cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

core-transaction.c (36623B)


      1// SPDX-License-Identifier: GPL-2.0-or-later
      2/*
      3 * Core IEEE1394 transaction logic
      4 *
      5 * Copyright (C) 2004-2006 Kristian Hoegsberg <krh@bitplanet.net>
      6 */
      7
      8#include <linux/bug.h>
      9#include <linux/completion.h>
     10#include <linux/device.h>
     11#include <linux/errno.h>
     12#include <linux/firewire.h>
     13#include <linux/firewire-constants.h>
     14#include <linux/fs.h>
     15#include <linux/init.h>
     16#include <linux/idr.h>
     17#include <linux/jiffies.h>
     18#include <linux/kernel.h>
     19#include <linux/list.h>
     20#include <linux/module.h>
     21#include <linux/rculist.h>
     22#include <linux/slab.h>
     23#include <linux/spinlock.h>
     24#include <linux/string.h>
     25#include <linux/timer.h>
     26#include <linux/types.h>
     27#include <linux/workqueue.h>
     28
     29#include <asm/byteorder.h>
     30
     31#include "core.h"
     32
     33#define HEADER_PRI(pri)			((pri) << 0)
     34#define HEADER_TCODE(tcode)		((tcode) << 4)
     35#define HEADER_RETRY(retry)		((retry) << 8)
     36#define HEADER_TLABEL(tlabel)		((tlabel) << 10)
     37#define HEADER_DESTINATION(destination)	((destination) << 16)
     38#define HEADER_SOURCE(source)		((source) << 16)
     39#define HEADER_RCODE(rcode)		((rcode) << 12)
     40#define HEADER_OFFSET_HIGH(offset_high)	((offset_high) << 0)
     41#define HEADER_DATA_LENGTH(length)	((length) << 16)
     42#define HEADER_EXTENDED_TCODE(tcode)	((tcode) << 0)
     43
     44#define HEADER_GET_TCODE(q)		(((q) >> 4) & 0x0f)
     45#define HEADER_GET_TLABEL(q)		(((q) >> 10) & 0x3f)
     46#define HEADER_GET_RCODE(q)		(((q) >> 12) & 0x0f)
     47#define HEADER_GET_DESTINATION(q)	(((q) >> 16) & 0xffff)
     48#define HEADER_GET_SOURCE(q)		(((q) >> 16) & 0xffff)
     49#define HEADER_GET_OFFSET_HIGH(q)	(((q) >> 0) & 0xffff)
     50#define HEADER_GET_DATA_LENGTH(q)	(((q) >> 16) & 0xffff)
     51#define HEADER_GET_EXTENDED_TCODE(q)	(((q) >> 0) & 0xffff)
     52
     53#define HEADER_DESTINATION_IS_BROADCAST(q) \
     54	(((q) & HEADER_DESTINATION(0x3f)) == HEADER_DESTINATION(0x3f))
     55
     56#define PHY_PACKET_CONFIG	0x0
     57#define PHY_PACKET_LINK_ON	0x1
     58#define PHY_PACKET_SELF_ID	0x2
     59
     60#define PHY_CONFIG_GAP_COUNT(gap_count)	(((gap_count) << 16) | (1 << 22))
     61#define PHY_CONFIG_ROOT_ID(node_id)	((((node_id) & 0x3f) << 24) | (1 << 23))
     62#define PHY_IDENTIFIER(id)		((id) << 30)
     63
     64/* returns 0 if the split timeout handler is already running */
     65static int try_cancel_split_timeout(struct fw_transaction *t)
     66{
     67	if (t->is_split_transaction)
     68		return del_timer(&t->split_timeout_timer);
     69	else
     70		return 1;
     71}
     72
     73static int close_transaction(struct fw_transaction *transaction,
     74			     struct fw_card *card, int rcode)
     75{
     76	struct fw_transaction *t = NULL, *iter;
     77	unsigned long flags;
     78
     79	spin_lock_irqsave(&card->lock, flags);
     80	list_for_each_entry(iter, &card->transaction_list, link) {
     81		if (iter == transaction) {
     82			if (!try_cancel_split_timeout(iter)) {
     83				spin_unlock_irqrestore(&card->lock, flags);
     84				goto timed_out;
     85			}
     86			list_del_init(&iter->link);
     87			card->tlabel_mask &= ~(1ULL << iter->tlabel);
     88			t = iter;
     89			break;
     90		}
     91	}
     92	spin_unlock_irqrestore(&card->lock, flags);
     93
     94	if (t) {
     95		t->callback(card, rcode, NULL, 0, t->callback_data);
     96		return 0;
     97	}
     98
     99 timed_out:
    100	return -ENOENT;
    101}
    102
    103/*
    104 * Only valid for transactions that are potentially pending (ie have
    105 * been sent).
    106 */
    107int fw_cancel_transaction(struct fw_card *card,
    108			  struct fw_transaction *transaction)
    109{
    110	/*
    111	 * Cancel the packet transmission if it's still queued.  That
    112	 * will call the packet transmission callback which cancels
    113	 * the transaction.
    114	 */
    115
    116	if (card->driver->cancel_packet(card, &transaction->packet) == 0)
    117		return 0;
    118
    119	/*
    120	 * If the request packet has already been sent, we need to see
    121	 * if the transaction is still pending and remove it in that case.
