cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

ohci.c (107486B)


      1// SPDX-License-Identifier: GPL-2.0-or-later
      2/*
      3 * Driver for OHCI 1394 controllers
      4 *
      5 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
      6 */
      7
      8#include <linux/bitops.h>
      9#include <linux/bug.h>
     10#include <linux/compiler.h>
     11#include <linux/delay.h>
     12#include <linux/device.h>
     13#include <linux/dma-mapping.h>
     14#include <linux/firewire.h>
     15#include <linux/firewire-constants.h>
     16#include <linux/init.h>
     17#include <linux/interrupt.h>
     18#include <linux/io.h>
     19#include <linux/kernel.h>
     20#include <linux/list.h>
     21#include <linux/mm.h>
     22#include <linux/module.h>
     23#include <linux/moduleparam.h>
     24#include <linux/mutex.h>
     25#include <linux/pci.h>
     26#include <linux/pci_ids.h>
     27#include <linux/slab.h>
     28#include <linux/spinlock.h>
     29#include <linux/string.h>
     30#include <linux/time.h>
     31#include <linux/vmalloc.h>
     32#include <linux/workqueue.h>
     33
     34#include <asm/byteorder.h>
     35#include <asm/page.h>
     36
     37#ifdef CONFIG_PPC_PMAC
     38#include <asm/pmac_feature.h>
     39#endif
     40
     41#include "core.h"
     42#include "ohci.h"
     43
     44#define ohci_info(ohci, f, args...)	dev_info(ohci->card.device, f, ##args)
     45#define ohci_notice(ohci, f, args...)	dev_notice(ohci->card.device, f, ##args)
     46#define ohci_err(ohci, f, args...)	dev_err(ohci->card.device, f, ##args)
     47
     48#define DESCRIPTOR_OUTPUT_MORE		0
     49#define DESCRIPTOR_OUTPUT_LAST		(1 << 12)
     50#define DESCRIPTOR_INPUT_MORE		(2 << 12)
     51#define DESCRIPTOR_INPUT_LAST		(3 << 12)
     52#define DESCRIPTOR_STATUS		(1 << 11)
     53#define DESCRIPTOR_KEY_IMMEDIATE	(2 << 8)
     54#define DESCRIPTOR_PING			(1 << 7)
     55#define DESCRIPTOR_YY			(1 << 6)
     56#define DESCRIPTOR_NO_IRQ		(0 << 4)
     57#define DESCRIPTOR_IRQ_ERROR		(1 << 4)
     58#define DESCRIPTOR_IRQ_ALWAYS		(3 << 4)
     59#define DESCRIPTOR_BRANCH_ALWAYS	(3 << 2)
     60#define DESCRIPTOR_WAIT			(3 << 0)
     61
     62#define DESCRIPTOR_CMD			(0xf << 12)
     63
     64struct descriptor {
     65	__le16 req_count;
     66	__le16 control;
     67	__le32 data_address;
     68	__le32 branch_address;
     69	__le16 res_count;
     70	__le16 transfer_status;
     71} __attribute__((aligned(16)));
     72
     73#define CONTROL_SET(regs)	(regs)
     74#define CONTROL_CLEAR(regs)	((regs) + 4)
     75#define COMMAND_PTR(regs)	((regs) + 12)
     76#define CONTEXT_MATCH(regs)	((regs) + 16)
     77
     78#define AR_BUFFER_SIZE	(32*1024)
     79#define AR_BUFFERS_MIN	DIV_ROUND_UP(AR_BUFFER_SIZE, PAGE_SIZE)
     80/* we need at least two pages for proper list management */
     81#define AR_BUFFERS	(AR_BUFFERS_MIN >= 2 ? AR_BUFFERS_MIN : 2)
     82
     83#define MAX_ASYNC_PAYLOAD	4096
     84#define MAX_AR_PACKET_SIZE	(16 + MAX_ASYNC_PAYLOAD + 4)
     85#define AR_WRAPAROUND_PAGES	DIV_ROUND_UP(MAX_AR_PACKET_SIZE, PAGE_SIZE)
     86
     87struct ar_context {
     88	struct fw_ohci *ohci;
     89	struct page *pages[AR_BUFFERS];
     90	void *buffer;
     91	struct descriptor *descriptors;
     92	dma_addr_t descriptors_bus;
     93	void *pointer;
     94	unsigned int last_buffer_index;
     95	u32 regs;
     96	struct tasklet_struct tasklet;
     97};
     98
     99struct context;
    100
    101typedef int (*descriptor_callback_t)(struct context *ctx,
    102				     struct descriptor *d,
    103				     struct descriptor *last);
    104
    105/*
    106 * A buffer that contains a block of DMA-able coherent memory used for
    107 * storing a portion of a DMA descriptor program.
    108 */
    109struct descriptor_buffer {
    110	struct list_head list;
    111	dma_addr_t buffer_bus;
    112	size_t buffer_size;
    113	size_t used;
    114	struct descriptor buffer[];
    115};
    116
    117struct context {
    118	struct fw_ohci *ohci;
    119	u32 regs;
    120	int total_allocation;
    121	u32 current_bus;
    122	bool running;
    123	bool flushing;
    124
    125	/*
    126	 * List of page-sized buffers for storing DMA descriptors.
    127	 * Head of list contains buffers in use and tail of list contains
    128	 * free buffers.
    129	 */
    130	struct list_head buffer_list;
    131
    132	/*
    133	 * Pointer to a buffer inside buffer_list that contains the tail
    134	 * end of the current DMA program.
    135	 */
    136	struct descriptor_buffer *buffer_tail;
    137
    138	/*
    139	 * The descriptor containing the branch address of the first
    140	 * descriptor that has not yet been filled by the device.
    141	 */
    142	struct descriptor *last;
    143
    144	/*
    145	 * The last descriptor block in the DMA program. It contains the branch
    146	 * address that must be updated upon appending a new descriptor.
    147	 */
    148	struct descriptor *prev;
    149	int prev_z;
    150
    151	descriptor_callback_t callback;
    152
    153	struct tasklet_struct tasklet;
    154};
    155
    156#define IT_HEADER_SY(v)          ((v) <<  0)
    157#define IT_HEADER_TCODE(v)       ((v) <<  4)
    158#define IT_HEADER_CHANNEL(v)     ((v) <<  8)
    159#define IT_HEADER_TAG(v)         ((v) << 14)
    160#define IT_HEADER_SPEED(v)       ((v) << 16)
    161#define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
    162
    163struct iso_context {
    164	struct fw_iso_context base;
    165	struct context context;
    166	void *header;
    167	size_t header_length;
    168	unsigned long flushing_completions;
    169	u32 mc_buffer_bus;
    170	u16 mc_completed;
    171	u16 last_timestamp;
    172	u8 sync;
    173	u8 tags;
    174};
    175
    176#define CONFIG_ROM_SIZE 1024
    177
    178struct fw_ohci {
    179	struct fw_card card;
    180
    181	__iomem char *registers;
    182	int node_id;
    183	int generation;
    184	int request_generation;	/* for timestamping incoming requests */
    185	unsigned quirks;
    186	unsigned int pri_req_max;
    187	u32 bus_time;
    188	bool bus_time_running;
    189	bool is_root;
    190	bool csr_state_setclear_abdicate;
    191	int n_ir;
    192	int n_it;
    193	/*
    194	 * Spinlock for accessing fw_ohci data.  Never call out of
    195	 * this driver with this lock held.
    196	 */
    197	spinlock_t lock;
    198
    199	struct mutex phy_reg_mutex;
    200
    201	void *misc_buffer;
    202	dma_addr_t misc_buffer_bus;
    203
    204	struct ar_context ar_request_ctx;
    205	struct ar_context ar_response_ctx;
    206	struct context at_request_ctx;
    207	struct context at_response_ctx;
    208
    209	u32 it_context_support;
    210	u32 it_context_mask;     /* unoccupied IT contexts */
    211	struct iso_context *it_context_list;
    212	u64 ir_context_channels; /* unoccupied channels */
    213	u32 ir_context_support;
    214	u32 ir_context_mask;     /* unoccupied IR contexts */
    215	struct iso_context *ir_context_list;
    216	u64 mc_channels; /* channels in use by the multichannel IR context */
    217	bool mc_allocated;
    218
    219	__be32    *config_rom;
    220	dma_addr_t config_rom_bus;
    221	__be32    *next_config_rom;
    222	dma_addr_t next_config_rom_bus;
    223	__be32     next_header;
    224
    225	__le32    *self_id;
    226	dma_addr_t self_id_bus;
    227	struct work_struct bus_reset_work;
    228
    229	u32 self_id_buffer[512];
    230};
    231
    232static struct workqueue_struct *selfid_workqueue;
    233
    234static inline struct fw_ohci *fw_ohci(struct fw_card *card)
    235{
    236	return container_of(card, struct fw_ohci, card);
    237}
    238
    239#define IT_CONTEXT_CYCLE_MATCH_ENABLE	0x80000000
    240#define IR_CONTEXT_BUFFER_FILL		0x80000000
    241#define IR_CONTEXT_ISOCH_HEADER		0x40000000
    242#define IR_CONTEXT_CYCLE_MATCH_ENABLE	0x20000000
    243#define IR_CONTEXT_MULTI_CHANNEL_MODE	0x10000000
    244#define IR_CONTEXT_DUAL_BUFFER_MODE	0x08000000
    245
    246#define CONTEXT_RUN	0x8000
    247#define CONTEXT_WAKE	0x1000
    248#define CONTEXT_DEAD	0x0800
    249#define CONTEXT_ACTIVE	0x0400
    250
    251#define OHCI1394_MAX_AT_REQ_RETRIES	0xf
    252#define OHCI1394_MAX_AT_RESP_RETRIES	0x2
    253#define OHCI1394_MAX_PHYS_RESP_RETRIES	0x8
    254
    255#define OHCI1394_REGISTER_SIZE		0x800
    256#define OHCI1394_PCI_HCI_Control	0x40
    257#define SELF_ID_BUF_SIZE		0x800
    258#define OHCI_TCODE_PHY_PACKET		0x0e
    259#define OHCI_VERSION_1_1		0x010010
    260
    261static char ohci_driver_name[] = KBUILD_MODNAME;
    262
    263#define PCI_VENDOR_ID_PINNACLE_SYSTEMS	0x11bd
    264#define PCI_DEVICE_ID_AGERE_FW643	0x5901
    265#define PCI_DEVICE_ID_CREATIVE_SB1394	0x4001
    266#define PCI_DEVICE_ID_JMICRON_JMB38X_FW	0x2380
    267#define PCI_DEVICE_ID_TI_TSB12LV22	0x8009
    268#define PCI_DEVICE_ID_TI_TSB12LV26	0x8020
    269#define PCI_DEVICE_ID_TI_TSB82AA2	0x8025
    270#define PCI_DEVICE_ID_VIA_VT630X	0x3044
    271#define PCI_REV_ID_VIA_VT6306		0x46
    272#define PCI_DEVICE_ID_VIA_VT6315	0x3403
    273
    274#define QUIRK_CYCLE_TIMER		0x1
    275#define QUIRK_RESET_PACKET		0x2
    276#define QUIRK_BE_HEADERS		0x4
    277#define QUIRK_NO_1394A			0x8
    278#define QUIRK_NO_MSI			0x10
    279#define QUIRK_TI_SLLZ059		0x20
    280#define QUIRK_IR_WAKE			0x40
    281
    282/* In case of multiple matches in ohci_quirks[], only the first one is used. */
    283static const struct {
    284	unsigned short vendor, device, revision, flags;
    285} ohci_quirks[] = {
    286	{PCI_VENDOR_ID_AL, PCI_ANY_ID, PCI_ANY_ID,
    287		QUIRK_CYCLE_TIMER},
    288
    289	{PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_FW, PCI_ANY_ID,
    290		QUIRK_BE_HEADERS},
    291
    292	{PCI_VENDOR_ID_ATT, PCI_DEVICE_ID_AGERE_FW643, 6,
    293		QUIRK_NO_MSI},
    294
    295	{PCI_VENDOR_ID_CREATIVE, PCI_DEVICE_ID_CREATIVE_SB1394, PCI_ANY_ID,
    296		QUIRK_RESET_PACKET},
    297
    298	{PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB38X_FW, PCI_ANY_ID,
    299		QUIRK_NO_MSI},
    300
    301	{PCI_VENDOR_ID_NEC, PCI_ANY_ID, PCI_ANY_ID,
    302		QUIRK_CYCLE_TIMER},
    303
    304	{PCI_VENDOR_ID_O2, PCI_ANY_ID, PCI_ANY_ID,
    305		QUIRK_NO_MSI},
    306
    307	{PCI_VENDOR_ID_RICOH, PCI_ANY_ID, PCI_ANY_ID,
    308		QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
    309
    310	{PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV22, PCI_ANY_ID,
    311		QUIRK_CYCLE_TIMER | QUIRK_RESET_PACKET | QUIRK_NO_1394A},
    312
    313	{PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV26, PCI_ANY_ID,
    314		QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059},
    315
    316	{PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB82AA2, PCI_ANY_ID,
    317		QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059},
    318
    319	{PCI_VENDOR_ID_TI, PCI_ANY_ID, PCI_ANY_ID,
    320		QUIRK_RESET_PACKET},
    321
    322	{PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT630X, PCI_REV_ID_VIA_VT6306,
    323		QUIRK_CYCLE_TIMER | QUIRK_IR_WAKE},
    324
    325	{PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT6315, 0,
    326		QUIRK_CYCLE_TIMER /* FIXME: necessary? */ | QUIRK_NO_MSI},
    327
    328	{PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT6315, PCI_ANY_ID,
    329		QUIRK_NO_MSI},
    330
    331	{PCI_VENDOR_ID_VIA, PCI_ANY_ID, PCI_ANY_ID,
    332		QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
    333};
    334
    335/* This overrides anything that was found in ohci_quirks[]. */
    336static int param_quirks;
    337module_param_named(quirks, param_quirks, int, 0644);
    338MODULE_PARM_DESC(quirks, "Chip quirks (default = 0"
    339	", nonatomic cycle timer = "	__stringify(QUIRK_CYCLE_TIMER)
    340	", reset packet generation = "	__stringify(QUIRK_RESET_PACKET)
    341	", AR/selfID endianness = "	__stringify(QUIRK_BE_HEADERS)
    342	", no 1394a enhancements = "	__stringify(QUIRK_NO_1394A)
    343	", disable MSI = "		__stringify(QUIRK_NO_MSI)
    344	", TI SLLZ059 erratum = "	__stringify(QUIRK_TI_SLLZ059)
    345	", IR wake unreliable = "	__stringify(QUIRK_IR_WAKE)
    346	")");
    347
    348#define OHCI_PARAM_DEBUG_AT_AR		1
    349#define OHCI_PARAM_DEBUG_SELFIDS	2
    350#define OHCI_PARAM_DEBUG_IRQS		4
    351#define OHCI_PARAM_DEBUG_BUSRESETS	8 /* only effective before chip init */
    352
    353static int param_debug;
    354module_param_named(debug, param_debug, int, 0644);
    355MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
    356	", AT/AR events = "	__stringify(OHCI_PARAM_DEBUG_AT_AR)
    357	", self-IDs = "		__stringify(OHCI_PARAM_DEBUG_SELFIDS)
    358	", IRQs = "		__stringify(OHCI_PARAM_DEBUG_IRQS)
    359	", busReset events = "	__stringify(OHCI_PARAM_DEBUG_BUSRESETS)
    360	", or a combination, or all = -1)");
    361
    362static bool param_remote_dma;
    363module_param_named(remote_dma, param_remote_dma, bool, 0444);
    364MODULE_PARM_DESC(remote_dma, "Enable unfiltered remote DMA (default = N)");
    365
    366static void log_irqs(struct fw_ohci *ohci, u32 evt)
    367{
    368	if (likely(!(param_debug &
    369			(OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
    370		return;
    371
    372	if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
    373	    !(evt & OHCI1394_busReset))
    374		return;
    375
    376	ohci_notice(ohci, "IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
    377	    evt & OHCI1394_selfIDComplete	? " selfID"		: "",
    378	    evt & OHCI1394_RQPkt		? " AR_req"		: "",
    379	    evt & OHCI1394_RSPkt		? " AR_resp"		: "",
    380	    evt & OHCI1394_reqTxComplete	? " AT_req"		: "",
    381	    evt & OHCI1394_respTxComplete	? " AT_resp"		: "",
    382	    evt & OHCI1394_isochRx		? " IR"			: "",
    383	    evt & OHCI1394_isochTx		? " IT"			: "",
    384	    evt & OHCI1394_postedWriteErr	? " postedWriteErr"	: "",
    385	    evt & OHCI1394_cycleTooLong		? " cycleTooLong"	: "",
    386	    evt & OHCI1394_cycle64Seconds	? " cycle64Seconds"	: "",
    387	    evt & OHCI1394_cycleInconsistent	? " cycleInconsistent"	: "",
    388	    evt & OHCI1394_regAccessFail	? " regAccessFail"	: "",
    389	    evt & OHCI1394_unrecoverableError	? " unrecoverableError"	: "",
    390	    evt & OHCI1394_busReset		? " busReset"		: "",
    391	    evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
    392		    OHCI1394_RSPkt | OHCI1394_reqTxComplete |
    393		    OHCI1394_respTxComplete | OHCI1394_isochRx |
    394		    OHCI1394_isochTx | OHCI1394_postedWriteErr |
    395		    OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds |
    396		    OHCI1394_cycleInconsistent |
    397		    OHCI1394_regAccessFail | OHCI1394_busReset)
    398						? " ?"			: "");
    399}
    400
    401static const char *speed[] = {
    402	[0] = "S100", [1] = "S200", [2] = "S400",    [3] = "beta",
    403};
    404static const char *power[] = {
    405	[0] = "+0W",  [1] = "+15W", [2] = "+30W",    [3] = "+45W",
    406	[4] = "-3W",  [5] = " ?W",  [6] = "-3..-6W", [7] = "-3..-10W",
    407};
    408static const char port[] = { '.', '-', 'p', 'c', };
    409
    410static char _p(u32 *s, int shift)
    411{
    412	return port[*s >> shift & 3];
    413}
    414
    415static void log_selfids(struct fw_ohci *ohci, int generation, int self_id_count)
    416{
    417	u32 *s;
    418
    419	if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
    420		return;
    421
    422	ohci_notice(ohci, "%d selfIDs, generation %d, local node ID %04x\n",
    423		    self_id_count, generation, ohci->node_id);
    424
    425	for (s = ohci->self_id_buffer; self_id_count--; ++s)
    426		if ((*s & 1 << 23) == 0)
    427			ohci_notice(ohci,
    428			    "selfID 0: %08x, phy %d [%c%c%c] %s gc=%d %s %s%s%s\n",
    429			    *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
    430			    speed[*s >> 14 & 3], *s >> 16 & 63,
    431			    power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
    432			    *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
    433		else
    434			ohci_notice(ohci,
    435			    "selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
    436			    *s, *s >> 24 & 63,
    437			    _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
    438			    _p(s,  8), _p(s,  6), _p(s,  4), _p(s,  2));
    439}
    440
    441static const char *evts[] = {
    442	[0x00] = "evt_no_status",	[0x01] = "-reserved-",
    443	[0x02] = "evt_long_packet",	[0x03] = "evt_missing_ack",
    444	[0x04] = "evt_underrun",	[0x05] = "evt_overrun",
    445	[0x06] = "evt_descriptor_read",	[0x07] = "evt_data_read",
    446	[0x08] = "evt_data_write",	[0x09] = "evt_bus_reset",
    447	[0x0a] = "evt_timeout",		[0x0b] = "evt_tcode_err",
    448	[0x0c] = "-reserved-",		[0x0d] = "-reserved-",
    449	[0x0e] = "evt_unknown",		[0x0f] = "evt_flushed",
    450	[0x10] = "-reserved-",		[0x11] = "ack_complete",
    451	[0x12] = "ack_pending ",	[0x13] = "-reserved-",
    452	[0x14] = "ack_busy_X",		[0x15] = "ack_busy_A",
    453	[0x16] = "ack_busy_B",		[0x17] = "-reserved-",
    454	[0x18] = "-reserved-",		[0x19] = "-reserved-",
    455	[0x1a] = "-reserved-",		[0x1b] = "ack_tardy",
    456	[0x1c] = "-reserved-",		[0x1d] = "ack_data_error",
    457	[0x1e] = "ack_type_error",	[0x1f] = "-reserved-",
    458	[0x20] = "pending/cancelled",
    459};
    460static const char *tcodes[] = {
    461	[0x0] = "QW req",		[0x1] = "BW req",
    462	[0x2] = "W resp",		[0x3] = "-reserved-",
    463	[0x4] = "QR req",		[0x5] = "BR req",
    464	[0x6] = "QR resp",		[0x7] = "BR resp",
    465	[0x8] = "cycle start",		[0x9] = "Lk req",
    466	[0xa] = "async stream packet",	[0xb] = "Lk resp",
    467	[0xc] = "-reserved-",		[0xd] = "-reserved-",
    468	[0xe] = "link internal",	[0xf] = "-reserved-",
    469};
    470
    471static void log_ar_at_event(struct fw_ohci *ohci,
    472			    char dir, int speed, u32 *header, int evt)
    473{
    474	int tcode = header[0] >> 4 & 0xf;
    475	char specific[12];
    476
    477	if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
    478		return;
    479
    480	if (unlikely(evt >= ARRAY_SIZE(evts)))
    481			evt = 0x1f;
    482
    483	if (evt == OHCI1394_evt_bus_reset) {
    484		ohci_notice(ohci, "A%c evt_bus_reset, generation %d\n",
    485			    dir, (header[2] >> 16) & 0xff);
    486		return;
    487	}
    488
    489	switch (tcode) {
    490	case 0x0: case 0x6: case 0x8:
    491		snprintf(specific, sizeof(specific), " = %08x",
    492			 be32_to_cpu((__force __be32)header[3]));
    493		break;
    494	case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
    495		snprintf(specific, sizeof(specific), " %x,%x",
    496			 header[3] >> 16, header[3] & 0xffff);
    497		break;
    498	default:
    499		specific[0] = '\0';
    500	}
    501
    502	switch (tcode) {
    503	case 0xa:
    504		ohci_notice(ohci, "A%c %s, %s\n",
    505			    dir, evts[evt], tcodes[tcode]);
    506		break;
    507	case 0xe:
    508		ohci_notice(ohci, "A%c %s, PHY %08x %08x\n",
    509			    dir, evts[evt], header[1], header[2]);
    510		break;
    511	case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
    512		ohci_notice(ohci,
    513			    "A%c spd %x tl %02x, %04x -> %04x, %s, %s, %04x%08x%s\n",
    514			    dir, speed, header[0] >> 10 & 0x3f,
    515			    header[1] >> 16, header[0] >> 16, evts[evt],
    516			    tcodes[tcode], header[1] & 0xffff, header[2], specific);
    517		break;
    518	default:
    519		ohci_notice(ohci,
    520			    "A%c spd %x tl %02x, %04x -> %04x, %s, %s%s\n",
    521			    dir, speed, header[0] >> 10 & 0x3f,
    522			    header[1] >> 16, header[0] >> 16, evts[evt],
    523			    tcodes[tcode], specific);
    524	}
    525}
    526
    527static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
    528{
    529	writel(data, ohci->registers + offset);
    530}
    531
    532static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
    533{
    534	return readl(ohci->registers + offset);
    535}
    536
    537static inline void flush_writes(const struct fw_ohci *ohci)
    538{
    539	/* Do a dummy read to flush writes. */
    540	reg_read(ohci, OHCI1394_Version);
    541}
    542
    543/*
    544 * Beware!  read_phy_reg(), write_phy_reg(), update_phy_reg(), and
    545 * read_paged_phy_reg() require the caller to hold ohci->phy_reg_mutex.
