cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

fdt.c (9770B)


      1// SPDX-License-Identifier: GPL-2.0
      2/*
      3 * FDT related Helper functions used by the EFI stub on multiple
      4 * architectures. This should be #included by the EFI stub
      5 * implementation files.
      6 *
      7 * Copyright 2013 Linaro Limited; author Roy Franz
      8 */
      9
     10#include <linux/efi.h>
     11#include <linux/libfdt.h>
     12#include <asm/efi.h>
     13
     14#include "efistub.h"
     15
     16#define EFI_DT_ADDR_CELLS_DEFAULT 2
     17#define EFI_DT_SIZE_CELLS_DEFAULT 2
     18
     19static void fdt_update_cell_size(void *fdt)
     20{
     21	int offset;
     22
     23	offset = fdt_path_offset(fdt, "/");
     24	/* Set the #address-cells and #size-cells values for an empty tree */
     25
     26	fdt_setprop_u32(fdt, offset, "#address-cells", EFI_DT_ADDR_CELLS_DEFAULT);
     27	fdt_setprop_u32(fdt, offset, "#size-cells",    EFI_DT_SIZE_CELLS_DEFAULT);
     28}
     29
     30static efi_status_t update_fdt(void *orig_fdt, unsigned long orig_fdt_size,
     31			       void *fdt, int new_fdt_size, char *cmdline_ptr,
     32			       u64 initrd_addr, u64 initrd_size)
     33{
     34	int node, num_rsv;
     35	int status;
     36	u32 fdt_val32;
     37	u64 fdt_val64;
     38
     39	/* Do some checks on provided FDT, if it exists: */
     40	if (orig_fdt) {
     41		if (fdt_check_header(orig_fdt)) {
     42			efi_err("Device Tree header not valid!\n");
     43			return EFI_LOAD_ERROR;
     44		}
     45		/*
     46		 * We don't get the size of the FDT if we get if from a
     47		 * configuration table:
     48		 */
     49		if (orig_fdt_size && fdt_totalsize(orig_fdt) > orig_fdt_size) {
     50			efi_err("Truncated device tree! foo!\n");
     51			return EFI_LOAD_ERROR;
     52		}
     53	}
     54
     55	if (orig_fdt) {
     56		status = fdt_open_into(orig_fdt, fdt, new_fdt_size);
     57	} else {
     58		status = fdt_create_empty_tree(fdt, new_fdt_size);
     59		if (status == 0) {
     60			/*
     61			 * Any failure from the following function is
     62			 * non-critical:
     63			 */
     64			fdt_update_cell_size(fdt);
     65		}
     66	}
     67
     68	if (status != 0)
     69		goto fdt_set_fail;
     70
     71	/*
     72	 * Delete all memory reserve map entries. When booting via UEFI,
     73	 * kernel will use the UEFI memory map to find reserved regions.
     74	 */
     75	num_rsv = fdt_num_mem_rsv(fdt);
     76	while (num_rsv-- > 0)
     77		fdt_del_mem_rsv(fdt, num_rsv);
     78
     79	node = fdt_subnode_offset(fdt, 0, "chosen");
     80	if (node < 0) {
     81		node = fdt_add_subnode(fdt, 0, "chosen");
     82		if (node < 0) {
     83			/* 'node' is an error code when negative: */
     84			status = node;
     85			goto fdt_set_fail;
     86		}
     87	}
     88
     89	if (cmdline_ptr != NULL && strlen(cmdline_ptr) > 0) {
     90		status = fdt_setprop(fdt, node, "bootargs", cmdline_ptr,
     91				     strlen(cmdline_ptr) + 1);
     92		if (status)
     93			goto fdt_set_fail;
     94	}
     95
     96	/* Set initrd address/end in device tree, if present */
     97	if (initrd_size != 0) {
     98		u64 initrd_image_end;
     99		u64 initrd_image_start = cpu_to_fdt64(initrd_addr);
    100
    101		status = fdt_setprop_var(fdt, node, "linux,initrd-start", initrd_image_start);
    102		if (status)
    103			goto fdt_set_fail;
    104
    105		initrd_image_end = cpu_to_fdt64(initrd_addr + initrd_size);
    106		status = fdt_setprop_var(fdt, node, "linux,initrd-end", initrd_image_end);
    107		if (status)
    108			goto fdt_set_fail;
    109	}
    110
    111	/* Add FDT entries for EFI runtime services in chosen node. */
    112	node = fdt_subnode_offset(fdt, 0, "chosen");
    113	fdt_val64 = cpu_to_fdt64((u64)(unsigned long)efi_system_table);
    114
    115	status = fdt_setprop_var(fdt, node, "linux,uefi-system-table", fdt_val64);
    116	if (status)
    117		goto fdt_set_fail;
    118