    122	 */
    123
    124	return close_transaction(transaction, card, RCODE_CANCELLED);
    125}
    126EXPORT_SYMBOL(fw_cancel_transaction);
    127
    128static void split_transaction_timeout_callback(struct timer_list *timer)
    129{
    130	struct fw_transaction *t = from_timer(t, timer, split_timeout_timer);
    131	struct fw_card *card = t->card;
    132	unsigned long flags;
    133
    134	spin_lock_irqsave(&card->lock, flags);
    135	if (list_empty(&t->link)) {
    136		spin_unlock_irqrestore(&card->lock, flags);
    137		return;
    138	}
    139	list_del(&t->link);
    140	card->tlabel_mask &= ~(1ULL << t->tlabel);
    141	spin_unlock_irqrestore(&card->lock, flags);
    142
    143	t->callback(card, RCODE_CANCELLED, NULL, 0, t->callback_data);
    144}
    145
    146static void start_split_transaction_timeout(struct fw_transaction *t,
    147					    struct fw_card *card)
    148{
    149	unsigned long flags;
    150
    151	spin_lock_irqsave(&card->lock, flags);
    152
    153	if (list_empty(&t->link) || WARN_ON(t->is_split_transaction)) {
    154		spin_unlock_irqrestore(&card->lock, flags);
    155		return;
    156	}
    157
    158	t->is_split_transaction = true;
    159	mod_timer(&t->split_timeout_timer,
    160		  jiffies + card->split_timeout_jiffies);
    161
    162	spin_unlock_irqrestore(&card->lock, flags);
    163}
    164
    165static void transmit_complete_callback(struct fw_packet *packet,
    166				       struct fw_card *card, int status)
    167{
    168	struct fw_transaction *t =
    169	    container_of(packet, struct fw_transaction, packet);
    170
    171	switch (status) {
    172	case ACK_COMPLETE:
    173		close_transaction(t, card, RCODE_COMPLETE);
    174		break;
    175	case ACK_PENDING:
    176		start_split_transaction_timeout(t, card);
    177		break;
    178	case ACK_BUSY_X:
    179	case ACK_BUSY_A:
    180	case ACK_BUSY_B:
    181		close_transaction(t, card, RCODE_BUSY);
    182		break;
    183	case ACK_DATA_ERROR:
    184		close_transaction(t, card, RCODE_DATA_ERROR);
    185		break;
    186	case ACK_TYPE_ERROR:
    187		close_transaction(t, card, RCODE_TYPE_ERROR);
    188		break;
    189	default:
    190		/*
    191		 * In this case the ack is really a juju specific
    192		 * rcode, so just forward that to the callback.
    193		 */
    194		close_transaction(t, card, status);
    195		break;
    196	}
    197}
    198
    199static void fw_fill_request(struct fw_packet *packet, int tcode, int tlabel,
    200		int destination_id, int source_id, int generation, int speed,
    201		unsigned long long offset, void *payload, size_t length)
    202{
    203	int ext_tcode;
    204
    205	if (tcode == TCODE_STREAM_DATA) {
    206		packet->header[0] =
    207			HEADER_DATA_LENGTH(length) |
    208			destination_id |
    209			HEADER_TCODE(TCODE_STREAM_DATA);
    210		packet->header_length = 4;
    211		packet->payload = payload;
    212		packet->payload_length = length;
    213
    214		goto common;
    215	}
    216
    217	if (tcode > 0x10) {
    218		ext_tcode = tcode & ~0x10;
    219		tcode = TCODE_LOCK_REQUEST;
    220	} else
    221		ext_tcode = 0;
    222
    223	packet->header[0] =
    224		HEADER_RETRY(RETRY_X) |
    225		HEADER_TLABEL(tlabel) |
    226		HEADER_TCODE(tcode) |
    227		HEADER_DESTINATION(destination_id);
    228	packet->header[1] =
    229		HEADER_OFFSET_HIGH(offset >> 32) | HEADER_SOURCE(source_id);
    230	packet->header[2] =
    231		offset;
    232
    233	switch (tcode) {
    234	case TCODE_WRITE_QUADLET_REQUEST:
    235		packet->header[3] = *(u32 *)payload;
    236		packet->header_length = 16;
    237		packet->payload_length = 0;
    238		break;
    239
    240	case TCODE_LOCK_REQUEST:
    241	case TCODE_WRITE_BLOCK_REQUEST:
    242		packet->header[3] =
    243			HEADER_DATA_LENGTH(length) |
    244			HEADER_EXTENDED_TCODE(ext_tcode);
    245		packet->header_length = 16;
    246		packet->payload = payload;
    247		packet->payload_length = length;
    248		break;
    249
    250	case TCODE_READ_QUADLET_REQUEST:
    251		packet->header_length = 12;
    252		packet->payload_length = 0;
    253		break;
    254
    255	case TCODE_READ_BLOCK_REQUEST:
    256		packet->header[3] =
    257			HEADER_DATA_LENGTH(length) |
    258			HEADER_EXTENDED_TCODE(ext_tcode);
    259		packet->header_length = 16;
    260		packet->payload_length = 0;
    261		break;
    262
    263	default:
    264		WARN(1, "wrong tcode %d\n", tcode);
    265	}
    266 common:
    267	packet->speed = speed;
    268	packet->generation = generation;
    269	packet->ack = 0;
    270	packet->payload_mapped = false;
    271}
    272
    273static int allocate_tlabel(struct fw_card *card)
    274{
    275	int tlabel;
    276
    277	tlabel = card->current_tlabel;
    278	while (card->tlabel_mask & (1ULL << tlabel)) {
    279		tlabel = (tlabel + 1) & 0x3f;
    280		if (tlabel == card->current_tlabel)
    281			return -EBUSY;
    282	}
    283
    284	card->current_tlabel = (tlabel + 1) & 0x3f;
    285	card->tlabel_mask |= 1ULL << tlabel;
    286
    287	return tlabel;
    288}
    289
    290/**
    291 * fw_send_request() - submit a request packet for transmission
    292 * @card:		interface to send the request at
    293 * @t:			transaction instance to which the request belongs
    294 * @tcode:		transaction code
    295 * @destination_id:	destination node ID, consisting of bus_ID and phy_ID
    296 * @generation:		bus generation in which request and response are valid
    297 * @speed:		transmission speed
    298 * @offset:		48bit wide offset into destination's address space
    299 * @payload:		data payload for the request subaction
    300 * @length:		length of the payload, in bytes
    301 * @callback:		function to be called when the transaction is completed
    302 * @callback_data:	data to be passed to the transaction completion callback
    303 *
    304 * Submit a request packet into the asynchronous request transmission queue.
    305 * Can be called from atomic context.  If you prefer a blocking API, use
    306 * fw_run_transaction() in a context that can sleep.
    307 *
    308 * In case of lock requests, specify one of the firewire-core specific %TCODE_
    309 * constants instead of %TCODE_LOCK_REQUEST in @tcode.
    310 *
    311 * Make sure that the value in @destination_id is not older than the one in
    312 * @generation.  Otherwise the request is in danger to be sent to a wrong node.
    313 *
    314 * In case of asynchronous stream packets i.e. %TCODE_STREAM_DATA, the caller
    315 * needs to synthesize @destination_id with fw_stream_packet_destination_id().
    316 * It will contain tag, channel, and sy data instead of a node ID then.
    317 *
    318 * The payload buffer at @data is going to be DMA-mapped except in case of
    319 * @length <= 8 or of local (loopback) requests.  Hence make sure that the
    320 * buffer complies with the restrictions of the streaming DMA mapping API.