    546 * In other words, only use ohci_read_phy_reg() and ohci_update_phy_reg()
    547 * directly.  Exceptions are intrinsically serialized contexts like pci_probe.
    548 */
    549static int read_phy_reg(struct fw_ohci *ohci, int addr)
    550{
    551	u32 val;
    552	int i;
    553
    554	reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
    555	for (i = 0; i < 3 + 100; i++) {
    556		val = reg_read(ohci, OHCI1394_PhyControl);
    557		if (!~val)
    558			return -ENODEV; /* Card was ejected. */
    559
    560		if (val & OHCI1394_PhyControl_ReadDone)
    561			return OHCI1394_PhyControl_ReadData(val);
    562
    563		/*
    564		 * Try a few times without waiting.  Sleeping is necessary
    565		 * only when the link/PHY interface is busy.
    566		 */
    567		if (i >= 3)
    568			msleep(1);
    569	}
    570	ohci_err(ohci, "failed to read phy reg %d\n", addr);
    571	dump_stack();
    572
    573	return -EBUSY;
    574}
    575
    576static int write_phy_reg(const struct fw_ohci *ohci, int addr, u32 val)
    577{
    578	int i;
    579
    580	reg_write(ohci, OHCI1394_PhyControl,
    581		  OHCI1394_PhyControl_Write(addr, val));
    582	for (i = 0; i < 3 + 100; i++) {
    583		val = reg_read(ohci, OHCI1394_PhyControl);
    584		if (!~val)
    585			return -ENODEV; /* Card was ejected. */
    586
    587		if (!(val & OHCI1394_PhyControl_WritePending))
    588			return 0;
    589
    590		if (i >= 3)
    591			msleep(1);
    592	}
    593	ohci_err(ohci, "failed to write phy reg %d, val %u\n", addr, val);
    594	dump_stack();
    595
    596	return -EBUSY;
    597}
    598
    599static int update_phy_reg(struct fw_ohci *ohci, int addr,
    600			  int clear_bits, int set_bits)
    601{
    602	int ret = read_phy_reg(ohci, addr);
    603	if (ret < 0)
    604		return ret;
    605
    606	/*
    607	 * The interrupt status bits are cleared by writing a one bit.
    608	 * Avoid clearing them unless explicitly requested in set_bits.
    609	 */
    610	if (addr == 5)
    611		clear_bits |= PHY_INT_STATUS_BITS;
    612
    613	return write_phy_reg(ohci, addr, (ret & ~clear_bits) | set_bits);
    614}
    615
    616static int read_paged_phy_reg(struct fw_ohci *ohci, int page, int addr)
    617{
    618	int ret;
    619
    620	ret = update_phy_reg(ohci, 7, PHY_PAGE_SELECT, page << 5);
    621	if (ret < 0)
    622		return ret;
    623
    624	return read_phy_reg(ohci, addr);
    625}
    626
    627static int ohci_read_phy_reg(struct fw_card *card, int addr)
    628{
    629	struct fw_ohci *ohci = fw_ohci(card);
    630	int ret;
    631
    632	mutex_lock(&ohci->phy_reg_mutex);
    633	ret = read_phy_reg(ohci, addr);
    634	mutex_unlock(&ohci->phy_reg_mutex);
    635
    636	return ret;
    637}
    638
    639static int ohci_update_phy_reg(struct fw_card *card, int addr,
    640			       int clear_bits, int set_bits)
    641{
    642	struct fw_ohci *ohci = fw_ohci(card);
    643	int ret;
    644
    645	mutex_lock(&ohci->phy_reg_mutex);
    646	ret = update_phy_reg(ohci, addr, clear_bits, set_bits);
    647	mutex_unlock(&ohci->phy_reg_mutex);
    648
    649	return ret;
    650}
    651
    652static inline dma_addr_t ar_buffer_bus(struct ar_context *ctx, unsigned int i)
    653{
    654	return page_private(ctx->pages[i]);
    655}
    656
    657static void ar_context_link_page(struct ar_context *ctx, unsigned int index)
    658{
    659	struct descriptor *d;
    660
    661	d = &ctx->descriptors[index];
    662	d->branch_address  &= cpu_to_le32(~0xf);
    663	d->res_count       =  cpu_to_le16(PAGE_SIZE);
    664	d->transfer_status =  0;
    665
    666	wmb(); /* finish init of new descriptors before branch_address update */
    667	d = &ctx->descriptors[ctx->last_buffer_index];
    668	d->branch_address  |= cpu_to_le32(1);
    669
    670	ctx->last_buffer_index = index;
    671
    672	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
    673}
    674
    675static void ar_context_release(struct ar_context *ctx)
    676{
    677	struct device *dev = ctx->ohci->card.device;
    678	unsigned int i;
    679
    680	vunmap(ctx->buffer);
    681
    682	for (i = 0; i < AR_BUFFERS; i++) {
    683		if (ctx->pages[i])
    684			dma_free_pages(dev, PAGE_SIZE, ctx->pages[i],
    685				       ar_buffer_bus(ctx, i), DMA_FROM_DEVICE);
    686	}
    687}
    688
    689static void ar_context_abort(struct ar_context *ctx, const char *error_msg)
    690{
    691	struct fw_ohci *ohci = ctx->ohci;
    692
    693	if (reg_read(ohci, CONTROL_CLEAR(ctx->regs)) & CONTEXT_RUN) {
    694		reg_write(ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
    695		flush_writes(ohci);
    696
    697		ohci_err(ohci, "AR error: %s; DMA stopped\n", error_msg);
    698	}
    699	/* FIXME: restart? */
    700}
    701
    702static inline unsigned int ar_next_buffer_index(unsigned int index)
    703{
    704	return (index + 1) % AR_BUFFERS;
    705}
    706
    707static inline unsigned int ar_first_buffer_index(struct ar_context *ctx)
    708{
    709	return ar_next_buffer_index(ctx->last_buffer_index);
    710}
    711
    712/*
    713 * We search for the buffer that contains the last AR packet DMA data written
    714 * by the controller.
    715 */
    716static unsigned int ar_search_last_active_buffer(struct ar_context *ctx,
    717						 unsigned int *buffer_offset)
    718{
    719	unsigned int i, next_i, last = ctx->last_buffer_index;
    720	__le16 res_count, next_res_count;
    721
    722	i = ar_first_buffer_index(ctx);
    723	res_count = READ_ONCE(ctx->descriptors[i].res_count);
    724
    725	/* A buffer that is not yet completely filled must be the last one. */
    726	while (i != last && res_count == 0) {
    727
    728		/* Peek at the next descriptor. */
    729		next_i = ar_next_buffer_index(i);
    730		rmb(); /* read descriptors in order */
    731		next_res_count = READ_ONCE(ctx->descriptors[next_i].res_count);
    732		/*
    733		 * If the next descriptor is still empty, we must stop at this
    734		 * descriptor.
    735		 */
    736		if (next_res_count == cpu_to_le16(PAGE_SIZE)) {
    737			/*
    738			 * The exception is when the DMA data for one packet is
    739			 * split over three buffers; in this case, the middle
    740			 * buffer's descriptor might be never updated by the
    741			 * controller and look still empty, and we have to peek
    742			 * at the third one.
    743			 */
    744			if (MAX_AR_PACKET_SIZE > PAGE_SIZE && i != last) {
    745				next_i = ar_next_buffer_index(next_i);
    746				rmb();
    747				next_res_count = READ_ONCE(ctx->descriptors[next_i].res_count);
    748				if (next_res_count != cpu_to_le16(PAGE_SIZE))
    749					goto next_buffer_is_active;
    750			}
    751
    752			break;
    753		}
    754
    755next_buffer_is_active:
    756		i = next_i;
    757		res_count = next_res_count;
    758	}
    759
    760	rmb(); /* read res_count before the DMA data */
    761
    762	*buffer_offset = PAGE_SIZE - le16_to_cpu(res_count);
    763	if (*buffer_offset > PAGE_SIZE) {
    764		*buffer_offset = 0;
    765		ar_context_abort(ctx, "corrupted descriptor");
    766	}
    767
    768	return i;
    769}
    770
    771static void ar_sync_buffers_for_cpu(struct ar_context *ctx,
    772				    unsigned int end_buffer_index,
    773				    unsigned int end_buffer_offset)
    774{
    775	unsigned int i;
    776
    777	i = ar_first_buffer_index(ctx);
    778	while (i != end_buffer_index) {
    779		dma_sync_single_for_cpu(ctx->ohci->card.device,
    780					ar_buffer_bus(ctx, i),
    781					PAGE_SIZE, DMA_FROM_DEVICE);
    782		i = ar_next_buffer_index(i);
    783	}
    784	if (end_buffer_offset > 0)
    785		dma_sync_single_for_cpu(ctx->ohci->card.device,
    786					ar_buffer_bus(ctx, i),
    787					end_buffer_offset, DMA_FROM_DEVICE);
    788}
    789
    790#if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
    791#define cond_le32_to_cpu(v) \
    792	(ohci->quirks & QUIRK_BE_HEADERS ? (__force __u32)(v) : le32_to_cpu(v))
    793#else
    794#define cond_le32_to_cpu(v) le32_to_cpu(v)
    795#endif
    796
    797static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
    798{
    799	struct fw_ohci *ohci = ctx->ohci;
    800	struct fw_packet p;
    801	u32 status, length, tcode;
    802	int evt;
    803
    804	p.header[0] = cond_le32_to_cpu(buffer[0]);
    805	p.header[1] = cond_le32_to_cpu(buffer[1]);
    806	p.header[2] = cond_le32_to_cpu(buffer[2]);
    807
    808	tcode = (p.header[0] >> 4) & 0x0f;
    809	switch (tcode) {
    810	case TCODE_WRITE_QUADLET_REQUEST:
    811	case TCODE_READ_QUADLET_RESPONSE:
    812		p.header[3] = (__force __u32) buffer[3];
    813		p.header_length = 16;
    814		p.payload_length = 0;
    815		break;
    816
    817	case TCODE_READ_BLOCK_REQUEST :
    818		p.header[3] = cond_le32_to_cpu(buffer[3]);
    819		p.header_length = 16;
    820		p.payload_length = 0;
    821		break;
    822
    823	case TCODE_WRITE_BLOCK_REQUEST:
    824	case TCODE_READ_BLOCK_RESPONSE:
    825	case TCODE_LOCK_REQUEST:
    826	case TCODE_LOCK_RESPONSE:
    827		p.header[3] = cond_le32_to_cpu(buffer[3]);
    828		p.header_length = 16;
    829		p.payload_length = p.header[3] >> 16;
    830		if (p.payload_length > MAX_ASYNC_PAYLOAD) {
    831			ar_context_abort(ctx, "invalid packet length");
    832			return NULL;
    833		}
    834		break;
    835
    836	case TCODE_WRITE_RESPONSE:
    837	case TCODE_READ_QUADLET_REQUEST:
    838	case OHCI_TCODE_PHY_PACKET:
    839		p.header_length = 12;
    840		p.payload_length = 0;
    841		break;
    842
    843	default:
    844		ar_context_abort(ctx, "invalid tcode");
    845		return NULL;
    846	}
    847
    848	p.payload = (void *) buffer + p.header_length;
    849
    850	/* FIXME: What to do about evt_* errors? */
    851	length = (p.header_length + p.payload_length + 3) / 4;
    852	status = cond_le32_to_cpu(buffer[length]);
    853	evt    = (status >> 16) & 0x1f;
    854
    855	p.ack        = evt - 16;
    856	p.speed      = (status >> 21) & 0x7;
    857	p.timestamp  = status & 0xffff;
    858	p.generation = ohci->request_generation;
    859
    860	log_ar_at_event(ohci, 'R', p.speed, p.header, evt);
    861
    862	/*
    863	 * Several controllers, notably from NEC and VIA, forget to
    864	 * write ack_complete status at PHY packet reception.
    865	 */
    866	if (evt == OHCI1394_evt_no_status &&
    867	    (p.header[0] & 0xff) == (OHCI1394_phy_tcode << 4))
    868		p.ack = ACK_COMPLETE;
    869
    870	/*
    871	 * The OHCI bus reset handler synthesizes a PHY packet with
    872	 * the new generation number when a bus reset happens (see
    873	 * section 8.4.2.3).  This helps us determine when a request
    874	 * was received and make sure we send the response in the same
    875	 * generation.  We only need this for requests; for responses
    876	 * we use the unique tlabel for finding the matching
    877	 * request.
    878	 *
    879	 * Alas some chips sometimes emit bus reset packets with a
    880	 * wrong generation.  We set the correct generation for these
    881	 * at a slightly incorrect time (in bus_reset_work).
    882	 */
    883	if (evt == OHCI1394_evt_bus_reset) {
    884		if (!(ohci->quirks & QUIRK_RESET_PACKET))
    885			ohci->request_generation = (p.header[2] >> 16) & 0xff;
    886	} else if (ctx == &ohci->ar_request_ctx) {
    887		fw_core_handle_request(&ohci->card, &p);
    888	} else {
    889		fw_core_handle_response(&ohci->card, &p);
    890	}
    891
    892	return buffer + length + 1;
    893}
    894
    895static void *handle_ar_packets(struct ar_context *ctx, void *p, void *end)
    896{
    897	void *next;
    898
    899	while (p < end) {
    900		next = handle_ar_packet(ctx, p);
    901		if (!next)
    902			return p;
    903		p = next;
    904	}
    905
    906	return p;
    907}
    908
    909static void ar_recycle_buffers(struct ar_context *ctx, unsigned int end_buffer)
    910{
    911	unsigned int i;
    912
    913	i = ar_first_buffer_index(ctx);
    914	while (i != end_buffer) {
    915		dma_sync_single_for_device(ctx->ohci->card.device,
    916					   ar_buffer_bus(ctx, i),
    917					   PAGE_SIZE, DMA_FROM_DEVICE);
    918		ar_context_link_page(ctx, i);
    919		i = ar_next_buffer_index(i);
    920	}
    921}
    922
    923static void ar_context_tasklet(unsigned long data)
    924{
    925	struct ar_context *ctx = (struct ar_context *)data;
    926	unsigned int end_buffer_index, end_buffer_offset;
    927	void *p, *end;
    928
    929	p = ctx->pointer;
    930	if (!p)
    931		return;
    932
    933	end_buffer_index = ar_search_last_active_buffer(ctx,
    934							&end_buffer_offset);
    935	ar_sync_buffers_for_cpu(ctx, end_buffer_index, end_buffer_offset);
    936	end = ctx->buffer + end_buffer_index * PAGE_SIZE + end_buffer_offset;
    937
    938	if (end_buffer_index < ar_first_buffer_index(ctx)) {
    939		/*
    940		 * The filled part of the overall buffer wraps around; handle
    941		 * all packets up to the buffer end here.  If the last packet
    942		 * wraps around, its tail will be visible after the buffer end
    943		 * because the buffer start pages are mapped there again.