    119	fdt_val64 = U64_MAX; /* placeholder */
    120
    121	status = fdt_setprop_var(fdt, node, "linux,uefi-mmap-start", fdt_val64);
    122	if (status)
    123		goto fdt_set_fail;
    124
    125	fdt_val32 = U32_MAX; /* placeholder */
    126
    127	status = fdt_setprop_var(fdt, node, "linux,uefi-mmap-size", fdt_val32);
    128	if (status)
    129		goto fdt_set_fail;
    130
    131	status = fdt_setprop_var(fdt, node, "linux,uefi-mmap-desc-size", fdt_val32);
    132	if (status)
    133		goto fdt_set_fail;
    134
    135	status = fdt_setprop_var(fdt, node, "linux,uefi-mmap-desc-ver", fdt_val32);
    136	if (status)
    137		goto fdt_set_fail;
    138
    139	if (IS_ENABLED(CONFIG_RANDOMIZE_BASE) && !efi_nokaslr) {
    140		efi_status_t efi_status;
    141
    142		efi_status = efi_get_random_bytes(sizeof(fdt_val64),
    143						  (u8 *)&fdt_val64);
    144		if (efi_status == EFI_SUCCESS) {
    145			status = fdt_setprop_var(fdt, node, "kaslr-seed", fdt_val64);
    146			if (status)
    147				goto fdt_set_fail;
    148		}
    149	}
    150
    151	/* Shrink the FDT back to its minimum size: */
    152	fdt_pack(fdt);
    153
    154	return EFI_SUCCESS;
    155
    156fdt_set_fail:
    157	if (status == -FDT_ERR_NOSPACE)
    158		return EFI_BUFFER_TOO_SMALL;
    159
    160	return EFI_LOAD_ERROR;
    161}
    162
    163static efi_status_t update_fdt_memmap(void *fdt, struct efi_boot_memmap *map)
    164{
    165	int node = fdt_path_offset(fdt, "/chosen");
    166	u64 fdt_val64;
    167	u32 fdt_val32;
    168	int err;
    169
    170	if (node < 0)
    171		return EFI_LOAD_ERROR;
    172
    173	fdt_val64 = cpu_to_fdt64((unsigned long)*map->map);
    174
    175	err = fdt_setprop_inplace_var(fdt, node, "linux,uefi-mmap-start", fdt_val64);
    176	if (err)
    177		return EFI_LOAD_ERROR;
    178
    179	fdt_val32 = cpu_to_fdt32(*map->map_size);
    180
    181	err = fdt_setprop_inplace_var(fdt, node, "linux,uefi-mmap-size", fdt_val32);
    182	if (err)
    183		return EFI_LOAD_ERROR;
    184
    185	fdt_val32 = cpu_to_fdt32(*map->desc_size);
    186
    187	err = fdt_setprop_inplace_var(fdt, node, "linux,uefi-mmap-desc-size", fdt_val32);
    188	if (err)
    189		return EFI_LOAD_ERROR;
    190
    191	fdt_val32 = cpu_to_fdt32(*map->desc_ver);
    192
    193	err = fdt_setprop_inplace_var(fdt, node, "linux,uefi-mmap-desc-ver", fdt_val32);
    194	if (err)
    195		return EFI_LOAD_ERROR;
    196
    197	return EFI_SUCCESS;
    198}
    199
    200struct exit_boot_struct {
    201	efi_memory_desc_t	*runtime_map;
    202	int			*runtime_entry_count;
    203	void			*new_fdt_addr;
    204};
    205
    206static efi_status_t exit_boot_func(struct efi_boot_memmap *map,
    207				   void *priv)
    208{
    209	struct exit_boot_struct *p = priv;
    210	/*
    211	 * Update the memory map with virtual addresses. The function will also
    212	 * populate @runtime_map with copies of just the EFI_MEMORY_RUNTIME
    213	 * entries so that we can pass it straight to SetVirtualAddressMap()
    214	 */
    215	efi_get_virtmap(*map->map, *map->map_size, *map->desc_size,
    216			p->runtime_map, p->runtime_entry_count);
    217
    218	return update_fdt_memmap(p->new_fdt_addr, map);
    219}
    220
    221#ifndef MAX_FDT_SIZE
    222# define MAX_FDT_SIZE SZ_2M
    223#endif
    224
    225/*
    226 * Allocate memory for a new FDT, then add EFI, commandline, and
    227 * initrd related fields to the FDT.  This routine increases the
    228 * FDT allocation size until the allocated memory is large
    229 * enough.  EFI allocations are in EFI_PAGE_SIZE granules,
    230 * which are fixed at 4K bytes, so in most cases the first
    231 * allocation should succeed.
    232 * EFI boot services are exited at the end of this function.
    233 * There must be no allocations between the get_memory_map()
    234 * call and the exit_boot_services() call, so the exiting of
    235 * boot services is very tightly tied to the creation of the FDT
    236 * with the final memory map in it.