    321 * @payload must not be freed before the @callback is called.
    322 *
    323 * In case of request types without payload, @data is NULL and @length is 0.
    324 *
    325 * After the transaction is completed successfully or unsuccessfully, the
    326 * @callback will be called.  Among its parameters is the response code which
    327 * is either one of the rcodes per IEEE 1394 or, in case of internal errors,
    328 * the firewire-core specific %RCODE_SEND_ERROR.  The other firewire-core
    329 * specific rcodes (%RCODE_CANCELLED, %RCODE_BUSY, %RCODE_GENERATION,
    330 * %RCODE_NO_ACK) denote transaction timeout, busy responder, stale request
    331 * generation, or missing ACK respectively.
    332 *
    333 * Note some timing corner cases:  fw_send_request() may complete much earlier
    334 * than when the request packet actually hits the wire.  On the other hand,
    335 * transaction completion and hence execution of @callback may happen even
    336 * before fw_send_request() returns.
    337 */
    338void fw_send_request(struct fw_card *card, struct fw_transaction *t, int tcode,
    339		     int destination_id, int generation, int speed,
    340		     unsigned long long offset, void *payload, size_t length,
    341		     fw_transaction_callback_t callback, void *callback_data)
    342{
    343	unsigned long flags;
    344	int tlabel;
    345
    346	/*
    347	 * Allocate tlabel from the bitmap and put the transaction on
    348	 * the list while holding the card spinlock.
    349	 */
    350
    351	spin_lock_irqsave(&card->lock, flags);
    352
    353	tlabel = allocate_tlabel(card);
    354	if (tlabel < 0) {
    355		spin_unlock_irqrestore(&card->lock, flags);
    356		callback(card, RCODE_SEND_ERROR, NULL, 0, callback_data);
    357		return;
    358	}
    359
    360	t->node_id = destination_id;
    361	t->tlabel = tlabel;
    362	t->card = card;
    363	t->is_split_transaction = false;
    364	timer_setup(&t->split_timeout_timer,
    365		    split_transaction_timeout_callback, 0);
    366	t->callback = callback;
    367	t->callback_data = callback_data;
    368
    369	fw_fill_request(&t->packet, tcode, t->tlabel,
    370			destination_id, card->node_id, generation,
    371			speed, offset, payload, length);
    372	t->packet.callback = transmit_complete_callback;
    373
    374	list_add_tail(&t->link, &card->transaction_list);
    375
    376	spin_unlock_irqrestore(&card->lock, flags);
    377
    378	card->driver->send_request(card, &t->packet);
    379}
    380EXPORT_SYMBOL(fw_send_request);
    381
    382struct transaction_callback_data {
    383	struct completion done;
    384	void *payload;
    385	int rcode;
    386};
    387
    388static void transaction_callback(struct fw_card *card, int rcode,
    389				 void *payload, size_t length, void *data)
    390{
    391	struct transaction_callback_data *d = data;
    392
    393	if (rcode == RCODE_COMPLETE)
    394		memcpy(d->payload, payload, length);
    395	d->rcode = rcode;
    396	complete(&d->done);
    397}
    398
    399/**
    400 * fw_run_transaction() - send request and sleep until transaction is completed
    401 * @card:		card interface for this request
    402 * @tcode:		transaction code
    403 * @destination_id:	destination node ID, consisting of bus_ID and phy_ID
    404 * @generation:		bus generation in which request and response are valid
    405 * @speed:		transmission speed
    406 * @offset:		48bit wide offset into destination's address space
    407 * @payload:		data payload for the request subaction
    408 * @length:		length of the payload, in bytes
    409 *
    410 * Returns the RCODE.  See fw_send_request() for parameter documentation.
    411 * Unlike fw_send_request(), @data points to the payload of the request or/and
    412 * to the payload of the response.  DMA mapping restrictions apply to outbound
    413 * request payloads of >= 8 bytes but not to inbound response payloads.
    414 */
    415int fw_run_transaction(struct fw_card *card, int tcode, int destination_id,
    416		       int generation, int speed, unsigned long long offset,
    417		       void *payload, size_t length)
    418{
    419	struct transaction_callback_data d;
    420	struct fw_transaction t;
    421
    422	timer_setup_on_stack(&t.split_timeout_timer, NULL, 0);
    423	init_completion(&d.done);
    424	d.payload = payload;
    425	fw_send_request(card, &t, tcode, destination_id, generation, speed,
    426			offset, payload, length, transaction_callback, &d);
    427	wait_for_completion(&d.done);
    428	destroy_timer_on_stack(&t.split_timeout_timer);
    429
    430	return d.rcode;
    431}
    432EXPORT_SYMBOL(fw_run_transaction);
    433
    434static DEFINE_MUTEX(phy_config_mutex);
    435static DECLARE_COMPLETION(phy_config_done);
    436
    437static void transmit_phy_packet_callback(struct fw_packet *packet,
    438					 struct fw_card *card, int status)
    439{
    440	complete(&phy_config_done);
    441}
    442
    443static struct fw_packet phy_config_packet = {
    444	.header_length	= 12,
    445	.header[0]	= TCODE_LINK_INTERNAL << 4,
    446	.payload_length	= 0,
    447	.speed		= SCODE_100,
    448	.callback	= transmit_phy_packet_callback,
    449};
    450
    451void fw_send_phy_config(struct fw_card *card,
    452			int node_id, int generation, int gap_count)
    453{
    454	long timeout = DIV_ROUND_UP(HZ, 10);
    455	u32 data = PHY_IDENTIFIER(PHY_PACKET_CONFIG);
    456