    944		 */
    945		void *buffer_end = ctx->buffer + AR_BUFFERS * PAGE_SIZE;
    946		p = handle_ar_packets(ctx, p, buffer_end);
    947		if (p < buffer_end)
    948			goto error;
    949		/* adjust p to point back into the actual buffer */
    950		p -= AR_BUFFERS * PAGE_SIZE;
    951	}
    952
    953	p = handle_ar_packets(ctx, p, end);
    954	if (p != end) {
    955		if (p > end)
    956			ar_context_abort(ctx, "inconsistent descriptor");
    957		goto error;
    958	}
    959
    960	ctx->pointer = p;
    961	ar_recycle_buffers(ctx, end_buffer_index);
    962
    963	return;
    964
    965error:
    966	ctx->pointer = NULL;
    967}
    968
    969static int ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci,
    970			   unsigned int descriptors_offset, u32 regs)
    971{
    972	struct device *dev = ohci->card.device;
    973	unsigned int i;
    974	dma_addr_t dma_addr;
    975	struct page *pages[AR_BUFFERS + AR_WRAPAROUND_PAGES];
    976	struct descriptor *d;
    977
    978	ctx->regs        = regs;
    979	ctx->ohci        = ohci;
    980	tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
    981
    982	for (i = 0; i < AR_BUFFERS; i++) {
    983		ctx->pages[i] = dma_alloc_pages(dev, PAGE_SIZE, &dma_addr,
    984						DMA_FROM_DEVICE, GFP_KERNEL);
    985		if (!ctx->pages[i])
    986			goto out_of_memory;
    987		set_page_private(ctx->pages[i], dma_addr);
    988		dma_sync_single_for_device(dev, dma_addr, PAGE_SIZE,
    989					   DMA_FROM_DEVICE);
    990	}
    991
    992	for (i = 0; i < AR_BUFFERS; i++)
    993		pages[i]              = ctx->pages[i];
    994	for (i = 0; i < AR_WRAPAROUND_PAGES; i++)
    995		pages[AR_BUFFERS + i] = ctx->pages[i];
    996	ctx->buffer = vmap(pages, ARRAY_SIZE(pages), VM_MAP, PAGE_KERNEL);
    997	if (!ctx->buffer)
    998		goto out_of_memory;
    999
   1000	ctx->descriptors     = ohci->misc_buffer     + descriptors_offset;
   1001	ctx->descriptors_bus = ohci->misc_buffer_bus + descriptors_offset;
   1002
   1003	for (i = 0; i < AR_BUFFERS; i++) {
   1004		d = &ctx->descriptors[i];
   1005		d->req_count      = cpu_to_le16(PAGE_SIZE);
   1006		d->control        = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
   1007						DESCRIPTOR_STATUS |
   1008						DESCRIPTOR_BRANCH_ALWAYS);
   1009		d->data_address   = cpu_to_le32(ar_buffer_bus(ctx, i));
   1010		d->branch_address = cpu_to_le32(ctx->descriptors_bus +
   1011			ar_next_buffer_index(i) * sizeof(struct descriptor));
   1012	}
   1013
   1014	return 0;
   1015
   1016out_of_memory:
   1017	ar_context_release(ctx);
   1018
   1019	return -ENOMEM;
   1020}
   1021
   1022static void ar_context_run(struct ar_context *ctx)
   1023{
   1024	unsigned int i;
   1025
   1026	for (i = 0; i < AR_BUFFERS; i++)
   1027		ar_context_link_page(ctx, i);
   1028
   1029	ctx->pointer = ctx->buffer;
   1030
   1031	reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ctx->descriptors_bus | 1);
   1032	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
   1033}
   1034
   1035static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
   1036{
   1037	__le16 branch;
   1038
   1039	branch = d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS);
   1040
   1041	/* figure out which descriptor the branch address goes in */
   1042	if (z == 2 && branch == cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
   1043		return d;
   1044	else
   1045		return d + z - 1;
   1046}
   1047
   1048static void context_tasklet(unsigned long data)
   1049{
   1050	struct context *ctx = (struct context *) data;
   1051	struct descriptor *d, *last;
   1052	u32 address;
   1053	int z;
   1054	struct descriptor_buffer *desc;
   1055
   1056	desc = list_entry(ctx->buffer_list.next,
   1057			struct descriptor_buffer, list);
   1058	last = ctx->last;
   1059	while (last->branch_address != 0) {
   1060		struct descriptor_buffer *old_desc = desc;
   1061		address = le32_to_cpu(last->branch_address);
   1062		z = address & 0xf;
   1063		address &= ~0xf;
   1064		ctx->current_bus = address;
   1065
   1066		/* If the branch address points to a buffer outside of the
   1067		 * current buffer, advance to the next buffer. */
   1068		if (address < desc->buffer_bus ||
   1069				address >= desc->buffer_bus + desc->used)
   1070			desc = list_entry(desc->list.next,
   1071					struct descriptor_buffer, list);
   1072		d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
   1073		last = find_branch_descriptor(d, z);
   1074
   1075		if (!ctx->callback(ctx, d, last))
   1076			break;
   1077
   1078		if (old_desc != desc) {
   1079			/* If we've advanced to the next buffer, move the
   1080			 * previous buffer to the free list. */
   1081			unsigned long flags;
   1082			old_desc->used = 0;
   1083			spin_lock_irqsave(&ctx->ohci->lock, flags);
   1084			list_move_tail(&old_desc->list, &ctx->buffer_list);
   1085			spin_unlock_irqrestore(&ctx->ohci->lock, flags);
   1086		}
   1087		ctx->last = last;
   1088	}
   1089}
   1090
   1091/*
   1092 * Allocate a new buffer and add it to the list of free buffers for this
   1093 * context.  Must be called with ohci->lock held.
   1094 */
   1095static int context_add_buffer(struct context *ctx)
   1096{
   1097	struct descriptor_buffer *desc;
   1098	dma_addr_t bus_addr;
   1099	int offset;
   1100
   1101	/*
   1102	 * 16MB of descriptors should be far more than enough for any DMA
   1103	 * program.  This will catch run-away userspace or DoS attacks.
   1104	 */
   1105	if (ctx->total_allocation >= 16*1024*1024)
   1106		return -ENOMEM;
   1107
   1108	desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
   1109			&bus_addr, GFP_ATOMIC);
   1110	if (!desc)
   1111		return -ENOMEM;
   1112
   1113	offset = (void *)&desc->buffer - (void *)desc;
   1114	/*
   1115	 * Some controllers, like JMicron ones, always issue 0x20-byte DMA reads
   1116	 * for descriptors, even 0x10-byte ones. This can cause page faults when
   1117	 * an IOMMU is in use and the oversized read crosses a page boundary.
   1118	 * Work around this by always leaving at least 0x10 bytes of padding.
   1119	 */
   1120	desc->buffer_size = PAGE_SIZE - offset - 0x10;
   1121	desc->buffer_bus = bus_addr + offset;
   1122	desc->used = 0;
   1123
   1124	list_add_tail(&desc->list, &ctx->buffer_list);
   1125	ctx->total_allocation += PAGE_SIZE;
   1126
   1127	return 0;
   1128}
   1129
   1130static int context_init(struct context *ctx, struct fw_ohci *ohci,
   1131			u32 regs, descriptor_callback_t callback)
   1132{
   1133	ctx->ohci = ohci;
   1134	ctx->regs = regs;
   1135	ctx->total_allocation = 0;
   1136
   1137	INIT_LIST_HEAD(&ctx->buffer_list);
   1138	if (context_add_buffer(ctx) < 0)
   1139		return -ENOMEM;
   1140
   1141	ctx->buffer_tail = list_entry(ctx->buffer_list.next,
   1142			struct descriptor_buffer, list);
   1143
   1144	tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
   1145	ctx->callback = callback;
   1146
   1147	/*
   1148	 * We put a dummy descriptor in the buffer that has a NULL
   1149	 * branch address and looks like it's been sent.  That way we
   1150	 * have a descriptor to append DMA programs to.
   1151	 */
   1152	memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
   1153	ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
   1154	ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
   1155	ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
   1156	ctx->last = ctx->buffer_tail->buffer;
   1157	ctx->prev = ctx->buffer_tail->buffer;
   1158	ctx->prev_z = 1;
   1159
   1160	return 0;
   1161}
   1162
   1163static void context_release(struct context *ctx)
   1164{
   1165	struct fw_card *card = &ctx->ohci->card;
   1166	struct descriptor_buffer *desc, *tmp;
   1167
   1168	list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
   1169		dma_free_coherent(card->device, PAGE_SIZE, desc,
   1170			desc->buffer_bus -
   1171			((void *)&desc->buffer - (void *)desc));
   1172}
   1173
   1174/* Must be called with ohci->lock held */
   1175static struct descriptor *context_get_descriptors(struct context *ctx,
   1176						  int z, dma_addr_t *d_bus)
   1177{
   1178	struct descriptor *d = NULL;
   1179	struct descriptor_buffer *desc = ctx->buffer_tail;
   1180
   1181	if (z * sizeof(*d) > desc->buffer_size)
   1182		return NULL;
   1183
   1184	if (z * sizeof(*d) > desc->buffer_size - desc->used) {
   1185		/* No room for the descriptor in this buffer, so advance to the
   1186		 * next one. */
   1187
   1188		if (desc->list.next == &ctx->buffer_list) {
   1189			/* If there is no free buffer next in the list,
   1190			 * allocate one. */
   1191			if (context_add_buffer(ctx) < 0)
   1192				return NULL;
   1193		}
   1194		desc = list_entry(desc->list.next,
   1195				struct descriptor_buffer, list);
   1196		ctx->buffer_tail = desc;
   1197	}
   1198
   1199	d = desc->buffer + desc->used / sizeof(*d);
   1200	memset(d, 0, z * sizeof(*d));
   1201	*d_bus = desc->buffer_bus + desc->used;
   1202
   1203	return d;
   1204}
   1205
   1206static void context_run(struct context *ctx, u32 extra)
   1207{
   1208	struct fw_ohci *ohci = ctx->ohci;
   1209
   1210	reg_write(ohci, COMMAND_PTR(ctx->regs),
   1211		  le32_to_cpu(ctx->last->branch_address));
   1212	reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
   1213	reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
   1214	ctx->running = true;
   1215	flush_writes(ohci);
   1216}
   1217
   1218static void context_append(struct context *ctx,
   1219			   struct descriptor *d, int z, int extra)
   1220{
   1221	dma_addr_t d_bus;
   1222	struct descriptor_buffer *desc = ctx->buffer_tail;
   1223	struct descriptor *d_branch;
   1224
   1225	d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
   1226
   1227	desc->used += (z + extra) * sizeof(*d);
   1228
   1229	wmb(); /* finish init of new descriptors before branch_address update */
   1230
   1231	d_branch = find_branch_descriptor(ctx->prev, ctx->prev_z);
   1232	d_branch->branch_address = cpu_to_le32(d_bus | z);
   1233
   1234	/*
   1235	 * VT6306 incorrectly checks only the single descriptor at the
   1236	 * CommandPtr when the wake bit is written, so if it's a
   1237	 * multi-descriptor block starting with an INPUT_MORE, put a copy of
   1238	 * the branch address in the first descriptor.
   1239	 *
   1240	 * Not doing this for transmit contexts since not sure how it interacts
   1241	 * with skip addresses.
   1242	 */
   1243	if (unlikely(ctx->ohci->quirks & QUIRK_IR_WAKE) &&
   1244	    d_branch != ctx->prev &&
   1245	    (ctx->prev->control & cpu_to_le16(DESCRIPTOR_CMD)) ==
   1246	     cpu_to_le16(DESCRIPTOR_INPUT_MORE)) {
   1247		ctx->prev->branch_address = cpu_to_le32(d_bus | z);
   1248	}
   1249
   1250	ctx->prev = d;
   1251	ctx->prev_z = z;
   1252}
   1253
   1254static void context_stop(struct context *ctx)
   1255{
   1256	struct fw_ohci *ohci = ctx->ohci;
   1257	u32 reg;
   1258	int i;
   1259
   1260	reg_write(ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
   1261	ctx->running = false;
   1262
   1263	for (i = 0; i < 1000; i++) {
   1264		reg = reg_read(ohci, CONTROL_SET(ctx->regs));
   1265		if ((reg & CONTEXT_ACTIVE) == 0)
   1266			return;
   1267
   1268		if (i)
   1269			udelay(10);
   1270	}
   1271	ohci_err(ohci, "DMA context still active (0x%08x)\n", reg);
   1272}
   1273
   1274struct driver_data {
   1275	u8 inline_data[8];
   1276	struct fw_packet *packet;
   1277};
   1278
   1279/*
   1280 * This function apppends a packet to the DMA queue for transmission.
   1281 * Must always be called with the ochi->lock held to ensure proper
   1282 * generation handling and locking around packet queue manipulation.
   1283 */
   1284static int at_context_queue_packet(struct context *ctx,
   1285				   struct fw_packet *packet)
   1286{
   1287	struct fw_ohci *ohci = ctx->ohci;
   1288	dma_addr_t d_bus, payload_bus;
   1289	struct driver_data *driver_data;
   1290	struct descriptor *d, *last;
   1291	__le32 *header;
   1292	int z, tcode;
   1293
   1294	d = context_get_descriptors(ctx, 4, &d_bus);
   1295	if (d == NULL) {
   1296		packet->ack = RCODE_SEND_ERROR;
   1297		return -1;
   1298	}
   1299
   1300	d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
   1301	d[0].res_count = cpu_to_le16(packet->timestamp);
   1302
   1303	/*
   1304	 * The DMA format for asynchronous link packets is different
   1305	 * from the IEEE1394 layout, so shift the fields around
   1306	 * accordingly.
   1307	 */
   1308
   1309	tcode = (packet->header[0] >> 4) & 0x0f;
   1310	header = (__le32 *) &d[1];
   1311	switch (tcode) {
   1312	case TCODE_WRITE_QUADLET_REQUEST:
   1313	case TCODE_WRITE_BLOCK_REQUEST:
   1314	case TCODE_WRITE_RESPONSE:
   1315	case TCODE_READ_QUADLET_REQUEST:
   1316	case TCODE_READ_BLOCK_REQUEST:
   1317	case TCODE_READ_QUADLET_RESPONSE:
   1318	case TCODE_READ_BLOCK_RESPONSE:
   1319	case TCODE_LOCK_REQUEST:
   1320	case TCODE_LOCK_RESPONSE:
   1321		header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
   1322					(packet->speed << 16));
   1323		header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
   1324					(packet->header[0] & 0xffff0000));
   1325		header[2] = cpu_to_le32(packet->header[2]);
   1326
   1327		if (TCODE_IS_BLOCK_PACKET(tcode))
   1328			header[3] = cpu_to_le32(packet->header[3]);
   1329		else
   1330			header[3] = (__force __le32) packet->header[3];
   1331
   1332		d[0].req_count = cpu_to_le16(packet->header_length);
   1333		break;
   1334
   1335	case TCODE_LINK_INTERNAL:
   1336		header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
   1337					(packet->speed << 16));
   1338		header[1] = cpu_to_le32(packet->header[1]);
   1339		header[2] = cpu_to_le32(packet->header[2]);
   1340		d[0].req_count = cpu_to_le16(12);
   1341
   1342		if (is_ping_packet(&packet->header[1]))
   1343			d[0].control |= cpu_to_le16(DESCRIPTOR_PING);
   1344		break;
   1345
   1346	case TCODE_STREAM_DATA:
   1347		header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
   1348					(packet->speed << 16));
   1349		header[1] = cpu_to_le32(packet->header[0] & 0xffff0000);
   1350		d[0].req_count = cpu_to_le16(8);
   1351		break;
   1352
   1353	default:
   1354		/* BUG(); */
   1355		packet->ack = RCODE_SEND_ERROR;
   1356		return -1;
   1357	}
   1358
   1359	BUILD_BUG_ON(sizeof(struct driver_data) > sizeof(struct descriptor));
   1360	driver_data = (struct driver_data *) &d[3];
   1361	driver_data->packet = packet;
   1362	packet->driver_data = driver_data;
   1363
   1364	if (packet->payload_length > 0) {
   1365		if (packet->payload_length > sizeof(driver_data->inline_data)) {
   1366			payload_bus = dma_map_single(ohci->card.device,
   1367						     packet->payload,
   1368						     packet->payload_length,
   1369						     DMA_TO_DEVICE);
   1370			if (dma_mapping_error(ohci->card.device, payload_bus)) {
   1371				packet->ack = RCODE_SEND_ERROR;
   1372				return -1;
   1373			}
   1374			packet->payload_bus	= payload_bus;
   1375			packet->payload_mapped	= true;
   1376		} else {
   1377			memcpy(driver_data->inline_data, packet->payload,
   1378			       packet->payload_length);
   1379			payload_bus = d_bus + 3 * sizeof(*d);
   1380		}
   1381
   1382		d[2].req_count    = cpu_to_le16(packet->payload_length);
   1383		d[2].data_address = cpu_to_le32(payload_bus);
   1384		last = &d[2];
   1385		z = 3;
   1386	} else {
   1387		last = &d[0];
   1388		z = 2;
   1389	}
   1390
   1391	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
   1392				     DESCRIPTOR_IRQ_ALWAYS |
   1393				     DESCRIPTOR_BRANCH_ALWAYS);
   1394
   1395	/* FIXME: Document how the locking works. */
   1396	if (ohci->generation != packet->generation) {
   1397		if (packet->payload_mapped)
   1398			dma_unmap_single(ohci->card.device, payload_bus,
   1399					 packet->payload_length, DMA_TO_DEVICE);
   1400		packet->ack = RCODE_GENERATION;
   1401		return -1;
   1402	}
   1403
   1404	context_append(ctx, d, z, 4 - z);
   1405
   1406	if (ctx->running)
   1407		reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
   1408	else
   1409		context_run(ctx, 0);
   1410
   1411	return 0;
   1412}
   1413
   1414static void at_context_flush(struct context *ctx)
   1415{
   1416	tasklet_disable(&ctx->tasklet);
   1417
   1418	ctx->flushing = true;
   1419	context_tasklet((unsigned long)ctx);
   1420	ctx->flushing = false;
   1421
   1422	tasklet_enable(&ctx->tasklet);
   1423}
   1424
   1425static int handle_at_packet(struct context *context,
   1426			    struct descriptor *d,
   1427			    struct descriptor *last)
   1428{
   1429	struct driver_data *driver_data;
   1430	struct fw_packet *packet;
   1431	struct fw_ohci *ohci = context->ohci;
   1432	int evt;
   1433
   1434	if (last->transfer_status == 0 && !context->flushing)
   1435		/* This descriptor isn't done yet, stop iteration. */
   1436		return 0;
   1437
   1438	driver_data = (struct driver_data *) &d[3];
   1439	packet = driver_data->packet;
   1440	if (packet == NULL)
   1441		/* This packet was cancelled, just continue. */
   1442		return 1;
   1443
   1444	if (packet->payload_mapped)
   1445		dma_unmap_single(ohci->card.device, packet->payload_bus,
   1446				 packet->payload_length, DMA_TO_DEVICE);
   1447
   1448	evt = le16_to_cpu(last->transfer_status) & 0x1f;
   1449	packet->timestamp = le16_to_cpu(last->res_count);
   1450
   1451	log_ar_at_event(ohci, 'T', packet->speed, packet->header, evt);
   1452
   1453	switch (evt) {
   1454	case OHCI1394_evt_timeout:
   1455		/* Async response transmit timed out. */
   1456		packet->ack = RCODE_CANCELLED;
   1457		break;
   1458
   1459	case OHCI1394_evt_flushed:
   1460		/*
   1461		 * The packet was flushed should give same error as
   1462		 * when we try to use a stale generation count.
