cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

core-iso.c (9861B)


      1// SPDX-License-Identifier: GPL-2.0-or-later
      2/*
      3 * Isochronous I/O functionality:
      4 *   - Isochronous DMA context management
      5 *   - Isochronous bus resource management (channels, bandwidth), client side
      6 *
      7 * Copyright (C) 2006 Kristian Hoegsberg <krh@bitplanet.net>
      8 */
      9
     10#include <linux/dma-mapping.h>
     11#include <linux/errno.h>
     12#include <linux/firewire.h>
     13#include <linux/firewire-constants.h>
     14#include <linux/kernel.h>
     15#include <linux/mm.h>
     16#include <linux/slab.h>
     17#include <linux/spinlock.h>
     18#include <linux/vmalloc.h>
     19#include <linux/export.h>
     20
     21#include <asm/byteorder.h>
     22
     23#include "core.h"
     24
     25/*
     26 * Isochronous DMA context management
     27 */
     28
     29int fw_iso_buffer_alloc(struct fw_iso_buffer *buffer, int page_count)
     30{
     31	int i;
     32
     33	buffer->page_count = 0;
     34	buffer->page_count_mapped = 0;
     35	buffer->pages = kmalloc_array(page_count, sizeof(buffer->pages[0]),
     36				      GFP_KERNEL);
     37	if (buffer->pages == NULL)
     38		return -ENOMEM;
     39
     40	for (i = 0; i < page_count; i++) {
     41		buffer->pages[i] = alloc_page(GFP_KERNEL | GFP_DMA32 | __GFP_ZERO);
     42		if (buffer->pages[i] == NULL)
     43			break;
     44	}
     45	buffer->page_count = i;
     46	if (i < page_count) {
     47		fw_iso_buffer_destroy(buffer, NULL);
     48		return -ENOMEM;
     49	}
     50
     51	return 0;
     52}
     53
     54int fw_iso_buffer_map_dma(struct fw_iso_buffer *buffer, struct fw_card *card,
     55			  enum dma_data_direction direction)
     56{
     57	dma_addr_t address;
     58	int i;
     59
     60	buffer->direction = direction;
     61
     62	for (i = 0; i < buffer->page_count; i++) {
     63		address = dma_map_page(card->device, buffer->pages[i],
     64				       0, PAGE_SIZE, direction);
     65		if (dma_mapping_error(card->device, address))
     66			break;
     67
     68		set_page_private(buffer->pages[i], address);
     69	}
     70	buffer->page_count_mapped = i;
     71	if (i < buffer->page_count)
     72		return -ENOMEM;
     73
     74	return 0;
     75}
     76
     77int fw_iso_buffer_init(struct fw_iso_buffer *buffer, struct fw_card *card,
     78		       int page_count, enum dma_data_direction direction)
     79{
     80	int ret;
     81
     82	ret = fw_iso_buffer_alloc(buffer, page_count);
     83	if (ret < 0)
     84		return ret;
     85
     86	ret = fw_iso_buffer_map_dma(buffer, card, direction);
     87	if (ret < 0)
     88		fw_iso_buffer_destroy(buffer, card);
     89
     90	return ret;
     91}
     92EXPORT_SYMBOL(fw_iso_buffer_init);
     93
     94void fw_iso_buffer_destroy(struct fw_iso_buffer *buffer,
     95			   struct fw_card *card)
     96{
     97	int i;
     98	dma_addr_t address;
     99
    100	for (i = 0; i < buffer->page_count_mapped; i++) {
    101		address = page_private(buffer->pages[i]);
    102		dma_unmap_page(card->device, address,
    103			       PAGE_SIZE, buffer->direction);
    104	}
    105	for (i = 0; i < buffer->page_count; i++)
    106		__free_page(buffer->pages[i]);
    107
    108	kfree(buffer->pages);
    109	buffer->pages = NULL;
    110	buffer->page_count = 0;
    111	buffer->page_count_mapped = 0;
    112}
    113EXPORT_SYMBOL(fw_iso_buffer_destroy);
    114
    115/* Convert DMA address to offset into virtually contiguous buffer. */
    116size_t fw_iso_buffer_lookup(struct fw_iso_buffer *buffer, dma_addr_t completed)
    117{
    118	size_t i;
    119	dma_addr_t address;
    120	ssize_t offset;
    121
    122	for (i = 0; i < buffer->page_count; i++) {
    123		address = page_private(buffer->pages[i]);
    124		offset = (ssize_t)completed - (ssize_t)address;
    125		if (offset > 0 && offset <= PAGE_SIZE)
    126			return (i << PAGE_SHIFT) + offset;
    127	}
    128
    129	return 0;
    130}
    131
    132struct fw_iso_context *fw_iso_context_create(struct fw_card *card,
    133		int type, int channel, int speed, size_t header_size,