    457	if (node_id != FW_PHY_CONFIG_NO_NODE_ID)
    458		data |= PHY_CONFIG_ROOT_ID(node_id);
    459
    460	if (gap_count == FW_PHY_CONFIG_CURRENT_GAP_COUNT) {
    461		gap_count = card->driver->read_phy_reg(card, 1);
    462		if (gap_count < 0)
    463			return;
    464
    465		gap_count &= 63;
    466		if (gap_count == 63)
    467			return;
    468	}
    469	data |= PHY_CONFIG_GAP_COUNT(gap_count);
    470
    471	mutex_lock(&phy_config_mutex);
    472
    473	phy_config_packet.header[1] = data;
    474	phy_config_packet.header[2] = ~data;
    475	phy_config_packet.generation = generation;
    476	reinit_completion(&phy_config_done);
    477
    478	card->driver->send_request(card, &phy_config_packet);
    479	wait_for_completion_timeout(&phy_config_done, timeout);
    480
    481	mutex_unlock(&phy_config_mutex);
    482}
    483
    484static struct fw_address_handler *lookup_overlapping_address_handler(
    485	struct list_head *list, unsigned long long offset, size_t length)
    486{
    487	struct fw_address_handler *handler;
    488
    489	list_for_each_entry_rcu(handler, list, link) {
    490		if (handler->offset < offset + length &&
    491		    offset < handler->offset + handler->length)
    492			return handler;
    493	}
    494
    495	return NULL;
    496}
    497
    498static bool is_enclosing_handler(struct fw_address_handler *handler,
    499				 unsigned long long offset, size_t length)
    500{
    501	return handler->offset <= offset &&
    502		offset + length <= handler->offset + handler->length;
    503}
    504
    505static struct fw_address_handler *lookup_enclosing_address_handler(
    506	struct list_head *list, unsigned long long offset, size_t length)
    507{
    508	struct fw_address_handler *handler;
    509
    510	list_for_each_entry_rcu(handler, list, link) {
    511		if (is_enclosing_handler(handler, offset, length))
    512			return handler;
    513	}
    514
    515	return NULL;
    516}
    517
    518static DEFINE_SPINLOCK(address_handler_list_lock);
    519static LIST_HEAD(address_handler_list);
    520
    521const struct fw_address_region fw_high_memory_region =
    522	{ .start = FW_MAX_PHYSICAL_RANGE, .end = 0xffffe0000000ULL, };
    523EXPORT_SYMBOL(fw_high_memory_region);
    524
    525static const struct fw_address_region low_memory_region =
    526	{ .start = 0x000000000000ULL, .end = FW_MAX_PHYSICAL_RANGE, };
    527
    528#if 0
    529const struct fw_address_region fw_private_region =
    530	{ .start = 0xffffe0000000ULL, .end = 0xfffff0000000ULL,  };
    531const struct fw_address_region fw_csr_region =
    532	{ .start = CSR_REGISTER_BASE,
    533	  .end   = CSR_REGISTER_BASE | CSR_CONFIG_ROM_END,  };
    534const struct fw_address_region fw_unit_space_region =
    535	{ .start = 0xfffff0000900ULL, .end = 0x1000000000000ULL, };
    536#endif  /*  0  */
    537
    538static bool is_in_fcp_region(u64 offset, size_t length)
    539{
    540	return offset >= (CSR_REGISTER_BASE | CSR_FCP_COMMAND) &&
    541		offset + length <= (CSR_REGISTER_BASE | CSR_FCP_END);
    542}
    543
    544/**
    545 * fw_core_add_address_handler() - register for incoming requests
    546 * @handler:	callback
    547 * @region:	region in the IEEE 1212 node space address range
    548 *
    549 * region->start, ->end, and handler->length have to be quadlet-aligned.
    550 *
    551 * When a request is received that falls within the specified address range,
    552 * the specified callback is invoked.  The parameters passed to the callback
    553 * give the details of the particular request.
    554 *
    555 * To be called in process context.
    556 * Return value:  0 on success, non-zero otherwise.
    557 *
    558 * The start offset of the handler's address region is determined by
    559 * fw_core_add_address_handler() and is returned in handler->offset.
    560 *
    561 * Address allocations are exclusive, except for the FCP registers.
    562 */
    563int fw_core_add_address_handler(struct fw_address_handler *handler,
    564				const struct fw_address_region *region)
    565{
    566	struct fw_address_handler *other;
    567	int ret = -EBUSY;
    568
    569	if (region->start & 0xffff000000000003ULL ||
    570	    region->start >= region->end ||
    571	    region->end   > 0x0001000000000000ULL ||
    572	    handler->length & 3 ||
    573	    handler->length == 0)
    574		return -EINVAL;
    575
    576	spin_lock(&address_handler_list_lock);
    577
    578	handler->offset = region->start;
    579	while (handler->offset + handler->length <= region->end) {
    580		if (is_in_fcp_region(handler->offset, handler->length))
    581			other = NULL;
    582		else
    583			other = lookup_overlapping_address_handler
    584					(&address_handler_list,
    585					 handler->offset, handler->length);
    586		if (other != NULL) {
    587			handler->offset += other->length;
    588		} else {
    589			list_add_tail_rcu(&handler->link, &address_handler_list);
    590			ret = 0;
    591			break;
    592		}
    593	}
    594
    595	spin_unlock(&address_handler_list_lock);
    596
    597	return ret;
    598}
    599EXPORT_SYMBOL(fw_core_add_address_handler);
    600
    601/**
    602 * fw_core_remove_address_handler() - unregister an address handler
    603 * @handler: callback
    604 *
    605 * To be called in process context.
    606 *
    607 * When fw_core_remove_address_handler() returns, @handler->callback() is
    608 * guaranteed to not run on any CPU anymore.