   1463		 */
   1464		packet->ack = RCODE_GENERATION;
   1465		break;
   1466
   1467	case OHCI1394_evt_missing_ack:
   1468		if (context->flushing)
   1469			packet->ack = RCODE_GENERATION;
   1470		else {
   1471			/*
   1472			 * Using a valid (current) generation count, but the
   1473			 * node is not on the bus or not sending acks.
   1474			 */
   1475			packet->ack = RCODE_NO_ACK;
   1476		}
   1477		break;
   1478
   1479	case ACK_COMPLETE + 0x10:
   1480	case ACK_PENDING + 0x10:
   1481	case ACK_BUSY_X + 0x10:
   1482	case ACK_BUSY_A + 0x10:
   1483	case ACK_BUSY_B + 0x10:
   1484	case ACK_DATA_ERROR + 0x10:
   1485	case ACK_TYPE_ERROR + 0x10:
   1486		packet->ack = evt - 0x10;
   1487		break;
   1488
   1489	case OHCI1394_evt_no_status:
   1490		if (context->flushing) {
   1491			packet->ack = RCODE_GENERATION;
   1492			break;
   1493		}
   1494		fallthrough;
   1495
   1496	default:
   1497		packet->ack = RCODE_SEND_ERROR;
   1498		break;
   1499	}
   1500
   1501	packet->callback(packet, &ohci->card, packet->ack);
   1502
   1503	return 1;
   1504}
   1505
   1506#define HEADER_GET_DESTINATION(q)	(((q) >> 16) & 0xffff)
   1507#define HEADER_GET_TCODE(q)		(((q) >> 4) & 0x0f)
   1508#define HEADER_GET_OFFSET_HIGH(q)	(((q) >> 0) & 0xffff)
   1509#define HEADER_GET_DATA_LENGTH(q)	(((q) >> 16) & 0xffff)
   1510#define HEADER_GET_EXTENDED_TCODE(q)	(((q) >> 0) & 0xffff)
   1511
   1512static void handle_local_rom(struct fw_ohci *ohci,
   1513			     struct fw_packet *packet, u32 csr)
   1514{
   1515	struct fw_packet response;
   1516	int tcode, length, i;
   1517
   1518	tcode = HEADER_GET_TCODE(packet->header[0]);
   1519	if (TCODE_IS_BLOCK_PACKET(tcode))
   1520		length = HEADER_GET_DATA_LENGTH(packet->header[3]);
   1521	else
   1522		length = 4;
   1523
   1524	i = csr - CSR_CONFIG_ROM;
   1525	if (i + length > CONFIG_ROM_SIZE) {
   1526		fw_fill_response(&response, packet->header,
   1527				 RCODE_ADDRESS_ERROR, NULL, 0);
   1528	} else if (!TCODE_IS_READ_REQUEST(tcode)) {
   1529		fw_fill_response(&response, packet->header,
   1530				 RCODE_TYPE_ERROR, NULL, 0);
   1531	} else {
   1532		fw_fill_response(&response, packet->header, RCODE_COMPLETE,
   1533				 (void *) ohci->config_rom + i, length);
   1534	}
   1535
   1536	fw_core_handle_response(&ohci->card, &response);
   1537}
   1538
   1539static void handle_local_lock(struct fw_ohci *ohci,
   1540			      struct fw_packet *packet, u32 csr)
   1541{
   1542	struct fw_packet response;
   1543	int tcode, length, ext_tcode, sel, try;
   1544	__be32 *payload, lock_old;
   1545	u32 lock_arg, lock_data;
   1546
   1547	tcode = HEADER_GET_TCODE(packet->header[0]);
   1548	length = HEADER_GET_DATA_LENGTH(packet->header[3]);
   1549	payload = packet->payload;
   1550	ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
   1551
   1552	if (tcode == TCODE_LOCK_REQUEST &&
   1553	    ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
   1554		lock_arg = be32_to_cpu(payload[0]);
   1555		lock_data = be32_to_cpu(payload[1]);
   1556	} else if (tcode == TCODE_READ_QUADLET_REQUEST) {
   1557		lock_arg = 0;
   1558		lock_data = 0;
   1559	} else {
   1560		fw_fill_response(&response, packet->header,
   1561				 RCODE_TYPE_ERROR, NULL, 0);
   1562		goto out;
   1563	}
   1564
   1565	sel = (csr - CSR_BUS_MANAGER_ID) / 4;
   1566	reg_write(ohci, OHCI1394_CSRData, lock_data);
   1567	reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
   1568	reg_write(ohci, OHCI1394_CSRControl, sel);
   1569
   1570	for (try = 0; try < 20; try++)
   1571		if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000) {
   1572			lock_old = cpu_to_be32(reg_read(ohci,
   1573							OHCI1394_CSRData));
   1574			fw_fill_response(&response, packet->header,
   1575					 RCODE_COMPLETE,
   1576					 &lock_old, sizeof(lock_old));
   1577			goto out;
   1578		}
   1579
   1580	ohci_err(ohci, "swap not done (CSR lock timeout)\n");
   1581	fw_fill_response(&response, packet->header, RCODE_BUSY, NULL, 0);
   1582
   1583 out:
   1584	fw_core_handle_response(&ohci->card, &response);
   1585}
   1586
   1587static void handle_local_request(struct context *ctx, struct fw_packet *packet)
   1588{
   1589	u64 offset, csr;
   1590
   1591	if (ctx == &ctx->ohci->at_request_ctx) {
   1592		packet->ack = ACK_PENDING;
   1593		packet->callback(packet, &ctx->ohci->card, packet->ack);
   1594	}
   1595
   1596	offset =
   1597		((unsigned long long)
   1598		 HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
   1599		packet->header[2];
   1600	csr = offset - CSR_REGISTER_BASE;
   1601
   1602	/* Handle config rom reads. */
   1603	if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
   1604		handle_local_rom(ctx->ohci, packet, csr);
   1605	else switch (csr) {
   1606	case CSR_BUS_MANAGER_ID:
   1607	case CSR_BANDWIDTH_AVAILABLE:
   1608	case CSR_CHANNELS_AVAILABLE_HI:
   1609	case CSR_CHANNELS_AVAILABLE_LO:
   1610		handle_local_lock(ctx->ohci, packet, csr);
   1611		break;
   1612	default:
   1613		if (ctx == &ctx->ohci->at_request_ctx)
   1614			fw_core_handle_request(&ctx->ohci->card, packet);
   1615		else
   1616			fw_core_handle_response(&ctx->ohci->card, packet);
   1617		break;
   1618	}
   1619
   1620	if (ctx == &ctx->ohci->at_response_ctx) {
   1621		packet->ack = ACK_COMPLETE;
   1622		packet->callback(packet, &ctx->ohci->card, packet->ack);
   1623	}
   1624}
   1625
   1626static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
   1627{
   1628	unsigned long flags;
   1629	int ret;
   1630
   1631	spin_lock_irqsave(&ctx->ohci->lock, flags);
   1632
   1633	if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
   1634	    ctx->ohci->generation == packet->generation) {
   1635		spin_unlock_irqrestore(&ctx->ohci->lock, flags);
   1636		handle_local_request(ctx, packet);
   1637		return;
   1638	}
   1639
   1640	ret = at_context_queue_packet(ctx, packet);
   1641	spin_unlock_irqrestore(&ctx->ohci->lock, flags);
   1642
   1643	if (ret < 0)
   1644		packet->callback(packet, &ctx->ohci->card, packet->ack);
   1645
   1646}
   1647
   1648static void detect_dead_context(struct fw_ohci *ohci,
   1649				const char *name, unsigned int regs)
   1650{
   1651	u32 ctl;
   1652
   1653	ctl = reg_read(ohci, CONTROL_SET(regs));
   1654	if (ctl & CONTEXT_DEAD)
   1655		ohci_err(ohci, "DMA context %s has stopped, error code: %s\n",
   1656			name, evts[ctl & 0x1f]);
   1657}
   1658
   1659static void handle_dead_contexts(struct fw_ohci *ohci)
   1660{
   1661	unsigned int i;
   1662	char name[8];
   1663
   1664	detect_dead_context(ohci, "ATReq", OHCI1394_AsReqTrContextBase);
   1665	detect_dead_context(ohci, "ATRsp", OHCI1394_AsRspTrContextBase);
   1666	detect_dead_context(ohci, "ARReq", OHCI1394_AsReqRcvContextBase);
   1667	detect_dead_context(ohci, "ARRsp", OHCI1394_AsRspRcvContextBase);
   1668	for (i = 0; i < 32; ++i) {
   1669		if (!(ohci->it_context_support & (1 << i)))
   1670			continue;
   1671		sprintf(name, "IT%u", i);
   1672		detect_dead_context(ohci, name, OHCI1394_IsoXmitContextBase(i));
   1673	}
   1674	for (i = 0; i < 32; ++i) {
   1675		if (!(ohci->ir_context_support & (1 << i)))
   1676			continue;
   1677		sprintf(name, "IR%u", i);
   1678		detect_dead_context(ohci, name, OHCI1394_IsoRcvContextBase(i));
   1679	}
   1680	/* TODO: maybe try to flush and restart the dead contexts */
   1681}
   1682
   1683static u32 cycle_timer_ticks(u32 cycle_timer)
   1684{
   1685	u32 ticks;
   1686
   1687	ticks = cycle_timer & 0xfff;
   1688	ticks += 3072 * ((cycle_timer >> 12) & 0x1fff);
   1689	ticks += (3072 * 8000) * (cycle_timer >> 25);
   1690
   1691	return ticks;
   1692}
   1693
   1694/*
   1695 * Some controllers exhibit one or more of the following bugs when updating the
   1696 * iso cycle timer register:
   1697 *  - When the lowest six bits are wrapping around to zero, a read that happens
   1698 *    at the same time will return garbage in the lowest ten bits.
   1699 *  - When the cycleOffset field wraps around to zero, the cycleCount field is
   1700 *    not incremented for about 60 ns.
   1701 *  - Occasionally, the entire register reads zero.
   1702 *
   1703 * To catch these, we read the register three times and ensure that the
   1704 * difference between each two consecutive reads is approximately the same, i.e.
   1705 * less than twice the other.  Furthermore, any negative difference indicates an
   1706 * error.  (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
   1707 * execute, so we have enough precision to compute the ratio of the differences.)
   1708 */
   1709static u32 get_cycle_time(struct fw_ohci *ohci)
   1710{
   1711	u32 c0, c1, c2;
   1712	u32 t0, t1, t2;
   1713	s32 diff01, diff12;
   1714	int i;
   1715
   1716	c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
   1717
   1718	if (ohci->quirks & QUIRK_CYCLE_TIMER) {
   1719		i = 0;
   1720		c1 = c2;
   1721		c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
   1722		do {
   1723			c0 = c1;
   1724			c1 = c2;
   1725			c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
   1726			t0 = cycle_timer_ticks(c0);
   1727			t1 = cycle_timer_ticks(c1);
   1728			t2 = cycle_timer_ticks(c2);
   1729			diff01 = t1 - t0;
   1730			diff12 = t2 - t1;
   1731		} while ((diff01 <= 0 || diff12 <= 0 ||
   1732			  diff01 / diff12 >= 2 || diff12 / diff01 >= 2)
   1733			 && i++ < 20);
   1734	}
   1735
   1736	return c2;
   1737}
   1738
   1739/*
   1740 * This function has to be called at least every 64 seconds.  The bus_time
   1741 * field stores not only the upper 25 bits of the BUS_TIME register but also
   1742 * the most significant bit of the cycle timer in bit 6 so that we can detect
   1743 * changes in this bit.
   1744 */
   1745static u32 update_bus_time(struct fw_ohci *ohci)
   1746{
   1747	u32 cycle_time_seconds = get_cycle_time(ohci) >> 25;
   1748
   1749	if (unlikely(!ohci->bus_time_running)) {
   1750		reg_write(ohci, OHCI1394_IntMaskSet, OHCI1394_cycle64Seconds);
   1751		ohci->bus_time = (lower_32_bits(ktime_get_seconds()) & ~0x7f) |
   1752		                 (cycle_time_seconds & 0x40);
   1753		ohci->bus_time_running = true;
   1754	}
   1755
   1756	if ((ohci->bus_time & 0x40) != (cycle_time_seconds & 0x40))
   1757		ohci->bus_time += 0x40;
   1758
   1759	return ohci->bus_time | cycle_time_seconds;
   1760}
   1761
   1762static int get_status_for_port(struct fw_ohci *ohci, int port_index)
   1763{
   1764	int reg;
   1765
   1766	mutex_lock(&ohci->phy_reg_mutex);
   1767	reg = write_phy_reg(ohci, 7, port_index);
   1768	if (reg >= 0)
   1769		reg = read_phy_reg(ohci, 8);
   1770	mutex_unlock(&ohci->phy_reg_mutex);
   1771	if (reg < 0)
   1772		return reg;
   1773
   1774	switch (reg & 0x0f) {
   1775	case 0x06:
   1776		return 2;	/* is child node (connected to parent node) */
   1777	case 0x0e:
   1778		return 3;	/* is parent node (connected to child node) */
   1779	}
   1780	return 1;		/* not connected */
   1781}
   1782
   1783static int get_self_id_pos(struct fw_ohci *ohci, u32 self_id,
   1784	int self_id_count)
   1785{
   1786	int i;
   1787	u32 entry;
   1788
   1789	for (i = 0; i < self_id_count; i++) {
   1790		entry = ohci->self_id_buffer[i];
   1791		if ((self_id & 0xff000000) == (entry & 0xff000000))
   1792			return -1;
   1793		if ((self_id & 0xff000000) < (entry & 0xff000000))
   1794			return i;
   1795	}
   1796	return i;
   1797}
   1798
   1799static int initiated_reset(struct fw_ohci *ohci)
   1800{
   1801	int reg;
   1802	int ret = 0;
   1803
   1804	mutex_lock(&ohci->phy_reg_mutex);
   1805	reg = write_phy_reg(ohci, 7, 0xe0); /* Select page 7 */
   1806	if (reg >= 0) {
   1807		reg = read_phy_reg(ohci, 8);
   1808		reg |= 0x40;
   1809		reg = write_phy_reg(ohci, 8, reg); /* set PMODE bit */
   1810		if (reg >= 0) {
   1811			reg = read_phy_reg(ohci, 12); /* read register 12 */
   1812			if (reg >= 0) {
   1813				if ((reg & 0x08) == 0x08) {
   1814					/* bit 3 indicates "initiated reset" */
   1815					ret = 0x2;
   1816				}
   1817			}
   1818		}
   1819	}
   1820	mutex_unlock(&ohci->phy_reg_mutex);
   1821	return ret;
   1822}
   1823
   1824/*
   1825 * TI TSB82AA2B and TSB12LV26 do not receive the selfID of a locally
   1826 * attached TSB41BA3D phy; see http://www.ti.com/litv/pdf/sllz059.
   1827 * Construct the selfID from phy register contents.
   1828 */
   1829static int find_and_insert_self_id(struct fw_ohci *ohci, int self_id_count)
   1830{
   1831	int reg, i, pos, status;
   1832	/* link active 1, speed 3, bridge 0, contender 1, more packets 0 */
   1833	u32 self_id = 0x8040c800;
   1834
   1835	reg = reg_read(ohci, OHCI1394_NodeID);
   1836	if (!(reg & OHCI1394_NodeID_idValid)) {
   1837		ohci_notice(ohci,
   1838			    "node ID not valid, new bus reset in progress\n");
   1839		return -EBUSY;
   1840	}
   1841	self_id |= ((reg & 0x3f) << 24); /* phy ID */
   1842
   1843	reg = ohci_read_phy_reg(&ohci->card, 4);
   1844	if (reg < 0)
   1845		return reg;
   1846	self_id |= ((reg & 0x07) << 8); /* power class */
   1847
   1848	reg = ohci_read_phy_reg(&ohci->card, 1);
   1849	if (reg < 0)
   1850		return reg;
   1851	self_id |= ((reg & 0x3f) << 16); /* gap count */
   1852
   1853	for (i = 0; i < 3; i++) {
   1854		status = get_status_for_port(ohci, i);
   1855		if (status < 0)
   1856			return status;
   1857		self_id |= ((status & 0x3) << (6 - (i * 2)));
   1858	}
   1859
   1860	self_id |= initiated_reset(ohci);
   1861
   1862	pos = get_self_id_pos(ohci, self_id, self_id_count);
   1863	if (pos >= 0) {
   1864		memmove(&(ohci->self_id_buffer[pos+1]),
   1865			&(ohci->self_id_buffer[pos]),
   1866			(self_id_count - pos) * sizeof(*ohci->self_id_buffer));
   1867		ohci->self_id_buffer[pos] = self_id;
   1868		self_id_count++;
   1869	}
   1870	return self_id_count;
   1871}
   1872
   1873static void bus_reset_work(struct work_struct *work)
   1874{
   1875	struct fw_ohci *ohci =
   1876		container_of(work, struct fw_ohci, bus_reset_work);
   1877	int self_id_count, generation, new_generation, i, j;
   1878	u32 reg;
   1879	void *free_rom = NULL;
   1880	dma_addr_t free_rom_bus = 0;
   1881	bool is_new_root;
   1882
   1883	reg = reg_read(ohci, OHCI1394_NodeID);
   1884	if (!(reg & OHCI1394_NodeID_idValid)) {
   1885		ohci_notice(ohci,
   1886			    "node ID not valid, new bus reset in progress\n");
   1887		return;
   1888	}
   1889	if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
   1890		ohci_notice(ohci, "malconfigured bus\n");
   1891		return;
   1892	}
   1893	ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
   1894			       OHCI1394_NodeID_nodeNumber);
   1895
   1896	is_new_root = (reg & OHCI1394_NodeID_root) != 0;
   1897	if (!(ohci->is_root && is_new_root))
   1898		reg_write(ohci, OHCI1394_LinkControlSet,
   1899			  OHCI1394_LinkControl_cycleMaster);
   1900	ohci->is_root = is_new_root;
   1901
   1902	reg = reg_read(ohci, OHCI1394_SelfIDCount);
   1903	if (reg & OHCI1394_SelfIDCount_selfIDError) {
   1904		ohci_notice(ohci, "self ID receive error\n");
   1905		return;
   1906	}
   1907	/*
   1908	 * The count in the SelfIDCount register is the number of
   1909	 * bytes in the self ID receive buffer.  Since we also receive
   1910	 * the inverted quadlets and a header quadlet, we shift one
   1911	 * bit extra to get the actual number of self IDs.