    134		fw_iso_callback_t callback, void *callback_data)
    135{
    136	struct fw_iso_context *ctx;
    137
    138	ctx = card->driver->allocate_iso_context(card,
    139						 type, channel, header_size);
    140	if (IS_ERR(ctx))
    141		return ctx;
    142
    143	ctx->card = card;
    144	ctx->type = type;
    145	ctx->channel = channel;
    146	ctx->speed = speed;
    147	ctx->header_size = header_size;
    148	ctx->callback.sc = callback;
    149	ctx->callback_data = callback_data;
    150
    151	return ctx;
    152}
    153EXPORT_SYMBOL(fw_iso_context_create);
    154
    155void fw_iso_context_destroy(struct fw_iso_context *ctx)
    156{
    157	ctx->card->driver->free_iso_context(ctx);
    158}
    159EXPORT_SYMBOL(fw_iso_context_destroy);
    160
    161int fw_iso_context_start(struct fw_iso_context *ctx,
    162			 int cycle, int sync, int tags)
    163{
    164	return ctx->card->driver->start_iso(ctx, cycle, sync, tags);
    165}
    166EXPORT_SYMBOL(fw_iso_context_start);
    167
    168int fw_iso_context_set_channels(struct fw_iso_context *ctx, u64 *channels)
    169{
    170	return ctx->card->driver->set_iso_channels(ctx, channels);
    171}
    172
    173int fw_iso_context_queue(struct fw_iso_context *ctx,
    174			 struct fw_iso_packet *packet,
    175			 struct fw_iso_buffer *buffer,
    176			 unsigned long payload)
    177{
    178	return ctx->card->driver->queue_iso(ctx, packet, buffer, payload);
    179}
    180EXPORT_SYMBOL(fw_iso_context_queue);
    181
    182void fw_iso_context_queue_flush(struct fw_iso_context *ctx)
    183{
    184	ctx->card->driver->flush_queue_iso(ctx);
    185}
    186EXPORT_SYMBOL(fw_iso_context_queue_flush);
    187
    188int fw_iso_context_flush_completions(struct fw_iso_context *ctx)
    189{
    190	return ctx->card->driver->flush_iso_completions(ctx);
    191}
    192EXPORT_SYMBOL(fw_iso_context_flush_completions);
    193
    194int fw_iso_context_stop(struct fw_iso_context *ctx)
    195{
    196	return ctx->card->driver->stop_iso(ctx);
    197}
    198EXPORT_SYMBOL(fw_iso_context_stop);
    199
    200/*
    201 * Isochronous bus resource management (channels, bandwidth), client side
    202 */
    203
    204static int manage_bandwidth(struct fw_card *card, int irm_id, int generation,
    205			    int bandwidth, bool allocate)
    206{
    207	int try, new, old = allocate ? BANDWIDTH_AVAILABLE_INITIAL : 0;
    208	__be32 data[2];
    209
    210	/*
    211	 * On a 1394a IRM with low contention, try < 1 is enough.
    212	 * On a 1394-1995 IRM, we need at least try < 2.
    213	 * Let's just do try < 5.
    214	 */
    215	for (try = 0; try < 5; try++) {
    216		new = allocate ? old - bandwidth : old + bandwidth;
    217		if (new < 0 || new > BANDWIDTH_AVAILABLE_INITIAL)
    218			return -EBUSY;
    219
    220		data[0] = cpu_to_be32(old);
    221		data[1] = cpu_to_be32(new);
    222		switch (fw_run_transaction(card, TCODE_LOCK_COMPARE_SWAP,
    223				irm_id, generation, SCODE_100,
    224				CSR_REGISTER_BASE + CSR_BANDWIDTH_AVAILABLE,
    225				data, 8)) {
    226		case RCODE_GENERATION:
    227			/* A generation change frees all bandwidth. */
    228			return allocate ? -EAGAIN : bandwidth;
    229
    230		case RCODE_COMPLETE:
    231			if (be32_to_cpup(data) == old)
    232				return bandwidth;
    233
    234			old = be32_to_cpup(data);
    235			/* Fall through. */
    236		}
    237	}
    238
    239	return -EIO;
    240}
    241
    242static int manage_channel(struct fw_card *card, int irm_id, int generation,
    243		u32 channels_mask, u64 offset, bool allocate)
    244{
    245	__be32 bit, all, old;
    246	__be32 data[2];
    247	int channel, ret = -EIO, retry = 5;
    248
    249	old = all = allocate ? cpu_to_be32(~0) : 0;
    250
    251	for (channel = 0; channel < 32; channel++) {
    252		if (!(channels_mask & 1 << channel))
    253			continue;
    254
    255		ret = -EBUSY;
    256
    257		bit = cpu_to_be32(1 << (31 - channel));
    258		if ((old & bit) != (all & bit))
    259			continue;
    260
    261		data[0] = old;
    262		data[1] = old ^ bit;
    263		switch (fw_run_transaction(card, TCODE_LOCK_COMPARE_SWAP,
    264					   irm_id, generation, SCODE_100,
    265					   offset, data, 8)) {