    609 */
    610void fw_core_remove_address_handler(struct fw_address_handler *handler)
    611{
    612	spin_lock(&address_handler_list_lock);
    613	list_del_rcu(&handler->link);
    614	spin_unlock(&address_handler_list_lock);
    615	synchronize_rcu();
    616}
    617EXPORT_SYMBOL(fw_core_remove_address_handler);
    618
    619struct fw_request {
    620	struct fw_packet response;
    621	u32 request_header[4];
    622	int ack;
    623	u32 timestamp;
    624	u32 length;
    625	u32 data[];
    626};
    627
    628static void free_response_callback(struct fw_packet *packet,
    629				   struct fw_card *card, int status)
    630{
    631	struct fw_request *request;
    632
    633	request = container_of(packet, struct fw_request, response);
    634	kfree(request);
    635}
    636
    637int fw_get_response_length(struct fw_request *r)
    638{
    639	int tcode, ext_tcode, data_length;
    640
    641	tcode = HEADER_GET_TCODE(r->request_header[0]);
    642
    643	switch (tcode) {
    644	case TCODE_WRITE_QUADLET_REQUEST:
    645	case TCODE_WRITE_BLOCK_REQUEST:
    646		return 0;
    647
    648	case TCODE_READ_QUADLET_REQUEST:
    649		return 4;
    650
    651	case TCODE_READ_BLOCK_REQUEST:
    652		data_length = HEADER_GET_DATA_LENGTH(r->request_header[3]);
    653		return data_length;
    654
    655	case TCODE_LOCK_REQUEST:
    656		ext_tcode = HEADER_GET_EXTENDED_TCODE(r->request_header[3]);
    657		data_length = HEADER_GET_DATA_LENGTH(r->request_header[3]);
    658		switch (ext_tcode) {
    659		case EXTCODE_FETCH_ADD:
    660		case EXTCODE_LITTLE_ADD:
    661			return data_length;
    662		default:
    663			return data_length / 2;
    664		}
    665
    666	default:
    667		WARN(1, "wrong tcode %d\n", tcode);
    668		return 0;
    669	}
    670}
    671
    672void fw_fill_response(struct fw_packet *response, u32 *request_header,
    673		      int rcode, void *payload, size_t length)
    674{
    675	int tcode, tlabel, extended_tcode, source, destination;
    676
    677	tcode          = HEADER_GET_TCODE(request_header[0]);
    678	tlabel         = HEADER_GET_TLABEL(request_header[0]);
    679	source         = HEADER_GET_DESTINATION(request_header[0]);
    680	destination    = HEADER_GET_SOURCE(request_header[1]);
    681	extended_tcode = HEADER_GET_EXTENDED_TCODE(request_header[3]);
    682
    683	response->header[0] =
    684		HEADER_RETRY(RETRY_1) |
    685		HEADER_TLABEL(tlabel) |
    686		HEADER_DESTINATION(destination);
    687	response->header[1] =
    688		HEADER_SOURCE(source) |
    689		HEADER_RCODE(rcode);
    690	response->header[2] = 0;
    691
    692	switch (tcode) {
    693	case TCODE_WRITE_QUADLET_REQUEST:
    694	case TCODE_WRITE_BLOCK_REQUEST:
    695		response->header[0] |= HEADER_TCODE(TCODE_WRITE_RESPONSE);
    696		response->header_length = 12;
    697		response->payload_length = 0;
    698		break;
    699
    700	case TCODE_READ_QUADLET_REQUEST:
    701		response->header[0] |=
    702			HEADER_TCODE(TCODE_READ_QUADLET_RESPONSE);
    703		if (payload != NULL)
    704			response->header[3] = *(u32 *)payload;
    705		else
    706			response->header[3] = 0;
    707		response->header_length = 16;
    708		response->payload_length = 0;
    709		break;
    710
    711	case TCODE_READ_BLOCK_REQUEST:
    712	case TCODE_LOCK_REQUEST:
    713		response->header[0] |= HEADER_TCODE(tcode + 2);
    714		response->header[3] =
    715			HEADER_DATA_LENGTH(length) |
    716			HEADER_EXTENDED_TCODE(extended_tcode);
    717		response->header_length = 16;
    718		response->payload = payload;
    719		response->payload_length = length;
    720		break;
    721
    722	default:
    723		WARN(1, "wrong tcode %d\n", tcode);
    724	}
    725
    726	response->payload_mapped = false;
    727}
    728EXPORT_SYMBOL(fw_fill_response);
    729
    730static u32 compute_split_timeout_timestamp(struct fw_card *card,
    731					   u32 request_timestamp)
    732{
    733	unsigned int cycles;
    734	u32 timestamp;
    735
    736	cycles = card->split_timeout_cycles;
    737	cycles += request_timestamp & 0x1fff;
    738
    739	timestamp = request_timestamp & ~0x1fff;
    740	timestamp += (cycles / 8000) << 13;
    741	timestamp |= cycles % 8000;
    742
    743	return timestamp;
    744}
    745
    746static struct fw_request *allocate_request(struct fw_card *card,
    747					   struct fw_packet *p)
    748{
    749	struct fw_request *request;
    750	u32 *data, length;
    751	int request_tcode;
    752
    753	request_tcode = HEADER_GET_TCODE(p->header[0]);
    754	switch (request_tcode) {
    755	case TCODE_WRITE_QUADLET_REQUEST:
    756		data = &p->header[3];
    757		length = 4;
    758		break;
    759
    760	case TCODE_WRITE_BLOCK_REQUEST:
    761	case TCODE_LOCK_REQUEST:
    762		data = p->payload;
    763		length = HEADER_GET_DATA_LENGTH(p->header[3]);
    764		break;
    765
    766	case TCODE_READ_QUADLET_REQUEST:
    767		data = NULL;
    768		length = 4;
    769		break;
    770
    771	case TCODE_READ_BLOCK_REQUEST:
    772		data = NULL;
    773		length = HEADER_GET_DATA_LENGTH(p->header[3]);
    774		break;
    775
    776	default:
    777		fw_notice(card, "ERROR - corrupt request received - %08x %08x %08x\n",
    778			 p->header[0], p->header[1], p->header[2]);
    779		return NULL;
    780	}
    781
    782	request = kmalloc(sizeof(*request) + length, GFP_ATOMIC);
    783	if (request == NULL)
    784		return NULL;
    785
    786	request->response.speed = p->speed;
    787	request->response.timestamp =
    788			compute_split_timeout_timestamp(card, p->timestamp);
    789	request->response.generation = p->generation;
    790	request->response.ack = 0;
    791	request->response.callback = free_response_callback;
    792	request->ack = p->ack;
    793	request->timestamp = p->timestamp;
    794	request->length = length;
    795	if (data)
    796		memcpy(request->data, data, length);
    797
    798	memcpy(request->request_header, p->header, sizeof(p->header));
    799
    800	return request;
    801}
    802
    803void fw_send_response(struct fw_card *card,
    804		      struct fw_request *request, int rcode)
    805{
    806	if (WARN_ONCE(!request, "invalid for FCP address handlers"))
    807		return;
    808
    809	/* unified transaction or broadcast transaction: don't respond */
    810	if (request->ack != ACK_PENDING ||
    811	    HEADER_DESTINATION_IS_BROADCAST(request->request_header[0])) {
    812		kfree(request);
    813		return;
    814	}
    815
    816	if (rcode == RCODE_COMPLETE)
    817		fw_fill_response(&request->response, request->request_header,
    818				 rcode, request->data,
    819				 fw_get_response_length(request));
    820	else
    821		fw_fill_response(&request->response, request->request_header,
    822				 rcode, NULL, 0);
    823
    824	card->driver->send_response(card, &request->response);
    825}
    826EXPORT_SYMBOL(fw_send_response);
    827
    828/**
    829 * fw_get_request_speed() - returns speed at which the @request was received
    830 * @request: firewire request data
    831 */
    832int fw_get_request_speed(struct fw_request *request)
    833{
    834	return request->response.speed;
    835}
    836EXPORT_SYMBOL(fw_get_request_speed);
    837
    838/**
    839 * fw_request_get_timestamp: Get timestamp of the request.