   1912	 */
   1913	self_id_count = (reg >> 3) & 0xff;
   1914
   1915	if (self_id_count > 252) {
   1916		ohci_notice(ohci, "bad selfIDSize (%08x)\n", reg);
   1917		return;
   1918	}
   1919
   1920	generation = (cond_le32_to_cpu(ohci->self_id[0]) >> 16) & 0xff;
   1921	rmb();
   1922
   1923	for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
   1924		u32 id  = cond_le32_to_cpu(ohci->self_id[i]);
   1925		u32 id2 = cond_le32_to_cpu(ohci->self_id[i + 1]);
   1926
   1927		if (id != ~id2) {
   1928			/*
   1929			 * If the invalid data looks like a cycle start packet,
   1930			 * it's likely to be the result of the cycle master
   1931			 * having a wrong gap count.  In this case, the self IDs
   1932			 * so far are valid and should be processed so that the
   1933			 * bus manager can then correct the gap count.
   1934			 */
   1935			if (id == 0xffff008f) {
   1936				ohci_notice(ohci, "ignoring spurious self IDs\n");
   1937				self_id_count = j;
   1938				break;
   1939			}
   1940
   1941			ohci_notice(ohci, "bad self ID %d/%d (%08x != ~%08x)\n",
   1942				    j, self_id_count, id, id2);
   1943			return;
   1944		}
   1945		ohci->self_id_buffer[j] = id;
   1946	}
   1947
   1948	if (ohci->quirks & QUIRK_TI_SLLZ059) {
   1949		self_id_count = find_and_insert_self_id(ohci, self_id_count);
   1950		if (self_id_count < 0) {
   1951			ohci_notice(ohci,
   1952				    "could not construct local self ID\n");
   1953			return;
   1954		}
   1955	}
   1956
   1957	if (self_id_count == 0) {
   1958		ohci_notice(ohci, "no self IDs\n");
   1959		return;
   1960	}
   1961	rmb();
   1962
   1963	/*
   1964	 * Check the consistency of the self IDs we just read.  The
   1965	 * problem we face is that a new bus reset can start while we
   1966	 * read out the self IDs from the DMA buffer. If this happens,
   1967	 * the DMA buffer will be overwritten with new self IDs and we
   1968	 * will read out inconsistent data.  The OHCI specification
   1969	 * (section 11.2) recommends a technique similar to
   1970	 * linux/seqlock.h, where we remember the generation of the
   1971	 * self IDs in the buffer before reading them out and compare
   1972	 * it to the current generation after reading them out.  If
   1973	 * the two generations match we know we have a consistent set
   1974	 * of self IDs.
   1975	 */
   1976
   1977	new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
   1978	if (new_generation != generation) {
   1979		ohci_notice(ohci, "new bus reset, discarding self ids\n");
   1980		return;
   1981	}
   1982
   1983	/* FIXME: Document how the locking works. */
   1984	spin_lock_irq(&ohci->lock);
   1985
   1986	ohci->generation = -1; /* prevent AT packet queueing */
   1987	context_stop(&ohci->at_request_ctx);
   1988	context_stop(&ohci->at_response_ctx);
   1989
   1990	spin_unlock_irq(&ohci->lock);
   1991
   1992	/*
   1993	 * Per OHCI 1.2 draft, clause 7.2.3.3, hardware may leave unsent
   1994	 * packets in the AT queues and software needs to drain them.
   1995	 * Some OHCI 1.1 controllers (JMicron) apparently require this too.
   1996	 */
   1997	at_context_flush(&ohci->at_request_ctx);
   1998	at_context_flush(&ohci->at_response_ctx);
   1999
   2000	spin_lock_irq(&ohci->lock);
   2001
   2002	ohci->generation = generation;
   2003	reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
   2004
   2005	if (ohci->quirks & QUIRK_RESET_PACKET)
   2006		ohci->request_generation = generation;
   2007
   2008	/*
   2009	 * This next bit is unrelated to the AT context stuff but we
   2010	 * have to do it under the spinlock also.  If a new config rom
   2011	 * was set up before this reset, the old one is now no longer
   2012	 * in use and we can free it. Update the config rom pointers
   2013	 * to point to the current config rom and clear the
   2014	 * next_config_rom pointer so a new update can take place.
   2015	 */
   2016
   2017	if (ohci->next_config_rom != NULL) {
   2018		if (ohci->next_config_rom != ohci->config_rom) {
   2019			free_rom      = ohci->config_rom;
   2020			free_rom_bus  = ohci->config_rom_bus;
   2021		}
   2022		ohci->config_rom      = ohci->next_config_rom;
   2023		ohci->config_rom_bus  = ohci->next_config_rom_bus;
   2024		ohci->next_config_rom = NULL;
   2025
   2026		/*
   2027		 * Restore config_rom image and manually update
   2028		 * config_rom registers.  Writing the header quadlet
   2029		 * will indicate that the config rom is ready, so we
   2030		 * do that last.
   2031		 */
   2032		reg_write(ohci, OHCI1394_BusOptions,
   2033			  be32_to_cpu(ohci->config_rom[2]));
   2034		ohci->config_rom[0] = ohci->next_header;
   2035		reg_write(ohci, OHCI1394_ConfigROMhdr,
   2036			  be32_to_cpu(ohci->next_header));
   2037	}
   2038
   2039	if (param_remote_dma) {
   2040		reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
   2041		reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
   2042	}
   2043
   2044	spin_unlock_irq(&ohci->lock);
   2045
   2046	if (free_rom)
   2047		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
   2048				  free_rom, free_rom_bus);
   2049
   2050	log_selfids(ohci, generation, self_id_count);
   2051
   2052	fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
   2053				 self_id_count, ohci->self_id_buffer,
   2054				 ohci->csr_state_setclear_abdicate);
   2055	ohci->csr_state_setclear_abdicate = false;
   2056}
   2057
   2058static irqreturn_t irq_handler(int irq, void *data)
   2059{
   2060	struct fw_ohci *ohci = data;
   2061	u32 event, iso_event;
   2062	int i;
   2063
   2064	event = reg_read(ohci, OHCI1394_IntEventClear);
   2065
   2066	if (!event || !~event)
   2067		return IRQ_NONE;
   2068
   2069	/*
   2070	 * busReset and postedWriteErr must not be cleared yet
   2071	 * (OHCI 1.1 clauses 7.2.3.2 and 13.2.8.1)
   2072	 */
   2073	reg_write(ohci, OHCI1394_IntEventClear,
   2074		  event & ~(OHCI1394_busReset | OHCI1394_postedWriteErr));
   2075	log_irqs(ohci, event);
   2076
   2077	if (event & OHCI1394_selfIDComplete)
   2078		queue_work(selfid_workqueue, &ohci->bus_reset_work);
   2079
   2080	if (event & OHCI1394_RQPkt)
   2081		tasklet_schedule(&ohci->ar_request_ctx.tasklet);
   2082
   2083	if (event & OHCI1394_RSPkt)
   2084		tasklet_schedule(&ohci->ar_response_ctx.tasklet);
   2085
   2086	if (event & OHCI1394_reqTxComplete)
   2087		tasklet_schedule(&ohci->at_request_ctx.tasklet);
   2088
   2089	if (event & OHCI1394_respTxComplete)
   2090		tasklet_schedule(&ohci->at_response_ctx.tasklet);
   2091
   2092	if (event & OHCI1394_isochRx) {
   2093		iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
   2094		reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
   2095
   2096		while (iso_event) {
   2097			i = ffs(iso_event) - 1;
   2098			tasklet_schedule(
   2099				&ohci->ir_context_list[i].context.tasklet);
   2100			iso_event &= ~(1 << i);
   2101		}
   2102	}
   2103
   2104	if (event & OHCI1394_isochTx) {
   2105		iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
   2106		reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
   2107
   2108		while (iso_event) {
   2109			i = ffs(iso_event) - 1;
   2110			tasklet_schedule(
   2111				&ohci->it_context_list[i].context.tasklet);
   2112			iso_event &= ~(1 << i);
   2113		}
   2114	}
   2115
   2116	if (unlikely(event & OHCI1394_regAccessFail))
   2117		ohci_err(ohci, "register access failure\n");
   2118
   2119	if (unlikely(event & OHCI1394_postedWriteErr)) {
   2120		reg_read(ohci, OHCI1394_PostedWriteAddressHi);
   2121		reg_read(ohci, OHCI1394_PostedWriteAddressLo);
   2122		reg_write(ohci, OHCI1394_IntEventClear,
   2123			  OHCI1394_postedWriteErr);
   2124		if (printk_ratelimit())
   2125			ohci_err(ohci, "PCI posted write error\n");
   2126	}
   2127
   2128	if (unlikely(event & OHCI1394_cycleTooLong)) {
   2129		if (printk_ratelimit())
   2130			ohci_notice(ohci, "isochronous cycle too long\n");
   2131		reg_write(ohci, OHCI1394_LinkControlSet,
   2132			  OHCI1394_LinkControl_cycleMaster);
   2133	}
   2134
   2135	if (unlikely(event & OHCI1394_cycleInconsistent)) {
   2136		/*
   2137		 * We need to clear this event bit in order to make
   2138		 * cycleMatch isochronous I/O work.  In theory we should
   2139		 * stop active cycleMatch iso contexts now and restart
   2140		 * them at least two cycles later.  (FIXME?)
   2141		 */
   2142		if (printk_ratelimit())
   2143			ohci_notice(ohci, "isochronous cycle inconsistent\n");
   2144	}
   2145
   2146	if (unlikely(event & OHCI1394_unrecoverableError))
   2147		handle_dead_contexts(ohci);
   2148
   2149	if (event & OHCI1394_cycle64Seconds) {
   2150		spin_lock(&ohci->lock);
   2151		update_bus_time(ohci);
   2152		spin_unlock(&ohci->lock);
   2153	} else
   2154		flush_writes(ohci);
   2155
   2156	return IRQ_HANDLED;
   2157}
   2158
   2159static int software_reset(struct fw_ohci *ohci)
   2160{
   2161	u32 val;
   2162	int i;
   2163
   2164	reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
   2165	for (i = 0; i < 500; i++) {
   2166		val = reg_read(ohci, OHCI1394_HCControlSet);
   2167		if (!~val)
   2168			return -ENODEV; /* Card was ejected. */
   2169
   2170		if (!(val & OHCI1394_HCControl_softReset))
   2171			return 0;
   2172
   2173		msleep(1);
   2174	}
   2175
   2176	return -EBUSY;
   2177}
   2178
   2179static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length)
   2180{
   2181	size_t size = length * 4;
   2182
   2183	memcpy(dest, src, size);
   2184	if (size < CONFIG_ROM_SIZE)
   2185		memset(&dest[length], 0, CONFIG_ROM_SIZE - size);
   2186}
   2187
   2188static int configure_1394a_enhancements(struct fw_ohci *ohci)
   2189{
   2190	bool enable_1394a;
   2191	int ret, clear, set, offset;
   2192
   2193	/* Check if the driver should configure link and PHY. */
   2194	if (!(reg_read(ohci, OHCI1394_HCControlSet) &
   2195	      OHCI1394_HCControl_programPhyEnable))
   2196		return 0;
   2197
   2198	/* Paranoia: check whether the PHY supports 1394a, too. */
   2199	enable_1394a = false;
   2200	ret = read_phy_reg(ohci, 2);
   2201	if (ret < 0)
   2202		return ret;
   2203	if ((ret & PHY_EXTENDED_REGISTERS) == PHY_EXTENDED_REGISTERS) {
   2204		ret = read_paged_phy_reg(ohci, 1, 8);
   2205		if (ret < 0)
   2206			return ret;
   2207		if (ret >= 1)
   2208			enable_1394a = true;
   2209	}
   2210
   2211	if (ohci->quirks & QUIRK_NO_1394A)
   2212		enable_1394a = false;
   2213
   2214	/* Configure PHY and link consistently. */
   2215	if (enable_1394a) {
   2216		clear = 0;
   2217		set = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
   2218	} else {
   2219		clear = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
   2220		set = 0;
   2221	}
   2222	ret = update_phy_reg(ohci, 5, clear, set);
   2223	if (ret < 0)
   2224		return ret;
   2225
   2226	if (enable_1394a)
   2227		offset = OHCI1394_HCControlSet;
   2228	else
   2229		offset = OHCI1394_HCControlClear;
   2230	reg_write(ohci, offset, OHCI1394_HCControl_aPhyEnhanceEnable);
   2231
   2232	/* Clean up: configuration has been taken care of. */
   2233	reg_write(ohci, OHCI1394_HCControlClear,
   2234		  OHCI1394_HCControl_programPhyEnable);
   2235
   2236	return 0;
   2237}
   2238
   2239static int probe_tsb41ba3d(struct fw_ohci *ohci)
   2240{
   2241	/* TI vendor ID = 0x080028, TSB41BA3D product ID = 0x833005 (sic) */
   2242	static const u8 id[] = { 0x08, 0x00, 0x28, 0x83, 0x30, 0x05, };
   2243	int reg, i;
   2244
   2245	reg = read_phy_reg(ohci, 2);
   2246	if (reg < 0)
   2247		return reg;
   2248	if ((reg & PHY_EXTENDED_REGISTERS) != PHY_EXTENDED_REGISTERS)
   2249		return 0;
   2250
   2251	for (i = ARRAY_SIZE(id) - 1; i >= 0; i--) {
   2252		reg = read_paged_phy_reg(ohci, 1, i + 10);
   2253		if (reg < 0)
   2254			return reg;
   2255		if (reg != id[i])
   2256			return 0;
   2257	}
   2258	return 1;
   2259}
   2260
   2261static int ohci_enable(struct fw_card *card,
   2262		       const __be32 *config_rom, size_t length)
   2263{
   2264	struct fw_ohci *ohci = fw_ohci(card);
   2265	u32 lps, version, irqs;
   2266	int i, ret;
   2267
   2268	ret = software_reset(ohci);
   2269	if (ret < 0) {
   2270		ohci_err(ohci, "failed to reset ohci card\n");
   2271		return ret;
   2272	}
   2273
   2274	/*
   2275	 * Now enable LPS, which we need in order to start accessing
   2276	 * most of the registers.  In fact, on some cards (ALI M5251),
   2277	 * accessing registers in the SClk domain without LPS enabled
   2278	 * will lock up the machine.  Wait 50msec to make sure we have
   2279	 * full link enabled.  However, with some cards (well, at least
   2280	 * a JMicron PCIe card), we have to try again sometimes.
   2281	 *
   2282	 * TI TSB82AA2 + TSB81BA3(A) cards signal LPS enabled early but
   2283	 * cannot actually use the phy at that time.  These need tens of
   2284	 * millisecods pause between LPS write and first phy access too.
   2285	 */
   2286
   2287	reg_write(ohci, OHCI1394_HCControlSet,
   2288		  OHCI1394_HCControl_LPS |
   2289		  OHCI1394_HCControl_postedWriteEnable);
   2290	flush_writes(ohci);
   2291
   2292	for (lps = 0, i = 0; !lps && i < 3; i++) {
   2293		msleep(50);
   2294		lps = reg_read(ohci, OHCI1394_HCControlSet) &
   2295		      OHCI1394_HCControl_LPS;
   2296	}
   2297
   2298	if (!lps) {
   2299		ohci_err(ohci, "failed to set Link Power Status\n");
   2300		return -EIO;
   2301	}
   2302
   2303	if (ohci->quirks & QUIRK_TI_SLLZ059) {
   2304		ret = probe_tsb41ba3d(ohci);
   2305		if (ret < 0)
   2306			return ret;
   2307		if (ret)
   2308			ohci_notice(ohci, "local TSB41BA3D phy\n");
   2309		else
   2310			ohci->quirks &= ~QUIRK_TI_SLLZ059;
   2311	}
   2312
   2313	reg_write(ohci, OHCI1394_HCControlClear,
   2314		  OHCI1394_HCControl_noByteSwapData);
   2315
   2316	reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
   2317	reg_write(ohci, OHCI1394_LinkControlSet,
   2318		  OHCI1394_LinkControl_cycleTimerEnable |
   2319		  OHCI1394_LinkControl_cycleMaster);
   2320
   2321	reg_write(ohci, OHCI1394_ATRetries,
   2322		  OHCI1394_MAX_AT_REQ_RETRIES |
   2323		  (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
   2324		  (OHCI1394_MAX_PHYS_RESP_RETRIES << 8) |
   2325		  (200 << 16));
   2326
   2327	ohci->bus_time_running = false;
   2328
   2329	for (i = 0; i < 32; i++)
   2330		if (ohci->ir_context_support & (1 << i))
   2331			reg_write(ohci, OHCI1394_IsoRcvContextControlClear(i),
   2332				  IR_CONTEXT_MULTI_CHANNEL_MODE);
   2333
   2334	version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
   2335	if (version >= OHCI_VERSION_1_1) {
   2336		reg_write(ohci, OHCI1394_InitialChannelsAvailableHi,
   2337			  0xfffffffe);
   2338		card->broadcast_channel_auto_allocated = true;
   2339	}
   2340
   2341	/* Get implemented bits of the priority arbitration request counter. */
   2342	reg_write(ohci, OHCI1394_FairnessControl, 0x3f);
   2343	ohci->pri_req_max = reg_read(ohci, OHCI1394_FairnessControl) & 0x3f;
   2344	reg_write(ohci, OHCI1394_FairnessControl, 0);
   2345	card->priority_budget_implemented = ohci->pri_req_max != 0;
   2346
   2347	reg_write(ohci, OHCI1394_PhyUpperBound, FW_MAX_PHYSICAL_RANGE >> 16);
   2348	reg_write(ohci, OHCI1394_IntEventClear, ~0);
   2349	reg_write(ohci, OHCI1394_IntMaskClear, ~0);
   2350
   2351	ret = configure_1394a_enhancements(ohci);
   2352	if (ret < 0)
   2353		return ret;
   2354
   2355	/* Activate link_on bit and contender bit in our self ID packets.*/
   2356	ret = ohci_update_phy_reg(card, 4, 0, PHY_LINK_ACTIVE | PHY_CONTENDER);
   2357	if (ret < 0)
   2358		return ret;
   2359
   2360	/*
   2361	 * When the link is not yet enabled, the atomic config rom
   2362	 * update mechanism described below in ohci_set_config_rom()
   2363	 * is not active.  We have to update ConfigRomHeader and
   2364	 * BusOptions manually, and the write to ConfigROMmap takes
   2365	 * effect immediately.  We tie this to the enabling of the
   2366	 * link, so we have a valid config rom before enabling - the
   2367	 * OHCI requires that ConfigROMhdr and BusOptions have valid
   2368	 * values before enabling.
   2369	 *
   2370	 * However, when the ConfigROMmap is written, some controllers
   2371	 * always read back quadlets 0 and 2 from the config rom to
   2372	 * the ConfigRomHeader and BusOptions registers on bus reset.
   2373	 * They shouldn't do that in this initial case where the link
   2374	 * isn't enabled.  This means we have to use the same
   2375	 * workaround here, setting the bus header to 0 and then write
   2376	 * the right values in the bus reset tasklet.
   2377	 */
   2378
   2379	if (config_rom) {
   2380		ohci->next_config_rom =
   2381			dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
   2382					   &ohci->next_config_rom_bus,
   2383					   GFP_KERNEL);
   2384		if (ohci->next_config_rom == NULL)
   2385			return -ENOMEM;
   2386
   2387		copy_config_rom(ohci->next_config_rom, config_rom, length);
   2388	} else {
   2389		/*
   2390		 * In the suspend case, config_rom is NULL, which
   2391		 * means that we just reuse the old config rom.
