { 252 if (!(channels_mask & 1 << channel)) 253 continue; 254 255 ret = -EBUSY; 256 257 bit = cpu_to_be32(1 << (31 - channel)); 258 if ((old & bit) != (all & bit)) 259 continue; 260 261 data[0] = old; 262 data[1] = old ^ bit; 263 switch (fw_run_transaction(card, TCODE_LOCK_COMPARE_SWAP, 264 irm_id, generation, SCODE_100, 265 offset, data, 8)) { 266 case RCODE_GENERATION: 267 /* A generation change frees all channels. */ 268 return allocate ? -EAGAIN : channel; 269 270 case RCODE_COMPLETE: 271 if (data[0] == old) 272 return channel; 273 274 old = data[0]; 275 276 /* Is the IRM 1394a-2000 compliant? */ 277 if ((data[0] & bit) == (data[1] & bit)) 278 continue; 279 280 fallthrough; /* It's a 1394-1995 IRM, retry */ 281 default: 282 if (retry) { 283 retry--; 284 channel--; 285 } else { 286 ret = -EIO; 287 } 288 } 289 } 290 291 return ret; 292} 293 294static void deallocate_channel(struct fw_card *card, int irm_id, 295 int generation, int channel) 296{ 297 u32 mask; 298 u64 offset; 299 300 mask = channel < 32 ? 1 << channel : 1 << (channel - 32); 301 offset = channel < 32 ? CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_HI : 302 CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_LO; 303 304 manage_channel(card, irm_id, generation, mask, offset, false); 305} 306 307/** 308 * fw_iso_resource_manage() - Allocate or deallocate a channel and/or bandwidth 309 * @card: card interface for this action 310 * @generation: bus generation 311 * @channels_mask: bitmask for channel allocation 312 * @channel: pointer for returning channel allocation result 313 * @bandwidth: pointer for returning bandwidth allocation result 314 * @allocate: whether to allocate (true) or deallocate (false) 315 * 316 * In parameters: card, generation, channels_mask, bandwidth, allocate 317 * Out parameters: channel, bandwidth 318 * 319 * This function blocks (sleeps) during communication with the IRM. 320 * 321 * Allocates or deallocates at most one channel out of channels_mask. 322 * channels_mask is a bitfield with MSB for channel 63 and LSB for channel 0. 323 * (Note, the IRM's CHANNELS_AVAILABLE is a big-endian bitfield with MSB for 324 * channel 0 and LSB for channel 63.) 325 * Allocates or deallocates as many bandwidth allocation units as specified. 326 * 327 * Returns channel < 0 if no channel was allocated or deallocated. 328 * Returns bandwidth = 0 if no bandwidth was allocated or deallocated. 329 * 330 * If generation is stale, deallocations succeed but allocations fail with 331 * channel = -EAGAIN. 332 * 333 * If channel allocation fails, no bandwidth will be allocated either. 334 * If bandwidth allocation fails, no channel will be allocated either. 335 * But deallocations of channel and bandwidth are tried independently 336 * of each other's success. 337 */ 338void fw_iso_resource_manage(struct fw_card *card, int generation, 339 u64 channels_mask, int *channel, int *bandwidth, 340 bool allocate) 341{ 342 u32 channels_hi = channels_mask; /* channels 31...0 */ 343 u32 channels_lo = channels_mask >> 32; /* channels 63...32 */ 344 int irm_id, ret, c = -EINVAL; 345 346 spin_lock_irq(&card->lock); 347 irm_id = card->irm_node->node_id; 348 spin_unlock_irq(&card->lock); 349 350 if (channels_hi) 351 c = manage_channel(card, irm_id, generation, channels_hi, 352 CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_HI, 353 allocate); 354 if (channels_lo && c < 0) { 355 c = manage_channel(card, irm_id, generation, channels_lo, 356 CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_LO, 357 allocate); 358 if (c >= 0) 359 c += 32; 360 } 361 *channel = c; 362 363 if (allocate && channels_mask != 0 && c < 0) 364 *bandwidth = 0; 365 366 if (*bandwidth == 0) 367 return; 368 369 ret = manage_bandwidth(card, irm_id, generation, *bandwidth, allocate); 370 if (ret < 0) 371 *bandwidth = 0; 372 373 if (allocate && ret < 0) { 374 if (c >= 0) 375 deallocate_channel(card, irm_id, generation, c); 376 *channel = ret; 377 } 378} 379EXPORT_SYMBOL(fw_iso_resource_manage);