    840 * @request: The opaque pointer to request structure.
    841 *
    842 * Get timestamp when 1394 OHCI controller receives the asynchronous request subaction. The
    843 * timestamp consists of the low order 3 bits of second field and the full 13 bits of count
    844 * field of isochronous cycle time register.
    845 *
    846 * Returns: timestamp of the request.
    847 */
    848u32 fw_request_get_timestamp(const struct fw_request *request)
    849{
    850	return request->timestamp;
    851}
    852EXPORT_SYMBOL_GPL(fw_request_get_timestamp);
    853
    854static void handle_exclusive_region_request(struct fw_card *card,
    855					    struct fw_packet *p,
    856					    struct fw_request *request,
    857					    unsigned long long offset)
    858{
    859	struct fw_address_handler *handler;
    860	int tcode, destination, source;
    861
    862	destination = HEADER_GET_DESTINATION(p->header[0]);
    863	source      = HEADER_GET_SOURCE(p->header[1]);
    864	tcode       = HEADER_GET_TCODE(p->header[0]);
    865	if (tcode == TCODE_LOCK_REQUEST)
    866		tcode = 0x10 + HEADER_GET_EXTENDED_TCODE(p->header[3]);
    867
    868	rcu_read_lock();
    869	handler = lookup_enclosing_address_handler(&address_handler_list,
    870						   offset, request->length);
    871	if (handler)
    872		handler->address_callback(card, request,
    873					  tcode, destination, source,
    874					  p->generation, offset,
    875					  request->data, request->length,
    876					  handler->callback_data);
    877	rcu_read_unlock();
    878
    879	if (!handler)
    880		fw_send_response(card, request, RCODE_ADDRESS_ERROR);
    881}
    882
    883static void handle_fcp_region_request(struct fw_card *card,
    884				      struct fw_packet *p,
    885				      struct fw_request *request,
    886				      unsigned long long offset)
    887{
    888	struct fw_address_handler *handler;
    889	int tcode, destination, source;
    890
    891	if ((offset != (CSR_REGISTER_BASE | CSR_FCP_COMMAND) &&
    892	     offset != (CSR_REGISTER_BASE | CSR_FCP_RESPONSE)) ||
    893	    request->length > 0x200) {
    894		fw_send_response(card, request, RCODE_ADDRESS_ERROR);
    895
    896		return;
    897	}
    898
    899	tcode       = HEADER_GET_TCODE(p->header[0]);
    900	destination = HEADER_GET_DESTINATION(p->header[0]);
    901	source      = HEADER_GET_SOURCE(p->header[1]);
    902
    903	if (tcode != TCODE_WRITE_QUADLET_REQUEST &&
    904	    tcode != TCODE_WRITE_BLOCK_REQUEST) {
    905		fw_send_response(card, request, RCODE_TYPE_ERROR);
    906
    907		return;
    908	}
    909
    910	rcu_read_lock();
    911	list_for_each_entry_rcu(handler, &address_handler_list, link) {
    912		if (is_enclosing_handler(handler, offset, request->length))
    913			handler->address_callback(card, NULL, tcode,
    914						  destination, source,
    915						  p->generation, offset,
    916						  request->data,
    917						  request->length,
    918						  handler->callback_data);
    919	}
    920	rcu_read_unlock();
    921
    922	fw_send_response(card, request, RCODE_COMPLETE);
    923}
    924
    925void fw_core_handle_request(struct fw_card *card, struct fw_packet *p)
    926{
    927	struct fw_request *request;
    928	unsigned long long offset;
    929
    930	if (p->ack != ACK_PENDING && p->ack != ACK_COMPLETE)
    931		return;
    932
    933	if (TCODE_IS_LINK_INTERNAL(HEADER_GET_TCODE(p->header[0]))) {
    934		fw_cdev_handle_phy_packet(card, p);
    935		return;
    936	}
    937
    938	request = allocate_request(card, p);
    939	if (request == NULL) {
    940		/* FIXME: send statically allocated busy packet. */
    941		return;
    942	}
    943
    944	offset = ((u64)HEADER_GET_OFFSET_HIGH(p->header[1]) << 32) |
    945		p->header[2];
    946
    947	if (!is_in_fcp_region(offset, request->length))
    948		handle_exclusive_region_request(card, p, request, offset);
    949	else
    950		handle_fcp_region_request(card, p, request, offset);
    951
    952}
    953EXPORT_SYMBOL(fw_core_handle_request);
    954
    955void fw_core_handle_response(struct fw_card *card, struct fw_packet *p)
    956{
    957	struct fw_transaction *t = NULL, *iter;
    958	unsigned long flags;
    959	u32 *data;
    960	size_t data_length;
    961	int tcode, tlabel, source, rcode;
    962
    963	tcode	= HEADER_GET_TCODE(p->header[0]);
    964	tlabel	= HEADER_GET_TLABEL(p->header[0]);
    965	source	= HEADER_GET_SOURCE(p->header[1]);
    966	rcode	= HEADER_GET_RCODE(p->header[1]);
    967
    968	spin_lock_irqsave(&card->lock, flags);
    969	list_for_each_entry(iter, &card->transaction_list, link) {
    970		if (iter->node_id == source && iter->tlabel == tlabel) {
    971			if (!try_cancel_split_timeout(iter)) {
    972				spin_unlock_irqrestore(&card->lock, flags);
    973				goto timed_out;
    974			}
    975			list_del_init(&iter->link);
    976			card->tlabel_mask &= ~(1ULL << iter->tlabel);
    977			t = iter;
    978			break;
    979		}
    980	}
    981	spin_unlock_irqrestore(&card->lock, flags);
    982
    983	if (!t) {
    984 timed_out:
    985		fw_notice(card, "unsolicited response (source %x, tlabel %x)\n",
    986			  source, tlabel);
    987		return;
    988	}
    989
    990	/*
    991	 * FIXME: sanity check packet, is length correct, does tcodes
    992	 * and addresses match.