   2392		 */
   2393		ohci->next_config_rom = ohci->config_rom;
   2394		ohci->next_config_rom_bus = ohci->config_rom_bus;
   2395	}
   2396
   2397	ohci->next_header = ohci->next_config_rom[0];
   2398	ohci->next_config_rom[0] = 0;
   2399	reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
   2400	reg_write(ohci, OHCI1394_BusOptions,
   2401		  be32_to_cpu(ohci->next_config_rom[2]));
   2402	reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
   2403
   2404	reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
   2405
   2406	irqs =	OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
   2407		OHCI1394_RQPkt | OHCI1394_RSPkt |
   2408		OHCI1394_isochTx | OHCI1394_isochRx |
   2409		OHCI1394_postedWriteErr |
   2410		OHCI1394_selfIDComplete |
   2411		OHCI1394_regAccessFail |
   2412		OHCI1394_cycleInconsistent |
   2413		OHCI1394_unrecoverableError |
   2414		OHCI1394_cycleTooLong |
   2415		OHCI1394_masterIntEnable;
   2416	if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
   2417		irqs |= OHCI1394_busReset;
   2418	reg_write(ohci, OHCI1394_IntMaskSet, irqs);
   2419
   2420	reg_write(ohci, OHCI1394_HCControlSet,
   2421		  OHCI1394_HCControl_linkEnable |
   2422		  OHCI1394_HCControl_BIBimageValid);
   2423
   2424	reg_write(ohci, OHCI1394_LinkControlSet,
   2425		  OHCI1394_LinkControl_rcvSelfID |
   2426		  OHCI1394_LinkControl_rcvPhyPkt);
   2427
   2428	ar_context_run(&ohci->ar_request_ctx);
   2429	ar_context_run(&ohci->ar_response_ctx);
   2430
   2431	flush_writes(ohci);
   2432
   2433	/* We are ready to go, reset bus to finish initialization. */
   2434	fw_schedule_bus_reset(&ohci->card, false, true);
   2435
   2436	return 0;
   2437}
   2438
   2439static int ohci_set_config_rom(struct fw_card *card,
   2440			       const __be32 *config_rom, size_t length)
   2441{
   2442	struct fw_ohci *ohci;
   2443	__be32 *next_config_rom;
   2444	dma_addr_t next_config_rom_bus;
   2445
   2446	ohci = fw_ohci(card);
   2447
   2448	/*
   2449	 * When the OHCI controller is enabled, the config rom update
   2450	 * mechanism is a bit tricky, but easy enough to use.  See
   2451	 * section 5.5.6 in the OHCI specification.
   2452	 *
   2453	 * The OHCI controller caches the new config rom address in a
   2454	 * shadow register (ConfigROMmapNext) and needs a bus reset
   2455	 * for the changes to take place.  When the bus reset is
   2456	 * detected, the controller loads the new values for the
   2457	 * ConfigRomHeader and BusOptions registers from the specified
   2458	 * config rom and loads ConfigROMmap from the ConfigROMmapNext
   2459	 * shadow register. All automatically and atomically.
   2460	 *
   2461	 * Now, there's a twist to this story.  The automatic load of
   2462	 * ConfigRomHeader and BusOptions doesn't honor the
   2463	 * noByteSwapData bit, so with a be32 config rom, the
   2464	 * controller will load be32 values in to these registers
   2465	 * during the atomic update, even on litte endian
   2466	 * architectures.  The workaround we use is to put a 0 in the
   2467	 * header quadlet; 0 is endian agnostic and means that the
   2468	 * config rom isn't ready yet.  In the bus reset tasklet we
   2469	 * then set up the real values for the two registers.
   2470	 *
   2471	 * We use ohci->lock to avoid racing with the code that sets
   2472	 * ohci->next_config_rom to NULL (see bus_reset_work).
   2473	 */
   2474
   2475	next_config_rom =
   2476		dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
   2477				   &next_config_rom_bus, GFP_KERNEL);
   2478	if (next_config_rom == NULL)
   2479		return -ENOMEM;
   2480
   2481	spin_lock_irq(&ohci->lock);
   2482
   2483	/*
   2484	 * If there is not an already pending config_rom update,
   2485	 * push our new allocation into the ohci->next_config_rom
   2486	 * and then mark the local variable as null so that we
   2487	 * won't deallocate the new buffer.
   2488	 *
   2489	 * OTOH, if there is a pending config_rom update, just
   2490	 * use that buffer with the new config_rom data, and
   2491	 * let this routine free the unused DMA allocation.
   2492	 */
   2493
   2494	if (ohci->next_config_rom == NULL) {
   2495		ohci->next_config_rom = next_config_rom;
   2496		ohci->next_config_rom_bus = next_config_rom_bus;
   2497		next_config_rom = NULL;
   2498	}
   2499
   2500	copy_config_rom(ohci->next_config_rom, config_rom, length);
   2501
   2502	ohci->next_header = config_rom[0];
   2503	ohci->next_config_rom[0] = 0;
   2504
   2505	reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
   2506
   2507	spin_unlock_irq(&ohci->lock);
   2508
   2509	/* If we didn't use the DMA allocation, delete it. */
   2510	if (next_config_rom != NULL)
   2511		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
   2512				  next_config_rom, next_config_rom_bus);
   2513
   2514	/*
   2515	 * Now initiate a bus reset to have the changes take
   2516	 * effect. We clean up the old config rom memory and DMA
   2517	 * mappings in the bus reset tasklet, since the OHCI
   2518	 * controller could need to access it before the bus reset
   2519	 * takes effect.
   2520	 */
   2521
   2522	fw_schedule_bus_reset(&ohci->card, true, true);
   2523
   2524	return 0;
   2525}
   2526
   2527static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
   2528{
   2529	struct fw_ohci *ohci = fw_ohci(card);
   2530
   2531	at_context_transmit(&ohci->at_request_ctx, packet);
   2532}
   2533
   2534static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
   2535{
   2536	struct fw_ohci *ohci = fw_ohci(card);
   2537
   2538	at_context_transmit(&ohci->at_response_ctx, packet);
   2539}
   2540
   2541static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
   2542{
   2543	struct fw_ohci *ohci = fw_ohci(card);
   2544	struct context *ctx = &ohci->at_request_ctx;
   2545	struct driver_data *driver_data = packet->driver_data;
   2546	int ret = -ENOENT;
   2547
   2548	tasklet_disable_in_atomic(&ctx->tasklet);
   2549
   2550	if (packet->ack != 0)
   2551		goto out;
   2552
   2553	if (packet->payload_mapped)
   2554		dma_unmap_single(ohci->card.device, packet->payload_bus,
   2555				 packet->payload_length, DMA_TO_DEVICE);
   2556
   2557	log_ar_at_event(ohci, 'T', packet->speed, packet->header, 0x20);
   2558	driver_data->packet = NULL;
   2559	packet->ack = RCODE_CANCELLED;
   2560	packet->callback(packet, &ohci->card, packet->ack);
   2561	ret = 0;
   2562 out:
   2563	tasklet_enable(&ctx->tasklet);
   2564
   2565	return ret;
   2566}
   2567
   2568static int ohci_enable_phys_dma(struct fw_card *card,
   2569				int node_id, int generation)
   2570{
   2571	struct fw_ohci *ohci = fw_ohci(card);
   2572	unsigned long flags;
   2573	int n, ret = 0;
   2574
   2575	if (param_remote_dma)
   2576		return 0;
   2577
   2578	/*
   2579	 * FIXME:  Make sure this bitmask is cleared when we clear the busReset
   2580	 * interrupt bit.  Clear physReqResourceAllBuses on bus reset.
   2581	 */
   2582
   2583	spin_lock_irqsave(&ohci->lock, flags);
   2584
   2585	if (ohci->generation != generation) {
   2586		ret = -ESTALE;
   2587		goto out;
   2588	}
   2589
   2590	/*
   2591	 * Note, if the node ID contains a non-local bus ID, physical DMA is
   2592	 * enabled for _all_ nodes on remote buses.
   2593	 */
   2594
   2595	n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
   2596	if (n < 32)
   2597		reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
   2598	else
   2599		reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
   2600
   2601	flush_writes(ohci);
   2602 out:
   2603	spin_unlock_irqrestore(&ohci->lock, flags);
   2604
   2605	return ret;
   2606}
   2607
   2608static u32 ohci_read_csr(struct fw_card *card, int csr_offset)
   2609{
   2610	struct fw_ohci *ohci = fw_ohci(card);
   2611	unsigned long flags;
   2612	u32 value;
   2613
   2614	switch (csr_offset) {
   2615	case CSR_STATE_CLEAR:
   2616	case CSR_STATE_SET:
   2617		if (ohci->is_root &&
   2618		    (reg_read(ohci, OHCI1394_LinkControlSet) &
   2619		     OHCI1394_LinkControl_cycleMaster))
   2620			value = CSR_STATE_BIT_CMSTR;
   2621		else
   2622			value = 0;
   2623		if (ohci->csr_state_setclear_abdicate)
   2624			value |= CSR_STATE_BIT_ABDICATE;
   2625
   2626		return value;
   2627
   2628	case CSR_NODE_IDS:
   2629		return reg_read(ohci, OHCI1394_NodeID) << 16;
   2630
   2631	case CSR_CYCLE_TIME:
   2632		return get_cycle_time(ohci);
   2633
   2634	case CSR_BUS_TIME:
   2635		/*
   2636		 * We might be called just after the cycle timer has wrapped
   2637		 * around but just before the cycle64Seconds handler, so we
   2638		 * better check here, too, if the bus time needs to be updated.
   2639		 */
   2640		spin_lock_irqsave(&ohci->lock, flags);
   2641		value = update_bus_time(ohci);
   2642		spin_unlock_irqrestore(&ohci->lock, flags);
   2643		return value;
   2644
   2645	case CSR_BUSY_TIMEOUT:
   2646		value = reg_read(ohci, OHCI1394_ATRetries);
   2647		return (value >> 4) & 0x0ffff00f;
   2648
   2649	case CSR_PRIORITY_BUDGET:
   2650		return (reg_read(ohci, OHCI1394_FairnessControl) & 0x3f) |
   2651			(ohci->pri_req_max << 8);
   2652
   2653	default:
   2654		WARN_ON(1);
   2655		return 0;
   2656	}
   2657}
   2658
   2659static void ohci_write_csr(struct fw_card *card, int csr_offset, u32 value)
   2660{
   2661	struct fw_ohci *ohci = fw_ohci(card);
   2662	unsigned long flags;
   2663
   2664	switch (csr_offset) {
   2665	case CSR_STATE_CLEAR:
   2666		if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
   2667			reg_write(ohci, OHCI1394_LinkControlClear,
   2668				  OHCI1394_LinkControl_cycleMaster);
   2669			flush_writes(ohci);
   2670		}
   2671		if (value & CSR_STATE_BIT_ABDICATE)
   2672			ohci->csr_state_setclear_abdicate = false;
   2673		break;
   2674
   2675	case CSR_STATE_SET:
   2676		if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
   2677			reg_write(ohci, OHCI1394_LinkControlSet,
   2678				  OHCI1394_LinkControl_cycleMaster);
   2679			flush_writes(ohci);
   2680		}
   2681		if (value & CSR_STATE_BIT_ABDICATE)
   2682			ohci->csr_state_setclear_abdicate = true;
   2683		break;
   2684
   2685	case CSR_NODE_IDS:
   2686		reg_write(ohci, OHCI1394_NodeID, value >> 16);
   2687		flush_writes(ohci);
   2688		break;
   2689
   2690	case CSR_CYCLE_TIME:
   2691		reg_write(ohci, OHCI1394_IsochronousCycleTimer, value);
   2692		reg_write(ohci, OHCI1394_IntEventSet,
   2693			  OHCI1394_cycleInconsistent);
   2694		flush_writes(ohci);
   2695		break;
   2696
   2697	case CSR_BUS_TIME:
   2698		spin_lock_irqsave(&ohci->lock, flags);
   2699		ohci->bus_time = (update_bus_time(ohci) & 0x40) |
   2700		                 (value & ~0x7f);
   2701		spin_unlock_irqrestore(&ohci->lock, flags);
   2702		break;
   2703
   2704	case CSR_BUSY_TIMEOUT:
   2705		value = (value & 0xf) | ((value & 0xf) << 4) |
   2706			((value & 0xf) << 8) | ((value & 0x0ffff000) << 4);
   2707		reg_write(ohci, OHCI1394_ATRetries, value);
   2708		flush_writes(ohci);
   2709		break;
   2710
   2711	case CSR_PRIORITY_BUDGET:
   2712		reg_write(ohci, OHCI1394_FairnessControl, value & 0x3f);
   2713		flush_writes(ohci);
   2714		break;
   2715
   2716	default:
   2717		WARN_ON(1);
   2718		break;
   2719	}
   2720}
   2721
   2722static void flush_iso_completions(struct iso_context *ctx)
   2723{
   2724	ctx->base.callback.sc(&ctx->base, ctx->last_timestamp,
   2725			      ctx->header_length, ctx->header,
   2726			      ctx->base.callback_data);
   2727	ctx->header_length = 0;
   2728}
   2729
   2730static void copy_iso_headers(struct iso_context *ctx, const u32 *dma_hdr)
   2731{
   2732	u32 *ctx_hdr;
   2733
   2734	if (ctx->header_length + ctx->base.header_size > PAGE_SIZE) {
   2735		if (ctx->base.drop_overflow_headers)
   2736			return;
   2737		flush_iso_completions(ctx);
   2738	}
   2739
   2740	ctx_hdr = ctx->header + ctx->header_length;
   2741	ctx->last_timestamp = (u16)le32_to_cpu((__force __le32)dma_hdr[0]);
   2742
   2743	/*
   2744	 * The two iso header quadlets are byteswapped to little
   2745	 * endian by the controller, but we want to present them
   2746	 * as big endian for consistency with the bus endianness.
   2747	 */
   2748	if (ctx->base.header_size > 0)
   2749		ctx_hdr[0] = swab32(dma_hdr[1]); /* iso packet header */
   2750	if (ctx->base.header_size > 4)
   2751		ctx_hdr[1] = swab32(dma_hdr[0]); /* timestamp */
   2752	if (ctx->base.header_size > 8)
   2753		memcpy(&ctx_hdr[2], &dma_hdr[2], ctx->base.header_size - 8);
   2754	ctx->header_length += ctx->base.header_size;
   2755}
   2756
   2757static int handle_ir_packet_per_buffer(struct context *context,
   2758				       struct descriptor *d,
   2759				       struct descriptor *last)
   2760{
   2761	struct iso_context *ctx =
   2762		container_of(context, struct iso_context, context);
   2763	struct descriptor *pd;
   2764	u32 buffer_dma;
   2765
   2766	for (pd = d; pd <= last; pd++)
   2767		if (pd->transfer_status)
   2768			break;
   2769	if (pd > last)
   2770		/* Descriptor(s) not done yet, stop iteration */
   2771		return 0;
   2772
   2773	while (!(d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))) {
   2774		d++;
   2775		buffer_dma = le32_to_cpu(d->data_address);
   2776		dma_sync_single_range_for_cpu(context->ohci->card.device,
   2777					      buffer_dma & PAGE_MASK,
   2778					      buffer_dma & ~PAGE_MASK,
   2779					      le16_to_cpu(d->req_count),
   2780					      DMA_FROM_DEVICE);
   2781	}
   2782
   2783	copy_iso_headers(ctx, (u32 *) (last + 1));
   2784
   2785	if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS))
   2786		flush_iso_completions(ctx);
   2787
   2788	return 1;
   2789}
   2790
   2791/* d == last because each descriptor block is only a single descriptor. */
   2792static int handle_ir_buffer_fill(struct context *context,
   2793				 struct descriptor *d,
   2794				 struct descriptor *last)
   2795{
   2796	struct iso_context *ctx =
   2797		container_of(context, struct iso_context, context);
   2798	unsigned int req_count, res_count, completed;
   2799	u32 buffer_dma;
   2800
   2801	req_count = le16_to_cpu(last->req_count);
   2802	res_count = le16_to_cpu(READ_ONCE(last->res_count));
   2803	completed = req_count - res_count;
   2804	buffer_dma = le32_to_cpu(last->data_address);
   2805
   2806	if (completed > 0) {
   2807		ctx->mc_buffer_bus = buffer_dma;
   2808		ctx->mc_completed = completed;
   2809	}
   2810
   2811	if (res_count != 0)
   2812		/* Descriptor(s) not done yet, stop iteration */
   2813		return 0;
   2814
   2815	dma_sync_single_range_for_cpu(context->ohci->card.device,
   2816				      buffer_dma & PAGE_MASK,
   2817				      buffer_dma & ~PAGE_MASK,
   2818				      completed, DMA_FROM_DEVICE);
   2819
   2820	if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS)) {
   2821		ctx->base.callback.mc(&ctx->base,
   2822				      buffer_dma + completed,
   2823				      ctx->base.callback_data);
   2824		ctx->mc_completed = 0;
   2825	}
   2826
   2827	return 1;
   2828}
   2829
   2830static void flush_ir_buffer_fill(struct iso_context *ctx)
   2831{
   2832	dma_sync_single_range_for_cpu(ctx->context.ohci->card.device,
   2833				      ctx->mc_buffer_bus & PAGE_MASK,
   2834				      ctx->mc_buffer_bus & ~PAGE_MASK,
   2835				      ctx->mc_completed, DMA_FROM_DEVICE);
   2836
   2837	ctx->base.callback.mc(&ctx->base,
   2838			      ctx->mc_buffer_bus + ctx->mc_completed,
   2839			      ctx->base.callback_data);
   2840	ctx->mc_completed = 0;
   2841}
   2842
   2843static inline void sync_it_packet_for_cpu(struct context *context,
   2844					  struct descriptor *pd)
   2845{
   2846	__le16 control;
   2847	u32 buffer_dma;
   2848
   2849	/* only packets beginning with OUTPUT_MORE* have data buffers */
   2850	if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
   2851		return;
   2852
   2853	/* skip over the OUTPUT_MORE_IMMEDIATE descriptor */
   2854	pd += 2;
   2855
   2856	/*
   2857	 * If the packet has a header, the first OUTPUT_MORE/LAST descriptor's
   2858	 * data buffer is in the context program's coherent page and must not
   2859	 * be synced.