    266		case RCODE_GENERATION:
    267			/* A generation change frees all channels. */
    268			return allocate ? -EAGAIN : channel;
    269
    270		case RCODE_COMPLETE:
    271			if (data[0] == old)
    272				return channel;
    273
    274			old = data[0];
    275
    276			/* Is the IRM 1394a-2000 compliant? */
    277			if ((data[0] & bit) == (data[1] & bit))
    278				continue;
    279
    280			fallthrough;	/* It's a 1394-1995 IRM, retry */
    281		default:
    282			if (retry) {
    283				retry--;
    284				channel--;
    285			} else {
    286				ret = -EIO;
    287			}
    288		}
    289	}
    290
    291	return ret;
    292}
    293
    294static void deallocate_channel(struct fw_card *card, int irm_id,
    295			       int generation, int channel)
    296{
    297	u32 mask;
    298	u64 offset;
    299
    300	mask = channel < 32 ? 1 << channel : 1 << (channel - 32);
    301	offset = channel < 32 ? CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_HI :
    302				CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_LO;
    303
    304	manage_channel(card, irm_id, generation, mask, offset, false);
    305}
    306
    307/**
    308 * fw_iso_resource_manage() - Allocate or deallocate a channel and/or bandwidth
    309 * @card: card interface for this action
    310 * @generation: bus generation
    311 * @channels_mask: bitmask for channel allocation
    312 * @channel: pointer for returning channel allocation result
    313 * @bandwidth: pointer for returning bandwidth allocation result
    314 * @allocate: whether to allocate (true) or deallocate (false)
    315 *
    316 * In parameters: card, generation, channels_mask, bandwidth, allocate
    317 * Out parameters: channel, bandwidth
    318 *
    319 * This function blocks (sleeps) during communication with the IRM.
    320 *
    321 * Allocates or deallocates at most one channel out of channels_mask.
    322 * channels_mask is a bitfield with MSB for channel 63 and LSB for channel 0.
    323 * (Note, the IRM's CHANNELS_AVAILABLE is a big-endian bitfield with MSB for
    324 * channel 0 and LSB for channel 63.)
    325 * Allocates or deallocates as many bandwidth allocation units as specified.
    326 *
    327 * Returns channel < 0 if no channel was allocated or deallocated.
    328 * Returns bandwidth = 0 if no bandwidth was allocated or deallocated.
    329 *
    330 * If generation is stale, deallocations succeed but allocations fail with
    331 * channel = -EAGAIN.
    332 *
    333 * If channel allocation fails, no bandwidth will be allocated either.
    334 * If bandwidth allocation fails, no channel will be allocated either.
    335 * But deallocations of channel and bandwidth are tried independently
    336 * of each other's success.
    337 */
    338void fw_iso_resource_manage(struct fw_card *card, int generation,
    339			    u64 channels_mask, int *channel, int *bandwidth,
    340			    bool allocate)
    341{
    342	u32 channels_hi = channels_mask;	/* channels 31...0 */
    343	u32 channels_lo = channels_mask >> 32;	/* channels 63...32 */
    344	int irm_id, ret, c = -EINVAL;
    345
    346	spin_lock_irq(&card->lock);
    347	irm_id = card->irm_node->node_id;
    348	spin_unlock_irq(&card->lock);
    349
    350	if (channels_hi)
    351		c = manage_channel(card, irm_id, generation, channels_hi,
    352				CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_HI,
    353				allocate);
    354	if (channels_lo && c < 0) {
    355		c = manage_channel(card, irm_id, generation, channels_lo,
    356				CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_LO,
    357				allocate);
    358		if (c >= 0)
    359			c += 32;
    360	}
    361	*channel = c;
    362
    363	if (allocate && channels_mask != 0 && c < 0)
    364		*bandwidth = 0;
    365
    366	if (*bandwidth == 0)
    367		return;
    368
    369	ret = manage_bandwidth(card, irm_id, generation, *bandwidth, allocate);
    370	if (ret < 0)
    371		*bandwidth = 0;
    372
    373	if (allocate && ret < 0) {
    374		if (c >= 0)
    375			deallocate_channel(card, irm_id, generation, c);
    376		*channel = ret;
    377	}
    378}
    379EXPORT_SYMBOL(fw_iso_resource_manage);