    993	 */
    994
    995	switch (tcode) {
    996	case TCODE_READ_QUADLET_RESPONSE:
    997		data = (u32 *) &p->header[3];
    998		data_length = 4;
    999		break;
   1000
   1001	case TCODE_WRITE_RESPONSE:
   1002		data = NULL;
   1003		data_length = 0;
   1004		break;
   1005
   1006	case TCODE_READ_BLOCK_RESPONSE:
   1007	case TCODE_LOCK_RESPONSE:
   1008		data = p->payload;
   1009		data_length = HEADER_GET_DATA_LENGTH(p->header[3]);
   1010		break;
   1011
   1012	default:
   1013		/* Should never happen, this is just to shut up gcc. */
   1014		data = NULL;
   1015		data_length = 0;
   1016		break;
   1017	}
   1018
   1019	/*
   1020	 * The response handler may be executed while the request handler
   1021	 * is still pending.  Cancel the request handler.
   1022	 */
   1023	card->driver->cancel_packet(card, &t->packet);
   1024
   1025	t->callback(card, rcode, data, data_length, t->callback_data);
   1026}
   1027EXPORT_SYMBOL(fw_core_handle_response);
   1028
   1029/**
   1030 * fw_rcode_string - convert a firewire result code to an error description
   1031 * @rcode: the result code
   1032 */
   1033const char *fw_rcode_string(int rcode)
   1034{
   1035	static const char *const names[] = {
   1036		[RCODE_COMPLETE]       = "no error",
   1037		[RCODE_CONFLICT_ERROR] = "conflict error",
   1038		[RCODE_DATA_ERROR]     = "data error",
   1039		[RCODE_TYPE_ERROR]     = "type error",
   1040		[RCODE_ADDRESS_ERROR]  = "address error",
   1041		[RCODE_SEND_ERROR]     = "send error",
   1042		[RCODE_CANCELLED]      = "timeout",
   1043		[RCODE_BUSY]           = "busy",
   1044		[RCODE_GENERATION]     = "bus reset",
   1045		[RCODE_NO_ACK]         = "no ack",
   1046	};
   1047
   1048	if ((unsigned int)rcode < ARRAY_SIZE(names) && names[rcode])
   1049		return names[rcode];
   1050	else
   1051		return "unknown";
   1052}
   1053EXPORT_SYMBOL(fw_rcode_string);
   1054
   1055static const struct fw_address_region topology_map_region =
   1056	{ .start = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP,
   1057	  .end   = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP_END, };
   1058
   1059static void handle_topology_map(struct fw_card *card, struct fw_request *request,
   1060		int tcode, int destination, int source, int generation,
   1061		unsigned long long offset, void *payload, size_t length,
   1062		void *callback_data)
   1063{
   1064	int start;
   1065
   1066	if (!TCODE_IS_READ_REQUEST(tcode)) {
   1067		fw_send_response(card, request, RCODE_TYPE_ERROR);
   1068		return;
   1069	}
   1070
   1071	if ((offset & 3) > 0 || (length & 3) > 0) {
   1072		fw_send_response(card, request, RCODE_ADDRESS_ERROR);
   1073		return;
   1074	}
   1075
   1076	start = (offset - topology_map_region.start) / 4;
   1077	memcpy(payload, &card->topology_map[start], length);
   1078
   1079	fw_send_response(card, request, RCODE_COMPLETE);
   1080}
   1081
   1082static struct fw_address_handler topology_map = {
   1083	.length			= 0x400,
   1084	.address_callback	= handle_topology_map,
   1085};
   1086
   1087static const struct fw_address_region registers_region =
   1088	{ .start = CSR_REGISTER_BASE,
   1089	  .end   = CSR_REGISTER_BASE | CSR_CONFIG_ROM, };
   1090
   1091static void update_split_timeout(struct fw_card *card)
   1092{
   1093	unsigned int cycles;
   1094
   1095	cycles = card->split_timeout_hi * 8000 + (card->split_timeout_lo >> 19);
   1096
   1097	/* minimum per IEEE 1394, maximum which doesn't overflow OHCI */
   1098	cycles = clamp(cycles, 800u, 3u * 8000u);
   1099
   1100	card->split_timeout_cycles = cycles;
   1101	card->split_timeout_jiffies = DIV_ROUND_UP(cycles * HZ, 8000);
   1102}
   1103
   1104static void handle_registers(struct fw_card *card, struct fw_request *request,
   1105		int tcode, int destination, int source, int generation,
   1106		unsigned long long offset, void *payload, size_t length,
   1107		void *callback_data)
   1108{
   1109	int reg = offset & ~CSR_REGISTER_BASE;
   1110	__be32 *data = payload;
   1111	int rcode = RCODE_COMPLETE;
   1112	unsigned long flags;
   1113
   1114	switch (reg) {
   1115	case CSR_PRIORITY_BUDGET:
   1116		if (!card->priority_budget_implemented) {
   1117			rcode = RCODE_ADDRESS_ERROR;
   1118			break;
   1119		}
   1120		fallthrough;
   1121
   1122	case CSR_NODE_IDS:
   1123		/*
   1124		 * per IEEE 1394-2008 8.3.22.3, not IEEE 1394.1-2004 3.2.8
   1125		 * and 9.6, but interoperable with IEEE 1394.1-2004 bridges
   1126		 */
   1127		fallthrough;
   1128
   1129	case CSR_STATE_CLEAR:
   1130	case CSR_STATE_SET:
   1131	case CSR_CYCLE_TIME:
   1132	case CSR_BUS_TIME:
   1133	case CSR_BUSY_TIMEOUT:
   1134		if (tcode == TCODE_READ_QUADLET_REQUEST)
   1135			*data = cpu_to_be32(card->driver->read_csr(card, reg));
   1136		else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
   1137			card->driver->write_csr(card, reg, be32_to_cpu(*data));
   1138		else
   1139			rcode = RCODE_TYPE_ERROR;
   1140		break;
   1141
   1142	case CSR_RESET_START:
   1143		if (tcode == TCODE_WRITE_QUADLET_REQUEST)
   1144			card->driver->write_csr(card, CSR_STATE_CLEAR,
   1145						CSR_STATE_BIT_ABDICATE);
   1146		else
   1147			rcode = RCODE_TYPE_ERROR;
   1148		break;
   1149
   1150	case CSR_SPLIT_TIMEOUT_HI:
   1151		if (tcode == TCODE_READ_QUADLET_REQUEST) {
   1152			*data = cpu_to_be32(card->split_timeout_hi);
   1153		} else if (tcode == TCODE_WRITE_QUADLET_REQUEST) {