   2860	 */
   2861	if ((le32_to_cpu(pd->data_address) & PAGE_MASK) ==
   2862	    (context->current_bus          & PAGE_MASK)) {
   2863		if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
   2864			return;
   2865		pd++;
   2866	}
   2867
   2868	do {
   2869		buffer_dma = le32_to_cpu(pd->data_address);
   2870		dma_sync_single_range_for_cpu(context->ohci->card.device,
   2871					      buffer_dma & PAGE_MASK,
   2872					      buffer_dma & ~PAGE_MASK,
   2873					      le16_to_cpu(pd->req_count),
   2874					      DMA_TO_DEVICE);
   2875		control = pd->control;
   2876		pd++;
   2877	} while (!(control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS)));
   2878}
   2879
   2880static int handle_it_packet(struct context *context,
   2881			    struct descriptor *d,
   2882			    struct descriptor *last)
   2883{
   2884	struct iso_context *ctx =
   2885		container_of(context, struct iso_context, context);
   2886	struct descriptor *pd;
   2887	__be32 *ctx_hdr;
   2888
   2889	for (pd = d; pd <= last; pd++)
   2890		if (pd->transfer_status)
   2891			break;
   2892	if (pd > last)
   2893		/* Descriptor(s) not done yet, stop iteration */
   2894		return 0;
   2895
   2896	sync_it_packet_for_cpu(context, d);
   2897
   2898	if (ctx->header_length + 4 > PAGE_SIZE) {
   2899		if (ctx->base.drop_overflow_headers)
   2900			return 1;
   2901		flush_iso_completions(ctx);
   2902	}
   2903
   2904	ctx_hdr = ctx->header + ctx->header_length;
   2905	ctx->last_timestamp = le16_to_cpu(last->res_count);
   2906	/* Present this value as big-endian to match the receive code */
   2907	*ctx_hdr = cpu_to_be32((le16_to_cpu(pd->transfer_status) << 16) |
   2908			       le16_to_cpu(pd->res_count));
   2909	ctx->header_length += 4;
   2910
   2911	if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS))
   2912		flush_iso_completions(ctx);
   2913
   2914	return 1;
   2915}
   2916
   2917static void set_multichannel_mask(struct fw_ohci *ohci, u64 channels)
   2918{
   2919	u32 hi = channels >> 32, lo = channels;
   2920
   2921	reg_write(ohci, OHCI1394_IRMultiChanMaskHiClear, ~hi);
   2922	reg_write(ohci, OHCI1394_IRMultiChanMaskLoClear, ~lo);
   2923	reg_write(ohci, OHCI1394_IRMultiChanMaskHiSet, hi);
   2924	reg_write(ohci, OHCI1394_IRMultiChanMaskLoSet, lo);
   2925	ohci->mc_channels = channels;
   2926}
   2927
   2928static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
   2929				int type, int channel, size_t header_size)
   2930{
   2931	struct fw_ohci *ohci = fw_ohci(card);
   2932	struct iso_context *ctx;
   2933	descriptor_callback_t callback;
   2934	u64 *channels;
   2935	u32 *mask, regs;
   2936	int index, ret = -EBUSY;
   2937
   2938	spin_lock_irq(&ohci->lock);
   2939
   2940	switch (type) {
   2941	case FW_ISO_CONTEXT_TRANSMIT:
   2942		mask     = &ohci->it_context_mask;
   2943		callback = handle_it_packet;
   2944		index    = ffs(*mask) - 1;
   2945		if (index >= 0) {
   2946			*mask &= ~(1 << index);
   2947			regs = OHCI1394_IsoXmitContextBase(index);
   2948			ctx  = &ohci->it_context_list[index];
   2949		}
   2950		break;
   2951
   2952	case FW_ISO_CONTEXT_RECEIVE:
   2953		channels = &ohci->ir_context_channels;
   2954		mask     = &ohci->ir_context_mask;
   2955		callback = handle_ir_packet_per_buffer;
   2956		index    = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
   2957		if (index >= 0) {
   2958			*channels &= ~(1ULL << channel);
   2959			*mask     &= ~(1 << index);
   2960			regs = OHCI1394_IsoRcvContextBase(index);
   2961			ctx  = &ohci->ir_context_list[index];
   2962		}
   2963		break;
   2964
   2965	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
   2966		mask     = &ohci->ir_context_mask;
   2967		callback = handle_ir_buffer_fill;
   2968		index    = !ohci->mc_allocated ? ffs(*mask) - 1 : -1;
   2969		if (index >= 0) {
   2970			ohci->mc_allocated = true;
   2971			*mask &= ~(1 << index);
   2972			regs = OHCI1394_IsoRcvContextBase(index);
   2973			ctx  = &ohci->ir_context_list[index];
   2974		}
   2975		break;
   2976
   2977	default:
   2978		index = -1;
   2979		ret = -ENOSYS;
   2980	}
   2981
   2982	spin_unlock_irq(&ohci->lock);
   2983
   2984	if (index < 0)
   2985		return ERR_PTR(ret);
   2986
   2987	memset(ctx, 0, sizeof(*ctx));
   2988	ctx->header_length = 0;
   2989	ctx->header = (void *) __get_free_page(GFP_KERNEL);
   2990	if (ctx->header == NULL) {
   2991		ret = -ENOMEM;
   2992		goto out;
   2993	}
   2994	ret = context_init(&ctx->context, ohci, regs, callback);
   2995	if (ret < 0)
   2996		goto out_with_header;
   2997
   2998	if (type == FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL) {
   2999		set_multichannel_mask(ohci, 0);
   3000		ctx->mc_completed = 0;
   3001	}
   3002
   3003	return &ctx->base;
   3004
   3005 out_with_header:
   3006	free_page((unsigned long)ctx->header);
   3007 out:
   3008	spin_lock_irq(&ohci->lock);
   3009
   3010	switch (type) {
   3011	case FW_ISO_CONTEXT_RECEIVE:
   3012		*channels |= 1ULL << channel;
   3013		break;
   3014
   3015	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
   3016		ohci->mc_allocated = false;
   3017		break;
   3018	}
   3019	*mask |= 1 << index;
   3020
   3021	spin_unlock_irq(&ohci->lock);
   3022
   3023	return ERR_PTR(ret);
   3024}
   3025
   3026static int ohci_start_iso(struct fw_iso_context *base,
   3027			  s32 cycle, u32 sync, u32 tags)
   3028{
   3029	struct iso_context *ctx = container_of(base, struct iso_context, base);
   3030	struct fw_ohci *ohci = ctx->context.ohci;
   3031	u32 control = IR_CONTEXT_ISOCH_HEADER, match;
   3032	int index;
   3033
   3034	/* the controller cannot start without any queued packets */
   3035	if (ctx->context.last->branch_address == 0)
   3036		return -ENODATA;
   3037
   3038	switch (ctx->base.type) {
   3039	case FW_ISO_CONTEXT_TRANSMIT:
   3040		index = ctx - ohci->it_context_list;
   3041		match = 0;
   3042		if (cycle >= 0)
   3043			match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
   3044				(cycle & 0x7fff) << 16;
   3045
   3046		reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
   3047		reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
   3048		context_run(&ctx->context, match);
   3049		break;
   3050
   3051	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
   3052		control |= IR_CONTEXT_BUFFER_FILL|IR_CONTEXT_MULTI_CHANNEL_MODE;
   3053		fallthrough;
   3054	case FW_ISO_CONTEXT_RECEIVE:
   3055		index = ctx - ohci->ir_context_list;
   3056		match = (tags << 28) | (sync << 8) | ctx->base.channel;
   3057		if (cycle >= 0) {
   3058			match |= (cycle & 0x07fff) << 12;
   3059			control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
   3060		}
   3061
   3062		reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
   3063		reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
   3064		reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
   3065		context_run(&ctx->context, control);
   3066
   3067		ctx->sync = sync;
   3068		ctx->tags = tags;
   3069
   3070		break;
   3071	}
   3072
   3073	return 0;
   3074}
   3075
   3076static int ohci_stop_iso(struct fw_iso_context *base)
   3077{
   3078	struct fw_ohci *ohci = fw_ohci(base->card);
   3079	struct iso_context *ctx = container_of(base, struct iso_context, base);
   3080	int index;
   3081
   3082	switch (ctx->base.type) {
   3083	case FW_ISO_CONTEXT_TRANSMIT:
   3084		index = ctx - ohci->it_context_list;
   3085		reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
   3086		break;
   3087
   3088	case FW_ISO_CONTEXT_RECEIVE:
   3089	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
   3090		index = ctx - ohci->ir_context_list;
   3091		reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
   3092		break;
   3093	}
   3094	flush_writes(ohci);
   3095	context_stop(&ctx->context);
   3096	tasklet_kill(&ctx->context.tasklet);
   3097
   3098	return 0;
   3099}
   3100
   3101static void ohci_free_iso_context(struct fw_iso_context *base)
   3102{
   3103	struct fw_ohci *ohci = fw_ohci(base->card);
   3104	struct iso_context *ctx = container_of(base, struct iso_context, base);
   3105	unsigned long flags;
   3106	int index;
   3107
   3108	ohci_stop_iso(base);
   3109	context_release(&ctx->context);
   3110	free_page((unsigned long)ctx->header);
   3111
   3112	spin_lock_irqsave(&ohci->lock, flags);
   3113
   3114	switch (base->type) {
   3115	case FW_ISO_CONTEXT_TRANSMIT:
   3116		index = ctx - ohci->it_context_list;
   3117		ohci->it_context_mask |= 1 << index;
   3118		break;
   3119
   3120	case FW_ISO_CONTEXT_RECEIVE:
   3121		index = ctx - ohci->ir_context_list;
   3122		ohci->ir_context_mask |= 1 << index;
   3123		ohci->ir_context_channels |= 1ULL << base->channel;
   3124		break;
   3125
   3126	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
   3127		index = ctx - ohci->ir_context_list;
   3128		ohci->ir_context_mask |= 1 << index;
   3129		ohci->ir_context_channels |= ohci->mc_channels;
   3130		ohci->mc_channels = 0;
   3131		ohci->mc_allocated = false;
   3132		break;
   3133	}
   3134
   3135	spin_unlock_irqrestore(&ohci->lock, flags);
   3136}
   3137
   3138static int ohci_set_iso_channels(struct fw_iso_context *base, u64 *channels)
   3139{
   3140	struct fw_ohci *ohci = fw_ohci(base->card);
   3141	unsigned long flags;
   3142	int ret;
   3143
   3144	switch (base->type) {
   3145	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
   3146
   3147		spin_lock_irqsave(&ohci->lock, flags);
   3148
   3149		/* Don't allow multichannel to grab other contexts' channels. */
   3150		if (~ohci->ir_context_channels & ~ohci->mc_channels & *channels) {
   3151			*channels = ohci->ir_context_channels;
   3152			ret = -EBUSY;
   3153		} else {
   3154			set_multichannel_mask(ohci, *channels);
   3155			ret = 0;
   3156		}
   3157
   3158		spin_unlock_irqrestore(&ohci->lock, flags);
   3159
   3160		break;
   3161	default:
   3162		ret = -EINVAL;
   3163	}
   3164
   3165	return ret;
   3166}
   3167
   3168#ifdef CONFIG_PM
   3169static void ohci_resume_iso_dma(struct fw_ohci *ohci)
   3170{
   3171	int i;
   3172	struct iso_context *ctx;
   3173
   3174	for (i = 0 ; i < ohci->n_ir ; i++) {
   3175		ctx = &ohci->ir_context_list[i];
   3176		if (ctx->context.running)
   3177			ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
   3178	}
   3179
   3180	for (i = 0 ; i < ohci->n_it ; i++) {
   3181		ctx = &ohci->it_context_list[i];
   3182		if (ctx->context.running)
   3183			ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
   3184	}
   3185}
   3186#endif
   3187
   3188static int queue_iso_transmit(struct iso_context *ctx,
   3189			      struct fw_iso_packet *packet,
   3190			      struct fw_iso_buffer *buffer,
   3191			      unsigned long payload)
   3192{
   3193	struct descriptor *d, *last, *pd;
   3194	struct fw_iso_packet *p;
   3195	__le32 *header;
   3196	dma_addr_t d_bus, page_bus;
   3197	u32 z, header_z, payload_z, irq;
   3198	u32 payload_index, payload_end_index, next_page_index;
   3199	int page, end_page, i, length, offset;
   3200
   3201	p = packet;
   3202	payload_index = payload;
   3203
   3204	if (p->skip)
   3205		z = 1;
   3206	else
   3207		z = 2;
   3208	if (p->header_length > 0)
   3209		z++;
   3210
   3211	/* Determine the first page the payload isn't contained in. */
   3212	end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
   3213	if (p->payload_length > 0)
   3214		payload_z = end_page - (payload_index >> PAGE_SHIFT);
   3215	else
   3216		payload_z = 0;
   3217
   3218	z += payload_z;
   3219
   3220	/* Get header size in number of descriptors. */
   3221	header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
   3222
   3223	d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
   3224	if (d == NULL)
   3225		return -ENOMEM;
   3226
   3227	if (!p->skip) {
   3228		d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
   3229		d[0].req_count = cpu_to_le16(8);
   3230		/*
   3231		 * Link the skip address to this descriptor itself.  This causes
   3232		 * a context to skip a cycle whenever lost cycles or FIFO
   3233		 * overruns occur, without dropping the data.  The application
   3234		 * should then decide whether this is an error condition or not.
   3235		 * FIXME:  Make the context's cycle-lost behaviour configurable?
   3236		 */
   3237		d[0].branch_address = cpu_to_le32(d_bus | z);
   3238
   3239		header = (__le32 *) &d[1];
   3240		header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
   3241					IT_HEADER_TAG(p->tag) |
   3242					IT_HEADER_TCODE(TCODE_STREAM_DATA) |
   3243					IT_HEADER_CHANNEL(ctx->base.channel) |
   3244					IT_HEADER_SPEED(ctx->base.speed));
   3245		header[1] =
   3246			cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
   3247							  p->payload_length));
   3248	}
   3249
   3250	if (p->header_length > 0) {
   3251		d[2].req_count    = cpu_to_le16(p->header_length);
   3252		d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
   3253		memcpy(&d[z], p->header, p->header_length);
   3254	}
   3255
   3256	pd = d + z - payload_z;
   3257	payload_end_index = payload_index + p->payload_length;
   3258	for (i = 0; i < payload_z; i++) {
   3259		page               = payload_index >> PAGE_SHIFT;
   3260		offset             = payload_index & ~PAGE_MASK;
   3261		next_page_index    = (page + 1) << PAGE_SHIFT;
   3262		length             =
   3263			min(next_page_index, payload_end_index) - payload_index;
   3264		pd[i].req_count    = cpu_to_le16(length);
   3265
   3266		page_bus = page_private(buffer->pages[page]);
   3267		pd[i].data_address = cpu_to_le32(page_bus + offset);
   3268
   3269		dma_sync_single_range_for_device(ctx->context.ohci->card.device,
   3270						 page_bus, offset, length,
   3271						 DMA_TO_DEVICE);
   3272
   3273		payload_index += length;
   3274	}
   3275
   3276	if (p->interrupt)
   3277		irq = DESCRIPTOR_IRQ_ALWAYS;
   3278	else
   3279		irq = DESCRIPTOR_NO_IRQ;
   3280
   3281	last = z == 2 ? d : d + z - 1;
   3282	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
   3283				     DESCRIPTOR_STATUS |
   3284				     DESCRIPTOR_BRANCH_ALWAYS |
   3285				     irq);
   3286
   3287	context_append(&ctx->context, d, z, header_z);
   3288
   3289	return 0;
   3290}
   3291
   3292static int queue_iso_packet_per_buffer(struct iso_context *ctx,
   3293				       struct fw_iso_packet *packet,
   3294				       struct fw_iso_buffer *buffer,
   3295				       unsigned long payload)
   3296{
   3297	struct device *device = ctx->context.ohci->card.device;
   3298	struct descriptor *d, *pd;
   3299	dma_addr_t d_bus, page_bus;
   3300	u32 z, header_z, rest;
   3301	int i, j, length;
   3302	int page, offset, packet_count, header_size, payload_per_buffer;
   3303
   3304	/*
   3305	 * The OHCI controller puts the isochronous header and trailer in the
   3306	 * buffer, so we need at least 8 bytes.