    237 */
    238
    239efi_status_t allocate_new_fdt_and_exit_boot(void *handle,
    240					    unsigned long *new_fdt_addr,
    241					    u64 initrd_addr, u64 initrd_size,
    242					    char *cmdline_ptr,
    243					    unsigned long fdt_addr,
    244					    unsigned long fdt_size)
    245{
    246	unsigned long map_size, desc_size, buff_size;
    247	u32 desc_ver;
    248	unsigned long mmap_key;
    249	efi_memory_desc_t *memory_map, *runtime_map;
    250	efi_status_t status;
    251	int runtime_entry_count;
    252	struct efi_boot_memmap map;
    253	struct exit_boot_struct priv;
    254
    255	map.map		= &runtime_map;
    256	map.map_size	= &map_size;
    257	map.desc_size	= &desc_size;
    258	map.desc_ver	= &desc_ver;
    259	map.key_ptr	= &mmap_key;
    260	map.buff_size	= &buff_size;
    261
    262	/*
    263	 * Get a copy of the current memory map that we will use to prepare
    264	 * the input for SetVirtualAddressMap(). We don't have to worry about
    265	 * subsequent allocations adding entries, since they could not affect
    266	 * the number of EFI_MEMORY_RUNTIME regions.
    267	 */
    268	status = efi_get_memory_map(&map);
    269	if (status != EFI_SUCCESS) {
    270		efi_err("Unable to retrieve UEFI memory map.\n");
    271		return status;
    272	}
    273
    274	efi_info("Exiting boot services...\n");
    275
    276	map.map = &memory_map;
    277	status = efi_allocate_pages(MAX_FDT_SIZE, new_fdt_addr, ULONG_MAX);
    278	if (status != EFI_SUCCESS) {
    279		efi_err("Unable to allocate memory for new device tree.\n");
    280		goto fail;
    281	}
    282
    283	/*
    284	 * Now that we have done our final memory allocation (and free)
    285	 * we can get the memory map key needed for exit_boot_services().
    286	 */
    287	status = efi_get_memory_map(&map);
    288	if (status != EFI_SUCCESS)
    289		goto fail_free_new_fdt;
    290
    291	status = update_fdt((void *)fdt_addr, fdt_size,
    292			    (void *)*new_fdt_addr, MAX_FDT_SIZE, cmdline_ptr,
    293			    initrd_addr, initrd_size);
    294
    295	if (status != EFI_SUCCESS) {
    296		efi_err("Unable to construct new device tree.\n");
    297		goto fail_free_new_fdt;
    298	}
    299
    300	runtime_entry_count		= 0;
    301	priv.runtime_map		= runtime_map;
    302	priv.runtime_entry_count	= &runtime_entry_count;
    303	priv.new_fdt_addr		= (void *)*new_fdt_addr;
    304
    305	status = efi_exit_boot_services(handle, &map, &priv, exit_boot_func);
    306
    307	if (status == EFI_SUCCESS) {
    308		efi_set_virtual_address_map_t *svam;
    309
    310		if (efi_novamap)
    311			return EFI_SUCCESS;
    312
    313		/* Install the new virtual address map */
    314		svam = efi_system_table->runtime->set_virtual_address_map;
    315		status = svam(runtime_entry_count * desc_size, desc_size,
    316			      desc_ver, runtime_map);
    317
    318		/*
    319		 * We are beyond the point of no return here, so if the call to
    320		 * SetVirtualAddressMap() failed, we need to signal that to the
    321		 * incoming kernel but proceed normally otherwise.
    322		 */
    323		if (status != EFI_SUCCESS) {
    324			int l;
    325
    326			/*
    327			 * Set the virtual address field of all
    328			 * EFI_MEMORY_RUNTIME entries to 0. This will signal
    329			 * the incoming kernel that no virtual translation has
    330			 * been installed.
    331			 */
    332			for (l = 0; l < map_size; l += desc_size) {
    333				efi_memory_desc_t *p = (void *)memory_map + l;
    334
    335				if (p->attribute & EFI_MEMORY_RUNTIME)
    336					p->virt_addr = 0;
    337			}
    338		}
    339		return EFI_SUCCESS;
    340	}
    341
    342	efi_err("Exit boot services failed.\n");
    343
    344fail_free_new_fdt:
    345	efi_free(MAX_FDT_SIZE, *new_fdt_addr);
    346
    347fail:
    348	efi_system_table->boottime->free_pool(runtime_map);
    349
    350	return EFI_LOAD_ERROR;
    351}
    352
    353void *get_fdt(unsigned long *fdt_size)
    354{
    355	void *fdt;
    356
    357	fdt = get_efi_config_table(DEVICE_TREE_GUID);
    358
    359	if (!fdt)
    360		return NULL;
    361
    362	if (fdt_check_header(fdt) != 0) {
    363		efi_err("Invalid header detected on UEFI supplied FDT, ignoring ...\n");
    364		return NULL;
    365	}
    366	*fdt_size = fdt_totalsize(fdt);
    367	return fdt;
    368}