   1154			spin_lock_irqsave(&card->lock, flags);
   1155			card->split_timeout_hi = be32_to_cpu(*data) & 7;
   1156			update_split_timeout(card);
   1157			spin_unlock_irqrestore(&card->lock, flags);
   1158		} else {
   1159			rcode = RCODE_TYPE_ERROR;
   1160		}
   1161		break;
   1162
   1163	case CSR_SPLIT_TIMEOUT_LO:
   1164		if (tcode == TCODE_READ_QUADLET_REQUEST) {
   1165			*data = cpu_to_be32(card->split_timeout_lo);
   1166		} else if (tcode == TCODE_WRITE_QUADLET_REQUEST) {
   1167			spin_lock_irqsave(&card->lock, flags);
   1168			card->split_timeout_lo =
   1169					be32_to_cpu(*data) & 0xfff80000;
   1170			update_split_timeout(card);
   1171			spin_unlock_irqrestore(&card->lock, flags);
   1172		} else {
   1173			rcode = RCODE_TYPE_ERROR;
   1174		}
   1175		break;
   1176
   1177	case CSR_MAINT_UTILITY:
   1178		if (tcode == TCODE_READ_QUADLET_REQUEST)
   1179			*data = card->maint_utility_register;
   1180		else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
   1181			card->maint_utility_register = *data;
   1182		else
   1183			rcode = RCODE_TYPE_ERROR;
   1184		break;
   1185
   1186	case CSR_BROADCAST_CHANNEL:
   1187		if (tcode == TCODE_READ_QUADLET_REQUEST)
   1188			*data = cpu_to_be32(card->broadcast_channel);
   1189		else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
   1190			card->broadcast_channel =
   1191			    (be32_to_cpu(*data) & BROADCAST_CHANNEL_VALID) |
   1192			    BROADCAST_CHANNEL_INITIAL;
   1193		else
   1194			rcode = RCODE_TYPE_ERROR;
   1195		break;
   1196
   1197	case CSR_BUS_MANAGER_ID:
   1198	case CSR_BANDWIDTH_AVAILABLE:
   1199	case CSR_CHANNELS_AVAILABLE_HI:
   1200	case CSR_CHANNELS_AVAILABLE_LO:
   1201		/*
   1202		 * FIXME: these are handled by the OHCI hardware and
   1203		 * the stack never sees these request. If we add
   1204		 * support for a new type of controller that doesn't
   1205		 * handle this in hardware we need to deal with these
   1206		 * transactions.
   1207		 */
   1208		BUG();
   1209		break;
   1210
   1211	default:
   1212		rcode = RCODE_ADDRESS_ERROR;
   1213		break;
   1214	}
   1215
   1216	fw_send_response(card, request, rcode);
   1217}
   1218
   1219static struct fw_address_handler registers = {
   1220	.length			= 0x400,
   1221	.address_callback	= handle_registers,
   1222};
   1223
   1224static void handle_low_memory(struct fw_card *card, struct fw_request *request,
   1225		int tcode, int destination, int source, int generation,
   1226		unsigned long long offset, void *payload, size_t length,
   1227		void *callback_data)
   1228{
   1229	/*
   1230	 * This catches requests not handled by the physical DMA unit,
   1231	 * i.e., wrong transaction types or unauthorized source nodes.
   1232	 */
   1233	fw_send_response(card, request, RCODE_TYPE_ERROR);
   1234}
   1235
   1236static struct fw_address_handler low_memory = {
   1237	.length			= FW_MAX_PHYSICAL_RANGE,
   1238	.address_callback	= handle_low_memory,
   1239};
   1240
   1241MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
   1242MODULE_DESCRIPTION("Core IEEE1394 transaction logic");
   1243MODULE_LICENSE("GPL");
   1244
   1245static const u32 vendor_textual_descriptor[] = {
   1246	/* textual descriptor leaf () */
   1247	0x00060000,
   1248	0x00000000,
   1249	0x00000000,
   1250	0x4c696e75,		/* L i n u */
   1251	0x78204669,		/* x   F i */
   1252	0x72657769,		/* r e w i */
   1253	0x72650000,		/* r e     */
   1254};
   1255
   1256static const u32 model_textual_descriptor[] = {
   1257	/* model descriptor leaf () */
   1258	0x00030000,
   1259	0x00000000,
   1260	0x00000000,
   1261	0x4a756a75,		/* J u j u */
   1262};
   1263
   1264static struct fw_descriptor vendor_id_descriptor = {
   1265	.length = ARRAY_SIZE(vendor_textual_descriptor),
   1266	.immediate = 0x03001f11,
   1267	.key = 0x81000000,
   1268	.data = vendor_textual_descriptor,
   1269};
   1270
   1271static struct fw_descriptor model_id_descriptor = {
   1272	.length = ARRAY_SIZE(model_textual_descriptor),
   1273	.immediate = 0x17023901,
   1274	.key = 0x81000000,
   1275	.data = model_textual_descriptor,
   1276};
   1277
   1278static int __init fw_core_init(void)
   1279{
   1280	int ret;
   1281
   1282	fw_workqueue = alloc_workqueue("firewire", WQ_MEM_RECLAIM, 0);
   1283	if (!fw_workqueue)
   1284		return -ENOMEM;
   1285
   1286	ret = bus_register(&fw_bus_type);
   1287	if (ret < 0) {
   1288		destroy_workqueue(fw_workqueue);
   1289		return ret;
   1290	}
   1291
   1292	fw_cdev_major = register_chrdev(0, "firewire", &fw_device_ops);
   1293	if (fw_cdev_major < 0) {
   1294		bus_unregister(&fw_bus_type);
   1295		destroy_workqueue(fw_workqueue);
   1296		return fw_cdev_major;
   1297	}
   1298
   1299	fw_core_add_address_handler(&topology_map, &topology_map_region);
   1300	fw_core_add_address_handler(&registers, &registers_region);
   1301	fw_core_add_address_handler(&low_memory, &low_memory_region);
   1302	fw_core_add_descriptor(&vendor_id_descriptor);
   1303	fw_core_add_descriptor(&model_id_descriptor);
   1304
   1305	return 0;
   1306}
   1307
   1308static void __exit fw_core_cleanup(void)
   1309{
   1310	unregister_chrdev(fw_cdev_major, "firewire");
   1311	bus_unregister(&fw_bus_type);
   1312	destroy_workqueue(fw_workqueue);
   1313	idr_destroy(&fw_device_idr);
   1314}
   1315
   1316module_init(fw_core_init);
   1317module_exit(fw_core_cleanup);