   3307	 */
   3308	packet_count = packet->header_length / ctx->base.header_size;
   3309	header_size  = max(ctx->base.header_size, (size_t)8);
   3310
   3311	/* Get header size in number of descriptors. */
   3312	header_z = DIV_ROUND_UP(header_size, sizeof(*d));
   3313	page     = payload >> PAGE_SHIFT;
   3314	offset   = payload & ~PAGE_MASK;
   3315	payload_per_buffer = packet->payload_length / packet_count;
   3316
   3317	for (i = 0; i < packet_count; i++) {
   3318		/* d points to the header descriptor */
   3319		z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
   3320		d = context_get_descriptors(&ctx->context,
   3321				z + header_z, &d_bus);
   3322		if (d == NULL)
   3323			return -ENOMEM;
   3324
   3325		d->control      = cpu_to_le16(DESCRIPTOR_STATUS |
   3326					      DESCRIPTOR_INPUT_MORE);
   3327		if (packet->skip && i == 0)
   3328			d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
   3329		d->req_count    = cpu_to_le16(header_size);
   3330		d->res_count    = d->req_count;
   3331		d->transfer_status = 0;
   3332		d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));
   3333
   3334		rest = payload_per_buffer;
   3335		pd = d;
   3336		for (j = 1; j < z; j++) {
   3337			pd++;
   3338			pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
   3339						  DESCRIPTOR_INPUT_MORE);
   3340
   3341			if (offset + rest < PAGE_SIZE)
   3342				length = rest;
   3343			else
   3344				length = PAGE_SIZE - offset;
   3345			pd->req_count = cpu_to_le16(length);
   3346			pd->res_count = pd->req_count;
   3347			pd->transfer_status = 0;
   3348
   3349			page_bus = page_private(buffer->pages[page]);
   3350			pd->data_address = cpu_to_le32(page_bus + offset);
   3351
   3352			dma_sync_single_range_for_device(device, page_bus,
   3353							 offset, length,
   3354							 DMA_FROM_DEVICE);
   3355
   3356			offset = (offset + length) & ~PAGE_MASK;
   3357			rest -= length;
   3358			if (offset == 0)
   3359				page++;
   3360		}
   3361		pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
   3362					  DESCRIPTOR_INPUT_LAST |
   3363					  DESCRIPTOR_BRANCH_ALWAYS);
   3364		if (packet->interrupt && i == packet_count - 1)
   3365			pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
   3366
   3367		context_append(&ctx->context, d, z, header_z);
   3368	}
   3369
   3370	return 0;
   3371}
   3372
   3373static int queue_iso_buffer_fill(struct iso_context *ctx,
   3374				 struct fw_iso_packet *packet,
   3375				 struct fw_iso_buffer *buffer,
   3376				 unsigned long payload)
   3377{
   3378	struct descriptor *d;
   3379	dma_addr_t d_bus, page_bus;
   3380	int page, offset, rest, z, i, length;
   3381
   3382	page   = payload >> PAGE_SHIFT;
   3383	offset = payload & ~PAGE_MASK;
   3384	rest   = packet->payload_length;
   3385
   3386	/* We need one descriptor for each page in the buffer. */
   3387	z = DIV_ROUND_UP(offset + rest, PAGE_SIZE);
   3388
   3389	if (WARN_ON(offset & 3 || rest & 3 || page + z > buffer->page_count))
   3390		return -EFAULT;
   3391
   3392	for (i = 0; i < z; i++) {
   3393		d = context_get_descriptors(&ctx->context, 1, &d_bus);
   3394		if (d == NULL)
   3395			return -ENOMEM;
   3396
   3397		d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
   3398					 DESCRIPTOR_BRANCH_ALWAYS);
   3399		if (packet->skip && i == 0)
   3400			d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
   3401		if (packet->interrupt && i == z - 1)
   3402			d->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
   3403
   3404		if (offset + rest < PAGE_SIZE)
   3405			length = rest;
   3406		else
   3407			length = PAGE_SIZE - offset;
   3408		d->req_count = cpu_to_le16(length);
   3409		d->res_count = d->req_count;
   3410		d->transfer_status = 0;
   3411
   3412		page_bus = page_private(buffer->pages[page]);
   3413		d->data_address = cpu_to_le32(page_bus + offset);
   3414
   3415		dma_sync_single_range_for_device(ctx->context.ohci->card.device,
   3416						 page_bus, offset, length,
   3417						 DMA_FROM_DEVICE);
   3418
   3419		rest -= length;
   3420		offset = 0;
   3421		page++;
   3422
   3423		context_append(&ctx->context, d, 1, 0);
   3424	}
   3425
   3426	return 0;
   3427}
   3428
   3429static int ohci_queue_iso(struct fw_iso_context *base,
   3430			  struct fw_iso_packet *packet,
   3431			  struct fw_iso_buffer *buffer,
   3432			  unsigned long payload)
   3433{
   3434	struct iso_context *ctx = container_of(base, struct iso_context, base);
   3435	unsigned long flags;
   3436	int ret = -ENOSYS;
   3437
   3438	spin_lock_irqsave(&ctx->context.ohci->lock, flags);
   3439	switch (base->type) {
   3440	case FW_ISO_CONTEXT_TRANSMIT:
   3441		ret = queue_iso_transmit(ctx, packet, buffer, payload);
   3442		break;
   3443	case FW_ISO_CONTEXT_RECEIVE:
   3444		ret = queue_iso_packet_per_buffer(ctx, packet, buffer, payload);
   3445		break;
   3446	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
   3447		ret = queue_iso_buffer_fill(ctx, packet, buffer, payload);
   3448		break;
   3449	}
   3450	spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);
   3451
   3452	return ret;
   3453}
   3454
   3455static void ohci_flush_queue_iso(struct fw_iso_context *base)
   3456{
   3457	struct context *ctx =
   3458			&container_of(base, struct iso_context, base)->context;
   3459
   3460	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
   3461}
   3462
   3463static int ohci_flush_iso_completions(struct fw_iso_context *base)
   3464{
   3465	struct iso_context *ctx = container_of(base, struct iso_context, base);
   3466	int ret = 0;
   3467
   3468	tasklet_disable_in_atomic(&ctx->context.tasklet);
   3469
   3470	if (!test_and_set_bit_lock(0, &ctx->flushing_completions)) {
   3471		context_tasklet((unsigned long)&ctx->context);
   3472
   3473		switch (base->type) {
   3474		case FW_ISO_CONTEXT_TRANSMIT:
   3475		case FW_ISO_CONTEXT_RECEIVE:
   3476			if (ctx->header_length != 0)
   3477				flush_iso_completions(ctx);
   3478			break;
   3479		case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
   3480			if (ctx->mc_completed != 0)
   3481				flush_ir_buffer_fill(ctx);
   3482			break;
   3483		default:
   3484			ret = -ENOSYS;
   3485		}
   3486
   3487		clear_bit_unlock(0, &ctx->flushing_completions);
   3488		smp_mb__after_atomic();
   3489	}
   3490
   3491	tasklet_enable(&ctx->context.tasklet);
   3492
   3493	return ret;
   3494}
   3495
   3496static const struct fw_card_driver ohci_driver = {
   3497	.enable			= ohci_enable,
   3498	.read_phy_reg		= ohci_read_phy_reg,
   3499	.update_phy_reg		= ohci_update_phy_reg,
   3500	.set_config_rom		= ohci_set_config_rom,
   3501	.send_request		= ohci_send_request,
   3502	.send_response		= ohci_send_response,
   3503	.cancel_packet		= ohci_cancel_packet,
   3504	.enable_phys_dma	= ohci_enable_phys_dma,
   3505	.read_csr		= ohci_read_csr,
   3506	.write_csr		= ohci_write_csr,
   3507
   3508	.allocate_iso_context	= ohci_allocate_iso_context,
   3509	.free_iso_context	= ohci_free_iso_context,
   3510	.set_iso_channels	= ohci_set_iso_channels,
   3511	.queue_iso		= ohci_queue_iso,
   3512	.flush_queue_iso	= ohci_flush_queue_iso,
   3513	.flush_iso_completions	= ohci_flush_iso_completions,
   3514	.start_iso		= ohci_start_iso,
   3515	.stop_iso		= ohci_stop_iso,
   3516};
   3517
   3518#ifdef CONFIG_PPC_PMAC
   3519static void pmac_ohci_on(struct pci_dev *dev)
   3520{
   3521	if (machine_is(powermac)) {
   3522		struct device_node *ofn = pci_device_to_OF_node(dev);
   3523
   3524		if (ofn) {
   3525			pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
   3526			pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
   3527		}
   3528	}
   3529}
   3530
   3531static void pmac_ohci_off(struct pci_dev *dev)
   3532{
   3533	if (machine_is(powermac)) {
   3534		struct device_node *ofn = pci_device_to_OF_node(dev);
   3535
   3536		if (ofn) {
   3537			pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
   3538			pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
   3539		}
   3540	}
   3541}
   3542#else
   3543static inline void pmac_ohci_on(struct pci_dev *dev) {}
   3544static inline void pmac_ohci_off(struct pci_dev *dev) {}
   3545#endif /* CONFIG_PPC_PMAC */
   3546
   3547static int pci_probe(struct pci_dev *dev,
   3548			       const struct pci_device_id *ent)
   3549{
   3550	struct fw_ohci *ohci;
   3551	u32 bus_options, max_receive, link_speed, version;
   3552	u64 guid;
   3553	int i, err;
   3554	size_t size;
   3555
   3556	if (dev->vendor == PCI_VENDOR_ID_PINNACLE_SYSTEMS) {
   3557		dev_err(&dev->dev, "Pinnacle MovieBoard is not yet supported\n");
   3558		return -ENOSYS;
   3559	}
   3560
   3561	ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
   3562	if (ohci == NULL) {
   3563		err = -ENOMEM;
   3564		goto fail;
   3565	}
   3566
   3567	fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
   3568
   3569	pmac_ohci_on(dev);
   3570
   3571	err = pci_enable_device(dev);
   3572	if (err) {
   3573		dev_err(&dev->dev, "failed to enable OHCI hardware\n");
   3574		goto fail_free;
   3575	}
   3576
   3577	pci_set_master(dev);
   3578	pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
   3579	pci_set_drvdata(dev, ohci);
   3580
   3581	spin_lock_init(&ohci->lock);
   3582	mutex_init(&ohci->phy_reg_mutex);
   3583
   3584	INIT_WORK(&ohci->bus_reset_work, bus_reset_work);
   3585
   3586	if (!(pci_resource_flags(dev, 0) & IORESOURCE_MEM) ||
   3587	    pci_resource_len(dev, 0) < OHCI1394_REGISTER_SIZE) {
   3588		ohci_err(ohci, "invalid MMIO resource\n");
   3589		err = -ENXIO;
   3590		goto fail_disable;
   3591	}
   3592
   3593	err = pci_request_region(dev, 0, ohci_driver_name);
   3594	if (err) {
   3595		ohci_err(ohci, "MMIO resource unavailable\n");
   3596		goto fail_disable;
   3597	}
   3598
   3599	ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
   3600	if (ohci->registers == NULL) {
   3601		ohci_err(ohci, "failed to remap registers\n");
   3602		err = -ENXIO;
   3603		goto fail_iomem;
   3604	}
   3605
   3606	for (i = 0; i < ARRAY_SIZE(ohci_quirks); i++)
   3607		if ((ohci_quirks[i].vendor == dev->vendor) &&
   3608		    (ohci_quirks[i].device == (unsigned short)PCI_ANY_ID ||
   3609		     ohci_quirks[i].device == dev->device) &&
   3610		    (ohci_quirks[i].revision == (unsigned short)PCI_ANY_ID ||
   3611		     ohci_quirks[i].revision >= dev->revision)) {
   3612			ohci->quirks = ohci_quirks[i].flags;
   3613			break;
   3614		}
   3615	if (param_quirks)
   3616		ohci->quirks = param_quirks;
   3617
   3618	/*
   3619	 * Because dma_alloc_coherent() allocates at least one page,
   3620	 * we save space by using a common buffer for the AR request/
   3621	 * response descriptors and the self IDs buffer.
   3622	 */
   3623	BUILD_BUG_ON(AR_BUFFERS * sizeof(struct descriptor) > PAGE_SIZE/4);
   3624	BUILD_BUG_ON(SELF_ID_BUF_SIZE > PAGE_SIZE/2);
   3625	ohci->misc_buffer = dma_alloc_coherent(ohci->card.device,
   3626					       PAGE_SIZE,
   3627					       &ohci->misc_buffer_bus,
   3628					       GFP_KERNEL);
   3629	if (!ohci->misc_buffer) {
   3630		err = -ENOMEM;
   3631		goto fail_iounmap;
   3632	}
   3633
   3634	err = ar_context_init(&ohci->ar_request_ctx, ohci, 0,
   3635			      OHCI1394_AsReqRcvContextControlSet);
   3636	if (err < 0)
   3637		goto fail_misc_buf;
   3638
   3639	err = ar_context_init(&ohci->ar_response_ctx, ohci, PAGE_SIZE/4,
   3640			      OHCI1394_AsRspRcvContextControlSet);
   3641	if (err < 0)
   3642		goto fail_arreq_ctx;
   3643
   3644	err = context_init(&ohci->at_request_ctx, ohci,
   3645			   OHCI1394_AsReqTrContextControlSet, handle_at_packet);
   3646	if (err < 0)
   3647		goto fail_arrsp_ctx;
   3648
   3649	err = context_init(&ohci->at_response_ctx, ohci,
   3650			   OHCI1394_AsRspTrContextControlSet, handle_at_packet);
   3651	if (err < 0)
   3652		goto fail_atreq_ctx;
   3653
   3654	reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
   3655	ohci->ir_context_channels = ~0ULL;
   3656	ohci->ir_context_support = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
   3657	reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
   3658	ohci->ir_context_mask = ohci->ir_context_support;
   3659	ohci->n_ir = hweight32(ohci->ir_context_mask);
   3660	size = sizeof(struct iso_context) * ohci->n_ir;
   3661	ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
   3662
   3663	reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
   3664	ohci->it_context_support = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
   3665	/* JMicron JMB38x often shows 0 at first read, just ignore it */
   3666	if (!ohci->it_context_support) {
   3667		ohci_notice(ohci, "overriding IsoXmitIntMask\n");
   3668		ohci->it_context_support = 0xf;
   3669	}
   3670	reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
   3671	ohci->it_context_mask = ohci->it_context_support;
   3672	ohci->n_it = hweight32(ohci->it_context_mask);
   3673	size = sizeof(struct iso_context) * ohci->n_it;
   3674	ohci->it_context_list = kzalloc(size, GFP_KERNEL);
   3675
   3676	if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
   3677		err = -ENOMEM;
   3678		goto fail_contexts;
   3679	}
   3680
   3681	ohci->self_id     = ohci->misc_buffer     + PAGE_SIZE/2;
   3682	ohci->self_id_bus = ohci->misc_buffer_bus + PAGE_SIZE/2;
   3683
   3684	bus_options = reg_read(ohci, OHCI1394_BusOptions);
   3685	max_receive = (bus_options >> 12) & 0xf;
   3686	link_speed = bus_options & 0x7;
   3687	guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
   3688		reg_read(ohci, OHCI1394_GUIDLo);
   3689
   3690	if (!(ohci->quirks & QUIRK_NO_MSI))
   3691		pci_enable_msi(dev);
   3692	if (request_irq(dev->irq, irq_handler,
   3693			pci_dev_msi_enabled(dev) ? 0 : IRQF_SHARED,
   3694			ohci_driver_name, ohci)) {
   3695		ohci_err(ohci, "failed to allocate interrupt %d\n", dev->irq);
   3696		err = -EIO;
   3697		goto fail_msi;
   3698	}
   3699
   3700	err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
   3701	if (err)
   3702		goto fail_irq;
   3703
   3704	version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
   3705	ohci_notice(ohci,
   3706		    "added OHCI v%x.%x device as card %d, "
   3707		    "%d IR + %d IT contexts, quirks 0x%x%s\n",
   3708		    version >> 16, version & 0xff, ohci->card.index,
   3709		    ohci->n_ir, ohci->n_it, ohci->quirks,
   3710		    reg_read(ohci, OHCI1394_PhyUpperBound) ?
   3711			", physUB" : "");
   3712
   3713	return 0;
   3714
   3715 fail_irq:
   3716	free_irq(dev->irq, ohci);
   3717 fail_msi:
   3718	pci_disable_msi(dev);
   3719 fail_contexts:
   3720	kfree(ohci->ir_context_list);
   3721	kfree(ohci->it_context_list);
   3722	context_release(&ohci->at_response_ctx);
   3723 fail_atreq_ctx:
   3724	context_release(&ohci->at_request_ctx);
   3725 fail_arrsp_ctx:
   3726	ar_context_release(&ohci->ar_response_ctx);
   3727 fail_arreq_ctx:
   3728	ar_context_release(&ohci->ar_request_ctx);
   3729 fail_misc_buf:
   3730	dma_free_coherent(ohci->card.device, PAGE_SIZE,
   3731			  ohci->misc_buffer, ohci->misc_buffer_bus);
   3732 fail_iounmap:
   3733	pci_iounmap(dev, ohci->registers);
   3734 fail_iomem:
   3735	pci_release_region(dev, 0);
   3736 fail_disable:
   3737	pci_disable_device(dev);
   3738 fail_free:
   3739	kfree(ohci);
   3740	pmac_ohci_off(dev);
   3741 fail:
   3742	return err;
   3743}
   3744
   3745static void pci_remove(struct pci_dev *dev)
   3746{
   3747	struct fw_ohci *ohci = pci_get_drvdata(dev);
   3748
   3749	/*
   3750	 * If the removal is happening from the suspend state, LPS won't be
   3751	 * enabled and host registers (eg., IntMaskClear) won't be accessible.
   3752	 */
   3753	if (reg_read(ohci, OHCI1394_HCControlSet) & OHCI1394_HCControl_LPS) {
   3754		reg_write(ohci, OHCI1394_IntMaskClear, ~0);
   3755		flush_writes(ohci);
   3756	}
   3757	cancel_work_sync(&ohci->bus_reset_work);
   3758	fw_core_remove_card(&ohci->card);
   3759
   3760	/*
   3761	 * FIXME: Fail all pending packets here, now that the upper
   3762	 * layers can't queue any more.
   3763	 */
   3764
   3765	software_reset(ohci);
   3766	free_irq(dev->irq, ohci);
   3767
   3768	if (ohci->next_config_rom && ohci->next_config_rom != ohci->config_rom)
   3769		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
   3770				  ohci->next_config_rom, ohci->next_config_rom_bus);
   3771	if (ohci->config_rom)
   3772		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
   3773				  ohci->config_rom, ohci->config_rom_bus);
   3774	ar_context_release(&ohci->ar_request_ctx);
   3775	ar_context_release(&ohci->ar_response_ctx);
   3776	dma_free_coherent(ohci->card.device, PAGE_SIZE,
   3777			  ohci->misc_buffer, ohci->misc_buffer_bus);
   3778	context_release(&ohci->at_request_ctx);
   3779	context_release(&ohci->at_response_ctx);
   3780	kfree(ohci->it_context_list);
   3781	kfree(ohci->ir_context_list);
   3782	pci_disable_msi(dev);
   3783	pci_iounmap(dev, ohci->registers);
   3784	pci_release_region(dev, 0);
   3785	pci_disable_device(dev);
   3786	kfree(ohci);
   3787	pmac_ohci_off(dev);
   3788
   3789	dev_notice(&dev->dev, "removed fw-ohci device\n");
   3790}
   3791
   3792#ifdef CONFIG_PM
   3793static int pci_suspend(struct pci_dev *dev, pm_message_t state)
   3794{
   3795	struct fw_ohci *ohci = pci_get_drvdata(dev);
   3796	int err;
   3797
   3798	software_reset(ohci);
   3799	err = pci_save_state(dev);
   3800	if (err) {
   3801		ohci_err(ohci, "pci_save_state failed\n");
   3802		return err;
   3803	}
   3804	err = pci_set_power_state(dev, pci_choose_state(dev, state));
   3805	if (err)
   3806		ohci_err(ohci, "pci_set_power_state failed with %d\n", err);
   3807	pmac_ohci_off(dev);
   3808
   3809	return 0;
   3810}
   3811
   3812static int pci_resume(struct pci_dev *dev)
   3813{
   3814	struct fw_ohci *ohci = pci_get_drvdata(dev);
   3815	int err;
   3816
   3817	pmac_ohci_on(dev);
   3818	pci_set_power_state(dev, PCI_D0);
   3819	pci_restore_state(dev);
   3820	err = pci_enable_device(dev);
   3821	if (err) {
   3822		ohci_err(ohci, "pci_enable_device failed\n");
   3823		return err;
   3824	}
   3825
   3826	/* Some systems don't setup GUID register on resume from ram  */
   3827	if (!reg_read(ohci, OHCI1394_GUIDLo) &&
   3828					!reg_read(ohci, OHCI1394_GUIDHi)) {
   3829		reg_write(ohci, OHCI1394_GUIDLo, (u32)ohci->card.guid);
   3830		reg_write(ohci, OHCI1394_GUIDHi, (u32)(ohci->card.guid >> 32));
   3831	}
   3832
   3833	err = ohci_enable(&ohci->card, NULL, 0);
   3834	if (err)
   3835		return err;
   3836
   3837	ohci_resume_iso_dma(ohci);
   3838
   3839	return 0;
   3840}
   3841#endif
   3842
   3843static const struct pci_device_id pci_table[] = {
   3844	{ PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
   3845	{ }
   3846};
   3847
   3848MODULE_DEVICE_TABLE(pci, pci_table);
   3849
   3850static struct pci_driver fw_ohci_pci_driver = {
   3851	.name		= ohci_driver_name,
   3852	.id_table	= pci_table,
   3853	.probe		= pci_probe,
   3854	.remove		= pci_remove,
   3855#ifdef CONFIG_PM
   3856	.resume		= pci_resume,
   3857	.suspend	= pci_suspend,
   3858#endif
   3859};
   3860
   3861static int __init fw_ohci_init(void)
   3862{
   3863	selfid_workqueue = alloc_workqueue(KBUILD_MODNAME, WQ_MEM_RECLAIM, 0);
   3864	if (!selfid_workqueue)
   3865		return -ENOMEM;
   3866
   3867	return pci_register_driver(&fw_ohci_pci_driver);
   3868}
   3869
   3870static void __exit fw_ohci_cleanup(void)
   3871{
   3872	pci_unregister_driver(&fw_ohci_pci_driver);
   3873	destroy_workqueue(selfid_workqueue);
   3874}
   3875
   3876module_init(fw_ohci_init);
   3877module_exit(fw_ohci_cleanup);
   3878
   3879MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
   3880MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
   3881MODULE_LICENSE("GPL");
   3882
   3883/* Provide a module alias so root-on-sbp2 initrds don't break. */
   3884MODULE_ALIAS("ohci1394");